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At the time of writing (December 2020), coronavirus disease 2019 (COVID-19) has already
caused more than one million deaths worldwide, and therefore, it is imperative to find
effective treatments. The “cytokine storm” induced by Severe Acute Respiratory
Syndrome-Coronavirus type 2 (SARS-CoV-2) is a good target to prevent disease
worsening, as indicated by the results obtained with tocilizumab and dexamethasone.
SARS-CoV-2 can also invade the brain and cause neuro-inflammation with dramatic
neurological manifestations, such as viral encephalitis. This could lead to potentially
incapacitating long-term consequences, such as the development of psychiatric
disorders, as previously observed with SARS-CoV. Several pathways/mechanisms
could explain the link between viral infection and development of psychiatric diseases,
especially neuro-inflammation induced by SARS-CoV-2. Therefore, it is important to find
molecules with anti-inflammatory properties that penetrate easily into the brain. For
instance, some antidepressants have anti-inflammatory action and pass easily through
the blood brain barrier. Among them, clomipramine has shown very strong anti-
inflammatory properties in vitro, in vivo (animal models) and human studies, especially
in the brain. The aim of this review is to discuss the potential application of clomipramine to
prevent post-infectious mental complications. Repositioning and testing antidepressants
for COVID-19 management could help to reduce peripheral and especially central
inflammation and to prevent the acute and particularly the long-term consequences of
SARS-CoV-2 infection.
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INTRODUCTION

The global pandemic of the new coronavirus disease 2019
(COVID-19) caused by Severe Acute Respiratory Syndrome-
Coronavirus type 2 (SARS-CoV-2) started in Wuhan, China,
in December 2019, and has spread rapidly worldwide, due to its
high transmissibility (Munster et al., 2020; Zhang et al., 2020b).
The majority of infected people have mild symptoms. However,
about 20% of them develop a severe form with high mortality
(Wu andMcGoogan, 2020). In view of the time needed to develop
specific antiviral drugs (several months if not years) and the
urgent need of efficient therapeutics, drug repositioning seems to
be the best way to prevent COVID-19 complications.
Repositioning, defined as the new use of a drug in addition to
its original indications, is now considered the fastest way to find
efficient treatments (Nicol et al., 2020; Sanders et al., 2020; Serafin
et al., 2020). It is also crucial to find efficient therapeutics to
prevent COVID-19 long-term consequences. Indeed, during the
one year of this pandemic, different long-term consequences of
SARS-CoV-2 infection have been described, including psychiatric
disorders (Taquet et al., 2020).

Although COVID-19 pathophysiology is not well known yet,
the growing body of work already available sheds some light on
the mechanisms involved in the infection and paves the way for
the discovery of potential therapeutics. Currently, hundreds
ongoing clinical trials are testing different drugs that might
target various features of the disease physiopathology
(Thorlund et al., 2020). Among these different aspects,
excessive inflammation following SARS-CoV-2 infection is an
important target. Indeed, the worsening of infected patients is
mainly explained by the amplified immune response and
cytokine release, also called “cytokine storm” (Felsenstein
et al., 2020; Sanders et al., 2020). This phenomenon involves
an important release of pro-inflammatory cytokines, such as
interleukin 6 (IL-6) and tumor necrosis factor α (TNFα) (Li
et al., 2013; Sanders et al., 2020). It has been hypothesized that
the cytokine storm contributes to the respiratory deficiency
observed in these patients by increasing the alveolar–capillary
blood–gas exchange dysfunction that eventually leads to
pulmonary fibrosis and organ failure (Xu X. et al., 2020; Xu
Y.-H. et al., 2020). Targeting the cytokine storm with
tocilizumab (a humanized anti-IL-6 monoclonal antibody) or
dexamethasone has shown promising effects in reducing
COVID-19 severity and mortality in severely ill patients
(Sanders et al., 2020; WHO Rapid Evidence Appraisal for
COVID-19 Therapies (REACT) Working Group et al., 2020;
Xu X. et al., 2020). On the other hand, it is now recognized that
SARS-CoV-2 infection leads also to neurological damage, either
caused by the direct invasion of the Central Nervous System
(CNS) and/or indirectly through the neuro-inflammation
induced by the infection (Marshall, 2020). Approximately
40% of patients with COVID-19 have neurological symptoms
(e.g., confusion, agitation) (Helms et al., 2020; Mao et al., 2020;
Richardson et al., 2020). More worrying, this virus can cause
encephalitis with poor prognosis (Carod Artal, 2020; Moriguchi
et al., 2020). It has been hypothesized that the cerebrovascular
and neuronal damage caused by the disease could contribute to

its severity, notably to the respiratory deficiency (Li et al., 2020).
In addition, virus-induced neurological damage could lead to
long-term consequences in COVID-19 survivors (Troyer et al.,
2020). Some patients have cognitive impairment (sometimes
severe) after COVID-19 (Zhou et al., 2020), and some patients
infected by SARS-CoV-2 (sometimes up to about 50%) develop
psychiatric disorders after recovery (Mazza et al., 2020; Taquet
et al., 2020; Varatharaj et al., 2020; Zhang et al., 2020a).
Although the mechanisms underlying the development of
psychiatric problems following SARS-CoV-2 infection are not
known, recent studies suggest that COVID-19 psychiatric
consequences are related to inflammation, as indicated for
instance by the positive correlation between presence of
depressive symptomatology and cytokine levels (Guo et al.,
2020; Mazza et al., 2020; Yuan et al., 2020). This is in
agreement with previous research showing that inflammation
due to some viral infections could lead to psychiatric disorders
(Wright et al., 1995; Buckley, 2019; Pape et al., 2019). Peripheral
inflammation induced by a viral infection can cause indirectly
neuro-inflammation, and some viruses can directly induce
neuro-inflammation. As the mechanisms whereby SARS-
CoV-2 induces brain disorders are not known, it is
important to find molecules with anti-inflammatory
properties (peripheral and central) that pass easily through
the blood brain barrier (BBB), diffuse largely in the CNS at
therapeutic concentrations, and might prevent the psychiatric
consequences of SARS-CoV-2 infection.

The finding that deregulation of the inflammatory response
(e.g., increase of pro-inflammatory cytokines) is involved in
depression pathophysiology (Su, 2012; Kohler et al., 2016),
among other mechanisms, led to study the potential anti-
inflammatory properties of antidepressant drugs.
Antidepressant molecules, especially some selective serotonin
reuptake inhibitors and tricyclic antidepressants (TCAs), have
anti-inflammatory properties and diffuse easily in the CNS.
Among them, clomipramine, a TCA that acts mainly by
inhibiting serotonin and noradrenaline reuptake (Balant-
Gorgia et al., 1991), displays a certain and reproducible anti-
inflammatory effect (Baumeister et al., 2016), particularly in the
CNS (Faissner et al., 2017). Due to its action on inflammation
(peripheral and central), its facility to penetrate and accumulate
in the CNS and its antidepressant and anti-anxiety properties,
clomipramine could be a potential prophylactic treatment to
prevent COVID-19 psychiatric sequelae, for instance, in
moderately to severely ill patients.

The aim of this mini-review is to build on our previous work
suggesting that clomipramine could be of potential use in
preventing COVID-19 neurological complications (Nobile
et al., 2020) and to discuss the wider therapeutic implications
of clomipramine in this infectious disease. First, we will describe
possible mechanisms of the cytokine storm induced by SARS-
CoV-2. Next, we will review literature data on clomipramine
effects on peripheral inflammation (in serum). Then, we will
present data on SARS-CoV-2 effects on the CNS and how
clomipramine might prevent them through its anti-
inflammatory action in the CNS and its global mechanism of
action.
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Possible Mechanisms of the “Cytokine
Storm” in Blood Induced by SARS-CoV-2
RNA viruses, such as SARS-CoV-2, that infect host cells are
targeted by the innate antiviral response, mainly driven by
interferon type-I (IFN-I) molecules, such as IFN-α and IFN-β.
Viral RNA is considered a Pathogen Associated Molecular
Pattern (PAMP) that can initiate the production and release of
IFN-I and pro-inflammatory cytokines (IL-1, IL-6, TNFα),
through the nuclear factor κB (NF-κB) and interferon
regulatory factor 3 (IRF3) pathways. Upon recognition of viral
RNA as an intruder by RIG-I-like receptors (RLRs), different
mechanisms are triggered in infected cells, leading to activation of
the NF-κB and IRF3/7 pathways, and resulting in the recruitment
of immune T cells and IFN-I production, respectively (Frieman
et al., 2008; Chen et al., 2017). IL-1, IL-6 and TNFα further
promote pro-inflammatory molecule production mainly through
the NF-κB pathway. All these mechanisms result in the activation
and recruitment of immune cells and clearance of viral infection
through inflammation. However, in some cases, this
phenomenon, the aim of which is to protect tissues from viral
infection, can get out of control with deleterious consequences for
cells and tissues. For reasons still not completely understood, in
some patients with COVID-19, the innate immune response is
not properly regulated, resulting in the massive production of
pro-inflammatory cytokines, with harmful effects (Loo and Gale,
2011; Choudhary et al., 2021). This condition has been named
“cytokine storm” or cytokine release syndrome (Jin et al., 2017;
Swanson et al., 2019). The cytokine storm clinical manifestations
are the direct consequences of the disproportionate and systemic
inflammatory response: hyper-permeability and excessive
coagulation, high fever, asthenia, coagulopathy, thrombosis,
Acute Respiratory Distress Syndrome (ARDS), multi-organ
failure, and death. In patients with COVID-19, the cytokine
storm increases alveolar damage and promotes pulmonary
edema, leading to pulmonary injuries and ARDS (Tay et al.,
2020; Choudhary et al., 2021).

Moreover, some viruses can escape the antiviral innate system
through inhibition of the IFN-I production pathway. SARS-CoV
and MERS-CoV, two coronaviruses that display high similarities
with SARS-CoV-2 and belong to the same family
(Betacoronaviruses) (Rabaan et al., 2020), have this capacity.
SARS-CoV can alter RLRs and inhibit IFN-I production and
immune cell recruitment (Astuti and Ysrafil, 2020). Nevertheless,
at a later infection stage, the massive death of host cells due to
viral infection leads to the release of pattern recognition receptors
(PRRs), composed of viral particles and cellular debris. This
results in the late and sudden innate immune response
stimulation, through massive release of pro-inflammatory
cytokines and recruitment of T and B-lymphocytes. This
might contribute also to the deleterious self-powered loop,
leading to the cytokine release syndrome and its harmful
consequences (Felsenstein et al., 2020).

In patients with COVID-19, high concentrations of pro-
inflammatory cytokines and other inflammatory markers have
been associated with severe prognosis, acute respiratory distress
syndrome, and multi-organ failure (Ye et al., 2020). Indeed, high

levels of IL-2R (the receptor of the anti-inflammatory cytokine
IL-2 that plays a key role in regulating the immune response; high
concentrations have been associated with excessive immune
response (Yang and Lundqvist, 2020)) and IL-6 have been
significantly correlated with the infection severity. Some
studies also found that patients with COVID-19 in intensive
care units have high concentrations of inflammatory markers,
such as TNFα, underlying the inflammation response
deregulation (Ye et al., 2020). In addition, acute respiratory
distress syndrome is mainly caused by massive lung
infiltration by inflammatory cells (monocytes, macrophages
and lymphocytes), resulting in alveolar damage and
pneumocyte hyperplasia (Felsenstein et al., 2020). Interestingly,
lung inflammation is higher following viral clearance, with a peak
after about 14 days of disease, supporting the hypothesis of an
excessive activation of the immune system (Clay et al., 2012;
Felsenstein et al., 2020).

It is important to note that the cytokine storm following
SARS-CoV-2 infection is more likely to occur in patient with
chronic inflammation (Nidadavolu and Walston, 2020). In
agreement, patients with chronic diseases (e.g., cardiovascular
diseases, diabetes, obesity, chronic lung diseases) are more
susceptible to SARS-CoV-2 severe infection (Yang et al.,
2020). The higher risk of severe infection in older people
might also be related to immunosenescence and immune
system impairment (e.g., decreased activity of anti-
inflammatory cytokines) (Vellas et al., 2020). Environmental
factors (e.g., pollution, smoking) also contribute to enhance
risk of negative outcomes (Alqahtani et al., 2020). Genetic
factors also could be implicated, as previously shown for the
TLR1 polymorphism and Gram-positive bacterial infections and
for a single polymorphisms in the IFN-l3 gene and hepatitis C
virus infection (Thomas et al., 2009). Altogether, these data
indicate that susceptibility to excessive immune activation is
multifactorial and that inflammation induced by SARS-CoV-2
should be a key target to prevent complications.

Peripheral Anti-Inflammatory Properties of
Clomipramine
As noted, it is important to target the COVID-19-related
peripheral inflammation and cytokine storm to prevent
COVID-19 complications in general, and also in the brain.
Indeed, the peripheral and the central immune systems
interact, and even a mild dysfunction of the peripheral
immune system could lead to an alteration of the central one
(Buckley, 2019). Many studies reported that the TCA
clomipramine has anti-inflammatory properties. The link
between inflammatory deregulation and depression led
researchers to evaluate the anti-inflammatory properties of
antidepressants (e.g., amitriptyline, fluoxetine) (Kubera et al.,
2013; Alcocer-Gómez et al., 2014), with contradictory results
related to the study type (e.g., fluoxetine decreased IL-6 levels in
one study and increased it in another one) and used
concentrations (e.g., desipramine at low doses stimulates and
at high doses inhibits IL-10 and IFN-γ) (Baumeister et al., 2016).
Clomipramine was one of the few antidepressants (with
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amitriptyline) showing anti-inflammatory properties in all
studies. Its anti-inflammatory properties could be partly
mediated by effects on signaling cascades activated during
viral infection, such as the NF-κB pathway (Hwang et al.,
2008), and also on the mitochondrial respiratory chain
(Rooprai et al., 2003). Hence, we decided to focus this mini-
review on this antidepressant.

In the late 1990s, in vitro studies on clomipramine
demonstrated its anti-inflammatory properties. A study on
monocytes and T lymphocytes found that clomipramine
significantly reduces IL-1β, IL-6 and TNFα production by
monocytes and also IFNγ and IL-2 production by T
lymphocytes (Xia et al., 1996). Moreover, a study on diluted
whole blood, to preserve cell-to-cell interactions, showed that
clomipramine decreases IFNγ production and increases that of
IL-10, an anti-inflammatory cytokine that inhibits IL-6 and TNFα
synthesis (de Waal Malefyt et al., 1991). These effects were
observed at therapeutic plasma concentrations (Maes et al., 1999).

Several studies tried to elucidate the mechanisms of
clomipramine anti-inflammatory effect. Diamond et al.
(Diamond et al., 2006), using cells isolated from human blood
samples, demonstrated that clomipramine suppresses the
production of cytokines (e.g., IFNγ) by T cells (Th1), increases
IL-10 production, and decreases IL-1β production by monocytes.
They found that the reduced production of pro-inflammatory
cytokines was explained by clomipramine inhibition of T-cell
proliferation. An in vivomodel to evaluate the anti-inflammatory
effect of antidepressants showed that clomipramine reduces the
inflammatory exudate induced by carrageenan or dextran
injection in the rat paw (two methods to induce different
inflammatory response types) (Abdel-Salam et al., 2003;
Gurgel et al., 2013; Kostadinov et al., 2014). This effect could
results from clomipramine interference with the activity of
inflammatory mediators, such as histamine, serotonin and
bradykinin (Abdel-Salam et al., 2003), but also through
clomipramine-mediated reduction of neutrophil migration and
mast cell stabilization (Gurgel et al., 2013). The authors suggested
that this effect could be due to clomipramine tricyclic chemical
structure because amitriptyline (another TCA) has the same
effect, and because non-tricyclic antidepressants do not act
directly on neutrophil migration (Sacerdote et al., 1997, 1994).
In a recent study, Kostadinov et al. (Kostadinov et al., 2014)
demonstrated that after carrageenan injection, clomipramine
(single dose or repeated doses) inhibits edema formation in
the rat paw and TNFα and IL-6 production, but increases
Transforming Growth Factor 1 β (TGF1 β) and IL-10
production. They suggested that this effect was partially linked
to clomipramine activity on serotonin levels. Indeed, it was
previously reported that high extracellular levels of serotonin
decrease TNFα and IL-6 production (Kubera et al., 2005), and
that clomipramine increases serotonin extracellular levels.
Clomipramine also modulates human glucocorticoid receptor
function in whole human blood samples, and this might partly
explain its anti-inflammatory effects (Carvalho et al., 2010). All
the mechanisms underlying clomipramine anti-inflammatory
properties have not been elucidated yet, and clomipramine
may exert its anti-inflammatory actions through some [e.g.,

effects on mitochondria in glioma (Higgins and Pilkington,
2010)] or all of these pathways. Nevertheless, the anti-
inflammatory efficacy of clomipramine at therapeutic
concentrations has been proven and replicated in many
in vitro and in vivo studies.

Concerning studies in humans, some antidepressant drugs
significantly reduce the plasma levels of IFNγ, IL-1 β, IL-6 and
TNFα in depressed patients (Frommberger et al., 1997; Mikova
et al., 2001; Strawbridge et al., 2015; Szałach et al., 2019). Two
meta-analyses on this topic showed that 1) these effects are not
observed with all antidepressants; 2) results vary according to
the study (e.g., anti-inflammatory effect in a study but not in
another study); and 3) not all antidepressants decrease the levels
of all pro-inflammatory cytokines (e.g., some antidepressants
only decrease IL-1 β level) (Hannestad et al., 2011; Hiles et al.,
2012). Nevertheless, previous in vitro studies showed that some
antidepressants, especially clomipramine and fluoxetine, more
consistently decrease pro-inflammatory cytokines (e.g., IFNγ,
IL-1 β, IL-6) (Baumeister et al., 2016). Therefore, due to its
capacity to reduce peripheral inflammation, clomipramine
might be a good candidate for reducing inflammation in
patients with COVID-19, and might contribute to prevent
cerebral complications. Moreover, an in vivo study in rats
found that the highest concentrations of clomipramine
(outside the brain) were in lungs and liver (Aitchison et al.,
2010); therefore, it could be useful for reducing lung
inflammation.

Effects of SARS-CoV-2 on the CNS and
Potential Protective Effects of
Clomipramine
SARS-CoV-2 infection can also have a direct impact on the CNS.
For instance, a Chinese study found that about 40% of patients
hospitalized for SARS-CoV-2 infection have neurological
symptoms (e.g., dysgeusia, anosmia, headache . . . ) (Mao
et al., 2020). More worrying, SARS-CoV-2 can also cause
encephalitis, leading to brain inflammation and lesions (Wu
et al., 2020), and infectious toxic encephalopathy caused by
respiratory distress and hypoxia. Furthermore, this viral
infection can contribute to ischemic events and
cerebrovascular accidents (Helms et al., 2020; Wu et al., 2020).
Besides these short-term effects, COVID-19 might have long-
term consequences, especially psychiatric disorders.

Several mechanisms can explain the short-term COVID-19
CNS symptoms (Marshall, 2020; Postolache et al., 2020). First,
SARS-CoV-2 might directly infect brain cells where it replicates
and impairs their functions. In addition to lung tropism, SARS-
CoV-2 also shows an affinity for the CNS, as suggested by its
presence in the cerebrospinal fluid of some infected patients
(Khodamoradi et al., 2020; Moriguchi et al., 2020).
Furthermore, brain tissue edema with partial neuronal
degeneration was detected in patients who died due to
infection by another coronavirus (i.e., SARS-CoV) (Xu et al.,
2005). It has been hypothesized that coronaviruses enter the
brain following the olfactory nerves, which could also explain
the loss of smell (Butowt and von Bartheld, 2020; Troyer et al.,
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2020; Wu et al., 2020). Then, reduction of oxygen supply due to
lung injury might lead to CNS hypoxia, cerebral edema, and
even coma. Some viruses can infect macrophages, microglia or
astrocytes and therefore, deregulate the brain inflammatory
system (Soung and Klein, 2018). The uncontrolled
inflammatory response can affect immune cells in the brain,
such as glial cells, and induce or enhance brain inflammation
(Wu et al., 2020). Furthermore, SARS-CoV-2 affinity for the
Angiotensin Converting Enzyme 2 (ACE 2) receptor could
abnormally increase blood pressure, thus increasing the risk
of cerebral hemorrhage (Wang et al., 2020). The virus may also
damage the BBB and enter the CNS by attacking the vascular
system (Baig et al., 2020). Finally, some coronaviruses can
spread via a synapse-connected route to the medullary
cardiorespiratory center from the mechanoreceptors and
chemoreceptors in the lung and lower respiratory airways
(Wu et al., 2020). This suggests that the respiratory
deficiency observed in COVID-19 could also have a central
origin (Li et al., 2020). These are possible mechanisms to explain
the “direct” and acute effects of CNS invasion by SARS-CoV-2.

Other mechanisms could also be implicated in such long-
term consequences. Here, we will focus on the possible
psychiatric sequelae of COVID-19 (Bouças et al., 2020;
Pantelis et al., 2020). Previous studies already highlighted a
possible link between some viral infections and psychiatric
diseases, for instance hepatitis C virus and risk of depression
(Adinolfi et al., 2017). Other coronaviruses have already been
associated with the appearance of psychiatric disorders, such as
psychosis, major depression and bipolar disorders (Cheng et al.,
2004; Okusaga et al., 2011; Severance et al., 2011). A very recent
study found that being infected by SARS-CoV is associated with
a 2.8-fold higher risk of psychiatric disorders and suicide during
the 12 years of follow-up (Tzeng et al., 2020). This could be an
indirect effect of the high inflammation induced by the infection
(Brietzke et al., 2020). As said previously, inflammation
(peripheral and in the brain) has been linked to many
psychiatric disorders (Brundin et al., 2015; Solmi et al., 2015;
Courtet et al., 2016; Bollen et al., 2017) thus its effect on the CNS
has been studied. In recent years, much research has focused on
neuro-immunity to better understand the pathogenesis of
psychiatric disorders. The interactions between neurons, glial
cells and immune system contribute to cognitive functions and
social behaviors (Pape et al., 2019). Consequently, even a mild
dysregulation of one of these systems (e.g., the immune system)
might facilitate the emergence of psychiatric disorders (Loonen
and Ivanova, 2016; Buckley, 2019). For instance, it has been
shown that an increase in pro-inflammatory cytokine levels
reduces serotonin bioavailability (Baumeister et al., 2016),
inhibits dopamine synthesis (Felger and Lotrich, 2013;
Baumeister et al., 2014), increases glutamate release from
astrocytes (resulting in higher concentration of extracellular
glutamate that could lead to excitotoxic effects) (Haroon et al.,
2017), alters the hypothalamic–pituitary–adrenal axis and the
kynurenine pathway (Malek et al., 2015; Erhardt et al., 2017)
that can also affect CNS function, and modulates the expression
of factors involved in neuroplasticity (e.g., brain-derived
neurotrophic factor) (Lima Giacobbo et al., 2019).

Dysregulation of these systems has been associated with
depression, bipolar depression, and suicidal behavior
(Dell’Osso et al., 2016; Erhardt et al., 2017; Olié and Courtet,
2017).

Alternatively, it has also been hypothesized that SARS-CoV-2
affinity for ACE 2 receptors could lead to a decrease in serotonin
and dopamine levels (Nataf, 2020). Indeed, ACE 2 is co-expressed
with dopa decarboxylase, an enzyme of the dopamine and
serotonin synthetic pathways (Nataf, 2020). By downregulating
ACE 2 expression, SARS-CoV-2 also downregulates this enzyme
and contributes to decreasing dopamine and serotonin levels, as
previously reported for SARS-CoV (Kuba et al., 2005; Klempin
et al., 2018). This could increase the risk of psychiatric disorders
in vulnerable patients. All SARS-CoV-2 effects (direct and
indirect) on the CNS are serious and should encourage the
search of therapeutic molecules that pass through the BBB,
with high bioavailability in the brain, anti-inflammatory
properties, and that might prevent neurotransmitter
(i.e., serotonin and dopamine) depletion, such as
psychotropic drugs.

In addition to its certain peripheral anti-inflammatory
properties, some studies demonstrated that clomipramine has
anti-inflammatory effect in the CNS. Zhu et al. (Zhu et al., 1998)
showed that in Lewis rats, clomipramine (at therapeutic
concentrations) significantly reduces the symptoms of
experimental autoimmune neuritis, a CD4-positive T-cell-
mediated autoimmune disease characterized by inflammation
and demyelination and a validated animal model for the study of
Guillain-Barre syndrome, a human autoimmune disease. The
authors also found that clomipramine reduces IFNγ production.
Another study showed that in microglial cells co-cultured with
neurons and incubated with lipopolysaccharides to induce acute
inflammation, clomipramine at therapeutic concentrations
decreases the production of TNFα and nitric oxide, and the
mRNA expression of inducible nitric oxide synthase, IL-1 β and
TNFα as well as the activation of the NF-κB and p38 MAPK
pathways (Hwang et al., 2008). It also reduced cell death. These
findings are very interesting because microglia and astrocytes
are the main mediators of neuroinflammation. Microglia (about
10% of all glial cells) are the primary immune cells in the CNS,
and are implicated in inflammation-mediated neurotoxicity
(Liu and Hong, 2003) through the production of pro-
inflammatory cytokines and neurotoxic mediators (e.g.,
TNFα, IL-1 β, IL-6). Astrocytes are the most abundant glial
cell type in the CNS and upon inflammatory stimulation, they
proliferate and produce various mediators, such as nitric oxide
and TNFα (Clark et al., 2019). Moreover, a combined in vitro
and in vivo study showed that clomipramine inhibits the
nucleotide-binding oligomerization domain leucine-rich
repeat-containing family pyrin domain-containing 3 (NLRP3)
inflammasome (Gong et al., 2019), leading to a significant
decrease of TNFα, IL-1 β, IL-6 levels and IL-1 β and IL-6
gene expression. Interestingly, the nicotinic receptor pathway
plays a role in modulating the inflammatory response (notably
via the α7 nicotinic acetylcholine receptors-α7nACh receptor)
(Hoover, 2017; Andersson, 2020), and a study in Xenopus laevis
showed that clomipramine can regulate nicotinic receptors
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(López-Valdés et al., 2002). Although clomipramine effect on
nicotinic receptors in humans is not known, this finding might
be interesting because the nicotinic system plays a role in
cognitive functions and psychiatric disorders (Djemil et al.,
2020; Venkatesan et al., 2020) by modulating the release of
some neurotransmitters and neuroplasticity. Similarly, it has
recently been hypothesized that ketamine anti-depressive effect
is partially mediated by its action on the α7nACh receptor (Zhao
et al., 2020). Moreover, SARS-CoV-2 might interact with
nicotinic receptors (Changeux et al., 2020; Gonzalez-Rubio
et al., 2020). Although this interaction and its role in the
inflammatory process have not been elucidated yet, we could
hypothesize that clomipramine contributes to inflammation
modulation also by inhibiting the interaction between SARS-
CoV-2 and nicotinic receptors. Additional studies are needed to
determine the mechanisms underlying the interaction between
SARS-CoV-2, nicotinic receptors, and clomipramine. Recently,
Faissner et al. suggested that clomipramine could be a candidate
anti-inflammatory molecule for the treatment of progressive
multiple sclerosis (a brain inflammatory disease) (Faissner et al.,
2017). This group analyzed the potential anti-inflammatory
activity of 249 drugs against iron toxicity in human neurons
in culture, and found that clomipramine was one of the
molecules with the best effect. When they tested its anti-
inflammatory property in vivo models of experimental
autoimmune encephalomyelitis, they found that
clomipramine has antioxidant effects and decreases T-cell
proliferation and lymphocyte activation, at standard
clinical doses.

In conclusion, clomipramine could be a candidate drug for
preventing brain damage and particularly psychiatric disorders
caused by SARS-CoV-2. In addition to its anti-inflammatory
properties, clomipramine is a serotonin and noradrenaline
reuptake inhibitor and therefore, it may partially treat a
potential reduction in serotonergic neurotransmission
associated with SARS-CoV-2 infection.

SUMMARY AND PERSPECTIVES

The available knowledge on COVID-19 indicates that it is
important to treat the acute phase of the disease, but also to
keep in mind that this infection might cause long-term sequelae
in survivors. Although anti-inflammatory molecules, such as
dexamethasone, significantly decrease inflammation in patients
with COVID-19 (WHO Rapid Evidence Appraisal for
COVID-19 Therapies (REACT) Working Group et al., 2020),
it is not known whether they can prevent neurological sequelae
and especially the development of psychiatric disorders.
Furthermore, as these anti-inflammatory drugs are mainly
used in severely ill patients (i.e., patients hospitalized in
intensive care units), no information is available on their
efficacy in patients with mild-moderate symptoms who
represent a large population at higher risk of psychiatric
disorders upon SARS-CoV (Tzeng et al., 2020) and SARS-
CoV-2 (Taquet et al., 2020) infection. Therefore, new specific
anti-viral drugs and repositioned drugs are necessary. In view of

the data reviewed here, clomipramine seems to be a good
candidate because this molecule has reproducible anti-
inflammatory properties and could prevent the brain damage
caused by the direct effect of the viral infection and indirectly
through the excessive inflammatory response. Moreover,
clomipramine could limit serotonin depletion that may be
caused by SARS-CoV-2.

Other antidepressants have anti-inflammatory properties,
but we focused on clomipramine for various reasons. First,
clomipramine has consistently shown anti-inflammatory
properties in all studies. Second, clomipramine significantly
decreases brain inflammation and has been proposed as a
potential treatment for progressive multiple sclerosis, a severe
autoimmune disease. Finally, in studies that screened the ability
of large panels of molecules to inhibit virus replication,
clomipramine significantly inhibited replication of Ebola
virus (a RNA virus), SARS-CoV, and MERS-CoV (Dyall
et al., 2014; Kouznetsova et al., 2014; Johansen et al., 2015;
Dyall et al., 2017). The underlying mechanisms were not
investigated. On the basis of the chemical structure of
clomipramine, which is a cationic amphiphilic drug, we
could hypothesize that it accumulates in lysosomes where it
increases their pH (Vater et al., 2017), thus inhibiting the viral
protease activation. More studies are needed to assess and
confirm its action on viral replication and to identify the
mechanisms involved.

Several studies demonstrated the anti-inflammatory
properties of clomipramine at therapeutic plasma
concentrations. Moreover, clomipramine enters easily the
brain (probability to cross the BBB of 0.979 (Faissner et al.,
2017)) and accumulates in this tissue (12.5-fold higher
concentration than in plasma or serum levels) (Weigmann
et al., 2000). Clomipramine is on the list of the essential
medicines of the World Health Organization (World Health
Organization, 2019), demonstrating its safety of use and its
importance. Clomipramine can have side effects (like all
drugs), including weight increase, sexual dysfunction, sedation,
hypotension, and anticholinergic effects (dry mouth, sweating,
obstipation, blurred vision, and micturition), but is globally well
tolerated (Faissner et al., 2017). However, its anticholinergic
effects require further investigations, especially in the context
of SARS-CoV-2 infection. Clomipramine has already been
assessed in healthy volunteers (without psychiatric pathology),
and was well tolerated without mood changes (e.g., mania) at the
doses used for patients withmood disorders (Cardoso de Almeida
et al., 2010; Cerqueira et al., 2014).

In conclusion, the potential beneficial effects of clomipramine
for preventing the deleterious consequences of SARS-CoV-2
infection need to be assessed. Other antidepressants that are
better tolerated also could have anti-inflammatory action
(i.e., selective serotonin reuptake inhibitors). Their anti-
inflammatory properties should be thoroughly evaluated
in vitro and in vivo before considering them as candidate
repositioned drugs for treating SARS-CoV-2 infection. It may
also be possible to envisage collaborative studies between
psychiatrists (who routinely prescribe these molecules),
virologists, immunologists and intensive care specialists to
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assess the potential effects of repurposed psychotropic
medications.
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