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ABSTRACT Since electricity plays a crucial role in countries’ industrial infrastructures, power companies
are trying to monitor and control infrastructures to improve energy management and scheduling. Accurate
forecasting is a critical task for a stable and efficient energy supply, where load and supply are matched. This
article discusses various algorithms and a new hybrid deep learning model which combines long short-term
memory networks (LSTM) and convolutional neural network (CNN) model to analyze their performance
for short-term load forecasting. The proposed model is called parallel LSTM-CNN Network or PLCNet.
Two real-world data sets, namely ‘“‘hourly load consumption of Malaysia ” as well as ‘““‘daily power electric
consumption of Germany”’, are used to test and compare the presented models. To evaluate the tested models’
performance, root mean squared error (RMSE), mean absolute percentage error (MAPE), and R-squared
were used. In total, this article is divided into two parts. In the first part, different machine learning models,
including the PLCNet, predict the next time step load. In the second part, the model’s performance, which
has shown the most accurate results in the first part, is discussed in different time horizons. The results show
that deep neural networks models, especially PLCNet, are good candidates for being used as short-term
prediction tools. PLCNet improved the accuracy from 83.17% to 91.18% for the German data and achieved
98.23% accuracy in Malaysian data, which is an excellent result in load forecasting.

INDEX TERMS Electricity, smart grids, load consumption, short-term load forecasting, deep learning, time
series, regression, convolutional neural networks, long short-term memory.

NOMENCLATURE
ANN : Artificial Neural Network
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MLR : Multiple Linear Regression
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I. INTRODUCTION

According to the IEA report [1], in 2017, world electricity
consumption reached 21,372 TWh, which is 2.6% higher than
2016 electricity consumption. Such an annual increase cre-
ates a new problem: how to reduce consumption? Nowadays,
many companies are working on this problem and trying to
solve it. Demand Response Management, which is one of the
main features in smart grids [2], helps to control electricity
consumption with the focus on the customer side. It is also
more essential to understand residential and non-residential
building demand and the use of electricity. Carrying out a
reduction in load consumption can lead to a high number of
economic and environmental benefits. Since experts aim to
create some automated tools that are able to deliver energy
very efficiently, they introduced load forecasting methods
as alternative solutions for electricity network augmentation
as it can be useful to manage the electricity demand and
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provide more energy efficiency [3]. In addition, improving
power delivery quality and having secure networks is a crit-
ical task in smart grids to monitor and support advanced
power distribution systems [4] and, in particular, to improve
load forecasting. Since future consumption could be pre-
dicted, they can be considered as tools to minimize the gap
between electricity supply and user consumption. However,
an inaccurate prediction may lead to a huge loss. For instance,
a small percentage of increase in forecast error was predicted
in 1985, which led to more than 10 million pounds of yearly
detriment in the thermal UK power systems [5]. Thus, many
big companies have focused on accurate load forecasting and
load management so that the Energy Supply Association of
Australia, as an instance, invested about 80% of its budget on
grid upgrades.

Load forecasting approaches are categorized in three dif-
ferent groups concerning their functionalities for differ-
ent purposes [7]: Short-term Load Forecasting (STLF) [8],
Medium-term Load Forecasting (MTLF) and Long-term
Load Forecasting (LTLF) [9]. STLF forecasts the following
hour load to next week, while in MTLEF, it is more than one
week to few months, and LTLF forecasts next years load
consumption. For each of these methods, there are diverse
factors that influence the prediction.

Due to the ability of STLF approaches, they have tremen-
dous importance in energy management. Hence, they have
been used to provide proper management in electric equip-
ment, and because of this contribution, they are known as
an inevitable component in Energy Management Systems.
An error in STLF can have an immediate impact on electrical
equipment. Several factors affect the STLF, including the
following ones: (1) Time factor [6], which is the most crucial
factor for STLF because of the existence of some patterns
such as daily patterns in a set of data (2) Climate, which con-
tains temperature and humidity [6]. (3) Holidays can make
considerable changes in electricity demand. However, this
article focuses on time as a factor that influences electricity
usage and can help achieve accurate predictions.

Besides, diverse approaches can be applied to time-series
data to carry out accurate short-term forecasting. These
approaches consist of statistical regression models, classic
time-series models, and deep learning models. However,
in addition to the factors as mentioned earlier, there are other
factors such as the size of the house, the age of appliances
and equipment [6], global factors like diseases, which can
affect the load prediction for medium-term and long-term
forecasting. Still, most approaches have the same attributes
with some subtle differences. Load consumption data sets can
be viewed as time series. time-series have specific attributes,
such as Trend, Seasonality, and Noise, which will be dis-
cussed later. Due to numerous challenging problems when
dealing with time-series data, researchers deployed Artificial
Neural Networks (ANN) [18] which have structures like
the human brain. They are available to be used in various
areas such as Natural Language Processing (NLP) [10], audio
recognition [11], medical [12] and load forecasting [19] and
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they have been successful to achieve impressive results. One
of the challenging problems of ANN is that they need large
scale data for training to learn the models. Therefore, in some
cases, regression-based approaches can be more useful.
Different algorithms for load forecasting have been studied
so far. The authors in [6] prepared an overview of different
types of load forecasting methods. They focused on the differ-
ence between short-term, medium-term, and long-term load
forecasting and the factors which affect them. The authors in
[14] discussed a review of load forecasting with a focus on
regression-based approaches. To forecast day-ahead hourly
electricity load, they used two particular data sets from the
University of New South Wales, one from the Kensing-
ton Campus and the Tyree Energy Technologies Building.
The authors in [7] surveyed different deep learning mod-
els for short-term load forecasting. They evaluated seven
deep learning models on three real-world data sets. They
proved that there is no correlation between the complexity
of models and golden results. Even in some cases, simpler
models can achieve better results in short-term load fore-
casting. The authors in [15] proposed a hybrid deep neural
network consisting of a CNN module, an LSTM module, and
a feature-fusion module and tested it on the 2-year electric
load data sets from the Italy-North area. Their model was
compared with some other machine learning models, includ-
ing: Decision Tree, Random Forest, DeepEnergy, LSTM, and
CNN coming with better results. However, even though they
achieved good results from their proposed model, their used
data set was not challenging. The authors did not challenge
the model with a more complex data set or prediction in
different time horizons. The author in [16] proposed a parallel
CNN-RNN model to predict one day ahead of load con-
sumption. Temperatures, holidays, hours of day, and days of
the week were used as features for the historical load series
and achieved better results than regression-based models,
DNN and CNN-RNN. However, due to the existing vanishing
gradient descent problem in RNNs, they are not suitable
enough to be used in load forecasting applications, and LSTM
networks should replace them. RNNs and the specific type
of their family, LSTM, use control theory in their structure.
They can find the dependency between old data and new
ones and become an interesting network for load forecasting
applications in recent years. [17] has studied RNNs models
well. The authors in [20] proposed a new DeepEnergy model
that combines 1-D CNN to extract the features and fully
connected network to forecast future load data. To forecast
the next three days’ data, they used an hourly electricity
consumption data set from the USA. They compared the pro-
posed model’s result with five other machine learning tech-
niques through RMSE and MAPE. The results showed that
the DeepEnergy model could carry out an accurate short-term
load forecasting compared to other models. After the Deep-
Energy model, the Random Forest technique [21] had a good
performance. However, as there is no LSTM network in this
model, it will have some difficulty working with more com-
plex time-series data, and it can be expected that this model
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may fail to make an accurate prediction. In another study
[23], the authors proposed a new model which consists of
three algorithms including Variational Mode Decomposition
(VMD), Convolutional Neural Network (CNN), and Gated
Neural Network (GRU). For more convenience, they called
the proposed model SEPNet. This model aimed to predict
hourly electric price and evaluate the model, hourly data from
city Newyork, the USA, which includes the hourly electricity
price from 2015 to 2018. Compared to other models such
as LSTM, CNN, VMD-CNN, the SEPNet model performed
better where it improved the RMSE and MAPE by 25%
and 19%, respectively. The existing problem with SEPNet
is that CNN and GRU are designed consecutively in this
model, so the processed data from CNN may affect the GRU
network’s performance. Some authors, such as in [24] used
ANN:Ss to forecast other types of load data like PV system out-
put data. They proposed a powerful CNN based model called
PVPNet, and they evaluated the proposed model by using
daily data from 2015. They used three past days’ information
to predict the next 24h and their model has outperformed Ran-
dom Forest (RF) regarding the mean absolute error (MAE)
and RMSE. Besides, with technology development, many
studies deployed machine learning models in IoT. In terms
of the technical part, if these models are supposed to be
used in IoT, they must perform online load forecasting. [27]
presents some related machine learning methods which can
be used in IoT through the cloud. They also implemented
a novel hardware technology, including the Arduino micro-
controller. They implemented the device in a research lab to
predict total power consumption in the lab. Regarding the
algorithms, Linear Regression, SVM Regression, Ensemble
Bagged, Ensemble Boosted, Fine Tree Regression, and Gaus-
sian Process Regression (GPR) have been used. All of the
mentioned models have performed appropriately.

Even though some studies in recent years have discussed
different models for short-term load forecasting [22], the lack
of a comprehensive article to carry out a comparison between
classic time-series models, regression-based models, and
deep learning is completely obvious. Besides, time-series
must be used correctly as input for machine learning models.
In other words, some analysis of data is essential to com-
pile machine learning models. This article ’s contribution
is that it focuses on different models that are appropriate
to be used for load forecasting, and it also reviews some
different methodologies to find out the most effective mod-
els for forecasting applications. Even though various deep
learning models have been introduced for load forecasting
in recent years, only some have succeeded in achieving
state-of-the-art results. Moreover, this article consecu-
tively proposes a new hybrid parallel CNN-LSTM and
LSTM-Dense neural networks to improve load forecasting
accuracy. Regarding the model’s architecture, it consists of
two different paths (CNN and LSTM). CNN path extracts the
input data features, and the LSTM path learns the long-term
dependency within input data. After passing through these
two paths and merging their outputs, a fully connected path
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FIGURE 1. An overview of the article.

combined with an LSTM layer has been implemented to pro-
cess the output to predict final load data. This article aims to
evaluate various machine learning techniques in STLF tasks
while there are no exogenous variables. In other words, it tries
to find out a way to carry out STLF using just previous load
data and compare all the results with each other. To extend this
study, all the models are implemented to forecast daily and
hourly ahead load consumption using two highly aggregated
data sets, one of which is an hourly power consumption from
the city of Johor in Malaysia [25]. The other one is a daily
electric consumption which is collected from a power supply
company in Germany. In order to evaluate the models, this
article uses root mean squared error (RMSE) due to the ability
to show how much predicted values spread around average
and mean absolute percentage error (MAPE) since MAPE
can present the accuracy of the models and R-Squared to
show the correlation between predicted results and actual
value.

The remainder of the article is organized as follows:
section II discusses how time-series data and associated
models work. Section III, in addition to discussing data
pre-processing, elaborates the models and show the results.
Finally, a conclusion is issued in section IV.

Il. BACKGROUND OF STUDY

Load series data usually have particular attributes. Thus,
before forecasting future load consumption, these attributes
must be studied and discussed as follows.

A. DEFINITIONS

As it has been mentioned before, load consumption data are
time series. Thus, to forecast future load consumption, some
time-series analyses are needed. time-series have important
attributes such as trend or noise. In order to predict future load
consumption, some considerations of time-series are needed
to be taken into account.

1) TREND

Some time-dependent data have a linear trend in the long
term. It means there is an increase or decrease during
the whole time, which may not be in the same direction
throughout the given period. However, overall, it will be
upward, downward or stable. Load series data are an excellent
example of a kind of tendencies of movement.
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Short-Term Memories, DNN: Deep Neural Networks, FNN: Feedforward
Neural Networks, GRU: Gated Recurrent Unit.

Reference Model City(Dataset)
[25] FTS-CNN Johor, Malaysia
[25] CNN-RNN North Italy
[13] Parallel CNN-RNN North China
[25] LSTM Johor, Malaysia
[13] DNN-FNN New york, USA
[26] Seq2Seq New England
[26] GRU New England
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FIGURE 2. Original load series data and its decomposition. As this data is
an hourly data, it has every 24 hours seasonality.

2) SEASONALITY

Data with seasonality or periodic fluctuations at a particu-
lar time repeat themselves. Many time-dependent data in a
specific time have the same behavior. These kinds of data
are called seasonal data, and studying the seasonality within
time-series data is an important task.

3) RESIDUALS (NOISE)

The combination of trend, seasonality, and residual create the
time dependent data, i.e., if the data decomposes to season-
ality and trend, residuals (noise) will remain by subtracting
both trend and seasonality.

4) STATIONARY
A stationary time-series does not depend on observed time.
In other words, a stationary time-series does not have a pat-
tern to predict the future by looking at it. If data is stationary,
it is easier to be processed and predict the future load data.
Most load series data have all trends, seasonal, noise
attributes simultaneously. For instance, figure 2 shows
decomposition of a seasonal load series data. The blue plot
shows original data, and the red plot shows trend, the black
plot shows seasonality of data, and the green plot is noise.
A library from Python called seasonal — decompose() had
been used to decompose all the seasonal data in this article.
This function returns an object array including seasonal,
trend, and residuals. There is a freg variable in this function,
which refers to the input data frequency, and it is important
to assign a number to this variable. For instance, the freq is
24 for hourly data.

B. MACHINE LEARNING MODELS

Due to the importance of STLF, many authors have discussed
how an accurate prediction of future load consumption can
be obtained; thus, different methods have been introduced
for this purpose such as Auto-Regressive Integrated Mov-
ing Average (ARIMA), Seasonal Auto-Regressive Integrated
Moving Average (SARIMA), Regression, Artificial Neural
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Networks (ANN), etc. However, in recent years, ANNs have
become widespread in STLF, and they achieved good results.
Table 1 shows some studies on deep neural networks with
different architectures to carry out an STLF task with some
cities’ historical electric load consumption. Different models
including ANN, regression, and classic time-series analysis
approaches will be discussed in the following.

1) AUTO REGRESSIVE MODELS

Auto-regressive models predict future value using the cor-
relation between future value and past value. An important
forecasting method, Box-Jenkins methodology combines the
Auto-Regressive model (AR) with Moving Average (MA).
This integrated model is called Auto Regressive Moving
Average (ARMA). When a differencing order is added to
this model to remove non-stationary within data, it is called
Auto-Regressive Differencing Moving Average (ARIMA).
Some studies done by authors such as in [28] discuss the
Box-Jenkins method for short-term load forecasting. How-
ever, some of these methods have been modified to achieve
accurate results. [28] used a modified ARIMA to forecast
hourly load consumption and have completed better results
than standard ARIMA. The authors used the load data and
temperatures from operators in Iran, and MAPE was between
1.5% and 2.0% while MAPE for standard ARIMA was higher
(between 2.0% and 4.5%). In the following, ARIMA models
are discussed.

AR: In the Auto-regressive model, the future variable will
be predicted from the past variables. This model has an order,
p, which is the number of immediately preceding values in
the series used to predict the value at a time 7. AR can be
formalized as follows:

yi=Po+Byi—1+PBoyi2+ ...+ Bpyip+ur (1)

where i, is the mean of series, B, are the parameters of
models and y; is data at time z.

MA: Moving Average is an indicator of technical analyst
and used widely to smooth noise based on lagging. The order
g in MA models refers to g previous errors. MA can be
formalized as following:

Xy =0+ 0161 +he2+...+ 9n€t—q + € ()

where the 6, are the parameters of models and ¢, are the errors
until time ¢.
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FIGURE 3. ACF plot for an example data. X axis shows number of lags,
Y axis shows amount of auto-correlation.

Integration: To predict future load consumption with
ARIMA model, a stationary time-series should be used.
There are different methods to stabilize a time series, such as
logarithm or differencing. These operators reduce time-series
changes with trend elimination; in other words, they convert
non-stationary data to stationary data. An ARIMA model
usually is written as ARIMA(PD,Q) to show the needed
orders, which should be used to achieve the best results from
this model. D represents the number of integration used, P and
Q represent the orders of AR and MA part of ARIMA. To find
out the values of P, D, and Q, there are different approaches.
However, many experts suggest using auto-correlation (AC)
and Partial auto-correlation (PAC) plots to figure out the
values of P and Q. Nevertheless, first of all, it is necessary
to find out what AC is precise. AC is the degree of similarity
between a time-series data and its lags (see figure 3), and it
takes a value in the range [—1,1]. If there is any seasonality
in data, remarkable spikes in the AC plot are shown. For
instance, figure 3 shows the AC plot (or auto-correlation func-
tion (ACF) plot) of an hourly load consumption from a smart
building in France. This data is an hourly load consumption
data, and because of this hourly attribute, a seasonal approach
every 24 hours can be seen in this figure.

Likewise, P or, in other words, the order of AR which is
a part of ARIMA model can be found by plotting PAC plot
(or partial auto-correlation function (PACF) plot). Figure 4
shows the PAC plot for same data in figure 3.

Howeyver, there are some other tests to find the best values
for D. To figure out whether the data is stationary or not,
two different tests are proposed: The rolling statistic plot test
and the Dickey-Fuller test. The rolling statistic plot test is a
chart analysis technique to examine collected data by plotting
Rolling Average. Figuring out the existence of a trend in the
Rolling average is the primary objective. Provided there is
not any trend, data is determined as stationary. In figure 5,
the blue plot shows the original data, and the red plot shows
the rolling average of data. Since there is no trend in the
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FIGURE 5. An example of Rolling test which proves that data is stationary.

rolling average plot (red plot), the data is stationary. Besides,
a Dickey-Fuller test has been applied to this data. This test
is based on a null hypothesis in which the nature of the
series (i.e., stationary or not) could be determined by eval-
uating the p-value received by the Dickey-Fuller test. The
p-value is considered as a critical value for rejecting the null
hypothesis. Thus, the smaller p-value provides more robust
evidence to accept the alternative hypothesis. In this example,
the confidence interval is supposed 5%, and after applying the
test, the obtained p-values are less than 0.05, so data can be
considered stationary.

Hence, one way to obtain the best values for D, after any
integration of data, Rolling tests and Dickey-Fuller test can
be applied. If these tests prove data is stationary, there is no
need to carry out another integration. However, in case the
results were different, it demonstrates that data need more
integration. It must be said that in some instances achieving
stationary data is not possible. Therefore, this type of data
cannot work with ARIMA models.
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Seasonal ARIMA or SARIMA is another kind of statistical
model that is widely used in seasonal data cases. In addition to
the same parameters with ARIMA (P,D,Q)) four other param-
eters for the seasonal part of these models are p, d, ¢ and m.
Like ARIMA, p represents the order of Auto-regressive for
the seasonal part, d represents the order of integration for the
seasonal part, and g represents the order of Moving Average
for the seasonal part. Besides, m shows the time horizon of
seasonality. For example, for hourly data, m will be 24, and
for daily data, it will be 7. Therefore, SARIMA formulation
is usually presented as SARIMA (P,D,Q)(p,d,q,m).

2) EXPONENTIAL SMOOTHING

Exponential Smoothing (ETS) is a well-known time-series
forecasting model for power systems. It can be used as an
alternative to ARIMA models, in addition to its ability to
be used for STLF, MTLF, and LTLF. It uses a weighted
sum of past observations to make the prediction. The dif-
ference between ETS and ARIMA models is that ETS uses
an exponential decreasing weight for previous observations.
It means recent observations have a higher weight than past
observations. Therefore the accuracy depends on some coef-
ficients. The authors in [29] studied exponential smoothing
for load forecasting application using different coefficients.
They used six different data sets collected from China to
evaluate their model, and as it was assumed, they achieved a
high range of MAPE for different coefficient values. There
are various types of ETS models that are used due to the
complexity of data. Equation (3) indicates the formula of the
simple Exponential Smoothing

Fiy1 =aA; + (1 — a)F; 3

where F; and F; 1 indicate, predicted value in time ¢ and 7+ 1
respectively, A; indicates actual value at time ¢ and « is the
smoothing factor (0 < « < 1).

3) LINEAR REGRESSION

Regression-based approaches are interesting techniques,
and among all these techniques, linear regression has an
inevitable role. Some studies tried to use linear regression for
time-series or specifically for load forecasting. The author
in [30] studied RGUKT, R.K valley campus for STLF and
achieved MAPE = 0.029 and RMSE = 2.453. In another
study, the authors in [31] used it with different linear regres-
sion models, including multiple linear regression (MLR),
Lasso, Ridge for hourly load data.

Linear regression is a statistical method to find the relation
among variables. This method is useful to estimate a variable
using influence parameters. The most straightforward linear
regression equation is as below:

Yi = Bo + B1Xi + i 4

where Y is the dependent variable, By is an interceptor, B is
the slope, X is the independent variable, and u; is residual of
the model, which is distributed with zero mean and constant
variance. By increasing the number of variables, this model
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is called multiple linear regression (MLR). In order to eval-
uate this model, the Least Squared Error (LSE) technique is
used. The primary goal is that to find the best coefficients to
minimize LSE. LSE evaluates the model by adding squares
of error between two variables, which in this case, is between
actual values and forecasted ones. Equation (5) shows LSE
formula:

LSE =) (¥; = X))’ ®)

i=1

where X is predicted value, Y is the actual value.

In order to use linear regression for load forecasting, some
parameters such as temperature, humidity, time are needed
to be used as independent variables. Likewise, the load
consumption data are used as dependent variables in lin-
ear regression models. With this approach, it is possible to
use linear regression to forecast future load consumption.
However, there are some ways to forecast load consumption
without using exogenous variables. Lags can be used as the
independent variable for load forecasting to predict linear
regression without using exogenous data. Usually, more than
one lag is used as an independent variable, so MLR is used
instead of simple linear regression. AC plot is a useful tool for
time-series analysis with linear regression. In this approach,
those lags in which their auto-correlation values are more than
a certain threshold can be used as an independent variable
in linear regression. For instance, according to figure 3 lags
[1, 2, 3, 24, 25] are chosen as independent variables with
amount 0.6 for threshold. In total, in this model, lags are inde-
pendent variables, and actual load consumption is the depen-
dent variable. An alternative way to increase the model’s
accuracy is that exogenous variables such as humidity, hol-
iday, and weather are added to the model. Figure 6 shows the
process of preparing data and choosing parameters for linear
regression models. This approach also is used for SVR and
fully connected models too. According to the diagram, data
preparation refers to finding missing values and data normal-
ization. As discussed after plotting the AC plot, those lags
with higher auto-correlation value than the selected threshold
are used as the models’ parameters. After choosing lags and
parameters, the models can predict again, however, if they
are not accurate enough, the amount of the threshold must be
changed, and the process is also re-started.

4) SUPPORT VECTOR REGRESSION (SVR)

Support vector machine (SVM) is an approach that is used
for classification and regression problems. SVM has become
an exciting model among machine learning techniques due to
this model’s ability in different issues such as text or image
analysis. For instance, the authors in [14] studied SVM for
supervised learning methods. However, the first objective of
SVM was classification. Nonetheless, this model has been
extended to regression problems after a while, called support
vector regression (SVR). SVR has the same procedure as
SVM, with some differences. This model’s objective is to find
the most appropriate hyperplane with minimum acceptable
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FIGURE 6. The diagram of preparing load data for linear regression, SVR
and fully connected models.

error from training samples. In other words, the best fit hyper-
plane has the maximum number of data points. The main
objective is to minimize the coefficients through L2-norm
while it is entirely in contrast with the LSE function in
linear regression. As it can be seen in figure 7, there is a
decision boundary (two red lines) which have € distance
with a hyperplane. The accuracy of the model depends on €,
so adjusting €, the desired accuracy. Assuming equation (6)
indicates hyperplane (in this case, it is a linear equation).

yi=wxi+b (6)
Therefore, the solutions and constraints are as equations
(N-9):

Solution:

]l ™
min—|lw
2

Constraints:
yi—wxi—b <€ ®
wxi+b—y <€ ©)]

where x is input, y is target and w is the weight.

SVR also can be used for load forecasting problems.
Authors in [32] proposed a new SVR for short-term load
forecasting. They evaluated their model using two data sets,
ISO New England and North-American Utility. They fore-
casted 24-hour and 1-hour ahead and achieved reasonable
MAPE between 0.75% and 2.25% for test and validation sets.
In another study [33], authors applied SVR on electricity
load demand recorded every half an hour from 1997 to 1998.
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FIGURE 7. An illustrative example SVR. Red line shows the boundary
lines, black line shows hyper plane.

They evaluated their model using an exogenous vari-
able (temperature) and without it. They trained the model
once with winter data and then with Jan-Feb data. MAPE
for different times and variables have been between 1.95%
and 3.5%. However, they concluded that it is better to pre-
dict future load consumption without using temperature data
because it is difficult to predict future temperature, leading to
a higher error.

5) FULLY CONNECTED NEURAL NETWORKS

Nowadays, numerous neural networks such as fully con-
nected [34] ones have been introduced. However, it is difficult
to train a fully connected network for load forecasting due to
the overfitting problem. Therefore, the same approach with
discussed linear regression predicts future load consumption
through fully connected neural networks.

In neural networks, there are three different layers: the
input layer, hidden layer, and output layer. The depth of
the network depends on the number of layers in the hidden
layer. In fully connected neural networks, all the neurons in
each layer are connected to the next layer’s neurons. In other
words, every output of layers uses as input for the next
layer while each neuron has an activation function (usually
a non-linear function). Figure 8 shows a simple network with
just one hidden layer. Each neuron has a specific weight, and
for every layer, a bias term is considered. In total, outputs of
layers are computed as:

aj = Wihj_1+ b (10
hi = f(ar) (11)

where [ indicates layer number, f is activation function like
Relu, Softmax, linear, sigmoid. W; is weighted matrix of
layer I, h; is output of activation function and b; is bias term
of layer [. It is obvious if W is r x 1 matrix, a and h will
have r x 1 dimension. Therefore, the transpose of W should
be used. If P(«) is considered as predicted output from neural
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FIGURE 8. A one-layer neural network example.

networks, o represents parameters of neural network and y is
the actual value, for N input-output, the loss function is:

L= %Efilm — P(@))? (12)

The primary goal is to optimize the parameters of the
neural network. For the same purpose, the loss function
must be minimized as much as possible. A regularization
penalty term is usually used to avoid overfitting (see equation
(13)). Overfitting refers to the production of analysis from
a statistical model that is extremely trained. The problem is
that when overfitting happens, the model learns very well
the parameters but it is not able to predict well (i.e. weak
generalization ability) [35].

L= %Efil(yi — P@))* + Q() (13)
where Q(«) = Al|a||?, using norm-2 and a hyperparameter
to control the regularization strength. For the learning pro-
cessing there are different algorithms such as RMSprop [36],
SGD, ADAM [37]. However, due to its ability to work with
non-stationary data, ADAM is the most appropriate choice
for load forecasting.

6) LONG SHORT-TERM Memory(LSTM)

Long short-term memory (LSTM) [38] is a particular case
of RNNs. RNNs are based on control theory, and because
of this reason, they are used to process a sequence of inputs
[39]. However, experimental results have proven that RNNs
cannot perform well if a long time interval is used as input
due to the gradient vanishing problem. To overcome this
disadvantage, in many recent pieces of research, RNNs were
replaced by LSTM. In load forecasting, many studies used
LSTM and improved their approaches by finding the depen-
dency within load series data. The authors in [40] used the
LSTM network to carry out load forecasting in different time
horizons, including 24 hours, 48 hours, 7 days, and 30 days
and compared LSTM with some traditional models such as
SARIMA and ARMA. The authors in [41] also studied STLF
by using an architecture including LSTM and fully connected
layers. Moreover, they used historically as well as prediction
data as input for their model. In addition to these particular
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research efforts of using LSTM for load forecasting, LSTM
has been widely used in various hybrid models such as the
one in [16].

LSTM consists of 3 different gates, namely input gate,
forget gate, output gate. The input gate determines if cell C;
at time ¢ should be updated by the input X; or not, forget gate
determines if the state of cell C;_; should be forgotten, and
the output gate controls the output of A[#] to determine which
part of cell C; should be used. The following equations show
the computation of LSTM in details:

ilt] = Yy (Wi hlt — 1]+ b)) (14)
flt] = Wy hlt — 1]+ by) 15)
Olt] = ¥ (Wo * ht — 1]+ bo) (16)
Clt] = flr1 © Cr = 1] +i[t] © (p(We * h[t — 1] + b))

a7)

hlt] = ¢(C[t]) © O[t] (18)

where W;, Wy, W,, are parameters to be learned, b;, by, b,,
b. are biased vectors, ¢ is hyperbolic tangent (or can be any
non-linear function), ¥ is sigmoid activation function, f[]
is forget gate, i[#] is input gate, O[t] is output gate, C[¢] is
the state of this cell to encode information from the input
sequence, h[t] is network output and all of [¢] symbol refers
at time ¢ and finally, © is used as a symbol for Hadamard
product.

7) CONVOLUTIONAL NEURAL NETWORKS (CNN)
CNNs are a big family of artificial neural networks [42]
designed to filter and extract input data features. They have
been widely used in various areas thanks to their ability to
handle data with different dimensionalities. For instance, two
dimensional and three-dimensional CNNs are recognized as
a powerful network for performing image processing, and
classification [43], as well as computer vision tasks [44].
Moreover, in recent years they have been deployed in dif-
ferent other fields including Natural Language Processing
(NLP) [10], audio recognition [45], medical [46] and load
forecasting [13]. Existing diversities among the load profiles
using CNN networks may come up with some difficulty. The
complexity of human behaviors, working days, time, and
weather data affect the load profiles [47] directly. To over-
come the complexity of load profiles, CNNs need to have
huge input data as the training set to learn all parameters.
From a technical point of view, CNNs are based on a
discrete mathematics operator called convolution, as shown
in equation 19. In equation 19, Y is used as an output and x is
the input. In addition, w represents the kernel. The i-th output
is given as follows:

Y (@) = Xijx(@i — jw()) 19)

where j is ranging from O to k — 1 and then it makes Y to have
n — k + 1 dimensions, and 7 is the input’s dimension.

Even though convolution operation is a simple mathemat-
ical formula, CNNs work a little differently. Figure 9 shows
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FIGURE 9. 2D-Convolution and Maxpooling operations. In this instance
figure the filter size is [3,2], and for the sliding part the size is
chosen [2,2].

the inner structure of this neural networks family, and as it can
be seen in this figure, convolution filter slides over the whole
input data to extract the features. According to [51], in con-
volution operation, firstly kernel and filter are convolved,
and the result of this operation is added to a bias term. This
mathematical operation is finished when a complete feature
map is achieved. Equations (20) and (21) show the complete
convolution operation in artificial networks:

Yl-]’-” = sum(ky ® xfij) + by, (20)
f™ = activation(Y™) 21

where Y™ indicates the output, m represents the m-th feature
maps, i, j indicate the vertical and horizontal steps of filter
respectively, xfj; is the filter matrix, k,, represents the kernel
matrix, by, is the bias term, and finally /™ is the activation
function’s output. It must be said that equation 20 shows the
convolution operation formula while equation 21 shows the
activation function for the m-th output.

In terms of the CNNs architecture, there are usually con-
volutional layers, pooling layers, and fully-connected layers.
Pooling layers are used after CNN layers to carry out a
downsampling operation while keeping the input data qual-
ity. This dimension-reduction operation is useful because it
makes the model prepared to learn the parameters through
the back-propagation algorithm. Finally, a fully connected
layer is used to perform the final prediction by combining all
features. However, according to the nature of load data, this
article focuses on one-dimensional CNN.

8) PARALLEL LSTM-CNN NETWORK (PLCNet) MODEL

This article discusses a new methodology combined with
CNN and LSTM, called parallel LSTM-CNN Network
(PLCNet), to carry out load prediction. Despite other efforts,
such as those reviewed in the introduction that combined
both approaches, the methodology presented here is com-
pletely different. For instance, the authors in [48] proposed
a CNN-LSTM model so that CNN is first used to extract the
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features of input data, and then output from CNN is used as
LSTM input. The problem within this model is that extracted
features affect the training of LSTM. In order to solve this
problem, in the PLCNet, LSTM and CNN networks are used
in two different paths without any correlation between those
two paths. Figure 10 shows the frame-work of the proposed
methodology. As shown, input signals are first entered into
two paths to be processed by LSTM and CNN paths. These
two paths extract the features and the long dependency within
data and prepare the input data to make the final prediction.
A fully connected path, including dense and dropout layers,
has been implemented and finally predicted actual values to
compare data to carry out the final prediction.

In the CNN path, capturing the feature of local trend is the
main objective. In this path, the data is convoluted through
a Conv-1D layer within 64 units and filter size 2. After the
convolution layer, the Maxpooling layer is used to reduce
the data’s dimensionality by downsampling while keeping
its quality. In the next layer, another Conv-1D layer, but
within 32 units, is implemented. The data in the final layer
continue through flatten layer. All of the units are activated
by Rectified Linear Unit (ReLU).

The LSTM path is used to capture the long-term depen-
dency within data, and data go through a flatten layer to start
working with the LSTM network. After passing through the
flatten layer, input data is ready to be entered as an LSTM
layer input. An LSTM layer with 48 units and the activation
function is ReL.U.

After passing through LSTM and CNN paths, the pro-
cessed data is ready to be entered into the fully connected
layer. As it was mentioned before, there is no correlation
between the two paths. Thus to prepare data for prediction,
the outputs are concatenated in a merge layer. The merged
data are entered into an LSTM layer with 300 units and ReLU
activation function to learn the long-dependency within out-
put data from two paths, and then the output of the LSTM
layer will feed the next dense layer. After that, a dropout
(30%) [49] layer is implemented to avoid any overfitting.
Two other dense layers are used to prepare the data for
final prediction. Since this model aims to predict two data
sets and various time horizons, the number of units in each
dense layer is different. However, all the existing units in the
fully connected path are activated by the sigmoid function.
Concerning the fact that the PLCNet model also must be
evaluated for different time horizons, the number of units in
the LSTM-Dense path can be different.

Figure 11 shows a diagram that discusses how the PLCNet
model is working and how the input data are being processed.
According to the diagram, the number of data in each batch
can be different, and it depends on the purpose of the predic-
tion. In other words, for different time horizons, the number
of look back steps is different. After choosing the look back
number, the load data are batched with the same size. For
example, if the number of look back steps is chosen 24,
the first batch will contain data point O to 23, then the second
batch will have data point 1 to 24, the third batch includes
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FIGURE 11. The workflow of the PLCNet model.

2 to 25, and so on. Likewise, due to the time horizon of the
prediction, the target data can be different.

Ill. EXPERIMENTAL RESULTS

Malaysian data is divided into two sets, the training set,
which contains the year 2009 load consumption, and the year
2010 load consumption used as the test set. German data set
is also divided, so that 2012-2015 data are used as the training
set, and 2016-2017 ones are used as the test set. All the mod-
els are implemented in Python. This article used Keras library
with the back end of TensorFlow to implement deep neu-
ral networks (DNN). Besides, Scikit-learn, Statsmodels, and
Pmdarima libraries were used for regression and time-series
modeling and analysis.
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FIGURE 12. The illustration of Malaysian data.

A. CASE STUDIES

Two different data sets are used to carry out STLF. The
authors in [25] used load consumption of the city of Johor
in Malaysia to predict day-ahead load consumption (hourly
prediction) using a model that combines neural network and
fuzzy time series. They used a new model, which was a
combination of Fuzzy time-series and CNN (FTS-CNN).
They first created a sparse matrix through fuzzy logic and
then, through CNN, extracted features and carried out STLF.
They also tried other models, including SARIMA, different
LSTM models, different probabilistic weighted fuzzy time
series, and weighted fuzzy time series. Their proposed model
(FTS-CNN) could achieve better results than other models for
two different years of Malaysia data, and RMSE was 1777.99,
1702.70, respectively. This data is from a power company in
this city for the years 2009 and 2010 and consists of hourly
electric consumption in MW. It has 17518 rows, which show
the aggregated load consumption of these two years in this
city. Figure 12 illustrates part of this hourly data, and figure 13
shows a Boxplot of the whole data set how the loads are
distributed among days of a week.

VOLUME 9, 2021



B. Farsi et al.: On Short-Term Load Forecasting Using Machine Learning Techniques and a Novel Parallel Deep LSTM-CNN Approach

IEEE Access

40000 @
o
<]
37500
—_ [+]
°© e
= 3000 —_ o _
E J—
c _
L
‘a 32500
: rj
: ] ]
w
[=
S 30000
= L |
z L
©
E L
27500
25000 i —4 o]
4 o o
o _o_ o
22500 8 o
Saturday Sunday Monday Tuesday Wednesday Thursday Friday
Days

FIGURE 13. Boxplot of load consumption during a week in Malaysia
2009-2010.

=
=]
s
m———
—

o
=1
=

Load Consumption (GWh)

1200

1100

1000

201410 201411 2014-12 201501 2015.02 2015.03 2015-04 2015.05 2015.06 2015-07 2015-08
Time

FIGURE 14. The illustration of German load data.

Another data is Germany country-wide daily aggregated
electric consumption since 2006 to 2017 in GWh. This data
is provided by Open Power System Data (OPSD) and is
used to predict day ahead load consumption. This data has
2186 recorded electric consumption in Germany. Figure 14
shows part of the German load data for almost 9 months and
figure 15 shows the Boxplot of this data during a week.

Part of Malaysian data and German data have been decom-
posed into seasonal, trend and noise. Figures 16 and 17 show
the original data and their decomposition. Black plots in both
figures show the seasonal part of each data.

B. DATA NORMALIZATION

The acquired results from practical experiments proved that
to work with deep learning models, data should be prepared
well [50], and results showed pre-processing is more signif-
icant than the training process. As discussed before, in load
forecasting, even though some parameters such as holidays,
temperature, humidity, etc., affect the model, the article ’s
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goal is to carry out STLF using just previous load consump-
tion data. Therefore, data must be prepared specifically for
each model. Data are scaled between 0 and 1 through equation
(22) which is written as follows:

X — Xnin

X, = —— _“min_ (22)
* Xmax - Xmin

C. EVALUATION METRICS

In order to evaluate models performance, root mean squared
error (RMSE), mean absolute percentage error (MAPE) and
coefficient of determination (R2) are used.

N
1

RMSE = |(3) ) (Ai = Fi)? (23)

i=1

100% - |A; — F;

MAPE = L 24
v ; T (24)
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R 3R (25)
SST
N
SSR =Y (Ai — F))? (26)
i=1
N
SST =) (4 — Ap)? (27)

i=1

where A; and F; refer to actual and predicted value of i-th data,
N is the data size, A is the average of actual data. In addition,
SSR stands for sum squared regression and SST stands for
total sum of squared.

D. IMPLEMENTATION
In this section, the results of all the discussed models are
presented.

1) THE EVALUATION OF ARIMA

In ARIMA models, time-series data decompose into m series
to eliminate hourly/daily seasonality within data. According
to figures 10, 11 there is a daily seasonality in Malaysian
data (every 24 hours), and weekly seasonality in German
data (every 7 days). Therefore, instead of using simple
ARIMA, seasonal ARIMA (SARIMA) is being used to carry
out STLFE. In order to find the parameters of SARIMA,
Auto-arima function from pmdarima library in python was
used and it tries to find the best number for parameters by
carrying out a comparison among different parameters. For
German data, ARIMA (5,1,0)(5,0,5,[7]) became the final
models and ARIMA (1,0,1)(2,0,0,[24]) achieved best results
for Malaysian data. Figures 18 and 19 illustrate predicted
results for both data from ARIMA model.

As can be seen, ARIMA carried out short-term load
forecasting for both daily and hourly data well. However,
the problem is that for tuning the best parameters for ARIMA
model, some complex computations must be solved. It leads
to a considerable amount of RAM involvement in addition to
the fact that it takes time.
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2) THE EVALUATION OF EXPONENTIAL SMOOTHING:
Exponential Smoothing (ETS) is an alternative approach for
load forecasting. Training and test sets of two data sets are
applied to this model to carry out ¢ 4 1 forecasting. Besides,
figures 20 and 21 show predicted and actual test set for both
data. These plots prove that ETS fails to perform accurately
in STLF.

3) THE EVALUATION OF LINEAR REGRESSION

For the linear regression model, the ACF plot is used to
find out how many lags can be used as linear regression
variables (independent data). In figure 22, ACF plot of
Malaysia is illustrated. For this data set, the threshold is 0.75.
Lags [1, 2, 23, 24, 25, 47, 48, 49, 71, 72] become the inde-
pendent data and actual load consumption are used as targets
(dependent data). Scaled data is divided into training and test
set. As 10 lags are used as variables, the shape of train set is
(8723,10) which started from the first day of 2009 to the first
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FIGURE 20. Actual and predicted results from ETS, Malaysian data.

FIGURE 21. Actual and predicted results from ETS, German data.

day of 2010 and test set has the shape of (8723,10) from first
day of 2010 to the end of this year.

Figure 23 shows predicted and actual data of load con-
sumption for year 2010 in Malaysia. As can be seen, linear
regression achieved accurate results for this data set.

However, for the German data set, there are some dif-
ferences. The first difference is that 0.69 is chosen for the
threshold. Figure 24 shows AC plot of German data. Accord-
ing to this plot and threshold, lags [7, 14, 21, 28] are being
used as independent variables for MLR. Historical data from
2012 to the end of 2015 are used as the training set. The
shape of training data is (1456,4), and the test set is from
2016 to the end of 2017 with a shape of (702,4). As this data
is daily, the model predicted daily load consumption but as
not good as predicted results from Malaysian data. Figure 25
shows actual and predicted results from test set. According
to these figures, while linear regression can predict hourly
load series accurately, it fails to forecast accurately future
load consumption of daily load series. The difference in the
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FIGURE 23. Actual and predicted results from linear regression,
Malaysian data.

number of lags as variables explains why the results are not
similar. The number of variables (lags) for Malaysian data
is 10, while it is 4 for German data. This point is the main
weakness of linear regression. Even though this model is
high-speed, it fails to achieve accurate results if there is not
much auto-correlation in input data.

4) THE EVALUATION OF SVR

As SVR is a regression-based approach, the same training
and test sets for linear regression in the previous section are
used to evaluate the model. Various parameters affect SVR
to perform well. Among all these parameters, choosing the
appropriate kernel has the most importance. For Malaysian
data, the ’linear’ kernel had the best performance compared to
other kernels, and the German case selects 'radial bias func-
tion (rbf)’ as kernel according to its well-performance with
this data set. In addition, figures 26 and 27 show the predicted
load consumption from SVR for both data sets, respectively.
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FIGURE 25. Actual and predicted results from linear regression, German
data.

As seen from the figures and tables, SVR predicted future
load consumption of Malaysia with less accuracy than linear
regression. However, SVR has achieved more accurate results
than linear regression for German data. SVR has better results
than linear regression in German data because only 4 lags
are considered independent and are not enough for linear
regression. Nevertheless, it can be concluded that SVR is not
the right candidate for STLF.

5) THE EVALUATION OF FULLY CONNECTED NEURAL
NETWORKS

A fully connected neural network has been used for the same
training and testing sets used in two previous sections. This
network has 3 hidden layers in addition to input and output
layers. The first layer is the input layer, and hidden layers con-
sistof 27, 18, and 18 dense layers, respectively. To avoid over-
fitting, before the output layer, a dropout (20%) layer is used.
As this network is supposed to forecast load consumption,
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FIGURE 27. Actual and predicted results from SVR, German data.

one dense is used in the output layer. This model learns the
parameters through ADAM optimizer in 20 epochs, and the
size of each batch is 1. Besides, for whole layers, ReLU
is used as the activation function. ReLLU stands for Recti-
fied Linear Unit, and it works like a linear function with a
difference, which is its output for negative inputs is zero.
This attribute helps DNN models to avoid vanishing gradient
problem. The mathematical formula is given below, while
figure 28 shows this function:

F(x) = max(0, x) (28)

As it could be assumed, the results from fully connected
neural network (see figures 29 and 30) with ReLU would
be close to results from linear regression while this model
is more complex and needs more time to forecast future load
consumption. Especially, when training and test sets are the
same for both models.
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FIGURE 28. RelU illustrative function.
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FIGURE 29. Actual and predicted results from fully connected, Malaysian
data.

6) THE EVALUATION OF LSTM

In this article, the LSTM model studies the last 24 hours
load consumption and predict the next hour consumption
in Malaysian data. In contrast, in German data, in order to
predict next-day load consumption, it studies the last 7 days
and predicts next day data. It has one LSTM layer in terms
of architecture, while one dense layer is used as output.
This type of architecture calls Vanilla LSTM, a well-known
network and widely used in different areas. Same with the
fully connected network in the previous section, the used
activation function is ReL.U. The model is also trained by
ADAM optimizer for Malaysian data in 200 epochs and
RMSprop for German data in 150 epochs. This model proves
that LSTMs are a powerful tool for STLF due to the accurate
results that the LSTM model has achieved as well as their
independence to auto-correlation of input data. The results
are illustrated in figures 31 and 32.
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FIGURE 30. Actual and predicted results from fully connected, German
data.
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FIGURE 31. Actual and predicted load consumption from LSTM,
Malaysian data.

7) THE EVALUATION OF CNN-LSTM AND PLCNet

As discussed before, CNNs are well-known networks for
feature extraction. LSTM also showed its ability to predict
short-term load consumption. Therefore, a hybrid model of
CNN and LSTM can come with several advantages. In order
to work with this hybrid model, CNN layers should be imple-
mented first to apply historical data. In the next step, extracted
features from CNNS are used as input for LSTM layers. This
section uses a 7-layer model to apply on the same test and
training set used for the LSTM model in the previous section.
In layer #1 and layer #2, 1-D CNNs with the ReLU activation
function and filters = 64 and kernel size = 3 are implemented.
After that, a Maxpooling and Flatten layer are used to prepare
data for the LSTM layer. In layer #5, 200 LSTM neurons
with ReLU activation function are implemented. Two dense
layers with 200 and 1 neurons are implemented to analyze the
results and predict load consumption, while ReL.U is used as
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FIGURE 32. Actual and predicted load consumption from LSTM, German
data.
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FIGURE 33. Actual and predicted results from CNN-LSTM, Malaysian data.

the activation function. Like other DNN models, the ADAM
optimizer has the role in compiling the model for Malaysian
data, and the RMSprop optimizer is used for German data.
Figures 33, 34 the results of forecasted data with CNN-LSTM
model.

As it mentioned before, the PLCNet includes two different
parallel paths, CNN path and LSTM path, and these two paths
are fed simultaneously by historical load data. According to
the figures 35 and 36, the model has a good performance for
both data sets.

E. RESULTS

The detailed experimental results are presented numerically
in tables 2 and 3. As shown in these two tables, the PLCNet’s
MAPE and RMSE are the smallest, while the R? score is
the highest. Regarding the largest error value, the MAPE
and RMSE of ETS have the highest error value in both
German and Malaysian data sets, where it has got 0.36 and
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FIGURE 34. Actual and predicted results from CNN-LSTM, German data.
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FIGURE 35. Actual and predicted results from PLCNet, Malaysian data.

8.81 for RMSE and MAPE for Malaysian data and 0.316 and
33.63 for RMSE and MAPE for German data. According to
the MAPE and RMSE values, the short-term electric load
forecasting accuracy of tested models in descending order is
as follows: the PLCNet, LSTM-CNN, LSTM, ARIMA, linear
regression, DNN, SVR, and ETS.

Besides, it can be seen in the figures that the PLCNet has
performed far better than other models, especially in the Ger-
man data set. Since the Malaysian data is hourly data, many
samples are available; thus, all the models can be trained well,
while German data is a daily one, so all the models have been
trained with fewer samples. It leads to letting PLCNet model
shows its power more with an accuracy of 91.18%, in the
German case. After that, LSTM has performed well, and its
accuracy is 83.17%. Likewise, the accuracy of the PLCNet
model for Malaysian data is the highest, too, 98.23%. How-
ever, in this case, there is no remarkable difference between
the most accurate one and the second one, where LSTM-CNN
accuracy is 97.49%.
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FIGURE 36. Actual and predicted results from PLCNet, German data.

TABLE 2. Models Performance for Malaysian Data.

Model Performance metrics | R?score | Runtime (s)
RMSE MAPE

ARIMA 0.102 3.56 94.19% 451.12
ETS 0.36 8.81 90.06% 380.35
Linear Regression | 0.092 2.335 95.50% 12.41
SVR 0.272 7.63 90.40% 10.23
DNN 0.128 3.62 95.38% 199.12
LSTM 0.097 3.11 96.63% 902.56
LSTM-CNN 0.053 243 97.49% 487.33
PLCNet 0.031 2.08 98.23% 92.47

TABLE 3. Models Performance for German Data.

Model Performance metrics | R?score | Runtime (s)
RMSE MAPE

ARIMA 0.201 18.40 80.04% 179.89

ETS 0.316 33.63 70.1% 167.03
Linear Regression | 0.214 19.12 79.86% 4.32
SVR 0.247 22.41 74.39% 3.11

DNN 0.25 26.47 73.47% 80.35
LSTM 0.197 13.20 83.17% 431.11

LSTM-CNN 0.207 15.02 79.75% 180.22
PLCNet 0.061 2.08 91.18% 65.34

TABLE 4. The Training Time Per Epoch of Deep Learning Models.

Model Runtime per epoch (s)
Malaysian data ~ German data

DNN 9.95 32

LSTM 4.61 1.87

LSTM-CNN 9.74 3.01

PLCNet 4.5 0.93

Regarding the run time in the tables, linear regression
and SVR are the fastest in German and Malaysian cases.
However, they are outperformed by deep learning models.
Besides, ARIMA and ETS are two computational techniques
that take significant time for training. Even though all deep
learning models in the tables took much time to be trained
compared to regression-based approaches, their acquired
accuracy is acceptable. The difference between the training
time in deep learning models depends on the number of
epochs considered. Table 4 indicates the runtime per epoch
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FIGURE 37. Histogram plot of the PLCNet results for Malaysian data.

of each deep learning model for both Malaysian and German
data sets. According to the tables 2 and 3, LSTM has the
highest runtime, but the main reason is that this model needs
more epochs to be trained and predict future load. It can be
seen that in table 4 LSTM is faster than LSTM-CNN and
DNN models in both data sets. However, the PLCNet results
show that this model has the highest accuracy and lowest error
amount. It is also the fastest model between deep learning
models where the runtime per epoch in Malaysian data is
4.5(s) and in German data is 0.93(s).

Therefore, it is proven that the novel hybrid STLF algo-
rithm proposed in this article is practical and useful. Although
LSTM has a good performance when dealing with time-
series, its accuracy in German data set, which does not have
many samples, is not good enough. Therefore, the LSTM is
not suitable for this kind of prediction. Finally, the experimen-
tal results show that the PLCNet provides the best electricity
load forecasting results.

F. STATISTICAL ANALYSIS

A common approach to comparing the performance of the
machine learning models is using statistical methods to select
the best one. This section aims to compare the PLCNet, and
LSTM results since both achieved acceptable results in both
German and Malaysian cases. To provide statistical analysis
of the PLCNet and LSTM results, these two models were run
10 times. In terms of visualization, figures 37 and 38 show
the results histogram of the PLCNet and LSTM for Malaysian
data set, respectively.

In this section, the t-test is used to understand the achieved
results are just some stochastic results or they are trustful
to perform statistical analysis. This analysis works based on
the null hypothesis. The null hypothesis is that two models
(the PLCNet and LSTM) are similar to each other. There is
no difference between them, while the alternative hypothesis
is that the two models perform differently. The considered
significance level is 5%, so if the acquired P-value is less than
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FIGURE 38. Histogram plot of LSTM results for Malaysian data.
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FIGURE 39. Histogram plot of the PLCNet results for German data.

5%, the null hypothesis can be rejected. It can be concluded
that the PLCNet performs better than the LSTM model. After
carrying out some statistical analysis, the obtained P-value
is 0.0411 (or 4.11%), less than 5%. Likewise, after applying
the statistical analysis to the German data case, it can be
concluded that the results from the PLCNet are not stochas-
tic, where the obtained P-value is 0.03019 (or 3.019%).
Figures 38 and 39 illustrate the histogram plot of the results.

G. DIFFERENT TIME HORIZONS

Previous sections discussed some machine learning tech-
niques to predict next time step load data consumption.
In other words, at time #, they predicted the load data at
time ¢ + 1. Since the Malaysian data is hourly data and
German data is a daily one, all the models predicted the next
hour load of Malaysian data and the next-day German data
load. This section aims to challenge the PLCNet in different
horizons. In the Malaysian case, the PLCNet will predict the
next 24 hours, next 48 hours, and next 10 days load data,
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FIGURE 40. Histogram plot of LSTM results for German data.

and in the German case, it will predict next 7 days, next
10 days, and next 30 days. RMSE and R? scores are the two
metrics used to evaluate the model’s performance in terms
of evaluation. Because of the existing soft computing errors,
the model is tested 5 times for each horizon, and the average
value is calculated. Same as mentioned before, the model uses
the year 2009 as training set and year 2010 as the test set in
Malaysian data, and years 2012-2015 are used as the training
set and 2016-2017 as the test set in the German data set.

1) MALAYSIAN CASE
Since in previous sections, the prediction of next hour load
data through the PLCNet was discussed thoroughly, this
section studies the next one day, 2 days, and 10 days load
data in the following.

The Malaysian data is hourly data, so predicting one day
ahead load data next 24 time steps should be predicted,
leading to a subtle modification in the model’s architecture.
The last layer of the model, which is a dense layer, will have
24 neurons to provide the next 24 hours prediction. To predict
one-day data, the model looks back to 72 hours ago to train
the algorithm within data and then predict the next 24 hours.
Figure 41 shows the results of the prediction.

In order to forecast the next 2 days load data, the next
48 time steps should be predicted, so another modification is
needed to make the model able to forecast the next days’ load
data. Thus, the model will have 48 neurons in its last layer
(a dense layer). In terms of the training procedure, the model
looks back to 4 days ago (4days x 24h) to be trained, and then
it predicts the next 2 days. Figure 42 illustrates the prediction
and actual load data.

This paragraph aims to predict the next 10 days of load
data, an MTLF task but a big challenge for the model. Since
the samples have been recorded hourly in Malaysian data,
the model must predict 240 values (10 days x 24h). There
are 240 neurons in the last layer. The model looks back to
10 days ago and predicts 10 days ahead load data in the
training process. According to figure 43, the results show that
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FIGURE 41. 1 day ahead results using the PLCNet, Malaysian data.
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FIGURE 42. 2 days ahead results using the PLCNet, Malaysian data.

the PLCNet has an acceptable performance in this task where
the results are close to next hour, one day and 2 days ahead
outputs.

2) RESULTS

Tables 5 and 6 show the results of next days prediction.
However, to have comprehensive knowledge in terms of the
model’s performance, the results of the next hour prediction
are added to these tables again. In this table, A1, A2, A3 and
A4 represent next hour, next day, next 2 days and next 10 days
results.

Even though forecasting future load data in longer time
horizons is a challenging task, according to these tables, there
is almost 4% difference between the accuracy of the next
hour prediction and the next 10 days prediction which is an
acceptable difference and the model has a good performance
in Malaysian case.

Likewise, in order to make sure the PLCNet has better
performance rather than two other discussed deep learning
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FIGURE 43. 10 days ahead results using the PLCNet, Malaysian data.

TABLE 5. The Experimental Results of Malaysian Data in Terms of R2
Score.

Model Test-1 Test-2 Test-3 Test-4 Test-5 Average
Al 98.06%  98.10%  98.12%  98.19%  98.23%  98.14%
A2 97.09%  97.60%  97.56%  97.63% 97.89%  97.55%
A3 96.80%  96.20% 96.31% 97.01% 96.88%  96.64%
A4 94.10%  93.89%  94.25% 9435% 94.24%  94.16%

TABLE 6. The Experimental Results of Malaysian Data in Terms of RMES.

Model | Test-1 Test-2  Test-3 Test-4 Test-5 Average
Al 0.0341  0.0337 0.0335  0.0328 0.0316 0.0331
A2 0.0412  0.0374 0.0382  0.0376 0.0355 0.0379
A3 0.0410 0.0413  0.0401  0.0387 0.0398 0.0401
A4 0.0609 0.0590 0.0582 0.05476 0.05477  0.0575

TABLE 7. The Comparison Table for Malaysian Data in Terms of R2 Score.

Model | DeepEnergy | LSTM | CNN-LSTM | PLCNet
Al 94.88% 96.63% 97.49% 98.14%
A2 87.92% 95.21% 96.62% 97.55%
A3 87.86% 92.65% 94.31% 96.64%
A4 90.02% 92.03% 92.88% 94.16%

TABLE 8. The Comparison Table for Malaysian Data in Terms of RMSE.

Model | DeepEnergy | LSTM | CNN-LSTM | PLCNet
Al 0.055 0.097 0.053 0.033
A2 0.0852 0.121 0.069 0.0379
A3 0.0854 0.189 0.0782 0.0401
A4 0.077 0.197 0.082 0.0575

models including DeepEnergy [20], LSTM and CNN-LSTM,
tables 7 and 8 are provided to compare the results of all these
models in different time horizons in terms of RMSE and R?
score.

3) GERMAN CASE

Same as Malaysian data, the model is challenged through
German data set but in different time horizons. It predicts the
next 7 days, next 10 days, and next 30 days load data.

The model looks back to 7 days ago to perform 7 days
ahead prediction and to do this task it needs 7 neurons in its
last layer. Figure 44 shows the result of using the PLCNet to
forecast Germany’s next 7 days load data.

31209



IEEE Access

B. Farsi et al.: On Short-Term Load Forecasting Using Machine Learning Techniques and a Novel Parallel Deep LSTM-CNN Approach

— Orginal

ol Lk f

FIGURE 44. 7 days ahead results using the PLCNet, German data.

Scaled load

— Orginal

" Lk |

Scaled load

FIGURE 45. 10 days ahead results using the PLCNet model, German data.

This paragraph discusses the results of 10 days ahead
prediction. As the model is supposed to predict next 10 days,
there are 10 neurons in the last layer of the model. Besides,
since forecasting the next days data is a bit harder than
next 7 days, the model looks back to 10 days ago data to
understand the algorithm within load series better. The results
are shown in figure 45.

If the PLCNet can carry out an LTLF task, it can be
introduced as a well-performance tool in load forecasting
applications. To evaluate the LTLF task model’s performance,
this section aims to predict the next 30 days of German load
data, and the results are shown in figure 46. Like previous
sections, there are 30 neurons in the last layer of the model to
predict future load data in terms of the model architecture.

4) RESULTS

So far, the German data set’s illustrative results have been
shown, and in the following, the numerical results are
available. Besides, the one day ahead prediction results are
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FIGURE 46. 30 days ahead results using the PLCNet, German data.

TABLE 9. The Expetimental Results of German Data in Terms of R2 Score.

Model Test-1 Test-2 Test-3 Test-4 Test-5 Average
Bl 90.76%  92.26% 91.18%  90.47% 91.88%  91.31%
B2 89.75%  89.92%  89.63%  88.82%  89.57%  89.53%
B3 89.02%  89.06% 89.59%  89.26%  88.99%  89.18%
B4 83.05% 83.25% 82.27% 81.84% 82.08%  82.49%

TABLE 10. The Experimental Results of German Data in Terms of RMES.

Model  Test-1 Test-2  Test-3  Test-4  Test-5  Average
B1 0.0659  0.0606 0.0622 0.0686 0.0612  0.0637
B2 0.0741  0.0734  0.0753  0.0787 0.0745  0.0752
B3 0.077  0.0768 0.0748 0.0733  0.0788  0.0761
B4 0.132 0.124 0.155 0.183 0.16 0.117

TABLE 11. The Comparison Table for German Data in Terms of R2 Score.

Model | DeepEnergy | LSTM CNN-LSTM | PLCNet
Bl 82.79% 79.75% 83.17% 91.31%
B2 80.12% 78.88% 80.87% 89.53%
B3 78.86% 78.02% 79.65% 89.18%
B4 78.02% 74.14% 76.88% 82.49%

available in tables 10 and 9 to demonstrate the comparison
between different horizons for same data sets. The modeling’s
name Bl1, B2, B3, and B4 represent the modeling for 1, 7,
10, and 30 days ahead, respectively. These two tables indi-
cate that there are not many differences between one day
ahead prediction and 10 days ahead prediction. Still, it is
a big challenge for the model to predict the next 30 days
load series because the average accuracy for the next day
prediction is 91.31% while it is 82.49% for the next 30 days
prediction. The problem is that the German data is not a
big data set, and it has only 2186 recorded samples, so it
is difficult for the model to learn all the parameters well
while looking back 30 previous steps and predicting the next
30 steps.

Same as the Malaysian data, a comparison table
(see tables 11 and 12) is provided for German results to prove
that the PLCNet not only has a better performance in one step
ahead prediction but also it can perform better than other deep
learning models in different time horizons.
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TABLE 12. The Comparison Table for German Data in Terms of RMSE.

Model | DeepEnergy | LSTM | CNN-LSTM | PLCNet
Bl 0.0827 0.207 0.197 0.063
B2 0.102 0.215 0.201 0.0752
B3 0.281 0.231 0.209 0.0761
B4 0.198 0.312 0.279 0.117

IV. CONCLUSION

With smart grids on the rise, the importance of short-term
load forecasting highly increases. To predict the future load
consumption, some factors such as weather can affect the
results. The lack of future weather is a challenging problem
for load forecasting. In this article, the previous consumption
was used as a parameter to predict the load one step ahead.
Some non-deep learning approaches like linear regression
or ARIMA have proven powerful tools for accurate load
forecasting. However, regression-based methods come with
some disadvantages. In order to use these models, such
as SVR and linear regression, lags are used as parameters
through auto-correlation (AC) values. As the threshold value
is subjective, the number of lags as regression-based mod-
els’ parameters can be different. Fully connected networks
also use the same approach as regression-based approaches.
Because there is no constant threshold to find those lags
that are suitable to be used as variables, this procedure
(finding lags through AC plot) may lead to higher errors.
ARIMA and ETS also are two well-known time-series anal-
ysis approaches. However, some parameters need to be tuned
to work with these methods. This procedure needs numerous
trials to find the best values for them. Furthermore, in time-
series methods, data must be analyzed to find out if they are
stationary or not. In contrast, LSTM can achieve good results
whether data is stationary or not. CNN-LSTM also is a hybrid
model, which is used in various load forecasting studies.
The PLCNet achieves the best results between all the dis-
cussed models where the accuracy increase from 83.17% to
91.18% for load data in a German case study. Likewise, for a
Malaysian data set, the model’s obtained accuracy is 98.23%
which is very high for time-series results and the RMSE is
very low at 0.031. In summary, the PLCNet improves the
results remarkably for the German data set. Besides, while
all the models have acceptable Malaysian data performance,
the most accurate results come from the PLCNet. It is faster
than other deep learning models to train both German and
Malaysian data in terms of runtime. This improvement and
highly accurate results, as well as a quick training process,
prove that this novel hybrid model is a good choice for STLF
tasks. The PLCNet model was also evaluated in different hori-
zons, and it performed better than other deep learning models.
The accuracy of the PLCNet in Malaysian experiments for
different horizons is between 94.16% and 98.14%. In German
data, it is between 82.49% and 91.31%, which are acceptable
results compared to other deep learning models’ results.

The interest in using artificial neural networks for electric
load forecasting is winning ground in research and industries,
especially when deployed in IoT applications. According to
the discussed results, deep learning models can be the right
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choice for IoT compared to other techniques. Thus further
work could be devoted to using deep learning models such as
the PLCNet in this article for online load forecasting tasks.
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