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Stratifications, Equisingularity and
Triangulation

David Trotman

Abstract This text is based on 3 lectures given in Cuernavaca in June 2018 about
stratifications of real and complex analytic varieties and subanalytic and definable
sets. The first lecture contained an introduction to Whitney stratifications, Kuo-
Verdier stratifications and Mostowski’s Lipschitz stratifications. The second lecture
concerned equisingularity along strata of a regular stratification for the different reg-
ularity conditions: Whitney, Kuo-Verdier, and Lipschitz, including thus the Thom-
Mather first isotopy theorem and its variants. (Equisingularity means continuity
along each stratum of the local geometry at the points of the closures of the adjacent
strata.) A short discussion follows of equisingularity for complex analytic sets includ-
ing Zariski’s problem about topological invariance of the multiplicity of complex
hypersurfaces and its bilipschitz counterparts. In the real subanalytic (or definable)
case we mention that equimultiplicity along a stratum translates as continuity of the
density at points on the stratum, and quote the relevant results of Comte and Valette
generalising Hironaka’s 1969 theorem that complex analytic Whitney stratifications
are equimultiple along strata. The third lecture provided further evidence of the
tameness of Whitney stratified sets and of Thom maps, by describing triangulation
theorems in the different categories, and including definable and Lipschitz versions.
While on the subject of Thom maps we indicate examples of their use in complex
equisingularity theory and in the definition of Bekka’s (c)-regularity. Some very new
results are described as well as old ones.

1 Stratifications

Consider some singular spaces which are real algebraic varieties.
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2 David Trotman

(i) Let V be the curve {y2 = x2 + x3}. Then V has a double point singularity at the
origin in R2 (Figure 1)

Fig. 1: y2 = x2 + x3 = 0

(ii) Let V be the curve {y2 = x3}. Here V has a cusp singularity at the origin in R2.
(iii) Let V be the surface {z2 = x2 + y2} in R3. This is a cone with an isolated

singularity at the origin.
(iv) Let V be the variety {z(x2 + (y + z)2) = 0} in R3. This is the union of a plane P

and a transverse line ` (Figure 2).

Fig. 2: z(x2 + (y + z)2) = 0

In each of these four examples the singular set of the varietyV is a point. However
in Example (iv) the regular part of V is not equidimensional - both 1 and 2 occur as
local dimensions. In the other examples the regular part is equidimensional.

Now we give an example of a surface whose singular set is a line.

(v) Let V be {y2 = t2x2 − x3} in R3. Then the singular set of V is the line < Ot >
(Figure 3)

1.1 Whitney’s conditions (a) and (b)

We will “stratify" our singular spaces X (closed subsets of some Rn) by expressing
them as a union of smooth manifolds defined by means of a filtration by closed
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Fig. 3: y2 = t2x2 − x3 = 0

subsets :
X = Xd ⊇ Xd−1 ⊇ · · · ⊇ X1 ⊇ X0 ⊇ X−1 = ∅

where each difference X j − X j−1 is either a smooth manifold of dimension j, or is
empty. Each connected component of X j − X j−1 is called a stratum of dimension j.

In Example (iv) the natural filtration can be either

V ⊃ ` ⊃ {0} ⊃ ∅

or
V ⊃ ` ⊃ ∅ = ∅.

Because the intersection point 0 is different from other points on the line ` we
like to take the first filtration. The natural 1-dimensional stratum is thus ` \ {0}.
Also, in Example (v) the natural 1-dimensional strata are the two components of
< Ot > \{0}, because 0 is a different point. The local topology of V at points of the
t-axis changes as we pass through t = 0.

Question. How can we formalise this difference ?

Whitney ( §19 in [Whi65a]; §8 in [Whi65b]) defined two regularity conditions
(a) and (b).

Let X,Y be two strata (disjoint smooth submanifolds ofRn) and let y0 ∈ Y∩X \X .
Then condition (a) holds for (X,Y ) at y0 if given any sequence of points xi ∈
X tending to y0, such that the tangent spaces Txi X tend to τ in the appropriate
grassmannian, then T0Y ⊆ τ

If we stratify Example (iv) without removing the point 0 from the line `, then
Whitney’s condition (a) fails to hold for the pair of strata (P− {0}, `) at 0 ∈ `, where
P is the plane {z = 0}.

Look now at Example (v) (the Whitney cusp). We can stratify V by the filtration

V ⊃< Ot >⊃ ∅

and then Whitney’s condition (a) holds for (V\ < Ot >,< Ot >) at all points. So we
need to impose more regularity so that the point {0} becomes a stratum : the local
topology of slices {t = constant} ∩ V changes at t = 0.
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We say that condition (b) holds for (X,Y ) at y0 ∈ Y ∩(X − X) if given sequences
xi ∈ X and yi ∈ Y both tending to y0, such that Txi X tends to τ and yi xi/| |yi xi | |
tends to λ, then λ ∈ τ.

Look at Example (v). A sequence on V ∩ {y = 0} = {x(t2 + x) = 0}, i.e. x = −t2,
has λ = (1 : 0 : 0) and τ = (1,0,0)⊥ (the (t, y)-plane), so that λ < τ, and condition
(b) fails to hold.

Definition 1.1 A locally finite stratification of a closed set Z ⊆ Rn is called aWhit-
ney stratification if every adjacent pair of strata satisfy condition (b) of Whitney.

Lemma 1.2 Condition (b) implies condition (a).

The proof is an exercise.

Theorem 1.3 (Theorem 2.B.1 in [Tho69], Corollary 10.5 in [Mat12]) A Whitney
stratification automatically satisfies the frontier condition, i.e., whenever a stratum
Y intersects the closure of a stratum X , then Y is contained in the closure of X .

Remark 1.4 In Example (iv) the stratification

V ⊃ ` ⊃ ∅

does not satisfy the frontier condition. In Example (v), stratifying by

V ⊃< Ot >

there are 4 strata of dimension 2 (recall that the strata are the connected components
of V2 \ V1).

Let X1 = {V ∩ {x ≤ 0} ∩ {y ≤ 0}}, X2 = {V ∩ {x ≤ 0} ∩ {y ≥ 0}}, X3 =
{V ∩ {t ≤ 0} ∩ {x ≥ 0}} and X4 = {V ∩ {t ≥ 0} ∩ {x ≥ 0}}. These are the 4 strata
of our stratification (Figure 4) We see that Y ∩ X3 , ∅, but that Y is not a subset
of X3, and similarly for X4, so that the frontier condition fails for (X3,Y ) and for
(X4,Y ). However the frontier condition holds for the pairs of adjacent strata (X1,Y )
and (X2,Y ).

Theorem 1.5 ([Whi65a], Theorem 19.2)Every analytic varietyV (real or complex)
admits a Whitney stratification.

In fact this is also true for more general sets : for semialgebraic sets (Łojasiewicz
[Loj65], Thom [Tho65],Wall [Wal75], Kaloshin [Kal05]), more generally for suban-
alytic sets (Hironaka [Hir73], Hardt [Har75], Verdier [Ver76], Denkowska, Wachta
and Stasica [DWS85]), and even more generally for definable sets in o-minimal
structures (Loi [Loi98], van den Dries and Miller [vdDM96], Nguyen, Trivedi and
Trotman [NTT14], and Halupczok [Hal14a], [Hal14b]).

One says a regularity condition is generic if every variety (or semialgebraic set,
etc.) admits a stratification such that every pair of adjacent strata satisfy the regularity
condition.

So Whitney’s condition (a) and Whitney’s condition (b) are generic.
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Fig. 4

[The term “generic" arises as follows. To prove existence of a regular stratification
one proves that for an adjacent pair of strata (X,Y ),

{y ∈ Y ⊂ X − X |(X,Y ) is regular at y}

is generic inY in the Baire sense of containing a countable intersection of open dense
subsets, so that its complement can be added to a closed set lower in the filtration
than Y .]

Theorem 1.6 Both (a) and (b) are C1 invariants, i.e. given an (a)-regular (resp.
(b)-regular) stratification of Z ⊂ Rn and a C1 diffeomorphism φ : Rn −→ Rn then
φ(Z) inherits an (a)-regular (resp. (b)-regular) stratification.

The previous result follows at once from the following characterizations of (a)
and (b).

Let φ : (U,U ∩Y, y) −→ (Rn,Rm × 0n−m,0) be a C1 chart for Y as a submanifold
of Rn. Let πφ = φ−1 ◦ πm ◦ φ : U −→ U ∩ Y where πm : Rn −→ Rm × 0n−m is
projection onto the first m coordinates, and let ρφ = ρm ◦ φ : U −→ [0,∞) where
ρm : Rn −→ [0,∞) is defined by ρm(x1, . . . , xn) = Σni=m+1x2

i .
First we characterize (a)-regularity.

Theorem 1.7 (TheoremA in [Tro79])A pair of adjacent strata (X,Y ) is (a)-regular
at y ∈ Y ⇐⇒ for every C1 foliation F transverse toY at y, there is a neighbourhood
of y in whichF is transverse to X⇐⇒ for everyC1 chart (U, φ) forY at y, there exists
a neighbourhood V of y, V ⊂ U, such that the retraction πφ |V∩X is a submersion.

Next we characterize (b)-regularity.

Theorem 1.8 ( TheoremB in [Tro79])A pair of adjacent strata (X,Y ) is (b)-regular
at y ∈ Y ⇐⇒ for every C1 chart (U, φ) for Y at y, there is a neighbourhood V of y,
V ⊂ U, such that (πφ, ρφ)|V∩X is a submersion.
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1.2 The Kuo-Verdier condition (w)

A natural idea is to seek stronger generic regularity conditions. Now Whitney’s
condition (a) says that

dist(TxX,Ty0Y ) −→ 0 as x → y0.

We can quantify this convergence in the stronger Kuo-Verdier condition [Ver76]

(w) dist(TxX,Ty0Y = O(‖x − πY (x)‖ = O(dist(x,Y ))

i.e., there exists C > 0, and a neighborhood U of y0 in Rn such that

dist(TxX,Ty0Y ) ≤ C‖x − πY (x)‖ ∀x ∈ U ∩ X .

Here πY denotes a C1 submersive retraction from a tubular neighbourhood ofY onto
Y .

Theorem 1.9 Condition (w) is generic, ie. (w)-regular stratifications exist in the
various classes of sets.

See Verdier (Théorème 2.2 in [Ver76]), Denkowska and Wachta [DW87] or
Łojasiewicz, Stasica and Wachta [LSW86] in the subanalytic case, and Tà Lê Loi
[Loi98] for definable sets.

In Brodersen and Trotman ([BT79], Proposition 2) it was shown that condition
(w) can be characterized by lifting of vector fields. Precisely, (w) holds for (X,Y ) at
y0 ∈ Y if and only if every vector field vY on Y extends in a neighborhood U of y0
to a vector field vX on X which is rugose: ∃C > 0 such that

∀x ∈ U ∩ X,∀y ∈ U ∩ Y, | |vX (x) − vY (y)| | ≤ C | |x − y | |.

Remark 1.10 The stratified vector field on X ∪ Y is weakly Lipschitz. For it to be
Lipschitz one would need to impose the condition that

∀x ∈ U ∩ X,∀x ′ ∈ U ∩ X, | |vX (x) − vX (x ′)| | ≤ C | |x − x ′ | |.

Theorem 1.11(1) For semi algebraic sets (also for subanalytic sets, and for definable
sets in o-minimal structures), (w) implies (b).

(2) For complex analytic stratifications, (w) ⇐⇒ (b).

For (1) in the subanalytic case see Kuo [Kuo71] or Verdier (Théorème 1.5 in
[Ver76]). The definable case is due to Loi [Loi98]. (2) is due to Teissier (Théorème
1.2 in Chapter V of [Tei82]).

Example.

(vi) Let V = {y4 = t4x + x3} ⊂ R3, and stratify by V ⊃< Ot >⊃ ∅. This satisfies (b)
but not (w). In fact V is a C1 submanifold of R3, as proved in my thesis (Example
7.1 in [Tro77]). This shows that (w) is not a C1 invariant.
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One can check easily that condition (w) is a C2 invariant. In fact it is a C1+ε

invariant where the ε refers to a Hölder property of the first derivative. This fact is
useful in proofs that (w) is a generic condition.

1.3 Mostowski’s Lipschitz stratifications

Mostowski [Mos85] introduced in 1985 a very strong regularity condition for com-
plex analytic varieties and proved genericity. Then Parusiński successively proved
genericity of Mostowski’s Lipschitz condition for real analytic varieties [Par88b],
for semi-analytic sets [Par88a] and finally for subanalytic sets [Par94]. Recently, N.
Nguyen and Valette [NV16] proved genericity of Mostowski’s Lipschitz condition
for definable sets in polynomially bounded o-minimal structures.

Mostowski’s original condition is rather technical and takes long to write down,
so we will give an equivalent version due to Parusiński (Proposition 1.5 of [Par88a].

Definition 1.12 A stratification Σ of a set Z defined by

Z = Zd ⊃ Zd−1 ⊃ · · · ⊃ Z0 ⊃ Z−1 = ∅

is said to be a Lipschitz stratification (or satisfy condition (L)) if there exists a
constant K > 0 such that for every subset W ⊂ Z such that

Z j−1 ⊆ W ⊆ Z j

for some j = `, . . . , d where ` is the lowest dimension of a stratum of Z, each
Lipschitz Σ-compatible vector field onW with Lipschitz constant L which is bounded
on W ∩ Z` by a constant C > 0, can be extended to a Lipschitz Σ-compatible vector
field on Z with Lipschitz constant K(L + C).

Proposition 1.13 Every Lipschitz stratification satisfies condition (w).

This proposition is actually an immediate consequence of Mostowki’s original
definition [Mos85].

In fact, so far the Lipschitz condition is the strongest generic regularity condition
on stratifications of definable sets.

1.4 Applications of Whitney (a)-regularity

We have been describing successively stronger regularity conditions. So, why should
one study the rather weakWhitney (a)-regular stratifications ? One reason is because
in singularity theory and dynamical systems (in classification problems and in the
study of stability) one often uses that transversality to a Whitney stratification is an
open condition. And in fact one can show the following equivalence, which gives
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another characterisation of (a)-regularity and hence another proof that (a) is a C1

invariant.

Theorem 1.14 (Theorem 1.1 in [Tro77], [Tro79]) Given a stratification Σ of a
closed subset Z of a smooth manifold M , Σ is Whitney (a)-regular⇔ { f : N −→
M | f is transverse to Σ} is an open set of C1(N,M) in the strong C1 topology, for all
C1 manifolds N .

Recently, Trivedi gave holomorphic versions of this theorem for Stein manifolds
N,M [Tri13]

Another application of Whitney (a)-regularity is the following.

Theorem 1.15 (Kuo, Li and Trotman [KTL89]) Given a stratum X of an (a)-
regular stratification of a subset Z of Rn, then for all x ∈ X and for every pair of
Lipschitz transversals M1,M2 to X at x (a Lipschitz transversal is defined to be the
graph of a Lipschitz map NxX → TxX), there is a homeomorphism

(M1, Z ∩ M1, x) −→ (M2, Z ∩ M2, x).

These results justify the study and verification of (a)-regularity.

2 Equisingularity

We have seen in the examples how Whitney (b)-regularity allows us to distinguish
points where the local topology changes. This is in fact a general property.

2.1 Topological equisingularity

Theorem 2.1 (Thom-Mather: Théorème 2.B.1 in [Tho69] and Proposition 11.1
in [Mat12]) A Whitney (b)-regular stratification (of a closed subset Z of a manifold
M) is locally topologically trivial along each stratum.

This means more precisely that for every point x in a stratum X there is a
neighbourhood U of x in M , a stratified set L, and a stratified homeomorphism

h : (U,U ∩ Z,U ∩ Z, x) −→ (U ∩ X) × (Rk, cL,?)

such that p1 ◦ h = πX , where cL denotes the cone on L with vertex ?.
The proof of this theorem, known as the Thom-Mather first isotopy theorem, is

by integration of a continuous stratified controlled vector field v on Z : for each
stratum X , there is a lift of vX to a vector field vY on neighbouring strata Y such that
πX?vY = πX and ρX?vY = 0 (these two conditions state that vY is a lift of vX and
that vY is tangent to the level hypersurfaces of ρY ).
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In particular the isotopy theorem states that the local topological type of Z at
points of a stratum X is locally constant, hence constant, as X is connected.

Remark 2.2 That the lifted stratified vector field vX ∪vY in the Thom-Mather isotopy
theorem can be chosen to be continuous was first independently proved by Shiota
(Lemma I.1.5 in [Shi97]) and du Plessis [dP99]. A much stronger statement was re-
cently proved as part of Whitney’s fibering conjecture (Conjecture 9.2 in [Whi65b]).
From the statement of the Thom-Mather theorem one can see that h defines a fo-
liation by leaves h−1(p) for p ∈ cL, each diffeomorphic to U ∩ X . In the complex
holomorphic case Whitney conjectured that the leaves be holomorphic and that their
tangents vary continuously as we take the limit for points on a stratum Y tending to
an adjacent stratum X . This was proved by Parusiński and Paunescu (Theorem 7.6
in [PP17]) in the real and complex algebraic and analytic cases, using a hypothesis
of a stratification which is Zariski equisingular (in a generic sense), stronger than
(w)-regularity. In 2018 Parusinski has announced that this generic Zariski equisin-
gularity implies the Lipschitz regularity of Mostowski for families of hypersurfaces
in C3.

With the hypothesis of (b)-regularity (in fact with the even weaker (c)-regularity
defined in Lecture III), Whitney’s fibering conjecture was proved in the smooth case
in 2017 by Murolo, du Plessis and Trotman (Theorem 7 in [MdPT17]): the leaves of
{h−1(p)}p∈cL form a C0,1 foliation.

We saw above that a Kuo-Verdier (w)-regular stratification admits locally rugose
vector fields tangent to strata. These may be integrated to provide a local rugose
trivialization.

Theorem 2.3 (Verdier: Théorème 4.14 in [Ver76])Every (w)-regular stratification
is locally rugosely trivial along strata.

This is to say that a homeomorphism defining a trivialization (almost) as in the
Thom-Mather theorem can be chosen to be rugose. This requires two clarifications.
Firstly the homeomorphism of the Thom-Mather theorem is in fact already rugose
because it is controlled - h can be chosen to respect the level hyper surfaces of the
control function ρX . Secondly in Verdier’s theorem [Ver76] the homeomorphism is
not in general with the product of U ∩ X and a cone, but rather with a normal slice -
see the counterexample using the topologist’s sine curve below (Example 2.10).

Because of the definition we gave above of a Lipschitz stratification (of
Mostowski) it is no surprise that there is also a local trivialization theorem for
Lipschitz stratifications.

Theorem 2.4 (Mostowski [Mos85], Parusiński (Theorem 1.6 in [Par94])) Every
Lipschitz stratification is locally bilipschitz trivial along strata.

Corollary 2.5 Every semialgebraic/subanalytic/definable subset of Rn admits a lo-
cally bilipschitz trivial stratification.
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Remark 2.6 Here “definable" must be taken in a polynomially bounded o-minimal
structure: this means that every definable function f : Rn −→ R satisfies | f (x)| ≤
C | |x | |k , for some C > 0 and some positive integer k, in a neighbourhood of infinity
(i.e. outside some compact set K ⊂ Rn).

Example 2.7 (Parusiński) Let X(t) be < Ox > ∪{(x, xt, t)|x > 0} ⊂ R3. Then the
Lipschitz types of the X(t) are all distinct for t > 1. Hence there is no locally
bilipschitz trivial stratification of

⋃
X(t), thus no Lipschitz stratification.

This example is definable in any o-minimal structure which is not polynomially
bounded (xt = exp(tlogx)). Recall the theorem of C. Miller.

Theorem 2.8 (Miller [Mil94]) An o-minimal structure is not polynomially bounded
if and only if the exponential function is definable in the structure.

Remark 2.9 Whenworking outside of the class of definable sets, in the local triviality
theorems for (w)-regular and Lipschitz stratifications wemust replace cL by a normal
slice F (not necessarily a cone), as shown by the following example.

Example 2.10 Let Z = {y = sin(1/x), x , 0} ⊂ R2, the topologist’s sine curve. If
Y = (−1,1)×0 and X = Z−Y , with (−1,0) and (1,0) the 0-strata, thenwe obtain a (w)-
regular stratification and a Lipschitz stratification, but not a (b)-regular stratification.
The stratification is locally topologically trivial indeed locally bilipschitz trivial
along Y but is not locally topologically conical. It is clear that Z is not definable
in an o-minimal structure because the x-axis intersects Z in an infinite number of
connected components.

Although local bilipschitz triviality is in general strictly weaker than the Lipschitz
property of Mostowski, there exist (w)-regular stratified sets which are not locally
bilipschitz trivial.

Example 2.11 (Koike). Let Z = {y2 = t2x2 − x3, x ≤ 0}. This is obtained by
removing the “upper half" of the Whitney cusp V = {y2 = t2x2 − x3} (Figure 5).

O

Fig. 5

Because the slices t = constant vary between half of a double point, with a nonzero
angle between the 2 branches, and a cusp, with zero angle between the 2 branches,
one sees easily that these 2 types of slices are not bilipschitz equivalent. However
the following calculation shows that (w)-regularity holds.
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d(< 0t >,TpX) = | | < (0,0,1),
gradpF
| |gradpF | |

| |

=
2|t x2 |√

(3x2 − 2xt2)2 + 4y2 + 4t2x4

≤
2|t x2 |

2y
≤ |x | ≤

√
x2 + y2 = | |p − π(p)| |.

Thus (w) holds.

2.2 Some complex equisingularity and real analogues

We have seen that (b)-regularity implies the constance of the local topological type
of a stratified set along each stratum. For families of complex plane curves defined
by

F : C2 × C −→ C,0

(F−1(0),0 × C) is (b)-regular if and only if the local topological type of F−1
t (0) is

constant as t varies, where (z, t) are the coordinates of C2 × C. However this equiv-
alence does not extend to higher dimensions as shown by the following celebrated
example.

Example 2.12 (Briançon and Speder [BS75]). Let F(x, y, z, t) = x3+ t xy3+ y4z+ z9.
Then (F−1(0),0 × C) is not (b)-regular at (0,0,0,0), but the local topological type at
(0,0,0, t) of F)1t (0) is constant.

The theory of equisingularity aims at comparing different notions of regularity
on stratifications, in particular of analytic varieties (where much work has been done
in particular by Zariski, Teissier and Gaffney).

A basic invariant in algebraic geometry is the multiplicity m0(V) at a point 0 of a
variety V in Cn. An informal definition of m0(V) is the number of points near 0 in
P ∩ V for a generic plane P of dimension equal to the codimension of V , passing
near 0.

A relation with stratifications is given by a theorem of Hironaka.

Theorem 2.13 (Hironaka 1969 (Corollary 6.2 in [Hir69])) Given a complex an-
alytic Whitney (b)-regular stratification of a complex analytic variety V , the multi-
plicity of V at points of V is constant on strata.

Thus (b) implies equimultiplicity.
The proof is by integration of a vector field, and works for subanalytic sets, inter-

preted as (b) implying normal pseudo flatness (this is equivalent to equimultiplicity
in the complex case), as shown in a paper of mine with Orro (Proposition 5.2 in
[OT02]). (One defines the normal cone of a stratified set along a stratum X by taking



12 David Trotman

limits on X of orthogonal secant vectors from Y to the set and then normal pseudo
flatness means that the associated projection of the normal cone to X is open.)

2.2.1 Zariski’s problem

In 1971, Zariski stated the following problem (QuestionA in [Zar71]): Given analytic
functions f ,g : Cn+1,0 −→ C,0 and a germ at 0 of a homeomorphism h of Cn+1

sending f −1(0) onto g−1(0), does m0( f −1(0)) = m0(g
−1(0)) ?

As this school concerns the Lipschitz geometry of singularities I will mention
some results about Zariski’s problem when the homeomorphism h is assumed to be
bilipschitz.

Theorem 2.14 (Fernandes and Sampaio [FS16]) Zariski’s problem has a positive
answer if n = 2 and h is bilipschitz.

Theorem 2.15 (Risler and Trotman [RT97]) Zariski’s problem has a positive an-
swer if h is bilipschitz and f = g ◦ h, for all n.

In 2018 it was announced by Birbrair, Fernandes, Sampaio and Verbitsky
[BFSV18] that for the non hypersurface case there are infinitely many counterex-
amples to the bilipschitz invariance of the multiplicity with the dimension of the
varieties being at least 3.

For normal complex surfaces (possibly embedded in higher dimensions), Neu-
mann and Pichon [NP12] have proved that the multiplicity is an outer bilipschitz
invariant.

Theorem 2.16 (Comte [Com98]) Zariski’s problem has a positive answer for com-
plex analytic germs if h is bilipschitz with Lipschitz constants (of h and h−1) suffi-
ciently close to 1.

More precisely if X1 and X2 are complex analytic germs of dimension d in Cn
and there exist constants C > 0,C ′ > 0 such that

(1/C ′)| |x − y | | ≤ | |h(x) − h(y)| | ≤ C | |x − y | |

for all x, y near 0 in X1 for a bilipschitz homeomorphism h : X1,0 −→ X2,0 and

1 ≤ CC ′ ≤ (1 +
1
M
)

1
2d

where M = max(m0(X1),m0(X2)), then m0(X1) = m0(X2).
The proof uses a characterization of the multiplicity as the density, originally due

to Lelong [Lel57].

Definition 2.17 The density of a set X at p ∈ X is defined as the limit as r tends to
0 of the volume of the intersection of X with the ball of radius r centred at p divided
by the volume of the intersection of a plane through p of the same dimension as X
with the ball of radius r centred at p.
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Corollary 2.18 (Comte [Com98]) In a bilipschitz trivial family of complex analytic
germs (defined by a Lipschitz isotopy) the multiplicity is constant.

While on the topic of equimultiplicity and stratifications one should mention the
important characterization due to Teissier.

Theorem 2.19 (Teissier: Théorème 1.2 in Chapter V of [Tei82]) A complex an-
alytic stratification of a complex analytic variety is Whitney (b)-regular ⇐⇒ the
multiplicities of the local polar varieties are constant on strata.

Here the local polar varieties at a point of the variety are the closures of the
critical sets of the restrictions to strata, whose closure contains the point, of locally
defined projections to general linear subspaces of dimensions lying between two and
the dimension of the variety (see section 3.2 in [FT]).

There are real analogues of these complex results involving what are known
as Lipschitz-Killing invariants on strata of a definable stratification, due to Comte
and Merle [CM08] and Nguyen and Valette [NV18]. These generalize another real
analogue of Hironaka’s theorem stated above, due to Comte (who proved in 2000 the
partial result (Théorème 0.4 of [Com00]) of continuity of the density along strata of
a (w)-regular subanalytic stratification) and G. Valette.

Theorem 2.20 (Valette [Val08]) The density is a Lipschitz function along strata of
a (w)-regular subanalytic stratification, and a continuous function along strata of a
(b)-regular subanalytic stratification.

Part of the proof of Teissier’s theorem 2.19 above involves studying how equi-
singularity is preserved after taking generic plane sections of different dimensions.
Precisely, let Y ⊂ X − X .

Definition 2.21 Consider a plane P ⊃ Y , then (X ∩P,Y ) is a stratified pair. If E is an
equisingularity condition, such as (b) or (w), etc., then one says that the pair (X,Y )
is E?-regular at 0 ∈ Y if for all k,0 ≤ k ≤ n − m there exists an open dense set of
planes P of codimension k such that P is transverse to X near 0 and (X ∩ P,Y ) is
E-regular at 0.

If we abbreviate local topological triviality by (T .T .) then Teissier proved in
the complex case that (b) implies (T .T .?), a strengthening of the Thom-Mather
theorem, while the converse, that (T .T .?) implies (b), was proved by Lê and Teissier
(see Théorème 5.3.1 in [LT83]). This is thus a converse to Teissier’s strengthened
Thom-Mather theorem. Next we give some results concerning the ? condition in the
subanalytic case.

Theorem 2.22 For subanalytic stratifications, (w) implies (w?), the Lipschitz prop-
erty (L) implies (L?) and, when Y has dimension 1, (b) implies (b?).

The first and third implications are proved byNavarro and Trotman (Theorem 3.14
in [NAT81]), and the second implication is proved by Juniati, Trotman and Valette
(Corollary 2.9 in [JTV03]). It is unknown if (b) implies (b?) when the dimension of
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Y is greater than 1 for subanalytic stratifications, but in the complex case this follows
from the implication that (w) implies (w?) since (b) and (w) are equivalent (Teissier:
Théorème 1.2 in Chapter V of [Tei82]). Probably the implications in the previous
theorem are valid for definable sets in polynomially bounded o-minimal structures.
A counterexample to the third implication in the non polynomially bounded case
is given in a paper by myself and Valette (in section 4 of [TV17]). Another such
example is given in a paper by myself and L. Wilson [TW06].

Example 2.23 (Trotman and Wilson [TW06]) Let f (x, z) = z− z log(x+
√

x2+z2

log z , z > 0.
Then let Sf be the closure of the graph of f in R3. Then (Sf− < Ox >,< 0x >) is
(b)-regular, but (b?) fails. Also (w) fails to hold, and normal pseudo flatness fails.

Example 2.24 (Trotman and Valette (section 4 in [TV17])) Let

g(x, z) = zx
2+1 = exp((x2 + 1) log z), z > 0.

(Figure 6) Let Sg be the closure of the graph of g in R3. Then (Sg− < 0x >,< 0x >)
is (b)-regular, but (b?) fails. Also normal pseudo flatness and (w) fail to hold.

x

z

O

Fig. 6: Page 14, Example 2.24

Consider the convex hull Kg of Sg and the half-plane {y = 0, z > 0}. The den-
sity of Kg is not continuous along 0x at 0. This is a counterexample to a possible
generalization of the Comte-Valette theorem 2.20 ([Com00], [Val08]) to non polyno-
mially bounded o-minimal structures. Note too that the bilipschitz type of Kg varies
continuously along 0x.

These two examples provide examples of definable sets in any non polynomially
bounded o-minimal structure, because in such a structure the exponential function
and its logarithm inverse are definable by Miller’s dichotomy [Mil94] stated above.

These examples prevent definable extensions to the following theorem.

Theorem 2.25 (Pawłucki (Theorem 1.1 in [Paw85])) Let X,Y be (locally) con-
nected subanalytic strata in Rn,Y ⊂ X − X , such that dimX = dimY + 1. Then (X,Y )
is (b)-regular⇐⇒ X ∪ Y is a C1 manifold-with-boundary.
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One implication is just the C1 invariance of (b). The other is more delicate.
In 2017 with Valette (Corollary 3.11 in [TV17]) I proved that Pawłucki’s charac-

terization is valid for definable sets in polynomially bounded o-minimal structures.
The two examples above show this fails in non polynomially bounded o-minimal

structures.

3 Triangulation of stratified sets and maps

While stratifications can be thought of as amore efficient alternative to triangulations,
as there are less strata in a stratification into manifolds than simplexes of maximal
dimension in a triangulation, it remains the case that triangulations of sets (and
maps) are useful for calculating homology and cohomology. In this section we
present results concerning sets and maps, rather incomplete, but which may serve as
an introduction to the theory.

3.1 Triangulation of sets

Theorem 3.1 (Hironaka [Hir75]) Every semialgebraic set S is triangulable : there
exists a polyhedron K and a semialgebraic homeomorphism φ : K −→ S. Moreover
given a finite family {Sj}j=1,...,m of semialgebraic subsets of S, we can choose
K = {σi}I=1,...,p (the simplexes) and φ such that each Sj is the union of some of the
φ(σo

i ).

The proof applies also to the case of subanalytic sets.

Corollary 3.2 A Whitney stratified semialgebraic set S admits a triangulation such
that every stratum is a union of (images of) open simplexes.

There are similar results in the smooth category.

Theorem 3.3 (Goresky [Gor78]) Every Whitney stratified set is triangulable, such
that strata are unions of open simplexes.

Conjecture 3.4 (Thom) Every Whitney stratified set admits a Whitney triangulation,
i.e. a triangulation such that the refined stratification defined by the open simplexes
is itself (b)-regular.

Theorem 3.5 (Murolo and Trotman [MdPT19]) Every Whitney stratified set ad-
mits a Whitney cellulation, i.e. a cellular decomposition such that the refinement of
the stratification by the open cells is (b)-regular.

Corollary 3.6 (A conjecture of Goresky [Gor81]). The homology of a Whitney strat-
ified set X can be represented by Whitney stratified cycles (WH?(X) � H?(X)).
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As a partial answer to Thom’s conjecture we have the following result of Shiota
in the semialgebraic case.

Theorem 3.7 (Shiota [Shi05]) Every semialgebraic set S admits a semialgebraic
Whitney triangulation , i.e. the open simplexes φ(σo

i )form the strata of a Whitney
stratification, and this may be chosen to be compatible with a finite set of semialge-
braic subsets of S.

Shiota’s theorem was improved and extended by Malgorzata Czapla in her thesis.

Theorem 3.8 (Czapla [Cza12]) Every definable set S admits a definable C2 (w)-
regular triangulation, compatible with a finite number of definable subsets of S.
Moreover the triangulation φ : |K | −→ S is a locally Lipschitz mapping.

So Czapla improves on Shiota’s theorem in two ways: (w)-regularity and defin-
ability. The main tool of Czapla is a bilipschitz triviality theorem of Valette for
definable families, itself an improvement of a celebrated theorem of Hardt.

A continuous semialgebraic mapping p : A −→ Rk where A ⊂ Rn is semi-
algebraic, is said to be semialgebraically trivial over a semialgebraic subset
B ⊂ Rk if there is a semialgebraic set F and a semialgebraic homeomorphism
h : p−1(B) −→ B × F such that p1 ◦ h = p. Then h is called a semialgebraic
trivialization of p over B. We say h is compatible with C ⊂ A if there exists a
semialgebraic set G ⊂ F such that h(C ∩ p−1(B)) = B × G.

Theorem 3.9 (Hardt’s semialgebraic triviality [Har80]) Let A ⊂ Rn be a semial-
gebraic set and p : A −→ Rk a continuous semialgebraic mapping. Then there is a
finite semialgebraic partition of Rk into B1, . . . ,Bm such that p is semi algebraically
trivial over each Bi . Moreover if C1, . . . ,Cq are semialgebraic subsets of A we can
assure that each trivialization

hi : p−1(Bi) −→ Bi × Fi

is compatible with all Cj .

In particular if b, b′ ∈ Bi , then p−1(b) and p−1(b′) are semialgebraically homeo-
morphic.One can take Fi = p−1(bi), bi ∈ Bi and set hi(x) = (x, bi) for all x ∈ p−1(bi).

There is a definable version of Hardt’s triviality theorem too, given by Coste
in his Pisa notes on semialgebraic geometry [Cos00]. We now consider a further
improvement, a definable bilipschitz triviality theorem due to G. Valette [Val05a].

Fix a polynomially bounded o-minimal structure over R (take semialgebraic sets
if preferred). Let A ⊂ Rn ×Rp be a definable set, considered as a family of definable
subsets of Rn parametrized by Rp . For U ⊂ Rp , let

AU = {q = (x, t) ∈ Rn × Rp |q ∈ A, t ∈ U}

and for t ∈ Rp , letAt = {x ∈ Rn |q = (x, t) ∈ A}, the fibre of A at t.
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Definition 3.10 A is said to be definably bilipschitz trivial along U ⊆ Rp if there
exists t0 ∈ U and a definable homeomorphism h : At0 ×U −→ AU mapping (x, t) to
h(x, t) = (ht (x), t) together with a definable continuous function C : U −→ R such
that for all x, x ′ ∈ At0 and all t ∈ U,

|ht (x) − ht (x ′)| ≤ C(t)|x − x ′ |

and for all x, x ′ ∈ At , and all t ∈ U,

|h−1
t (x) − h−1

t (x
′)| ≤ C(t)|x − x ′ |.

Theorem 3.11 (Valette [Val05a, Val05b]) Let A be a definable subset of Rn ×Rp in
some polynomially bounded structure over R. Then there exists a definable partition
of Rp such that the family A is definably bilipschitz trivial along each element of the
partition.

Notes. The Mostowski-Parusiński condition (L) of section 1.3 together with the
definable existence theorem of Nguyen and Valette [NV16] gives a local bilipschitz
trivialization h. Here we have definability of h as well. There is also better control
of the Lipschitz constants of the bilipschitz trivialization here.

As in the case of Hardt’s theorem for topological types we can deduce from
Valette’s theorem bounds on the number of Lipschitz types of sets given as zeros of
polynomials of bounded degree.

To prove his theorem, Valette proves a preparation theorem, and uses ultrafilters
as in Coste’s account of the definable Hardt triviality theorem (cf. Coste’s Pisa notes
on o-minimal geometry [Cos00]).

3.2 Thom maps and the (a f ) condition

We will describe a class of stratified maps which are triangulable.

Definition 3.12 Let Z be a closed subset of Rn (or Cn) with a stratification Σ. Let
f : Rn −→ Rp be a C1 map. Then Σ is said to satisfy (a f ) if each f |X , for X a
stratum of Σ, is of constant rank (depending on X), and for sequences xi ∈ X tending
to y in a stratum Y of Σ,

limxi→yTxi ( f
−1( f (xi))) ⊇ Ty( f −1( f (y))).

When further,

dist(Tx( f −1( f (x))),Ty( f −1( f (y))) ≤ C | |x − πY (x)| |

for someC > 0 and x in a neighbourhoodU of y inRn (orCn), we say that Σ satisfies
the (w f ) condition.
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Theorem 3.13 (Loi [Loi98]) For polynomially bounded o-minimal structures, every
definable function f : Rn −→ R admits a stratification such that (w f ) holds.

For (a f ) this is true in any o-minimal structure. In the complex case the result is
due to Henry, Merle and Sabbah [HMS84].

Definition 3.14 Let f : Rn −→ Rm be aC1 map. If there existWhitney stratifications
Σ of Z ⊂ Rn ⊂ Rm such that f maps each stratum X of Σ to a stratum X ′ of Σ′, such
that f |X is a submersion onto X ′, Σ satisfies (a f ), and each f |X is proper, then one
says that f is a Thom map .

Thom maps have nice properties.

Theorem 3.15 (Shiota [Shi00]) If Z,W are respectively closed subsets of Rn and
Rm and f : Z −→ W is a proper C∞ Thom map, then f is triangulable, i.e. there
exist polyhedra P,Q and homeomorphisms φ : Z −→ P, ψ : W −→ Q such that
ψ ◦ f ◦ φ−1 : P −→ Q is piecewise linear.

For non-proper maps there is still a theorem.

Theorem 3.16 (Shiota [Shi10]) Nonproper semialgebraic C1 Thom maps between
closed semialgebraic subsets are triangulable , i.e. there exist finite simplicial com-
plexes K, L and semialgebraic (resp. definable) C0 embeddings φ : Z −→ |K |,
ψ : W −→ |L | such that φ(Z) and ψ(W) are unions of open simplexes of K, L and
ψ ◦ f ◦ φ−1 : φ(Z) −→ ψ(W) can be extended to a simplicial map K −→ L.

When the target space is of dimension > 1, the transform of the map by suitable
blowing-ups of the target space becomes (a f ) stratifiable (see Sabbah [Sab83]) and
locally triangulable (see Teissier [Tei89]). Note that maps not satisfying (a f )may not
be triangulable. For example the blowup of a point in R2 does not satisfy (a f ) and is
not triangulable. Any 2-simplex attached to the exceptional fibre (a projective line)
is mapped to a 1-simplex by linearity. One sees that (a f ) fails because outside the
origin the fibres of points are just points and the limit of a point cannot contain a line
as the tangent space of the exceptional fibre. Thom [Tho69] called maps satisfying
(a f ) maps “sans éclatement" , i.e. without blowing-up, so that this example is in
some sense a paradigm.

Analogous to the characterization of (a)-regularity by the openness of the set of
maps transverse to a stratification, we have a similar result for (a f )-maps.

Theorem 3.17 (Trivedi-Trotman [TT14]) Let N,P be C1 manifolds. Let f : N −→
P be a C1 map of constant rank on the strata of a stratification Σ of a closed subset
Z of N . Let F denote the foliations of strata X of Σ induced by the fibers of f |X . The
following are equivalent:

(1) Σ is (a f )-regular;
(2) for any C1 manifold M , {g ∈ C1(M,N) : g is transverse to F } is open in the

strong C1 topology;
(3) {g ∈ C1(N,N) : g is transverse to F } is open in the strong C1 topology.
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The (a f ) condition has a particular role in equisingularity of families of complex
hypersurfaces.

Let F = Cn+1 × C,O × C −→ C,0 ba an analytic function such that the singular
locus of F−1(0) is 0 × C. Let Ft (z) = F(z, t).

Theorem 3.18 (Lê and Saito [LS73], Teissier (Remarque 3.10 in [Tei73])) . The
following conditions are equivalent:

(1) µ(Ft ) is constant as t varies,
(2) (a f ) holds for the stratification (F−1(0) − 0 × C,0 × C),
(3) lim(z,t)→(0,0 |∂F/∂t ||gradF | = 0.

Corollary 3.19 If F(z, t) = g(z) + th(z) has µ(Ft ) constant, then Ft is equimultiple
along 0 × C.

This simple consequence of the previous theorem should be linked to a striking
result of Parusinski.

Theorem 3.20 (Parusiński [Par99]) With the same hypotheses as in the previous
corollary, the topological type of F−1

t (0) is constant as t varies.

This in turn should make us think again of an important general result.

Theorem 3.21 (Lê-Ramanujam [LR76]). If n , 2 and µ(Ft ) is constant, then the
topological type of F−1

t (0) is constant.

Question. What happens when n = 2 ?

Remark 3.22 There are at least 3 different definitions of (b f )-regularity, due to Thom
(in section IIIB of [Tho69]), Henry-Merle (Definition 9.1.1 of [HM87]), and Nakai
(see §1 of [Nak00]). Their properties have not been studied beyond the original
papers so far as I know. And no work has been done on a possible (L f ).

3.2.1 (c)-regularity

The notion of Thom map has been used by Karim Bekka to define a new regularity
condition called (c).

Definition 3.23 One says that a stratification Σ of a closed set Z in a manifold M is
(c)-regular if for each stratum X of Σ there is a neighbourhood UX of X in M and a
C1 function ρX : UX −→ [0,1) such that X = ρ−1

X (0) and ρX is a Thom map for Σ.

One shows fairly easily that (b) =⇒ (c) =⇒ (a). Note thatUX is a neighbourhood
of the whole of X and not just of a point of X .

Moreover, by a careful analysis of the proof of the Thom-Mather isotopy theorem,
Bekka showed:
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Theorem 3.24 (Bekka (see §3 in [Bek91]))Every (c)-regular stratification is locally
topologically trivial along strata (and conical).

Thus, as forWhitney (b)-regular stratified sets (Z,Σ), for every point x in a stratum
X there is a neighbourhood U of x in M , a stratified set L and a homeomorphism

h : (U,U ∩ Z,U ∩ X) −→ (U ∩ X) × (Rk, cL,?)

given by h(z) = (πX (z), ρX (z), θ(z)) where cL is the cone on L with vertex ?. As
for (b)-regularity, fix the values of ρX and θ, then {z |ρX (z) = ρ, θ(z) = θ} is a leaf
diffeomorphic to U ∩ X .

Theorem 3.25 (Murolo-du Plessis-Trotman (Theorem 7 in [MdPT17])) Given a
(c)-regular stratified set we can choose h such that the tangent spaces to the leaves
vary continuously on U, in particular as points tend to X .

Again we may fix just θ. Then {z |θ(z) = θ} is a wing, a C0 manifold with
boundary U ∩ X and smooth interior. Then one can choose h so that the tangent
spaces to the wings vary continuously and each wing is itself (c)-regular (Theorem
8 in [MdPT17]).

Question. What can one say in the semialgebraic or subanalytic cases ? Note that
the Parusiński-Paunescu theorem (Theorem 7.6 of [PP17] ) is only for the algebraic
and analytic cases.
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LT83. Lê Dũng Tráng and Bernard Teissier. Cycles evanescents, sections planes et conditions
de Whitney. II. In Singularities, Part 2 (Arcata, Calif., 1981), volume 40 of Proc.
Sympos. Pure Math., pages 65–103. Amer. Math. Soc., Providence, RI, 1983. 13



22 David Trotman

Lel57. Pierre Lelong. Intégration sur un ensemble analytique complexe. Bull. Soc. Math.
France, 85:239-262, 1957. 12

Loi98. Ta Lê Loi. Verdier and strict Thom stratifications in o-minimal structures. Illinois J.
Math., 42(2):347–356, 1998. 4, 6, 18

Loj65. Stanisław Łojasiewicz. Ensembles semi-analytiques. I.H.E.S.notes, 1965. 4
LSW86. Stanisław Łojasiewicz, Jacek Stasica, and Krystyna Wachta. Stratifications sous-

analytiques. Condition de Verdier. Bull. Polish Acad. Sci. Math., 34(9-10):531–539
(1987), 1986. 6

Mat12. John Mather. Notes on topological stability. Bull. Amer. Math. Soc. (N.S.), 49(4):475–
506, 2012. 4, 8

MdPT17. Claudio Murolo, Andrew du Plessis, and David J. A. Trotman. On the smooth whitney
fibering conjecture. hal preprint hal- 01571382v1, 2017. 9, 20

MdPT19. Claudio Murolo, Andrew du Plessis, and David J. A. Trotman. Whitney cellulation
of whitney stratified sets and goresky?s homology conjecture. hal preprint hal- hal-
02014662v1, 2019. 15

Mil94. Chris Miller. Exponentiation is hard to avoid. Proc. Amer. Math. Soc., 122(1):257–259,
1994. 10, 14

Mos85. Tadeusz Mostowski. Lipschitz equisingularity. Dissertationes Math. (Rozprawy Mat.),
243:46, 1985. 7, 9

Nak00. Isao Nakai. Elementary topology of stratified mappings. In Singularities—Sapporo
1998, volume 29 of Adv. Stud. Pure Math., pages 221–243. Kinokuniya, Tokyo, 2000.
19

NAT81. Vicente Navarro Aznar and David J. A. Trotman. Whitney regularity and generic wings.
Ann. Inst. Fourier (Grenoble), 31(2):v, 87–111, 1981. 13

NP12. Walter D. Neumann and Anne Pichon. Lipschitz geometry of complex surfaces: analytic
invariants and equisingularity. arXiv preprint arXiv:1211.4897, 2012. 12

NTT14. Nhan Nguyen, Saurabh Trivedi, and David Trotman. A geometric proof of the existence
of definable Whitney stratifications. Illinois J. Math., 58(2):381–389, 2014. 4

NV16. Nhan Nguyen and Guillaume Valette. Lipschitz stratifications in o-minimal structures.
Ann. Sci. Éc. Norm. Supér. (4), 49(2):399–421, 2016. 7, 17

NV18. Nhan Nguyen and Guillaume Valette. Whitney stratifications and the continuity of local
Lipschitz-Killing curvatures. Ann. Inst. Fourier (Grenoble), 68(5):2253–2276, 2018. 13

OT02. Patrice Orro and David Trotman. Cône normal et régularités de Kuo-Verdier. Bull. Soc.
Math. France, 130(1):71–85, 2002. 11

Par88a. Adam Parusiński. Lipschitz properties of semi-analytic sets. Ann. Inst. Fourier (Greno-
ble), 38(4):189–213, 1988. 7

Par88b. Adam Parusiński. Lipschitz stratification of real analytic sets. In Singularities (Warsaw,
1985), volume 20 of Banach Center Publ., pages 323–333. PWN, Warsaw, 1988. 7

Par94. Adam Parusiński. Lipschitz stratification of subanalytic sets. Ann. Sci. École Norm.
Sup. (4), 27(6):661–696, 1994. 7, 9

Par99. Adam Parusiński. Topological triviality of µ-constant deformations of type f (x)+tg(x).
Bull. London Math. Soc., 31(6):686–692, 1999. 19

PP17. Adam Parusiński and Laurenţiu Păunescu. Arc-wise analytic stratification, Whitney
fibering conjecture and Zariski equisingularity. Adv. Math., 309:254–305, 2017. 9, 20

Paw85. Wiesław Pawłucki. Quasiregular boundary and Stokes’s formula for a subanalytic leaf.
In Seminar on deformations (Łódź/Warsaw, 1982/84), volume 1165 of Lecture Notes in
Math., pages 235–252. Springer, Berlin, 1985. 14

RT97. Jean-Jacques Risler and David Trotman. Bi-Lipschitz invariance of the multiplicity.
Bull. London Math. Soc., 29(2):200–204, 1997. 12

Sab83. Claude Sabbah Morphismes sans éclatements et cycles évanescents. in Analysis and
topology on singular spaces II, III, Astérisque, Soc. Math. France, 101-102:286-319,
1983. 18

Shi97. Masahiro Shiota. Geometry of subanalytic and semialgebraic sets, volume 150 of
Progress in Mathematics. Birkhäuser Boston, Inc., Boston, MA, 1997. 9



Stratifications, Equisingularity and Triangulation 23

Shi00. Masahiro Shiota. Thom’s conjecture on triangulations of maps. Topology, 39(2):383–
399, 2000. 18

Shi05. Masahiro Shiota. Whitney triangulations of semialgebraic sets. Ann. Polon. Math.,
87:237–246, 2005. 16

Shi10. Masahiro Shiota. Triangulations of non-proper semialgebraic Thom maps. In The
Japanese-Australian Workshop on Real and Complex Singularities—JARCS III, vol-
ume 43 of Proc. Centre Math. Appl. Austral. Nat. Univ., pages 127–140. Austral. Nat.
Univ., Canberra, 2010. 18

Tei73. Bernard Teissier. Cycles évanescents, sections planes et conditions de Whitney. In
Singularités à Cargèse (Rencontre Singularités Géom. Anal., Inst. Études Sci., Cargèse,
1972), pages 285–362. Astérisque, Nos. 7 et 8. 1973. 19

Tei82. Bernard Teissier. Variétés polaires. II. Multiplicités polaires, sections planes, et con-
ditions de Whitney. In Algebraic geometry (La Rábida, 1981), volume 961 of Lecture
Notes in Math., pages 314–491. Springer, Berlin, 1982. 6, 13, 14

Tei89. Bernard Teissier Sur la triangulation des morphismes sous-analytiques. Publ. Math. de
l’IHES, 70:169-198, 1989. 18

Tho69. René Thom. Ensembles et morphismes stratifiés. Bull. Amer. Math. Soc., 75:240–284,
1969. 4, 8, 18, 19

Tho65. René Thom. Propriétés différentielles locales des ensembles analytiques (d’après H.
Whitney). In Séminaire Bourbaki, Vol. 9, pages Exp. No. 281, 69–80. Soc. Math.
France, Paris, 1995. 4

Tri13. Saurabh Trivedi. Stratified transversality of holomorphic maps. Internat. J. Math.,
24(13):1350106, 12, 2013. 8

Tro77. David Trotman. Whitney stratifications: faults and detectors. Warwick University thesis.
1977. 6, 8

Tro79. David J.A. Trotman. Geometric versions ofWhitney regularity for smooth stratifications.
Ann. Sci. École Norm. Sup. (4), 12(4):453–463, 1979. 5

Tro79. David J. A. Trotman. Stability of transversality to a stratification implies Whitney
(a)-regularity. Invent. Math., 50(3):273–277, 1978/79. 8

TT14. Saurabh Trivedi and David Trotman. Detecting Thom faults in stratified mappings.
Kodai Math. J., 37(2):341–354, 2014. 18

TV17. David Trotman and Guillaume Valette. On the local geometry of definably stratified
sets. InOrdered algebraic structures and related topics, volume 697 ofContemp. Math.,
pages 349–366. Amer. Math. Soc., Providence, RI, 2017. 14, 15

TW06. David Trotman and Leslie Wilson. (r) does not imply (n) or (np f ) for definable
sets in non polynomially bounded o-minimal structures. In Singularity theory and its
applications, volume 43 of Adv. Stud. Pure Math., pages 463–475. Math. Soc. Japan,
Tokyo, 2006. 14

Val05a. Guillaume Valette. A bilipschitz version of Hardt’s theorem. C. R. Math. Acad. Sci.
Paris, 340(12):895–900, 2005. 16, 17

Val05b. Guillaume Valette. Lipschitz triangulations. Illinois J. Math., 49(3):953–979, 2005. 17
Val08. GuillaumeValette. Volume,Whitney conditions and Lelong number. Ann. Polon. Math.,

93(1):1–16, 2008. 13, 14
vdDM96. Lou van den Dries and Chris Miller. Geometric categories and o-minimal structures.

Duke Math. J., 84(2):497–540, 1996. 4
Ver76. Jean-Louis Verdier. Stratifications de Whitney et théorème de Bertini-Sard. Invent.

Math., 36:295–312, 1976. 4, 6, 9
Wal75. C. T. C. Wall. Regular stratifications. In Dynamical systems—Warwick 1974 (Proc.

Sympos. Appl. Topology and Dynamical Systems, Univ. Warwick, Coventry, 1973/1974;
presented to E. C. Zeeman on his fiftieth birthday), pages 332–344. Lecture Notes in
Math., Vol. 468, 1975. 4

Whi65a. Hassler Whitney. Tangents to an analytic variety. Ann. of Math. (2), 81:496–549, 1965.
3, 4



24 David Trotman

Whi65b. Hassler Whitney. Local properties of analytic varieties. In Differential and Combina-
torial Topology (A Symposium in Honor of Marston Morse), pages 205–244. Princeton
Univ. Press, Princeton, N. J., 1965. 3, 9

Zar71. Oscar Zariski. Some open questions in the theory of singularities. Bull. Amer. Math.
Soc., 77:481–491, 1971. 12


	Stratifications, Equisingularity and Triangulation
	David Trotman
	Stratifications
	Whitney's conditions (a) and (b)
	The Kuo-Verdier condition (w)
	Mostowski's Lipschitz stratifications
	Applications of Whitney (a)-regularity

	Equisingularity
	Topological equisingularity
	Some complex equisingularity and real analogues

	Triangulation  of stratified sets and maps
	Triangulation of sets
	Thom maps and the (af) condition

	References
	References



