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PLANAR BROWNIAN MOTION WINDS EVENLY

ALONG ITS TRAJECTORY

ISAO SAUZEDDE

Abstract. Let DN be the set of points around which a planar Brownian motion winds at
least N times. We prove that the random measure on the plane with density 2πN1DN

with
respect to the Lebesgue measure converges almost surely weakly, as N tends to infinity, towards
the occupation measure of the Brownian motion.

1. Introduction

Let X : [0, 1] → R
2 be a planar Brownian motion started from 0. Let X̄ be the oriented loop

obtained by concatenating X with the straight line segment joining X1 to X0.
For each point z in R

2 outside the range of X̄, let θ(z) be the number of times X̄ winds
around z. For z on the range of X̄, we set θ(z) = 0. Define

DN = {z ∈ R
2 : θ(z) ≥ N}.

The Lebesgue measure |DN | of this set is known to be of the order of 1
2πN . More precisely,

Werner proved in [8] that the following convergence holds:

2πN |DN |
L2

−→
N→∞

1. (1)

For all N ≥ 1, we denote by µN the random measure on the plane with density 2πN1DN
with

respect to the Lebesgue measure:

dµN(z) = 2πN1DN
(z) dz.

Let ν be the occupation measure of X, defined as the push-forward of the Lebesgue measure on
[0, 1] by X. In other words, ν is the random Borel probability measure on the plane characterised
by the fact that for every continuous test function f : R2 → R,

∫

R2

f dν =

∫ 1

0
f(Xt) dt.

The main result of this paper is the following.

Theorem 1. Almost surely, µN =⇒
N→∞

ν.

To be clear, we mean that almost surely, for all bounded continuous function f : R2 → R, the
following convergence holds:

lim
N→∞

2πN

∫

R2

f(z)1[N,+∞)(θ(z)) dz =

∫ 1

0
f(Xu) du.
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The assumption that the test function is bounded is not essential, because almost surely, the
supports of the measures µN , N ≥ 1 and ν are contained in the convex hull of the range of X,
which is compact.

In the course of the proof, we will obtain an estimation of the rate of convergence in terms of
the modulus of continuity of the test function f (see Lemma 5).

The study of the windings of the planar Brownian motion has a long history. The first in-
vestigations were mostly concerned with the winding around a fixed point, the most prominent
example being the celebrated Spitzer theorem [7]. There followed among other works a compu-
tation by Yor of the exact law of the winding [4, 10], as well as many fine asymptotic results
concerning related functionals (see for example [6] and references therein).

In [8, 9], Werner shifted the attention from the winding around a point to the winding as a
function, as well as to the set of points with a given winding number. He established, for instance,
in [8], the convergence (1). His results suggest in particular that when N is large, the set DN ,
which is located near the trajectory X, has a very balanced distribution along this trajectory.
Our main result gives a rigorous statement of this idea.

Our proof uses some results that we obtained in our previous work [5] on this subject, and
which we recall briefly in the next section for the convenience of the reader.

2. Prior results

The Brownian motion X is defined under a probability that we denote by P.
Let T be a positive integer. For all i ∈ {1, . . . , T}, let Xi be the restriction of X to the

interval [ i−1
T , i

T ]. As we did for X, let us denote by X̄i the concatenation of Xi with a straight

line segment from X i
T

to X i−1
T

, and by θi the winding function of the loop X̄i, taken to be 0 on

the trajectory. We then set, for all N ≥ 1,

Di
N = {z ∈ R

2 : θi(z) ≥ N} and Di,j
N = {z ∈ R

2 : |θi(z)| ≥ N, |θj(z)| ≥ N},

with absolute values intended in the second definition.
Our proof of Theorem 1 relies on the following lemmas, which are mild reformulations of

results that we proved in [5] (see Equation (28), Theorem 1.5 and Lemma 2.4 there).

Lemma 2. Let µ be a Borel measure on R
2, absolutely continuous with respect to the Lebesgue

measure. For all positive integers N,T,M such that T (M + 1) < N ,

T
∑

i=1

µ
(

Di
N+T+M(T−1)

)

−
∑

1≤i<j≤T

µ
(

Di,j
M

)

≤ µ(DN ) ≤

T
∑

i=1

µ
(

Di
N−T−M(T−1)

)

+
∑

1≤i<j≤T

µ
(

Di,j
M

)

.

Lemma 3. For all δ < 1
2 and p > 0, there exists C > 0 such that for all N ≥ 1 and all R > 0,

P

(

N δ
∣

∣2πN |DN | − 1
∣

∣ ≥ R
)

≤ CR−p.

Lemma 4. For all ε > 0, there exists C > 0 such that for all positive integers T,M ,

E

[(

∑

1≤i<j≤T

|Di,j
M |

)2]

≤ CM−4+εT 1+ε.
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3. Proof of the theorem

Let f : R2 → R be a bounded continuous function. Let ωf be the modulus of continuity of f :
for all t ≥ 0,

ωf (t) = sup{|f(z)− f(w)| : z, w ∈ R
2, ‖z − w‖ ≤ t} ∈ [0,+∞].

For all Borel subset E of R2, we also set f(E) =
∫

E f(z) dz.

For α ∈ (0, 12 ), let ‖X‖Cα denote the α-Hölder norm of the Brownian motion:

‖X‖Cα = sup
0≤s<t≤1

‖Xt −Xs‖

|t− s|α
.

We have the following quantitative estimation.

Lemma 5. For all t ∈ (0, 25) and α ∈ (0, 12), there exists η > 0 such that P-almost surely, there

exists a constant C such that for all bounded continuous function f : R2 → R and all N ≥ 1,
∣

∣

∣

∣

2πNf(DN )−

∫ 1

0
f(Xu) du

∣

∣

∣

∣

≤ C
(

ωf (2‖X‖CαN−αt) + ‖f‖∞N−η
)

.

Let us explain why this lemma directly implies Theorem 1.

Proof of Theorem 1 assuming Lemma 5. Thanks to the Portmanteau theorem, is suffices to show
that P-almost surely, for any bounded Lipschitz continuous function f ,

∣

∣

∣

∣

2πNf(DN )−

∫ 1

0
f(Xu) du

∣

∣

∣

∣

−→
N→+∞

0.

For such a function f , one has ωf (t) ≤ ‖f‖Lip t and the result follows from Lemma 5 applied for

instance to t = 1
5 and α = 1

4 . �

In order to prove Lemma 5, we introduce the following subset of N, which depends on a positive
real parameter γ > 1:

N
γ = {⌊Kγ⌋ : K ∈ N} \ {0}.

Let us fix two positive real parameters t and m with m+ t < 1 and set, for all N ≥ 1, T = ⌊N t⌋
and M = ⌊Nm⌋. We advise the reader to think of m as being larger than 1

2 , and of t as a small
number. Precise conditions can be found in the statement of Lemma 7.

We also set N ′ = max{n ∈ N
γ : n ≤ N − T − M(T − 1)}, which is well defined when N is

large enough. The difference between N and N ′ is O(N1−1/γ +Nm+t).
We also define the following events, which depend on t and m, and also on other positive real

parameters s, ζ, δ:

EN =
{

∀i ∈ {1, . . . , T}, N ′δ
∣

∣2πN ′|Di
N ′ | − 1

T

∣

∣ ≤ T− 1
2
+ s

t

}

,

FN =
{

∑

1≤i<j≤T

|Di,j
M | ≤ N−1−ζ

}

,

GN =
{

∀i ∈ {1, . . . , T}, 2πN |Di
N ′ | ≤ 2

T

}

.

The proof goes in three steps. In the first (Lemma 6), we show that with an appropriate choice
of γ, almost surely, the events EN , FN and GN are realised for all N ∈ N

γ large enough. In a
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second step (Lemma 7), we show that on this almost sure event, for every bounded continuous
function, and for all N ∈ N

γ , the conclusion of Lemma 5 holds. In the third step, we show that
the conclusion holds not only for N ∈ N

γ , but for all N ∈ N.
Let us collect in one place the assumptions that we make on the parameters that we introduced.

These assumptions are organised in such a way that if enforced in the natural reading order, they
are always satisfiable.

0 < α < 1
2 , 0 < t < 2

5 ,

1
2 +

t
4 < m < 1− t , 0 < ζ < 2m− 1− t

2 ,

0 < s < 1
2 − t

2 , t
2 + s < δ < 1

2 ,
γ > max

(

1
2s ,

1
4m−t−2−2ζ

)

.

(A)

From now on, we always assume that these assumptions are satisfied.

Lemma 6. The event
⋃

N0≥1

⋂

N∈Nγ

N≥N0

(EN ∩ FN ∩GN ) has probability 1.

Proof. The scaling properties of the Brownian motion imply that |Di
N ′ | is equal in distribution

to T−1|DN ′ |. Thus,

1− P(EN ) ≤ TP(N ′δ
∣

∣2πN ′|DN ′ | − 1
∣

∣ ≥ T
1
2
+ s

t ).

Using Lemma 3 with p = 2 gives

1− P(EN ) ≤ CT− 2s
t ,

and for N large enough, this quantity is smaller than 2CN−2s. In particular,

∑

N∈Nγ

(

1− P(EN )
)

≤ 2C

+∞
∑

K=1

K−2sγ .

Besides, by Markov inequality,

1− P(FN ) ≤ N2+2ζ
E

[(

∑

1≤i<j≤T

|Di,j
M |

)2]

.

By Lemma 4, for any ε > 0, there exists C such that for all N ,

1− P(FN ) ≤ CN−4m+t+2+2ζ+ε.

In particular,
∑

N∈Nγ

(

1− P(FN )
)

≤ C

+∞
∑

K=1

Kγ(−4m+t+2+2ζ+ε).

We assumed that γ > 1
4m−t−2−2ζ , so that there exists ε > 0 such that γ > 1

4m−t−2−2ζ−ε . Since

we also assumed that γ > 1
2s , the series

+∞
∑

K=1

K−γ(4m−t−2−2ζ−ε) and

+∞
∑

K=1

K−γ(2s)

are both convergent.
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Using Borel–Cantelli lemma, we conclude the proof, but for the presence of GN . However,
using the fact that N ′ is not larger than N and equivalent to N as N tends to infinity, and
the inequality T ≤ N t, one verifies that if t + 2s < 2δ, then for N large enough, the inclusion
EN ⊂ GN holds. Hence, the proof is complete. �

We now turn to the second step of the proof.

Lemma 7. Almost surely, there exists a constant C such that for all N ∈ N
γ and all bounded

continuous function f : R2 → R,

∣

∣

∣

∣

2πNf(DN )−

∫ 1

0
f(Xu) du

∣

∣

∣

∣

≤C
(

ωf

(

‖X‖CαT−α
)

+‖f‖∞(N−1+m+t+N
− 1

γ
+1

+N−δ+ t
2
+s+N−ζ)

)

.

Proof. We first assume that f is non-negative. Replacing C if necessary by a larger constant,
it suffices to show the inequality for N ≥ N0, for a possibly random N0 which does not depend
on f . Using Lemma 6, we can thus assume that the event EN ∩ FN ∩GN holds.

Using Lemma 2, the assumption that f is non-negative and the fact that the sequence (Di
N )N≥1

is non-increasing, we have

Nf(DN ) ≤
T
∑

i=1

Nf(Di
N−T−M(T−1)) +

∑

1≤i<j≤T

Nf(Di,j
M )

≤
T
∑

i=1

Nf(Di
N ′) +

∑

1≤i<j≤T

Nf(Di,j
M ). (2)

Besides, Di
N ′ is contained in the convex hull of the trajectory of X between the times i

T and i+1
T ,

hence in the ball of center X i
T

and radius ‖X‖CαT−α, so that

Nf(Di
N ′) ≤ N |Di

N ′ |f(X i
T
) +N |Di

N ′ |ωf (‖X‖CαT−α).

We replace in (2) and force the apparition of a Riemann sum by decomposing N |Di
N ′ | into

1

2πT
+

N −N ′

2πTN ′
+N

(

|Di
N ′ | − 1

2πTN ′

)

.

We obtain

T
∑

i=1

Nf(Di
N ′) ≤

T
∑

i=1

1
2πT f(X i

T
) +

T
∑

i=1

N−N ′

2πTN ′ f(X i
T
) +N

T
∑

i=1

(

|Di
N ′ | − 1

2πTN ′

)

f(X i
T
)

+N

T
∑

i=1

|Di
N ′ |ωf (‖X‖CαT−α).
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Comparing the Riemann sum with the integral and f to its upper bound, we turn this inequality
into

2π

T
∑

i=1

Nf(Di
N ′) ≤

∫ 1

0
f(Xu) du+ ωf (‖X‖CαT−α) + ‖f‖∞

N−N ′

N ′ + ‖f‖∞N

T
∑

i=1

(

2π|Di
N ′ | − 1

TN ′

)

+ 2πωf (‖X‖CαT−α)N
T
∑

i=1

|Di
N ′ |.

Our next goal is to bound the last three terms of the right-hand side. Let us discuss the first,
then the third and finally the second.

For the first term, it follows from the definition of N ′ and by elementary arguments that for
N large enough, indeed larger than a certain N1 that does not depend on f ,

N −N ′

N ′
< 2(Nm+t−1 + γN

− 1
γ
+1

).

For the third term, since the event GN holds, we have

T
∑

i=1

|Di
N ′ | ≤ T max

i∈{1,...,T}
|Di

N ′ | ≤
1

πN
.

Finally, since the event EN holds, and for N large enough,

T
∑

i=1

(

2π|Di
N ′ | − 1

TN ′

)

≤ N ′−1−δT
1
2
+ s

t ≤ 2N−1−δ+ t
2
+s.

Here the second inequality holds for N larger than a certain N2 which does not depend on f .
We end up with

2π
T
∑

i=1

Nf(Di
N ′)−

∫ 1

0
f(Xu) du ≤ 3ωf (‖X‖CαT−α) + 2‖f‖∞(Nm+t−1+γN

− 1
γ
+1+N−δ+ t

2
+s).

(3)

We now turn to the second term of the right-hand side of (2). Since FN holds,

N
∑

1≤i<j≤T

f(Di,j
M ) ≤ N‖f‖∞

∑

1≤i<j≤T

|Di,j
M | ≤ ‖f‖∞N−ζ . (4)

Using (2), (3) and (4), we get that almost surely, for N ≥ max(N0, N1, N2),

2πNf(DN )−

∫ 1

0
f(Xu) du ≤ 3ωf (‖X‖CαT−α)+ 2‖f‖∞(Nm+t−1 + γN

− 1
γ
+1

+N−δ+ t
2
+s+N−ζ).

(5)
To obtain this upper bound, we used the second inequality of Lemma 2, and the definition of N ′

which was suggested by the term N −T −M(T −1) that appears in it. A repetition of the exact
same arguments, with the difference that N ′ is now defined as the largest element of Nγ smaller
than N + T +M(T − 1), and using the first inequality of Lemma 2 instead of the second, yields
the corresponding lower bound, saying that the left-hand side of (5) is larger than the opposite
of the right-hand side of (5).
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This concludes the proof when f is non-negative. To remove this assumption, it suffices to
decompose f into the sum of its positive and negative parts. �

We now extend Lemma 7 from N ∈ N
γ to N ∈ N

∗, in order to obtain Lemma 5.

Proof of Lemma 5. The reals t and α being given, choose positive real numbers s, ζ,m, δ, γ which
satisfy the assumptions (A). Set η = min(1−m− t, 1γ − 1, δ − t

2 − s, ζ) > 0.

Let us first assume f is non-negative. Set Ñ = max{n ∈ N
γ : n ≤ N}, the largest integer

smaller than N in N
γ .

Since the sequence (f(DN ))N≥1 is non-increasing, we have

2πNf(DN )−

∫ 1

0
f(Xu) du ≤ 2πNf(DÑ )−

∫ 1

0
f(Xu) du

=
N

Ñ

(

2πÑf(DÑ )−

∫ 1

0
f(Xu) du

)

+
(N

Ñ
− 1

)

∫ 1

0
f(Xu) du.

The first term is taken care of by Lemma 7 and the fact that N ≤ 2Ñ for N large enough. The

second term is bounded above, for N sufficiently large, by 2γ‖f‖∞N
− 1

γ
+1

. Altogether, we find
the upper bound

2πNf(DN )−

∫ 1

0
f(Xu) du ≤ C

(

ωf (‖X‖CαT−α) + ‖f‖∞N−η
)

for some constant C. The corresponding lower bound is obtained by the same argument with
Ñ defined as min{n ∈ N

γ : n ≥ N}. This concludes the proof when f is non-negative. For the
general case, we simply decompose f into its positive and negative parts. This concludes the
proof of Lemma 5, and also the proof of Theorem 1. �

4. Further perspectives

It is possible that a similar result also holds when we consider the joint windings of independent
Brownian motions. To be more specific, for two independent planar Brownian motions X,X ′,
we can define their intersection measure ℓ, which is carried by the plane (see [1]).

One possible way to approximate the mass of this measure is to look at the Lebesgue measure
of the intersection of Wiener sausages with small radius ε around X and X ′. In [2] (and also in
[3]), it is shown that ℓ(R2) can be obtained as the properly normalized limit of these measures
as ε → 0.

For two independent planar Brownian motions X,X ′, define

D
(2)
N = {z ∈ R

2 : θX(z) ≥ N, θX′(z) ≥ N}.

Conjecture 8. There exists a constant C which depends only ‖X0−X ′
0‖ and such that CN2|D

(2)
N |

converges, as N → ∞, towards ℓ(R2). The converges holds both in Lp for any p ∈ [1,+∞) and

almost surely.

Besides, almost surely, the measure CN2
1

D
(2)
N

dz converges weakly towards ℓ.

For such a result to hold, it is necessary that the exponent of N is equal to 2. Nonetheless,
we cannot exclude that some logarithmic corrections should be added.
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