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Elastic backscatter lidar is an established method useful to characterize the particles forming an atmospheric aerosol. Fundamental to lidar measurements are the extinction and backscattering properties of the aerosol particles in the lidar beam. This review aims to give the reader an understanding for how lidar measurements are made, modeled, and applied. Specific emphasis is placed on extinction, which manifests attenuation of the lidar beam by the aerosol, and the backscattering that ultimately constitutes the measured signal. The so-called lidar equation, which quantifies this signal in terms of aerosol-particle properties, is derived from radiative transfer theory. Extinction is examined in terms of the redistribution of energy from the lidar beam by the particles and is shown to be inherently linked to interference between the incident and scattered light. Ways to measure aerosol-particle extinction are reviewed, including a recent method where the wave interference constitutes a digital hologram that may be processed to yield both the cross section and an image of the particle. The semi-graphical method of phasor analysis is also presented and used to reveal connections between the scattering characteristics of a particle and the distribution of electric field within it. Finally, a recently developed elastic backscatter lidar system, Colibri, is described and an example of its measurement capabilities are presented.

Introduction

Aerosols are suspended particulate matter in the atmosphere that are generated by a wide range of natural 2 and anthropogenic processes. Understanding the interaction of aerosols with electromagnetic radiation, specifically the absorption and scattering of light, is important in a broad range of scientific and applied 4 contexts [START_REF] Kulkarni | Aerosol Measurement: Principles, Techniques, and Applications[END_REF]. In particular, atmospheric aerosols are often best investigated via remote-sensing methods that employ a variety of light scattering techniques. The development of new measurement techniques to 6 better estimate the radiative properties of aerosols are thus of importance to improve existing remote-sensing capabilities [START_REF] Ghan | Toward a minimal representation of aerosols in climate models: Comparative decomposition of aerosol direct, semidirect, and indirect radiative forcing[END_REF]. Knowledge about how aerosols absorb and scatter light is crucial for such purposes, especially 8 for quantitative radiative-transfer calculations and climate modeling efforts [START_REF] Paulien | Lidar-relevant radiative properties of soot fractal aggregate ensembles[END_REF][START_REF] Miffre | Laboratory evaluation of the scattering matrix elements of mineral dust particles from 176.0 up to 180.0-exact backscattering angle[END_REF][START_REF] Kanngiesser | Coating material-dependent differences in modelled lidar-measurable quantities for heavily coated soot particles[END_REF][START_REF] Mishchenko | Linear depolarization of lidar returns by aged smoke particles[END_REF][START_REF] Liu | Spectrally dependent linear depolarization and lidar ratios for nonspherical smoke aerosols[END_REF]. The purpose of this review is to examine the theory and measurement of extinction and backscattering of light by aerosol particles as volcanic ash [START_REF] Sassen | Volcanic ash plume identification using polarization lidar: Augustine eruption, alaska[END_REF], dust [START_REF] Gobbi | Altitude-resolved properties of a saharan dust event over the mediterranean[END_REF], black carbon [START_REF] Haarig | Depolarization and lidar ratios at 355, 532, and 1064 nm and microphysical properties of aged tropospheric and stratospheric canadian wildfire smoke[END_REF], contrails [START_REF] Freudenthaler | Optical parameters of contrails from lidar measurements: Linear depolarization[END_REF], and biological warfare agents [START_REF] Richardson | Polarimetric lidar signatures for remote detection of biological warfare agents[END_REF]. While most work with such lidar systems employs a single wavelength, e.g., to measure the linear depolarization ratio of dust in [START_REF] Sassen | The Polarization Lidar Technique for Cloud Research: A Review and Current Assessment[END_REF], such measurements with multiple wavelengths also show and ability to distinguish different types of aerosols (other than dust) [START_REF] Veselovskii | Information content of multiwavelength lidar data with respect to microphysical particle properties derived from eigenvalue analysis[END_REF][START_REF] Haarig | Depolarization and lidar ratios at 355, 532, and 1064 nm and microphysical properties of aged tropospheric and stratospheric canadian wildfire smoke[END_REF][START_REF] Althausen | Scanning 6-Wavelength 11-Channel Aerosol Lidar[END_REF][START_REF] Veselovskii | Inversion with regularization for the retrieval of tropospheric aerosol parameters from multiwavelength lidar sounding[END_REF][START_REF] Sugimoto | Characteristics of dust aerosols inferred from lidar depolarization measurements at two wavelengths[END_REF][START_REF] Sakai | Multiwavelength and polarization lidar measurements of asian dust layers over tsukuba, japan: a case study[END_REF][START_REF] Wiegner | Numerical simulations of optical properties of saharan dust aerosols with emphasis on lidar applications[END_REF].

Problem statement

The evaluation of aerosol extinction and backscattering properties remains a challenge in elastic backscatter lidar applications. For example, the elastic lidar equation (below) must be inverted to infer aerosol properties. Yet, lidar inversion is an ill-posed problem as several atmospheric conditions can lead to the same lidar return signal, and thus, most inversion techniques require additional information. Such information may come from prior knowledge of the aerosols, light-scattering simulations, or from measurements provided by other instruments, e.g. sunphotometers, particle counters, etc. A large number of methods and techniques are developed for lidar-signal inversion based on Bernoulli's differential equation form of the lidar equation [START_REF] Barrett | Application of the Lidar to Air Pollution Measurements[END_REF][START_REF] Collis | Lidar: A new atmospheric probe[END_REF][START_REF] Viezee | Lidar Observations of Airfield Approach Conditions:An Exploratory Study[END_REF][START_REF] Viezee | Lidar observations of airfield approach conditions:an exploratory study[END_REF][START_REF] Fernald | Determination of aerosol height distributions by lidar[END_REF][START_REF] Klett | Stable analytical inversion solution for processing lidar returns[END_REF][START_REF] Sasano | Error caused by using a constant extinction/backscattering ratio in the lidar solution[END_REF][START_REF] Roy | Lidar-inversion technique based on total integrated backscatter calibrated curves[END_REF]. The so-called slope method is one of the first lidar inversion methods to retrieve the extinction coefficient of homogeneous atmospheres [START_REF] Kunz | Inversion of lidar signals with the slope method[END_REF]. The method is based on the assumption that both the backscattering and extinction coefficients are constant and can be expressed directly in terms of the lidar signal slope [START_REF] Collis | Lidar: A new atmospheric probe[END_REF][START_REF] Viezee | Lidar observations of airfield approach conditions:an exploratory study[END_REF]. More advanced methods, often referred to as boundary point methods, apply to inhomogeneous atmospheres. Among them, Fernald et al. [START_REF] Fernald | Determination of aerosol height distributions by lidar[END_REF] present a forward inverse-method for the assessment of backscatter profiles. Klett et al. [START_REF] Klett | Stable analytical inversion solution for processing lidar returns[END_REF] proposes a more stable solution with a backward method, for a one-component atmospheric model. Fernald et al. [START_REF] Fernald | Analysis of atmospheric lidar observations: some comments[END_REF] and Sasano et al. [START_REF] Sasano | Error caused by using a constant extinction/backscattering ratio in the lidar solution[END_REF] then improve the method with a two-component atmospheric model that includes range-varying extinction and backscattering propreties. These standard lidar-inversion methods are often referred to as the Klett-Fernald-Sasano method.

The inverse methods for elastic lidar require accurate knowledge of the lidar extinction-to-backscatter ratio [START_REF] Klett | Stable analytical inversion solution for processing lidar returns[END_REF][START_REF] Fernald | Analysis of atmospheric lidar observations: some comments[END_REF]. This ratio is derived from the extinction and backscattering cross-sections of aerosol particles, which depend on particle properties. Different aerosols may have similar lidar-relevant properties rendering it challenging to correlate with the particle properties, and hence, the aerosol emission source. This is a major issue for aerosol classification in lidar, and indeed, for optical remote-sensing in general. Because the extinction-to-backscatter ratio is needed for inversion methods, they are often assumed or given values a priori and an inaccurate value may lead to large errors in the lidar retrievals [START_REF] Sasano | Error caused by using a constant extinction/backscattering ratio in the lidar solution[END_REF][START_REF] Kovalev | Sensitivity of the lidar solution to errors of the aerosol backscatter-to-extinction ratio: influence of a monotonic change in the aerosol extinction coefficient[END_REF]. The impact of such uncertainties on the boundary point inverse method is available in several studies [START_REF] Bissonnette | Sensitivity analysis of lidar inversion algorithms[END_REF][START_REF] Rocadenbosch | Error analysis for the lidar backward inversion algorithm[END_REF][START_REF] Jinhuan | Sensitivity of lidar equation solution to boundary values and determination of the values[END_REF]. Advanced lidar techniques, including the High Spectral Resolution Lidar [START_REF] Shipley | High spectral resolution lidar to measure optical scattering properties of atmospheric aerosols. 1: Theory and instrumentation[END_REF][START_REF] Sroga | High spectral resolution lidar to measure optical scattering properties of atmospheric aerosols. 2: Calibration and data analysis[END_REF][START_REF] Eloranta | High spectral resolution lidar[END_REF] or Raman Lidar measurements [START_REF] Cooney | Remote measurements of atmospheric water vapor profiles using the raman component of laser backscatter[END_REF][START_REF] Ansmann | Measurement of atmospheric aerosol extinction profiles with a raman lidar[END_REF], propose to measure simultaneously the extinction and backscatter profiles of aerosols without need of the extinction-to-backscatter ratio. While the emergence of such techniques advances remote-sensing, they remain sensitive to background noise caused by scattering from ambient aerosols and are thus better suited for clean atmospheres or space applications. The challenge of properly assessing the extinction-to-backscatter ratio remains and is a topic of vigorous research effort as illustrated by the numerous lidar measurement campaigns [START_REF] Tesche | Vertically resolved separation of dust and smoke over cape verde using multiwavelength raman and polarization lidars during saharan mineral dust experiment[END_REF][START_REF] Tesche | Optical and microphysical properties of smoke over cape verde inferred from multiwavelength lidar measurements[END_REF][START_REF] Weinzierl | The saharan aerosol long-range transport and aerosol-cloud-interaction experiment: Overview and selected highlights[END_REF][START_REF] Granados-Muñoz | Profiling of aerosol microphysical properties at several earlinet/aeronet sites during the july 2012 charmex/emep campaign[END_REF] and modeling efforts [START_REF] Josef | Modelling lidar-relevant optical properties of complex mineral dust aerosols[END_REF] involving a large variety of aerosols, geographical locations, and meteorological conditions.

Overview

The purpose of this review is to give physical insight for aerosol light-scattering, especially extinction and backscattering, in the context of elastic lidar while highlighting relevant measurement methods and ongoing challenges. This review differs from previous lidar reviews [START_REF] Sassen | The Polarization Lidar Technique for Cloud Research: A Review and Current Assessment[END_REF][START_REF] Comeron | Current research in lidar technology used for the remote sensing of atmospheric aerosols[END_REF], mainly with regard to its treatment and interpretation of light-scattering. The first section provides an overview of lidar theory with a formal derivation of the elastic lidar equation from the radiative transfer equation with notation and definitions for lidar-relevant quantities. The second and third sections are dedicated to the topic of extinction and backscattering by particles, respectively. Different methods for assessing the cross-sections of aerosol particles are presented, ranging from models to measurements, and an emerging semi-graphical technique, called phasor analysis, is described that can aid understanding for certain scattering behavior.

Elastic lidar theory

Pulses emitted from a lidar interact with atmosphere constituents, namely aerosol particles and gas molecules. The interactions include the absorption and scattering of the laser light in the volume probed by the pulses with no change in the wavelength, which contrasts with inelastic methods like Raman lidar.

The lidar return-signals consist of a series of pulses scattered back to the lidar and are received over a range determined by the transmitter-receiver geometry, see Fig. 1. As described below, the signal originates from two-way attenuated backscattering by the atmospheric constituents. We note that several specialized monographs are available on the general theory of lidar [START_REF] Zuev | Laser Beams in the Atmosphere[END_REF][START_REF] Measures | Laser remote sensing: Fundamentals and applications[END_REF][START_REF] Bissonnette | Lidar: Range-Resolved Optical Remote Sensing of the Atmosphere[END_REF]. Here, we give only a brief overview from a light-scattering perspective.

Figure 1: General backscatter lidar arrangement. A pulsed laser beam is emitted from the lidar transmitter (lidar), where the origin O is defined, and illuminates a column of the atmosphere above in the direction qinc . When a pulse arrives at an aerosol particle (inset), or collection of particles at a range r, it may be partly absorbed and will scatter in all directions q as shown.

The lidar return signal is then given by the portion of the light backscattered by the particle to the receiver's area A, which defines the received solid angle ∆Ω = A r -2 . Note that the exact backscattering direction is given by -q inc and that the origin O should not be confused with the overlap function O(r) in Eq. [START_REF] Middleton | Meteorological Instruments[END_REF].

The elastic lidar equation under the single-scattering approximation (SSA) assumes that the incident wave is scattered only once, i.e., multiple-scattering events are ignored. A definitive definition for the conditions that justify the SSA is difficult to offer in general. Formally, the SSA means that for a particle collection, the interaction of a given single particle with the wave incident on the group can be regarded as though the other particles are absent. The SSA is never satisfied in an exact sense but invoking it anyway often involves little error. For example, [START_REF] Mishchenko | Conditions of applicability of the single scattering approximation[END_REF] employs the superposition T-matrix method to simulate scattering from a collection of spherical particles with average particle-to-particle separation d occupying a spherical volume of R. For an incident wave with wave number k = 2π/λ, where λ is the wavelength, they find that a collection of individual particles with radii r where kr = 4, the SSA involves negligible error if k d > 30 and the particle packing-density is less than 1%. Such conditions are often present in lidar applications. With the SSA, the lidar equation can be directly derived from the Radiative Transfer Equation (RTE), which itself can be derived from first principles, i.e., from the Maxwell equations as shown in Mishchenko [START_REF] Mishchenko | First-principles modeling of electromagnetic scattering by discrete and discretely heterogeneous random media[END_REF][START_REF] Mishchenko | Vector radiative transfer equation for arbitrarily shaped and arbitrarily oriented particles: a microphysical derivation from statistical electromagnetics[END_REF].

Let us consider the conventional integro-differential form of the RTE for an ensemble of arbitrarily sized, shaped, and oriented particles [START_REF] Mishchenko | Vector radiative transfer equation for arbitrarily shaped and arbitrarily oriented particles: a microphysical derivation from statistical electromagnetics[END_REF]:

q • ∇ I(r, q) = -n o (r) K (q) • I(r, q) extinction term + n o (r) 4π dq Z q, q • I(r, q ) scattering term . (1) 
where r = rr is the distance vector in Fig. 1, r is the range, q is the propagation unit vector, and n o (r) is the local particle number density at r with units of inverse volume. Here, I(r, q) is the specific intensity, a 4 × 1 column vector with units of radiance [W m -2 sr -1 ] for each component, and . . . denotes the ensemble average of the single-particle states of the object in the brackets. The 4 × 4 Stokes extinction matrix K (q) has units of area [m 2 ] for each element and Z(q, q ) is the Stokes phase matrix, which is also a 4 × 4 matrix with units of area per solid angle [m 2 sr -1 ] for each element. The first term on the right-hand side of Eq. ( 1) describes the change of specific intensity caused by extinction, whereas the second term describes the contribution of light illuminating a small volume element from all directions q and scattered in the direction q. In deriving the lidar equation below, we neglect thermal emission from the atmospheric constituents and assume that the only light reaching the lidar receiver is that backscattered by the scattering medium. Background radiance from the atmosphere is neglected in the following for the sake of simplicity.

First, let us calculate the attenuated forward specific intensity using the extinction term in the RTE. The attenuated specific intensity along the path between the transmitter, which is located at the origin r = O in Fig. 1, and the scattering medium, located at r, is thus,

q • ∇ I(r, q) = -n o (r) K (q) • I(r, q). (2) 
The Stokes extinction matrix can be simplified as a diagonal matrix with elements equal to the average extinction cross-section per particle C ext under the assumption of a macroscopically isotropic and symmetric scattering medium. That is,

K (q) = C ext I, (3) 
where I represents the 4 × 4 identity matrix. Equation ( 2) can be integrated over the forward path, i.e. from the transmitter at O to the scattering medium at r, to give the attenuated forward specific intensity I for as,

I for (r, q) = I inc exp   - r 0 n o (r ) C ext (r ) dr   , (4) 
where I inc is the specific intensity of the emitted laser pulses and the notation C ext (r) denotes the possibility that the average extinction per particle may be range dependent. Second, we calculate the scattered specific intensity using the scattering term in the RTE. The attenuated forward specific intensity I for is scattered by the scattering medium in the backscattering direction -q inc . Invoking the SSA, only a single scattering event is considered and the second term of the RTE, Eq. ( 1), is simplified to,

q • ∇ I(r, q) = n o (r) q=-q inc dq Z q , q • I for (r, q ). (5) 
The integration in Eq. ( 5) is over differential solid angle in the backward direction, and so, we get I for , which is the 4 × 1 Stokes vector,

q • ∇ I(r, q) = n o (r) Z -q inc , qinc • I for (-q inc ). (6) 
If the number density of particles remains constant within the volume probed by the laser with pulse duration τ , then n o (r) = n o , and the specific scattered intensity I sca can be found from Eq. ( 6) as,

I sca (r, -q inc ) = n o Z -q inc , qinc • cτ /4 -cτ /4 dr • I for (r, q). (7) 
The integration in Eq. ( 7) is carried out over the volume of the laser pulse at range r giving

I sca (r, -q inc ) = cτ 2 n o Z -q inc , qinc • I for (r, -q inc ). (8) 
Lastly, we calculate the backscattered specific intensity using the extinction term of the RTE. The attenuated specific intensity along the path between the scattering medium and the receiver, which again is located at the origin r = O in Fig. 1, is thus,

I bac (r, -q inc ) = I sca (r, -q inc ) exp   -n o r 0 C ext (r ) dr   , (9) 
or after using Eq. ( 4), Eq. ( 8), and Eq. ( 9) we get

I bac (r, -q inc ) = cτ 2 n o Z -q inc , qinc • I inc (r, qinc ) exp   -2 n o r 0 C ext (r ) dr   . ( 10 
)
Let us now define the attenuated backscattering Stokes matrix U(r) as,

U(r) = n o Z qinc , -q inc exp   -2 n o r 0 C ext (r ) dr   (11) 
and thus, the backward specific intensity can be written as,

I bac (r, -q inc ) = cτ 2 U(r) • I inc (r, qinc ). (12) 
The backscattered power P bac , defined as a 4 × 1 column vector with units of power [W] for each component, is calculated from I bac in Eq. ( 12) for a given range r and for a solid angle ∆Ω = Ar -2 subtended by the receiver area A with respect to the direction -q inc as, P bac (r, -q inc ) = A∆Ω I bac (r, -q inc ),

P bac (r, -q inc ) = A 2 cτ 2 U(r) • I inc (r, qinc ) r -2 . ( (13) 
) 14 
Equation 14 is the elastic lidar equation derived from the RTE under the single-scattering and full-overlap approximations. To our knowledge, this is the first formal derivation of the elastic lidar equation from the RTE equation. This equation is often found in the following scalar form [START_REF] Zuev | Laser Beams in the Atmosphere[END_REF][START_REF] Measures | Laser remote sensing: Fundamentals and applications[END_REF] where O(r) is the overlap function, which represents the coupling efficiency between the lidar emitter and receiver,

P(r) = K o O(r) U(r) r -2 . ( 15 
)
where K o is the radiometric lidar constant with units of power times cubic meter times solid angle [W m 3 sr], which depends either on the transmitted laser pulse-intensity I o , pulse-power P o , or pulse-energy energy

E o , as K o = I o cτ 2 A 2 = P o cτ 2 A = E o c 2 A. (16) 
In this scalar form, only the first element of the Stokes phase matrix Z qinc , -q inc is considered, i.e.,

d C bac dΩ (r) = Z 11 qinc , -q inc ; r . (17) 
Thus, Eq. ( 11) can be simplified as a scalar function, referred to here as the attenuated backscatter function U(r):

U(r) = β(r) exp   -2 r 0 α(r ) dr   , (18) 
where α(r) and β(r) are, respectively, the range-dependent scalar total extinction and backscattering coefficients defined as,

α(r) = n o C ext (r) (19) 
and

β(r) = n o d C bac dΩ (r). (20) 
The under-determined nature of the lidar problem, i.e., the retrieval of two unknowns parameters from only one lidar measurement, appears in Eq. ( 15) via Eqs. ( 18)- [START_REF] Measures | Laser remote sensing: Fundamentals and applications[END_REF] where α and β are the unknowns. The inversion of this ill-posed problem requires an intrinsic relationship between backscattering and extinction cross-sections, namely the lidar extinction-to-backscatter ratio or simply the Lidar Ratio LR(r). A common practice is to assume that these two cross-sections are related as [START_REF] Fernald | Determination of aerosol height distributions by lidar[END_REF][START_REF] Klett | Stable analytical inversion solution for processing lidar returns[END_REF][START_REF] Fernald | Analysis of atmospheric lidar observations: some comments[END_REF]]

LR(r) = α(r) β(r) = C ext (r) d C bac dΩ (r) -1 . ( 21 
)
The LR strongly depends on the particle properties and can be established from extensive lidar campaigns [START_REF] Anderson | Aerosol backscatter fraction and single scattering albedo: Measured values and uncertainties at a coastal station in the pacific northwest[END_REF][START_REF] Cattrall | Variability of aerosol and spectral lidar and backscatter and extinction ratios of key aerosol types derived from selected aerosol robotic network locations[END_REF] or from light-scattering models accounting for irregularly shaped-particles [START_REF] Paulien | Lidar-relevant radiative properties of soot fractal aggregate ensembles[END_REF][START_REF] Kanngiesser | Coating material-dependent differences in modelled lidar-measurable quantities for heavily coated soot particles[END_REF][START_REF] Ceolato | Radiative properties of soot fractal superaggregates including backscattering and depolarization[END_REF][START_REF] Barnaba | Modeling the aerosol extinction versus backscatter relationship for lidar applications: maritime and continental conditions[END_REF]. We will focus on the models. For particles small compared to wavelength, e.g. gas molecules, Rayleigh-scattering theory is appropriate to compute the backscattering cross-sections. However, for particles with size comparable to the wavelength, such as dust and soot aggregates from smoke, more complex light-scattering theories should be used.

Here, C ext (r) and d C bac (r)/dΩ are the range-dependent extinction and differential backscattering cross-sections, respectively. With this background, these cross-sections are the two relevant quantities for elastic lidar. They will be derived and reviewed in the Sec. 3 and 4.

Extinction by aerosol particles

We have seen from Sec. 2 that the extinction and backscattering cross sections are integral to understanding and inverting lidar measurements. As such, the following will review several recent approaches to model and analyze extinction by aerosol particles. Backscattering by aerosols will follow in the next section. We will use spherical particles to keep the discussion manageable, although we emphasize that most atmospheric particles, other than liquid drops, are typically nonspherical in shape and shape must be considered carefully when choosing a model or method to apply. Most of the important conclusions, however, will not rely on the particle shape being spherical.

Definitions

Extinction is typically thought of as the attenuation of a beam of light by particles due to absorption and scattering and it is quantified by the extinction cross section C ext [START_REF] Bohren | Absorption and Scattering of Light by Small Particles[END_REF][START_REF] Hulst | Light Scattering by Small Particles[END_REF]. While this definition is concise, there are subtle but important details regarding how, from a physical viewpoint, this attenuation of light occurs. The interested reader may consult [START_REF] Berg | A new explanation of the extinction paradox[END_REF][START_REF] Berg | Extinction and the optical theorem. part i. single particles[END_REF][START_REF] Berg | Extinction and the optical theorem. part ii. multiple particles[END_REF] for the details, which are consistent with the presentation here. To say more, let us consider a single nonmagnetic spherical particle of radius R and complex refractive index m = n + κi residing in vacuum and illuminated by a linearly polarized plane wave. The electric and magnetic fields of this wave are, respectively,

E inc (r) = E inc o exp(ikrr • ninc ), B inc (r) = k ω ninc × E inc (r). (22) 
In Eq. ( 22), E inc o is the amplitude and polarization of the incident electric field and ninc is the propagation direction. All field quantities are time-harmonic with the factor exp(-iωt), where ω = kc and c is the speed of light. This time factor will be suppressed for brevity.

Let the surface and interior volume of the particle be S and V int , respectively. The particle is centered at the origin and enclosed by an imaginary spherical surface S en of radius R en and normal nen , see Fig. 2. The volume bounded by S en , excluding V int , will be called the external volume V ext . The total wave that exists when the particle is present is then artificially decomposed into the superposition of the original incident wave and a modification, called the scattered wave, i.e.,

E(r) = E inc (r) + E sca (r), B(r) = B inc (r) + B sca (r). ( 23 
)
Figure 2: Arrangement used to derive the extinction cross section for a spherical particle of radius R by enclosing it by an imaginary spherical surface S en of radius Ren.

Sensors in light scattering measurements respond only to the component of the time-average of the electromagnetic energy flow S that is directed into their sensitive face. If the sensor resides in the forward direction looking at the oncoming incident and scattered waves, S is determined by the total wave. This energy flow is given by the Poynting vector [START_REF] Hulst | Light Scattering by Small Particles[END_REF][START_REF] Mishchenko | Scattering, absorption, and emission of light by small particles[END_REF]:

S(r) t = 1 2µ o Re E(r) × [B(r)] * = S inc (r) t + S sca (r) t + S ext (r) t , (24) 
where . . . t denotes time-averaging. In Eq. ( 24), µ o is the permeability of free space, [. . .] * represents complex conjugation, S inc t involves only the incident fields, S sca t involves only the scattered fields, and S ext t involves the product of the incident and scattered fields i.e.,

S ext t = 1 2µ o Re E inc (r) × B sca (r) * + E sca (r) × B inc (r) * . (25) 
The extinction cross section C ext is obtained by integrating the part of Eq. ( 25) that flows into S en ,

C ext = - 1 I inc S en S ext (r) t • r dS, ( 26 
)
where

I inc = (1/2) o /µ o |E inc o | 2
is the intensity of the incident wave and o is the permittivity of free space. Similarly, the scattering and absorption cross sections C sca and C abs are given by the integration of S sca t and S t over S en , respectively as shown in [START_REF] Mishchenko | Scattering, absorption, and emission of light by small particles[END_REF]. Poynting's theorem shows that extinction expresses the conservation of energy in any elastic scattering situation as

C ext = C abs + C sca . ( 27 
)
The cross sections, C abs and C sca , in Eq. ( 27) stem from energy flows that represent losses to the energy contained S en . Absorption converts energy to other forms (thermal etc.) thus acting as a sink, and scattering carries energy away through S en , again acting as a sink. Extinction is often, but not always, associated with an attenuation of the incident beam along its propagation direction [START_REF] Berg | Extinction and the optical theorem. part i. single particles[END_REF]. One will see below how interference between the incident and scattered waves is an integral part of the redistribution of energy in the extinction process.

Notice that Eq. ( 26) yields C ext in terms of the scattered fields on S en , and is valid at any distance from the particle. However, it is more common to expand S en to infinity and use the optical theorem to find C ext in a simple manner as [START_REF] Mishchenko | Scattering, absorption, and emission of light by small particles[END_REF] 

C ext = 4π k|E inc o | 2 Im E sca 1 (n inc ) • E inc o * (28) 
where E sca 1 is the scattering amplitude, defined by

E sca (r) = exp (ikr) r E sca 1 (r), kr → ∞. (29) 
From Mie theory [START_REF] Mie | Beiträge zur optik trüber medien, speziell kolloidaler metallösungen[END_REF][START_REF] Bohren | Absorption and Scattering of Light by Small Particles[END_REF], C ext for a spherical particle can be written as an infinite series of Mie coefficients a n and b n [START_REF] Bohren | Absorption and Scattering of Light by Small Particles[END_REF] as:

C ext = 2π k 2 ∞ n=0 (2n + 1)Re {a n + b n } . ( 30 
)
The extinction efficiency factor Q ext is defined from the particle's geometrical cross-section C geo as

Q ext = C ext C geo . ( 31 
)
The meaning of Q ext is the amount of power removed from the region bounded by S en , due to scattering and absorption, relative to the amount of power contained in the portion of the incident wave geometrically intercepted by the particle [START_REF] Bohren | Absorption and Scattering of Light by Small Particles[END_REF]. Finally, in lidar analysis, the extinction cross section C ext or efficiency Q ext should always be integrated over the aerosol size distribution n(R) to calculate the range-dependent volume extinction coefficient α aer defined as

α aer (r) = Rmax Rmin n(r, R) C ext (r, R) dR. ( 32 
)
Equation [START_REF] Berg | Internal fields of soot fractal aggregates[END_REF] assumes the SSA and that the aerosol is adequately represented as an isotropic scattering medium formed by an ensemble of particles of size R spanning a minimum and maximum particle-size R min and R max , respectively.

Measurements of extinction

In the following, we review three distinct ways to measuring the extinction cross-sections of aerosol particles. These include, (i) Cavity Ring-Down Spectroscopy (CRDS) and Aerosol Photoacoustic Spectroscopy (APS), (ii) Small-Angle Light-Scattering (SALS), and (iii) a Digital Holography (DH). Each method has its advantages and disadvantages, which will be explained. These methods are typically used in laboratory settings although some work has extended them to the field. Laboratory measurements of specific classes of particles, such as smoke soot and mineral dust, can be helpful in lidar contexts as they can provide estimates for the extinction component of the lidar ratio (LR).

Spectroscopic methods

Aerosol Cavity Ring-Down Spectroscopy (CRDS) is a well-established method increasingly used in atmospheric science to determine the extinction efficiency Q ext of aerosols in the laboratory and the field [START_REF] Berden | Cavity ring-down spectroscopy: Experimental schemes and applications[END_REF]. Sappey et al. [START_REF] Sappey | Fixed-frequency cavity ringdown diagnostic for atmospheric particulate matter[END_REF] first detected ambient aerosol particles using the method. More recently, the method has proved to be a sensitive tool to measure Q ext for ensembles of aerosol particles [START_REF] Abo Riziq | Optical properties of absorbing and non-absorbing aerosols retrieved by cavity ring down spectroscopy[END_REF][START_REF] Miles | Novel optical techniques for measurements of light extinction, scattering and absorption by single aerosol particles[END_REF][START_REF] Mellon | Measurements of extinction by aerosol particles in the near-infrared using continuous wave cavity ring-down spectroscopy[END_REF], single particles [START_REF] Butler | Cavity ring-down spectroscopy measurements of single aerosol particle extinction. i. the effect of position of a particle within the laser beam on extinction[END_REF][START_REF] Miller | Cavity ring-down spectroscopy measurement of single aerosol particle extinction. ii. extinction of light by an aerosol particle in an optical cavity excited by a cw laser[END_REF][START_REF] Walker | Measurements of light extinction by single aerosol particles[END_REF], and can be sensitive to particle morphology [START_REF] Attwood | Deliquescence behavior of internally mixed clay and salt aerosols by optical extinction measurements[END_REF] and refractive index [START_REF] Dinar | The complex refractive index of atmospheric and model humic-like substances (hulis) retrieved by a cavity ring down aerosol spectrometer (crd-as)[END_REF]. Small portable systems based on pulsed CRDS techniques have been developed for field studies of atmospheric aerosols [START_REF] Smith | A portable pulsed cavity ring-down transmissometer for measurement of the optical extinction of the atmospheric aerosol[END_REF][START_REF] Baynard | Design and application of a pulsed cavity ring-down aerosol extinction spectrometer for field measurements[END_REF].

Values for Q ext are determined from CRDS measurements of the extinction coefficient α as a function of particle number concentration. A pulsed or continuous-wave laser is injected into a high-finesse cavity formed by two highly reflective plano-concave mirrors. The light undergoes multiple reflections in the cavity where particles cause extinction losses to the propagating light, gradually decreasing, or "ringing down," the light intensity in the cavity. The temporal variation in the light intensity leaking from the cavity through the mirrors is monitored over time, and the aerosol's extinction properties can then be retrieved by measuring the decay-time difference between an empty cavity and a cavity containing the aerosol sample [START_REF] Berden | Cavity ring-down spectroscopy: Experimental schemes and applications[END_REF].

Aerosol Photoacoustic Spectroscopy (APS) is a method to measure absorption by aerosol particles [START_REF] Moosmüller | Aerosol light absorption and its measurement: A review[END_REF]. Pulsed [START_REF] Haisch | A wide spectral range photoacoustic aerosol absorption spectrometer[END_REF], continuous wave [START_REF] You | Measured wavelength-dependent absorption enhancement of internally mixed black carbon with absorbing and nonabsorbing materials[END_REF], and supercontinuum [START_REF] Sharma | Photoacoustic and nephelometric spectroscopy of aerosol optical properties with a supercontinuum light source[END_REF] laser-based APS systems have been developed to determine aerosol absorption, and in the case of highly absorbing particles, the extinction as well. The principle of the PAS methods is as follows. When incident light modulated at an acoustic frequency illuminates an absorbing particle, the light is absorbed, causing thermal emission and this drives adiabatic expansion of the carrier gas supporting the aerosol thereby generating a pressure wave detected by a microphone. Typically, the modulation frequency is chosen to match a resonant frequency of the sample cell in order to achieve resonant amplification. As a result, the microphone signal is generated only by the absorption of light and is directly proportional to the absorption cross section of the particle.

Both CRDS and APS are promising methods for investigating aerosol light-extinction properties. A key advantage of these methods is their high level of accuracy and sensitivity. Unfortunately, commercially available instruments can be costly. In the following, simpler and less costly methods are reviewed.

Forward light-scattering methods

Over decades, many elastic light-scattering devices have been developed to measure light-scattering patterns from individual aerosol particles [START_REF] Gucker | Rapid measurement of light-scattering diagrams from single particles in an aerosol stream and determination of latex particle size[END_REF][START_REF] Bartholdi | Differential light scattering photometer for rapid analysis of single particles in flow[END_REF][START_REF] Misconi | Light scattering by laser levitated particles[END_REF][START_REF] Kaye | Airborne particle shape and size classification from spatial light scattering profiles[END_REF][START_REF] Aptowicz | Optical scattering patterns from single urban aerosol particles at adelphi, maryland, usa: A classification relating to particle morphologies[END_REF][START_REF] Aptowicz | Decomposition of atmospheric aerosol phase function by particle size and asphericity from measurements of single particle optical scattering patterns[END_REF]. Scattering close to the forward direction, i.e., small angle scattering, is especially useful for particle sizing. Such measurements are challenging because in many situations the majority of light incident on a particle is unscattered and will thus dominate the weak scattered light at a detector viewing small scattering angles. One approach to separate intense unscattered light from near-forward scattered light involves a lens that removes much of the unscattered light by use of a spatial filter in the Fourier plane of the lens [START_REF] Berg | Two-dimensional guinier analysis: Application to single aerosol particles in-flight[END_REF][START_REF] Ferri | Use of a charge coupled device camera for low-angle elastic light scattering[END_REF][START_REF] Berg | Spatial filtering technique to image and measure two-dimensional near-forward scattering from single particles[END_REF][START_REF] Berg | Solving the inverse problem for coarse-mode aerosol particle morphology with digital holography[END_REF]. A simple and fully achromatic experiment is developed in [START_REF] Ceolato | Two-dimensional smallangle scattering from single particles in infrared with a lensless technique[END_REF] and measures the two-dimensional small angle light scattering (2D-SALS) pattern around the forward direction for single particles fixed to a glass stage. The term 2D here refers to the two scattering angles θ and φ. This experiment is based on the spatial-filtering concept in [START_REF] Berg | Spatial filtering technique to image and measure two-dimensional near-forward scattering from single particles[END_REF], but with the refractive optical elements replaced by curved mirrors. Figure 3 shows the arrangement and details concerning the experimental design and calibration procedure can be found in [START_REF] Ceolato | Two-dimensional smallangle scattering from single particles in infrared with a lensless technique[END_REF]. To explain these measurements, we first discuss a few details regarding the intensity observable. By definition [START_REF] Mishchenko | Scattering, absorption, and emission of light by small particles[END_REF], the (absolute) scattered intensity is the magnitude of the time-averaged Poynting vector of the scattered wave, i.e., I(r) = | S sca (r) t |. When r is in the particle's far-field zone, as it is in Fig. 3, Eq. ( 29) applies and the asymptotic r -2 dependence of I can be removed by multiplication by r 2 . This is desirable because in most laboratory measurements, the distance r between the particle and sensor is usually a constant determined by the arrangement. In other words, the r dependence of the intensity provides no information about the particle properties. Performing this multiplication on the intensity relates it to the differential scattering cross dC sca /dΩ section as

I sca (r) = r 2 I(r) I inc = dC sca dΩ (r), (33) 
where I inc has been defined following Eq. ( 26). Thus, in the following, the term scattered intensity I sca will be synonymous with the differential scattering cross section.

Figure 4 shows the measured 2D-SALS patterns and scattering curves from Fig. 3 for a 50 µm diameter polyethylene microsphere and a single volcanic ash particle. Intensity curves I sca , averaged over the azimuthal angle φ, are plotted here in terms of the scattering wave vector q = 2k sin(θ/2) rather than the conventional scattering angle θ [START_REF] Sorensen | Q-space analysis of scattering by particles: A review[END_REF]. For the spherical particle, one finds the expected nested-ring structure in the 2D pattern. A comparison to Mie theory I sca Mie is shown in Fig. 4(b) given assumed values for the sphere diameter D and complex-valued refractive index m. By varying D and m, and averaging I sca Mie (θ, φ) over the azimuthal angle, a curve is found to compare with the measurement, I sca exp as described in [START_REF] Ceolato | Two-dimensional smallangle scattering from single particles in infrared with a lensless technique[END_REF]. In essence, this procedure amounts to a simple inverse-Mie method. Values of D = 50.66 µm and m = 1.43 + 0.0245i supply the scattering curve, shown in red dashed line, that agrees well with the measured curve. Note that while the angular positions of the minima in I sca exp and I sca exp in Fig. 4(b) agree, their magnitudes do not. This discrepancy is due to stray-light noise in the measurements that "fill in" the minima, lifting the curve up from the the theory.

Volcanic ash consists of irregular nonspherical particles with a fragmented, porous structure that is due to the rupture of expanding gas bubbles during the solidification of magma in volcanic eruptions. Aerosols with volcanic ash are of interest in lidar measurements. An example of a measured scattering pattern for an ash particle is given in Fig. 4(c) and Fig. 4(d). With regard to the 2D pattern's angular structure, the ash in Fig. 4(c) shows greater complexity than in Fig. 4(a) for the spherical particle. Such characteristics are typical of a highly irregularly shaped particles larger than the wavelength. However, when the pattern is averaged over the azimuthal angle to generate the scattering curve I sca (q) in Fig. 4(d), a relatively smooth power-law structure of q -3.25 is seen in the curve. This behavior is similar to the single power-law seen in the scattering curves of mineral dust measured in [START_REF] Heinson | Light scattering q-space analysis of irregularly shaped particles[END_REF]. However, the power-law exponents for dust in that work differ from the -3.25 value found here. The cause of such power-laws for nonspherical particles remains unknown.

If applied to aerosols, this method should allow scattering-curve, or phase function, measurement around the forward direction in a simple manner. The method would be most effective for particles larger than the wavelength of light due to the finite size in solid angle of the OAP mirrors commercially available. Yet, one can also infer Q ext from these measurements using Mie theory provided the aerosol particles are spherical. Doing so for the spherical particle in Fig. 4(b), the inferred extinction efficiency is approximately Q ext = 2.089, which is in agreement with the value expected from the extinction paradox, see Sec. 3.3.2.

In order to extract Q ext from the measured patterns of irregularly shaped particles, one could apply more advanced light-scattering models such as T-Matrix or DDA in an attempt to invert the patterns. The difficulty in doing so, however, is one of the disadvantages of the light-scattering method. show the same for the volcanic ash particle, except a comparison to a theoretical curve is not possible in (d) as the particle properties are unknown. The notation I sca /I sca max refers to the curves being normalized to the maximum of the measured scattered intensity since it is not possible to measure the exact forward scattering.

Digital holography method

Digital holography (DH) is a powerful method to characterize aerosol particles approximately larger than 5 µm in size. The unique capability of DH is that images of free flowing aerosol particles can be obtained, thus providing unambiguous size and shape information without the need to invert measurements, e.g., see [START_REF] Berg | Solving the inverse problem for coarse-mode aerosol particle morphology with digital holography[END_REF][START_REF] Berg | Digital holographic imaging of aerosol particles in flight[END_REF]. When done in a specific configuration, known as digital in-line holography (DIH), the method can also be used to directly measure a particle's extinction cross section C ext and a brief description will be given below [START_REF] Berg | Using holography to measure extinction[END_REF][START_REF] Berg | Measuring extinction with digital holography: nonspherical particles and experimental validation[END_REF]. In short, DIH involves using a 2D sensor, such as a CCD or CMOS array, that is oriented to view an expanded, collimated laser beam covering a substantial portion of the sensor's surface. First a recording is taken when no particles are in the beam; this is called a reference measurement I ref (x, y) where (x, y) enumerate the sensor pixels. In other words, I ref (x, y) is simply a measurement of the beam profile. Then, a particle is introduced in the beam. Most of the beam passes by the particle unperturbed, recall Sec. 3.2.2, and proceeds to the sensor. Yet, there is a small portion that is forward scattered by the particle. Thus, at the sensor there are two waves, the incident and scattered waves, which interfere to create an intensity fringe-pattern across the sensor. This pattern is the hologram, I holo (x, y). Taking the difference (pixel-by-pixel) of the two measurements provides the contrast hologram, I con (x, y) = I ref (x, y) -I holo (x, y). One can then apply the Fresnel-Kirchhoff diffraction integral to I con (x, y) to computationally generate a silhouette-like image of the particle in the beam. This process is gaining popularity for aerosol characterization in the laboratory and in the field, e.g., see [START_REF] Kemppinen | Imaging atmospheric aerosol particles from a uav with digital holography[END_REF].

In Sec. 3.1, extinction is described as a loss of radiant energy flow in a beam due to a particle absorbing and scattering the light. In other words, it is as if the particle casts a shadow along the beam axis. While Sec. 3.3.2 will go into more detail, the only way to remove a wave, or a portion of a wave, from a region of space such as when the particle casts its shadow, is for an interference process to redistribute the undisturbed wave, see [START_REF] Berg | A review and reassessment of diffraction, scattering, and shadows in electrodynamics[END_REF]. Thus, extinction can also be viewed as an interference process between the incident and scattered waves. In fact, it is exactly the interference of these waves that form the intensity fringe pattern around the forward direction that constitutes a digital hologram.

As shown in [START_REF] Berg | Measuring extinction with digital holography: nonspherical particles and experimental validation[END_REF], C ext is measured as the difference of the net response of a two-dimensional sensor S 2 looking into the incident wave when a particle is not present and when it is present in the wave [START_REF] Berg | Extinction and the optical theorem. part i. single particles[END_REF][START_REF] Berg | Extinction and the optical theorem. part ii. multiple particles[END_REF][START_REF] Berg | Using holography to measure extinction[END_REF].

Thus, we will define

I sen o (θ) = 1 I inc S2 S inc t • ẑ da and I sen (θ) = 1 I inc S2 S t • ẑ da. ( 34 
)
Here, I sen o and I sen represent the normalized total sensor-response without the particle and with it present, respectively. By "response," we mean the power received by the sensor due to the energy flow S inc t or S t integrated across S 2 , which subtends a solid angle θ sen and is depicted in Fig. 5(a). Note, that there are additional details to this definition relating to the size and shape of the sensor, see [START_REF] Mishchenko | On definition and measurement of extinction cross section[END_REF]. Following some manipulation, the difference between these measurements can be written as

f (θ) = I sen o (θ) -I sen (θ) = 1 I inc S1 S sca t • n da I1 -W sca + S1 S ext t • n da I2 +W ext . ( 35 
)
To understand the meaning of Eq. ( 35), realize that if θ 1, S 2 is small and S 1 is almost a closed surface. Then, I 1 is nearly equal to W sca , which is canceled by the second term in Eq. [START_REF] Müller | Information content of multispectral lidar measurements with respect to the aerosol size distribution[END_REF]. We also see that I 2 is nearly equal to -W ext as explained in [START_REF] Berg | Extinction and the optical theorem. part i. single particles[END_REF], which is canceled by the last term in Eq. [START_REF] Müller | Information content of multispectral lidar measurements with respect to the aerosol size distribution[END_REF]. In all then, when θ is small, we find that f 0. 34)- [START_REF] Qing | Numerical simulation of the retrieval of aerosol size distribution from multiwavelength laser radar measurements[END_REF]. Note that S 2 is a surface covering a variable portion of the sensor. Also shown in (a) are the particle shapes used in [START_REF] Berg | Measuring extinction with digital holography: nonspherical particles and experimental validation[END_REF] to test this method through simulations and in (b) is shown the arrangement used in [START_REF] Berg | Measuring extinction with digital holography: nonspherical particles and experimental validation[END_REF] to verify it with measurements involving fixed particles. These measurements are presented in Fig. 6. Now consider the opposite case, i.e., as θ 1. From [START_REF] Berg | Extinction and the optical theorem. part i. single particles[END_REF], we know that S ext t oscillates rapidly in the r direction from positive to negative as θ varies. Then, as θ increases substantially from zero, I 2 ≈ 0 in Eq. ( 35) because of the oscillation given that n r on the surface S 1 . At the same time, I 1 will decrease from its value of W sca for θ ≈ 0 mentioned earlier. These considerations motivate recasting Eq. ( 35) with the same I 2 as

f (θ) = 1 I o W abs + S2 S sca t • ẑ da I3 -W sca + S1 S ext t • n da I2 . ( 36 
)
To understand this version of f (θ), realize that particles larger than λ will generally scatter most strongly around the forward direction, θ = 0, with the decay in scattered intensity falling off rapidly with increasing θ [recall Fig. 4(b)]. Then, as θ increases, I 3 in Eq. ( 36) approaches the value W sca and is (approximately) canceled by the following term in Eq. [START_REF] Qing | Numerical simulation of the retrieval of aerosol size distribution from multiwavelength laser radar measurements[END_REF]. With I 2 0 due to the oscillating integrand, Eq. ( 36) reveals that f W abs as θ grows. So, as θ grows from θ = 0 up to the sensor-size limit θ sen , f (θ) will form a curve that rapidly rises from a value of zero to a peak, oscillate, and then decay to an asymptotic value of C abs . For a non-absorbing particle, C abs = 0, and f (θ) would then asymptotically approach zero.

With the behavior of the f (θ) curve understood for the θ 1 and θ 1 limits, we can now describe the curve's connection to C ext . The key is the optical theorem, Eq. ( 28), especially the highly oscillatory behavior of the S ext t energy flow that manifests it in the limit that kr → ∞. In short, the optical theorem replaces an integral of S ext t over all directions on a surface S en at infinity, Eq. ( 26), by the value of the scattering amplitude in only the exact forward direction, ninc or θ = 0. This is possible because the (nearly equal) positive-negative oscillation of S ext t becomes increasingly finer in angle in the limit kr → ∞ and the final value of the integral is governed by the integrand's behavior in this unique direction, see [START_REF] Berg | Extinction and the optical theorem. part i. single particles[END_REF]. Now, regard this surface at infinity S en as the limit of the finite surfaces S 1 and S 2 establishing f (θ) as they become infinite. Then, we can expect that for finite S 1 and S 2 , it would be the extrapolation of the oscillations in the f (θ) curve to the unique direction θ = 0 that gives what the optical theorem would in the limit that S 1 and S 2 were otherwise infinite. Finally, we realize that the difference measurement constituting f (θ) in Eq. ( 35) is exactly what would be done to measure the contrast hologram I con . The only difference is that one obtains f (θ) from I con by integrating the sensor's pixel readings over the surface S 2 of variable size θ.

To explain this procedure in more detail, Fig. 6 shows how extrapolation of the oscillations in the f (θ)

curve to θ = 0 does indeed provide an estimate for C ext . Here, DIH holograms I con are measured for two particle types: a glass microsphere and a ragweed pollen cluster, each fixed to a glass stage. The f (θ)

curves for these particle obtained from Eq. ( 35) by integrating the measured contrast holograms are shown in Fig. 6. One can clearly see the limiting behavior described above and the oscillatory nature of the curves.

The average of these curves is then found by fitting envelopes to the extrema, labeled f bot and f top , which together define the trend curves shown in red. Then, C ext is estimated by extrapolating each trend curve to θ = 0. For the sphere, the agreement between C ext holo , i.e., that extrapolated from f , is within 2% of C ext est where C ext est is established from the extinction paradox using C geo obtaind from the holographic particle-image (see Sec. 3.3.2). For the ragweed cluster, the agreement is within 5%. This method to extract C ext from holograms is apparently valid for a large variety of particle size, shape, and refractive index. For example, [START_REF] Berg | Measuring extinction with digital holography: nonspherical particles and experimental validation[END_REF] simulates contrast holograms for 71 particles with TM or DDA simulations. The results show that C ext holo agrees with C ext within ± 10% in almost all cases, over a range of nearly five orders of magnitude in particle size. If the angular size of the sensor is sufficiently large, the asymptotic trend-curve could also estimate C abs . However, the fringes in the contrast hologram become more finely spaced as θ increases, and at some point, will no longer be resolved by the pixel array. More investigation is need to determine whether this method would be useful to measure C abs in practice.

As a final comment, the read may wonder if the method would work for multiple particles captured in a single hologram. This question has not been formally investigated, but the answer is likely that it would work with certain restrictions. First, the particles should satisfy the SSA. Second, the interference fringes corresponding to each particle should be distinctly resolved in the hologram, i.e., the fringes from one particle should not disturb or intersect with the fringes of another particle. If these conditions are met, then the method could simply be applied to the fringes of each particle independently.

The physics of extinction

Given the importance of extinction to lidar, we will now review several ways to gain a deeper understanding for the nature and particular features of extinction exhibited by aerosols. The following will first report some general concepts in the framework of wave optics. Then, the phenomenon known as the the extinction paradox will be described, which is important in lidar applications involving large particles. A new explanation for the paradox will be summarized where the field internal to the particle plays an key role. Lastly, we will present a semi-graphical concept, called phasor analysis, that can link certain features of extinction and scattering to the particle's internal field.

Wave-optics view

For spherical particles as function of size parameter kR, the extinction efficiency Q ext displays of a series of regularly spaced slow oscillations, called interference structures. These are superposed by a series of small, sharp peaks called ripples. An example of these structures is given in Fig. 7. We can present a semi-quantitative explanation for these features from a wave-optics viewpoint. The first feature, the interference structure, oscillates above and asymptotically approaching a value Q ext = 2 for large kR. These structures originate from interference between the scattered wave in the forward direction and the incident unscattered wave. That is, the difference of optical path-length between these two waves results in a phase difference or phase shift, which for spheres is given by ρ = 2kRRe {m -1}.

Consequently, large-scale constructive and destructive interference structures ensue whenever ρ is an integer multiple of π or π/2, respectively. An analytical formula for this behavior is given by van de Hulst as [START_REF] Hulst | Light Scattering by Small Particles[END_REF] Q

ext (ρ) = 2 - 4 ρ sin ρ + 4 ρ (1 -cos ρ) . (37) 
The second feature, the fine-scale ripple structures, are noticed within these larger structures for small changes of kR on the order of 0.01; these are also seen in as revealed by Chylek et al. [START_REF] Chýlek | Partial-wave resonances and the ripple structure in the mie normalized extinction cross section[END_REF][START_REF] Chýlek | Narrow resonance structure in the mie scattering characteristics[END_REF] and Sorensen et al. [START_REF] Sorensen | Patterns in the ripple structure of mie scattering[END_REF] predict the ripple spacing remains uniform as a function of qR for small phase shift ρ. Atmospheric aerosols are generated by a combination of various emission sources and mechanisms, which results in a wide range of particle sizes. Thus, the aerosol polydispersity should be taken into account when calculating lidar-relevant quantities such as extinction. For instance, the Mie coefficients, a n and b n should be integrated over the aerosol size distribution. To illustrate the consequence of a particle size distribution, a log-normal distribution is used in Fig. 7(b) with a standard deviation σ ranging from 1.001 to 1.100.

Most of the structures described above for single or monodisperse particles are damped and only the general trends in the extinction curves remain. Moreover, the ripple structure vanishes for the absorbing aerosols, and with even larger values for Im {m}, even the interference structure vanishes (not shown). Though these interference features are often seen as a nuisance for light-scattering by natural polydispersed aerosols [START_REF] Bohren | Absorption and Scattering of Light by Small Particles[END_REF],

they remain potentially relevant for future applications and are recently measured using synchrotron Fourier transform infrared microspectroscopy at the SOLEIL synchrotron facility [START_REF] Blümel | Observation of mie ripples in the synchrotron fourier transform infrared spectra of spheroidal pollen grains[END_REF].

As a final note regarding Fig. 7, we remind the reader that k is held fixed in these Mie calculations. Yet, the dimensionless character of the independent variable in Fig. 7, i.e., kR, implies that one would obtain the same curves if either k were varied with R fixed or if R were varied with k fixed. Mathematically, this is true of course. However, in the former case -where k is varied -one should remember that for real materials m is a function of wavelength due to dispersion. Bohren et al. [START_REF] Bohren | Absorption and Scattering of Light by Small Particles[END_REF] emphasize this point and show that for a real material, as k increases the imaginary part of m generally increases as an absorption edge is approached at small wavelength. This has the effect of driving the Q ext curves to their asymptotic value of two faster than would be anticipated from Fig. 7.

Extinction paradox

The limiting behavior of Q ext → 2, or equivalently C ext → 2C geo , with increasing kR in Fig. 7 is called the extinction paradox [START_REF] Bohren | Absorption and Scattering of Light by Small Particles[END_REF][START_REF] Born | Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light[END_REF] because an attempt to understand extinction using the geometrical optics approximation, which should be valid for large particles, will fail. In this approximation, one expects that the cross section C ext will be the same as the particle's geometrical cross section C geo , i.e., its shadow. However, the correct value, whether determined by measurement or calculation, is in fact twice this expectation,

C ext = 2C geo or Q ext = 2.
The question then, is why more energy is removed from a beam by a large particle than the amount of energy that the particle intercepts geometrically? The most common explanation, from van de Hulst [START_REF] Hulst | Light Scattering by Small Particles[END_REF], involves arguments based on diffraction and geometrical optics. A less common explanation by Brillouin [START_REF] Brillouin | The scattering cross section of spheres for electromagnetic waves[END_REF] employs destructive interference inside the particle's geometrical shadow.

These explanations endure due to their intuitive character, especially van de Hulst's, and give the paradox the status of being well understood.

In van de Hulst's explanation, the infinitely wide wave incident on a particle is envisioned as collection of parallel rays that travel in the forward direction. These rays are then partitioned into two groups; those striking the geometrically illuminated surface S ill of the particle and the remaining rays that do not. The shadow boundary separates these ray-groups and is the contour along the particle distinguishing the (geometrically) illuminated and shaded sides of the particle. The rays intercepted by the particle are then absorbed, reflected, or refracted and cover a transverse portion of the incident wave equivalent to C geo . The rays not intercepted constitute an incomplete wavefront in the plane of the shadow boundary with an area C geo missing. Being incomplete, the wavefront then diffracts similar to how a complete wavefront would diffract upon passing an opaque obstacle with the same size and shape as C geo . The assumption implied in this explanation is that C ext represents energy flow being removed from the forward direction. Then, the two groups of rays (intercepted and diffracted) each supply a factor of C geo to C ext , totaling 2C geo . While many authors promote this explanation [START_REF] Bohren | Absorption and Scattering of Light by Small Particles[END_REF][START_REF] Hulst | Light Scattering by Small Particles[END_REF][START_REF] Van De | On the attenuation of plane waves by obstacles of arbitrary size and form[END_REF][START_REF] Jones | Light scattering for particle characterization[END_REF], it nevertheless violates the conservation of energy in addition to other difficulties described in [START_REF] Berg | A new explanation of the extinction paradox[END_REF].

A new explanation of the extinction paradox is proposed in [START_REF] Berg | A new explanation of the extinction paradox[END_REF] and is based on the cancellation of incident wave inside the particle. Briefly, this explanation shows that C ext is connected to the Ewald-Oseen (EO) theorem. The EO theorem is a consequence of the Maxwell equations and states that the incident wave is canceled-out inside any particle through destructive interference with secondary radiation from the particle's internal oscillating (material) polarization [START_REF] Born | Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light[END_REF]. By realizing that this secondary radiation and the scattered wave outside the particle share the same source, [START_REF] Berg | A new explanation of the extinction paradox[END_REF] shows that the EO theorem's consequences are inherently linked to the value of C ext .

The idea stems from Brillouin [START_REF] Brillouin | The scattering cross section of spheres for electromagnetic waves[END_REF] who observes that a well-defined shadow behind a large, perfectly conducting and non-absorbing particle must be a result of the scattered wave canceling the incident wave immediately behind the particle. The area of the shadow is C geo , and thus, the scattered wave contains an amount of power corresponding to one factor of C geo due to this destructive interference. An extra factor of C geo is provided by the scattered wave as the light reflected from the particle's illuminated side. Since C abs = 0 because the particle is non-absorbing, C ext = C sca via Eq. ( 27) and totaling the two contributions of the scattered wave gives C ext = 2C geo .

For a large highly absorbing particle that is completely opaque, C ext can again be found via Eq. ( 27).

Here, highly absorbing means that all light that is geometrically incident on the particle is lost, and so, C abs = C geo . Then, for scattering one may be inclined to think that C sca = 0 because the particle absorbs all of the light it intercepts. In fact, however, C sca = C geo for the same reason as before; a well-defined shadow must involve destructive interference between the incident wave and the scattered wave in the shadow region. In other words, it is not enough for the scattered wave to be zero to have a shadow. Adding these contributions in Eq. ( 27) then gives C ext = 2C geo . Now consider the more general case of a large particle that is not perfectly conducting or absorbing, i.e., a dielectric particle. We have seen in Sec. 3.3.1 that the degree of refraction in a particle can be quantified by the phase-shift parameter ρ and we take ρ to be large in this case. In [START_REF] Berg | A new explanation of the extinction paradox[END_REF], Mie theory is used to show that when ρ 1, the cancellation of the incident wave within the particle is accomplished by the secondary radiation from the internal (material) polarization across the particle's geometrically illuminated profile. As mentioned, this source is also that which constitutes the external scattered wave. Thus, due to its dual role, the source is twice the magnitude than what would be expected without consideration of the EO theorem, and this character is communicated to C ext by the scattered wave. Notice that since ρ depends on both particle size R and refractive index m, this understanding of the paradox predicts that C ext → 2C geo for small particles that are highly refractive; a prediction that would not be obtained from the conventional explanations of the paradox. Indeed, [START_REF] Berg | A new explanation of the extinction paradox[END_REF] shows that this is true using exact (Mie) theory for a variety of spherical particles.

Because the incident wave must be canceled within any particle, absorption cannot be the mechanism to do so. What absorption describes is the attenuation of the internal wave via conversion of the wave's energy density into other forms. If this wave is so strongly attenuated as to be negligible in the particle volume except in a thin region across the particle's geometrically illuminated surface, we can see that the highly conducting and highly absorbing particles are the same in this regard. For either case, the internal wave in this thin region provides the source for the secondary radiation in the EO theorem to cancel the incident wave and constitute the scattered wave. The discussions in [START_REF] Berg | A review and reassessment of diffraction, scattering, and shadows in electrodynamics[END_REF] provide a more fundamental way to understand these concepts: The electromagnetic wave requires no medium in which to propagate, and thus, there is no concept of "blocking" such waves as there is, e.g., with waves in fluids. Consequently, if an electromagnetic wave is to be absent in some region where it would otherwise be present, such as the interior of a perfectly conducting particle, it can only be through destructive interference with another wave that the former wave is canceled.

It is possible to give an explicit illustration of this concept and show the EO theorem in action. As explained in [START_REF] Berg | A new explanation of the extinction paradox[END_REF], Green's theorem gives an exact expression for the secondary radiation due to the polarization source of a particle's internal wave. Notably, the expression yields different results when evaluated outside the particle volume

V ext or inside V int as S iω ↔ G e (r, r ) • n × B int (r ) + ↔ G m (r, r ) • n × E int (r ) dS = E sca (r), r ∈ V ext , -E inc (r), r ∈ V int . (38) 
In Eq. ( 38),

↔ G e and ↔ G m are the electric and magnetic type dyadic Green functions; they are 3 × 3 matrices that act as free-space propagators for the electric and magnetic fields [START_REF] Tai | Dyadic green functions in electromagnetic theory[END_REF]. Essentially, this expression is the integral formulation of Ewald-Oseen extinction theorem. When r ∈ V ext , the integral gives the scattered field, E sca . When r ∈ V int , however, the integral gives a field exactly canceling the incident field in V int . Figure 8 demonstrates the dual role of the surface integral in Eq. ( 38) for a spherical particle with kR = 151.5 and m = 1.33 + 0i. The observation of a dark region in Fig. 8(b) shows that the integral cancels the incident field inside the particle. For further detail, the reader is referred to [START_REF] Berg | A review and reassessment of diffraction, scattering, and shadows in electrodynamics[END_REF]. show the x-z cross section through the center of a spherical particle with kR = 151.5 and m = 1.33 + 0i that is illuminated by a plane wave along the z-axis. The outline of the particle is shown in dash. In (a), the magnitude of the internal field |E int | is plotted inside the particle while the magnitude of the superposition of the incident and scattered fields |E inc + E sca | is plotted outside. In (b), the incident field is evaluated everywhere in the x-z plane, and is then added to the field generated by Eq. ( 38), and the magnitude of the result is plotted, i.e., |E inc + Eq. (38)|. The observation of a black particle-interior demonstrates that Eq. ( 38) yields -E inc inside the particle, while also giving the correct E sca outside to match the external total field in (a). The gray scale shown is given with respect to the magnitude of the incident wave Eo = |E inc |.

Phasor analysis

From Sec. 3.3.2, one can appreciate that there is a fundamental connection between the field within a particle and the behavior of observable quantities measured externally in the far-field zone, e.g., I sca or C ext , etc. An illustrative example is given by Tyynelä et al. where the internal electric field within spheres [START_REF] Tyynelä | Interrelating angular scattering characteristics to internal electric fields for wavelength-scale spherical particles[END_REF] and Gaussian-deformed spheres [START_REF] Tyynelä | Interrelating scattering characteristics to internal electric fields for gaussian-random-sphere particles[END_REF][START_REF] Tyynelä | Interpretation of single-particle negative polarization at intermediate scattering angles[END_REF] is connected to specific features of the angular scattered intensity and polarization state. By examining the connection between the internal field and the external observables using another approach, a semi-graphical technique called phasor analysis, further insight can be gained. Indeed, one will see here how changes in the internal field due to absorption affect forward scattering and extinction. As another example, which relates to the measurements in Sec. 3.2.2, [START_REF] Berg | Explanation of the patterns in mie theory[END_REF] applies the analysis to explain why power-law patterns appear in the scattered light intensity I sca for spherical particles when I sca is plotted in terms of the scattering wave vector q = 2k sin(θ/2) rather than the conventional scattering angle θ. The utility of the analysis is highlighted by the ability to see how distinct features in the scattering pattern, i.e., I sca vs. q reveals physical characteristics of the particles, such as the so-called Guinier cross over providing the size of a spherical particle [START_REF] Berg | Explanation of the patterns in mie theory[END_REF].

To review the key elements of phasor analysis and see its application to extinction and backscattering, we begin with the volume integral equation (VIE) for a uniform particle,

E sca (r) = k 2 4π exp(ikr) r (m 2 -1) ↔ I -r ⊗ r • V int E int (r ) exp(-ikr • r ) dV , (39) 
which expresses the scattered field E sca in the the far-field zone in terms of an integral of the internal field E int [START_REF] Mishchenko | Scattering, absorption, and emission of light by small particles[END_REF]. In Eq. ( 39), ↔ I is the 3 × 3 identity dyadic, ⊗ signifies the direct product, and V int denotes the volume of an arbitrary particle that is assumed to be centered on the origin. Normally the factor (m 2 -1) would be in the integral, but since m is taken as uniform throughout V int here, it may exit the integral. The purpose of the dyadic term operating on the integral is to pick out the component of the field that is transverse to the propagation direction r at the observation point r. A thorough discussion of the VIE including its derivation from the Maxwell equations and its important properties is given by [START_REF] Yurkin | Volume integral equation for electromagnetic scattering: Rigorous derivation and analysis for a set of multilayered particles with piecewise-smooth boundaries in a passive host medium[END_REF]. In a qualitative sense, one can think of the VIE as being the analog of Huygens' principle for scalar waves to the vector electromagnetic waves of Maxwell's theory. Notice from Eq. ( 39) that E sca takes the form of an outward travelling spherical wave in the far-field zone. That is, the angular dependence r can be contained in a scattering amplitude E sca 1 , Eq. ( 29), which is independent of distance r to the observation point.

Next, assume that the particle is a sphere illuminated by an incident plane wave polarized along the x direction and propagating along the ẑ axis, i.e., Eq. ( 22) with E inc o = E o x and ninc = ẑ. Furthermore, assume that the observation point is constrained to a circle of radius R denoted by C residing in the the "horizontal scattering plane," or y-z plane, in the far-field zone. Such an arrangement is typical for many laboratory scattering measurements. Based on the multiple planes of reflection symmetry of a sphere, [START_REF] Matthew | Reflection symmetry of a sphere's internal field and its consequences on scattering: a microphysical approach[END_REF] shows that only the x component of the internal field can contribute via Eq. ( 39) to E sca for r ∈ C . With these constraints, Eq. ( 39) simplifies to

E sca (r) = k 2 4π exp(ikR ) R (m 2 -1) V int E int x (r ) exp(-ikr • r ) dV x. (40) 
Next, we envision discretizing the volume V int of the particle into N small volume elements ∆V located at r i that are small enough that E int x (r i ) is approximately uniform within the i th element. Aside from the spherical-wave factor exp(ikR )/R in Eq. ( 40), which is determined by the measurement configuration and not the scattering properties of the particle, we now define complex-valued numbers z i ,

z i (r) = k 2 4π (m 2 -1)E int x (r i ) exp(-ikr • r i ) ∆V = z o z i (r), (41) 
where

z o = (k 2 /4π)(m 2 -1)
∆V such that the scattered field of Eq. ( 40) can be expressed in analogy to

Eq. ( 29) as

E sca (r) = exp(ikR ) R z o N i=1 z i (r) x. (42) 
The complex numbers z i (r) = E int x (r i ) exp(-ikr • r i ) in Eq. ( 42) are called phasors and they form the basis for a semi-graphical analysis of scattering. Each phasor depends on the internal electric field within the volume element at r i and a phase factor, the exponential, that varies with r i and the direction r to the observation point. Note that z i needs to be multiplied by z o , also a phasor but constant with r, in order to retrieve Eq. [START_REF] Yoshiyama | Derivation of the aerosol size distribution from a bistatic system of a multiwavelength laser with the singular value decomposition method[END_REF]. Because the phasors are simply a complex numbers, each can be visualized in the complex plane as the endpoint of a vector from the origin. An example is shown in Fig. 9(a) where two phasors, z 1 and z 2 , are drawn with the phasor point at the vector tips. The sum of the phasors is the vector addition of the phasor vectors as shown in that figure. Physically, one may regard the phasor z i as the amplitude of a spherical wave at r originating from the volume element at r i in the particle. By considering two of these wavelets, Fig. 9(b) illustrates, qualitatively, how the wavelets overlap at r to constitute E sca . Mishchenko [START_REF] Mishchenko | Far-field approximation in electromagnetic scattering[END_REF] presents a similar diagram to describe the meaning of the far-field zone. That is, from Fig. 9(b), one can see that in the limit that R → ∞, the spherical waves of all the particle's wavelets will, despite originating from different points in the particle, overlap to form a single spherical wave, i.e., that of Eq. ( 42). Now consider Fig. 10 where phasor analysis is applied to a spherical particle with kR = 4.94. Here, the scattered intensity I sca is plotted in log-log scale as a function of the dimensionless parameter qR for r ∈ C for a non-absorbing sphere with m = 1.5 + 0i, Fig. 10(a), and an absorbing sphere with m = 1.5 + 0.1i, Fig. 10(b). Recall that I sca follows from Eq. ( 33), where the reader is reminded that the radial dependence is removed by multiplication of the absolute scattered intensity I = | S | by R 2 . The blue curve in each plot in Fig. 10 shows I sca (qR) calculated directly from the Mie coefficients following [START_REF] Bohren | Absorption and Scattering of Light by Small Particles[END_REF]. The red curve shows I sca (qR) as calculated by summing the phasors in Eq. ( 42) as

I sca (r) = z o N i=1 z i (r) 2 ( 43 
)
where to get the qR dependence, we note that r = sin θ cos φ x + sin θ sin φ ŷ + cos θ ẑ and since φ = π/2 for r ∈ C , r depends only on θ. In Eq. ( 43), one usually generates a list of discrete values for θ, evaluates the phasor sum for each value, and then converts each θ to qR. The internal field needed to define each phasor is calculated from Mie theory as well. The first feature of Fig. 10 to notice is that the I sca curve given by the phasors is nearly identical to that given directly by Mie theory. This is expected, of course, because the phasors are also calculated from the Mie theory. The region of slight disagreement between the curves is due to the finite discretization of the particle volume. The next feature to notice relates to the four phasor plots shown inset in each scattering-curve plot in Fig. 10. Recalling Fig. 9(a), the phasor plots show the phasor vectors z i , Eq. ( 41) divided by z o , as blue points in the complex plane. The different plots relate to the distribution of phasors in the complex plane for different θ as labeled. These scattering angles are denoted on the I sca curve by letters a-d. Now focus on Fig. 10(a), the non-absorbing sphere. In the forward scattering direction where θ = 0, or point a, the phasors are spread in an arc-like distribution around the origin in the complex plane. As the scattering angle advances to larger θ, we see these phasors rotate about the origin, but remain fixed in their radial distance from the origin, i.e., each phasor's magnitude is independent of θ. This behavior can be understood from Eq. ( 41) by realizing that

|E int x (r i ) exp(-ikr • r i )| = |E int x (r i )|.
This spread of the phasors with increasing θ means that, on average, more phasors will cancel, or partly cancel, in the phasor addition, Eq. ( 43), yielding I sca . Physically, what this means is that destructive interference between the wavelets emitted from the particle's volume elements is enhanced as θ increases. As a consequence, I sca should decrease from its value at θ = 0, which is observed in the curve. This behavior is well known and is the basis of so-called Guinier analysis where one is able to estimate the size of a particle from the initial decline of I sca (q), see [START_REF] Sorensen | Guinier analysis for homogeneous dielectric spheres of arbitrary size[END_REF]. Point b, θ = 16.8 • , is selected in the region relevant for Guinier analysis. By color coding the phasors according to their location within the particle, [START_REF] Berg | Explanation of the patterns in mie theory[END_REF] shows that the particle-sizing ability of Guinier analysis originates from the onset of destructive interference between opposite "ends" of the particle, i.e., across the particle diameter. Now turn to Fig. 10(b) where the absorbing sphere with m = 1.5 + 0.1i is considered. Here, we see very similar behavior for the the scattering curve and phasor plots as for the non-absorbing sphere. The main difference is that the phasors exhibit smaller magnitude in Fig. 10(b) where the distributions appear to have contracted inward toward the origin compared to those in Fig. 10(a). Absorption causes this effect by decreasing the magnitude of the internal field throughout the particle, decreasing the phasor magnitudes in Eq. ( 41) independent of the scattering angle. Thus, forward scattering from the absorbing sphere, point a, is expected to be less than that for the non-absorbing sphere because the phasors are reduced in magnitude.

Inspection of the scattering-curve plots in Fig. 10(a) and Fig. 10(b) for I sca (qR → 0) show that this is true. Because extinction by a particle is connected to the amplitude of the scattered wave in the forward direction (θ = 0) by the optical theorem, Eq. ( 28), phasor analysis may provide some insight for the behavior of C ext . The conservation of energy statement, C ext = C abs + C sca [Eq. ( 27)], may suggest that extinction by an absorbing sphere should be greater than that of a non-absorbing sphere with the same R and Re {m}; conditions that apply for the two spheres considered here. However, absorption in a particle also affects how much power it scatters compared to its non-absorbing counterpart, and thus, it may not be obvious which sphere should have the greater extinction. Some insight to this question can be gained by examining the phasor plots for θ = 0 in Fig. 10. To do so, we first present the phasor analog to the optical theorem. From Eq. ( 42), the scattering amplitude can be identified as the portion of that expression not including the spherical wave term exp(ikR )/R . Then, given that the scattering amplitude is polarized in the same direction as the incident field in the forward direction, i.e., x, we find that

C ext = 4π kE inc o Im N i=1 z i (n inc ) = 4π kE inc o Im z o N i=1 z i (n inc ) , (44) 
where E inc o is taken to be real for simplicity and it is understood that ninc = ẑ, i.e., θ = 0. Figure 11 shows the phasor distributions for the forward scattering direction from Fig. 10(a) and Fig. 10(b) along side a histogram of the imaginary part of the phasors for each distribution, which is proportional to C ext via Eq. [START_REF] Jagodnicka | Particle size distribution retrieval from multiwavelength lidar signals for droplet aerosol[END_REF]. Consider the non-absorbing sphere first, Fig. 11(a) and Fig. 11(b). The histogram clearly shows that the majority of the phasors have Im {z i } ≥ 0, which when multiplied by z o and summed via Eq. ( 44) yield the extinction cross section C ext pha . This value for the cross section is then compared to that obtained from the Mie coefficients, Eq. ( 30) denoted C ext Mie , showing a consistent result. Specifically, C ext Mie = 3013 in units of wavelength squared. Now, turning to the absorbing sphere in Fig. 11(c) and Fig. 11(d), we see again that Im {z i } ≥ 0 and that the phasor-based and Mie-based cross sections agree, where here C ext Mie = 2465 in units of wavelength squared. However, the distribution in the histogram is narrower for the absorbing sphere as compared to the non-absorbing sphere. Thus, one can see that absorption in the sphere, having reduced the magnitude of the internal field, results in less extinction compared to the non-absorbing sphere of the same R and Re {m}.

One may wonder why the phasors in Fig. 10 and Fig. 11 for the forward scattering direction are spread as they are in the complex plane. Indeed, we have seen that the manner in which they are distributed has much impact on the value of observables like the forward scattered intensity and extinction cross section.

It is possible to provide a qualitative explanation for the nature of the phasor distribution by recalling a popular approximation used in light scattering calculations. In the limit that m → 1.0, i.e., no refraction in the particle, the internal field becomes simply the incident field, i.e., E int (r) → E inc (r) for r ∈ V int , and scattering from the particle is mathematically much easier to calculate. This can be seen by reference to Eq. ( 40) where substitution of E int x (r) by the incident field E inc o exp(ik n • r), while keeping m = 1, turns the integral into a Fourier transform of the particle volume. Invoking this substitution for particles with m = 1 is known as the Rayleigh-Debye-Gans (RDG) or Born approximation and is often used for carbonaceous soot aerosols and biological cells in water [START_REF] Sorensen | Q-space analysis of scattering by particles: A review[END_REF]. The phasor distributions for the RDG approximation are particularly simple; they reside on a ring in the complex plane. This ring is shown in Fig. 11 for the case where E inc o = 1. In the forward scattering direction, all phasors reside at the point where the RDG ring intersects the Re-axis, i.e., z i = 1 + 0i, and as θ increases, they spread in either direction along the ring [START_REF] Berg | Explanation of the patterns in mie theory[END_REF]. Thus, we can now understand that the distribution of the phasor magnitudes off the RDG ring in Fig. 11 is due entirely to the fact that m = 1. That is, absorption Im {m} and refraction Re {m} displace the phasor magnitude from this ring, partly accounting for the asymmetric distribution seen in the histograms (with respect to the origin) leading to the values for C ext . Moreover, the fact that the phasors in the RDG approximation for θ = 0 all reside at the point z i = 1 + 0i shows that C ext = 0 via Eq. ( 44). Yet, scattering in the forward direction, and hence C sca as well, would be nonzero because no phasor cancellation (destructive interference of the wavelets) will occur in that case. Thus, one has the troubling result that C ext = 0 but C sca > 0 and C abs ≥ 0 and the energy conservation statement of Eq. ( 27) is violated. What is wrong here is not phasor analysis, but the fact that the RDG approximation is inherently inconsistent with energy conservation; a fact not often recognized when the approximation is employed. Put another way, energy conservation, i.e., extinction, requires that there be at least some shift in phase between the scattered and incident waves along the forward direction. Such a phase shift amounts to a rotation of the phasors off the Re-axis in Fig. 11 and hence an asymmetric distribution of Im {z i } in the histogram.

Backscattering by aerosol particles

The following will review methods to measure and model backscattering of light by aerosol particles; the other ingredient needed to obtain the lidar ratio. Again, to narrow the scope of the discussion, we will focus on spherical particles, but remind the reader that many of the conclusions remain valid for nonspherical particles.

Definitions

For non-polarimetric lidar applications, the primary observable is the differential backscattering crosssection dC bac /dΩ. This quantity is simply Eq. ( 33) evaluated in the exact backward direction nbac = -n inc , i.e.,

dC bac dΩ = dC sca dΩ (n bac ) = r 2 I inc S sca (rn bac ) t • nbac . (45) 
This quantity is commonly used in lidar and has the units of area per unit of solid angle, [m 2 /Ω]. For spherical particles specifically, Mie theory gives the differential backscattering cross-section in terms of the amplitude scattering matrix S or as an infinite series of the Mie coefficients a n and b n as [START_REF] Bohren | Absorption and Scattering of Light by Small Particles[END_REF] dC

bac dΩ = 1 k 2 |S 1 (π)| 2 = 1 2k 2 ∞ n=0 (-1) n (2n + 1)(a n -b n ). (46) 
The backscattering cross-section C bac is defined in [START_REF] Deirmendjian | Electromagnetic Scattering on Spherical Polydispersions[END_REF] as an equivalent surface with units of area [m 2 ] and is also commonly used in radar applications. It can be seen as the scattering cross-section of an hypothetical particle that scatters the incident wave isotropically as

C bac = 4π dC bac dΩ = 4π k 2 |S 1 (π)| 2 , (47) 
where 4π denotes steradian, i.e., all directions. An especially important quantity derived from Eq. ( 47) is the backscattering efficiency Q bac defined in analogy to Eq. ( 31) as

Q bac = C bac C geo . (48) 
Finally, we note that the quantities in Eq. ( 45) and Eqs. ( 47)- [START_REF] Schotland | Observations by lidar of linear depolarization ratios for hydrometeors[END_REF] should always be integrated over the particle size distribution when dealing with atmospheric aerosols to properly calculate the volume backscattering coefficient β aer , which is then given by

β aer (r) = Rmax Rmin n(r, R) dC bac dΩ (r, R) dR, (49) 
where n(R) is the particle size distribution of an isotropic scattering medium formed by an ensemble of particles of radius R.

Measurements of backscattering

In the following, we review two distinct ways to measure the backscattering cross-sections of aerosol particles: (i) light-scattering in the backward direction and (ii) short-range elastic backscatter micro-lidar.

Backward light-scattering method

While numerous studies have reported light-scattering measurements for a wide variety of aerosols [START_REF] West | Laboratory measurements of mineral dust scattering phase function and linear polarization[END_REF][START_REF] Liu | Scattering matrix of quartz aerosols: comparison and synthesis of laboratory and lorenz-mie results[END_REF][START_REF] Curtis | A laboratory investigation of light scattering from representative components of mineral dust aerosol at a wavelength of 550 nm[END_REF][START_REF] Schnaiter | Influence of particle size and shape on the backscattering linear depolarisation ratio of small ice crystals-cloud chamber measurements in the context of contrail and cirrus microphysics[END_REF], including the extensive work of the Granada-Amsterdam Light-Scattering Database [START_REF] Muñoz | The amsterdam-granada light scattering database[END_REF][START_REF] Volten | Scattering matrices of mineral aerosol particles at 441.6 nm and 632.8 nm[END_REF][START_REF] Muñoz | Laboratory measurements of single light scattering by ensembles of randomly oriented small irregular particles in air. a review[END_REF], most measurements do not consider the scattering in the exact backward direction [START_REF] Gucker | Rapid measurement of light-scattering diagrams from single particles in an aerosol stream and determination of latex particle size[END_REF][START_REF] Bartholdi | Differential light scattering photometer for rapid analysis of single particles in flow[END_REF][START_REF] Misconi | Light scattering by laser levitated particles[END_REF][START_REF] Kaye | Airborne particle shape and size classification from spatial light scattering profiles[END_REF][START_REF] Aptowicz | Optical scattering patterns from single urban aerosol particles at adelphi, maryland, usa: A classification relating to particle morphologies[END_REF][START_REF] Aptowicz | Decomposition of atmospheric aerosol phase function by particle size and asphericity from measurements of single particle optical scattering patterns[END_REF][START_REF] Berg | Two-dimensional guinier analysis: Application to single aerosol particles in-flight[END_REF][START_REF] Ferri | Use of a charge coupled device camera for low-angle elastic light scattering[END_REF]. The basic reason for this is the difficulty of such measurements due to the weak signals in this direction and limitations of the instrumentation used. Yet, the available data may be extrapolated in some cases to infer the exact backscattered intensity. Microwave analog methods [START_REF] Xu | Electromagnetic scattering by an aggregate of spheres: far field[END_REF][START_REF] Zerull | Scattering by aggregates with and without an absorbing mantle: microwave analog experiments[END_REF][START_REF] Kolokolova | Scattering by inhomogeneous particles: microwave analog experiments and comparison to effective medium theories[END_REF][START_REF] Vaillon | A new implementation of a microwave analog to light scattering measurement device[END_REF] report limited data in the backward direction.

In optics, several methods have been described [START_REF] Reid | Particle levitation and laboratory scattering[END_REF] to isolate single aerosol particles, e.g., using optical tweezers, where light-scattering measurements have been achieved. Only a limited number of publications have reported backscattering measurements by single particles in the exact backward direction. Such measurements are very useful for evaluating the light-scattering properties of controlled particles and to validate numerical models. Among them is the early work of Sassen [START_REF] Sassen | Optical backscattering from near-spherical water, ice, and mixed phase drops[END_REF] where simultaneous measurements of the polarization and intensity of backscattered light from hydrometeors is measured as water droplets freeze into crystals. Szymanski et al. [START_REF] Szymanski | On the information content of the light backscattering and transmittance curves in aerosols[END_REF] perform backscattering measurements on spherical particles and observe very fine changes of droplet size from the backscattering curves. Sakai et al. [START_REF] Sakai | Backscattering linear depolarization ratio measurements of mineral, sea-salt, and ammonium sulfate particles simulated in a laboratory chamber[END_REF] measure the backscattering linear depolarization ratios of aerosol particles in a laboratory chamber. In addition, extensive work is done by Miffre et al. [START_REF] Miffre | Laboratory evaluation of the scattering matrix elements of mineral dust particles from 176.0°up to 180.0°-exact backscattering angle[END_REF][START_REF] Miffre | Uv-vis depolarization from arizona test dust particles at exact backscattering angle[END_REF] to investigate the spectral (UV, VIS) depolarization properties of ensembles of aerosols in the exact backward direction with controlled laboratory conditions. Whereas the extinction cross-section is governed by diffraction and depends on the particle size and shape, the backscattering cross-section is more sensitive to the morphology and surface roughness. Fu et al. [START_REF] Fu | Elastic back-scattering patterns via particle surface roughness and orientation from single trapped airborne aerosol particles[END_REF] and Pan et al. [START_REF] Pan | Measurement of back-scattering patterns from single laser trapped aerosol particles in air[END_REF] measure the backscattering patterns of single optically-trapped particles and examine different particle sizes, shape, and surface roughness. Two-dimensional backscattering patterns consists of concentric rings for spherical particles while irregularly-shaped particles exhibit far less symmetrical patterns. Experimental results suggest that the average width of concentric rings, when observed, is inversely proportional to particle size in the backscattering region. Indeed, the backward scattering direction has been identified as one of the most sensitive directions to particle morphology and surface structure. In a different approach, i.e., not involving optical trapping, Heffernan et al. [START_REF] Heffernan | Backscattering measurements of micron-sized spherical particles[END_REF] describes an apparatus to measure light-scattering in the backward direction and confirms this sensitivity. Overall, the development of new methods and apparatus for the evaluation of extinction and backscattering remains an important need. Such work would likely permit improved determinations of the lidar ratio and is necessary to validate modeling and inversion methods. Extended remote-sensing measurements in the field, new laboratory measurements, and the development of more sophisticated light-scattering models will enhance utility of lidar for aerosol characterization.

Short-range backscatter micro-lidar method

Up to now, elastic lidar remains seldom-used to investigate atmospheric aerosols at short-range with a spatial-resolution less than one meter. A recent need for such capability has been identified: to characterize aerosols close to their emission sources by decreasing the minimal measurement height [START_REF] Welton | Micropulse Lidar Signals: Uncertainty Analysis[END_REF][START_REF] Gong | Comparison of simultaneous signals obtained from a dual-field-ofview lidar and its application to noise reduction based on empirical mode decomposition[END_REF][START_REF] Ong | Surface aerosol properties studied using a near-horizontal lidar[END_REF].

Such backscatter lidar profiles are useful for environment and air quality monitoring in order to improve the modeling accuracy of aerosol dispersion during events such as industrial plume emission [START_REF] Edner | Industrial emission control using lidar techniques[END_REF][START_REF] Guerrero-Rascado | Multispectral elastic scanning lidar for industrial flare research: characterizing the electronic subsystem and application[END_REF] or aerosol events in the atmospheric boundary layer [START_REF] Guasta | Daily cycles in urban aerosols observed in florence (italy) by means of an automatic 532-1064nm lidar[END_REF][START_REF] Schröter | Remote monitoring of air pollutant emissions from point sources by a mobile lidar/sodar system[END_REF][START_REF] De Arruda Moreira | Analyzing the turbulent planetary boundary layer by remote sensing systems: the doppler wind lidar, aerosol elastic lidar and microwave radiometer[END_REF][START_REF] Evgenieva | Lidar and spectroradiometer measurements of atmospheric aerosol optical characteristics over an urban area in sofia, bulgaria[END_REF]. Also, short-range micro-lidars are showing new possibilities for investigating light-scattering properties of aerosols, including extinction and backscattering, with high-spatial-resolution [START_REF] Giles | Lidar system model for use with path obscurants and experimental validation[END_REF][START_REF] Tremblay | The effect of dense aerosol cloud on the 3d information contain of flash lidar[END_REF][START_REF] Brown | Chamber lidar measurements of biological aerosols[END_REF][START_REF] Brown | Lidar measurements of solid rocket propellant fire particle plumes[END_REF]. cloud, fog, and soot. The micro-lidar architecture is bi-static and multi-axial with scanning capability. The system is also lightweight, compact, and suitable for a mobile platform. Shown in Fig. 12 is the instrument's optical layout and its specifications are summarized in Table 1. In [START_REF] Ceolato | Short-range elastic backscatter micro-lidar for quantitative aerosol profiling with high range and temporal resolution[END_REF], quantitative backscatter profiling of fog-oil aerosol particles is performed in an indoor tunnel at ONERA. Fog-oil plumes are obscurant smoke screens produced by the heating of a glycol solution and are dispersed in air as an electromagnetic obscurant for military applications, entertainment, and fire simulation [START_REF] Palmer | Exposure standard for fog oil[END_REF][START_REF] Wieslander | Experimental exposure to propylene glycol mist in aviation emergency training: acute ocular and respiratory effects[END_REF]. A forward inverse-method without boundary conditions is applied to range-corrected lidar signals to retrieve quantitative and calibrated backscattering coefficients β as

β(r) = U(r) 1 -2 LR r 0 U(r ) dr . (50) 
The fog-oil plume here is assumed to be composed of particles with similar composition, shape (spheres), and size distribution. Thus, the lidar ratio LR is assumed constant and is computed with Mie theory [START_REF] Mie | Beiträge zur optik trüber medien, speziell kolloidaler metallösungen[END_REF].

The value m = 1.508 + 10 -5 i is used for the refractive index, which is consistent with results reported in the literature [START_REF] Yue | Modeling of coagulation-sedimentation effects on transmission of visible/ir laser beams in aerosol media[END_REF][START_REF] Farmer | Optical particle size measurements of hygroscopic smokes inlaboratory and field environments[END_REF]. A log-normal function is used for the aerosol size distribution with a modal radius and geometric standard deviation of R = 0.180 µm and σ = 1.15, respectively, provided by an optical particle counter. From these microphysical and optical properties, the two main lidar-relevant parameters are calculated using a double-precision Mie scattering code for polydisperse particles [START_REF] Mishchenko | Scattering, absorption, and emission of light by small particles[END_REF]. The theoretical differential backscattering cross-section and lidar ratio are found to be dC bac /dΩ = 3.16 × 10 -3 µm 2 sr -1 and LR = 73.1 sr, respectively. Figure 13 presents the aerosol backscatter profiles of the fog-oil event retrieved from calibrated range-corrected lidar signals using Eq. ( 50). Knowing the aerosol number concentration from an optical counter placed in the tunnel, the averaged backscattering cross-section of the fog-oil plume could be derived from the profiles as dC π = 3.39 × 10 -3 µm 2 sr -1 . This value is relatively close to the theoretical value calculated from Mie theory with a difference of 7%. For further details about the methodology, the reader is referred to [START_REF] Ceolato | Short-range elastic backscatter micro-lidar for quantitative aerosol profiling with high range and temporal resolution[END_REF]. These results highlight the capabilities of the Colibri micro-lidar to quantify the mean backscattering cross-section of aerosols. A fundamental difference of this lidar system with atmospheric elastic lidar systems lies in the high spatial-resolution achieved and the ability to perform short-range measurements close to the aerosol emission source. Such capability will permit investigating aerosol formation in future work. In general, short-range systems, like the Colibri micro-lidar, present new possibilities to explore light-scattering problems relevant to lidar technology and remote-sensing applications.

The physics of backscattering

We now discuss several approaches to better understand backscattering from aerosol particles. The following will first report general wave-optics phenomena involved and will conclude with a reapplication of phasor analysis to show how phasors are related to the backscattered intensity.

Wave-optics view

In Mie theory, the amplitude and phase matrix of the backscattered field by a spherical particle is computed as an infinite series of vector spherical harmonics. One finds an interference and ripple structure for Q bac similar to that of extinction in Sec. 3.3.1. Although accurate, such series are not intuitive and do not lead to physical insight into the scattering processes in this direction. It turns out that writing each term of the infinite series as another infinite series, known as the Debye series [START_REF] Debye | Das elektromagnetische feld um einen zylinder und die theorie des regenbogens[END_REF], brings out a physical ray-based interpretation of many effects that occur in backscattering [START_REF] Hovenac | Assessing the contributions of surface waves and complex rays to farfield mie scattering by use of the debye series[END_REF]. The series are extensively used to understand the relative contributions of various scattering mechanisms, e.g. diffraction, specular reflection, tunneling, and grazing waves [START_REF] Shen | Calculation of debye series expansion of light scattering[END_REF][START_REF] Kervella | Picosecond time scale modification of forward scattered light induced by absorption inside particles[END_REF][START_REF] Onofri | Contribution of debye series to particle characterization with holography and the photonic jet method[END_REF].

Backscattering has received considerable attention in radar applications in addition to lidar. Yet, the prediction of the position and amplitude of the backscattering ripples, seen in Fig. 14 below, remain a difficult task. Because of the penetrability of an incident wave into a dielectric particle, a complex wave-pattern may exist inside a particle, leading to complicated backscattering interference patterns. Short electromagneticpulse analysis is used in [START_REF] Rheinstein | Backscatter from spheres: A short pulse view[END_REF] ca. 1968 to investigate the backscattering behavior of a sphere. Senior and Goorich [START_REF] Senior | Scattering by a sphere[END_REF] suggest that the observed backscattering ripples are due to creeping waves originating from interference between the wave reflected at the specular portion of the sphere and travelling waves around the rear region of the sphere, as this latter wave travels a longer distance than the former. Bryant et al [START_REF] Bryant | Mie theory and the glory[END_REF] show that backscattering by a water droplet comes mainly from the last few significant terms of the Mie-theory partial amplitudes associated with surface waves. In order to explain the phenomenon of glory produced by backscattering from hydrometeors, van de Hulst [START_REF] Hulst | Light Scattering by Small Particles[END_REF] suggests that the effect can be caused by surface waves on a dielectric sphere coupled with rays that traverse the sphere at the critical angle. Other studies investigate the role of the axial and edge rays [START_REF] Fahlen | Optical back scattering from single water droplets[END_REF] and the contribution of surface waves [START_REF] Inada | New calculation of surface wave contributions associated with mie backscattering[END_REF]. Figure 14 presents calculations of backscattering efficiencies Q ext for spheres with a wide range of kR values for both dielectric and conducting spherical particles. In Fig. 14(a), the real part of the refractive index is fixed at Re {m} = 1.5 and the imaginary part varies from Im {m} = 0.001i to Im {m} = 0.1i. For conducting spheres (with Im {m} = 0.1i), the backscatter return consists primarily of two mechanisms, specular and the creeping-wave contributions. For dielectric spheres (with Im {m} = i0.001), the return is not predicted by geometrical optics due to surface waves, which may have taken several shortcuts through the sphere. The interference, thus, leads to relatively complicated results in general as kR varies. Yet, the results appear to show that the low frequency oscillation remains while the high frequency variations are averaged out as the particle's absorption increases. In the limit of conducting or highly absorbing spheres, large Im {m} values induce an absence of surface-wave effects in the backscattered light. Lastly, Fig. 14(b) shows how the backscatter efficiency changes with polydispersity of the spheres as described by a log-normal size distribution. The distribution's standard deviation σ varies as shown while m = 1.5 + 0.001i for all cases. Generally, one sees that the polydispersity attenuates the interference structure in a similar manner as that in Fig. 7

(b) for Q ext .
In summary, we enumerate a number of mechanisms proposed to contribute to backscattering from a dielectric spherical particle [START_REF] Hovenac | Assessing the contributions of surface waves and complex rays to farfield mie scattering by use of the debye series[END_REF][START_REF] Rheinstein | Backscatter from spheres: A short pulse view[END_REF][START_REF] Inada | New calculation of surface wave contributions associated with mie backscattering[END_REF][START_REF] Guo | Scattering center models of backscattering waves by dielectric spheroid objects[END_REF]:

1. Front axial reflection waves: Waves specularly reflected from the front (illuminated) portion of the sphere;

2. Rear axial reflection waves: Waves reflected from the rear surface of the sphere after one or more internal reflections, which induce a phase delay;

3. Glory refraction waves: A ray that hits the sphere at an incidence angle α, enters the sphere with the refraction angle β according to Snell's law, and then emerges in the backward direction after a number of internal reflections; 4. Surface or creeping waves: Waves at grazing incidence, which propagate along the sphere surface and may enter at the critical angle and then take a series of shortcuts before reemerging as surface waves in the backward direction.

All four mechanisms can be viewed as contributions to the backscattering by dielectric particles since multiple reflections on or inside the particle are involved. For a conducting sphere, only the front axial reflection and creeping waves contribute to backscattering.

We note that interpretations of backscattering, or any other scattering phenomenon, involving concepts like the Debye series, surface waves, and rays, are not likely to be helpful for the more general case of nonspherical particles (aside from cylinders). Indeed, all of the mechanism enumerated above depend on the particle shape and orientation and this has important implications for the interpretation of lidar measurements [START_REF] Collis | Mie scattering techniques for air pollution measurement with lasers[END_REF]. It is difficult to see how one could extend these concepts given the added complexity that a nonspherical-particle shape brings to an effort to decompose the scattered wave in terms of, e.g., ray contributions from specific locations in the particle. A ray is a concept from the geometrical optics approximation and only has meaning for the interaction of a wave with an object much larger in size than the wavelength. Thus, any application of a ray-based analysis to describe scattering from a particle on the order of the wavelength in size is inherently questionable. Perhaps less obvious is that even when the geometrical optics approximation is justified, fundamental phenomena like extinction are not properly described without explicit treatment of the wave nature of the scattering process. This is clearly illustrated by the very definition of the paradox in Sec. 3.3.2, i.e., the finding that the true C ext is twice what is predicted from a ray-based treatment. Finally, we emphasize that there is only one wave in the particle or outside of it in Maxwell's theory. Outside, we artificially represent the total wave as consisting of the incident and scattered waves. In fact, the scattered wave only has meaning as the difference between the solution to the Maxwell equations in the absence of a particle and in its presence, see [START_REF] Mishchenko | Gustav mie and the fundamental concept of electromagnetic scattering by particles: A perspective[END_REF]. Restated in operational terms, the scattered wave is the difference of two measurements by a sensor -first without a particle and again with a particle -even though the first operation may be implicit as simply "sensor calibration." Thus, it is not clear what is gained by separating a particle's internal wave into a surface wave and some unaddressed remainder. There is only one internal wave, and it should be regarded in full to describe backscattering.

Phasor analysis

While the wave-optics mechanisms summarized in Sec. 4.3.1 may provide some insight for the behavior of backscattering as kR varies, we can turn to phasor analysis to understand the behavior as m varies. In Sec. 3.3.3, two spheres with kR = 4.94 are considered; one non-absorbing with m = 1.5 + 0i and the other highly absorbing with m = 1.5 + 0.1i. Figure 10 shows how the spread of the phasors z i of Eq. (41) rotate in the complex plane as the scattering angle θ varies. While that discussion focused on the forward scattering θ = 0 and extinction behavior, here we present new work examining the backscattering direction θ = 180 • . Figure 15 shows the phasor plots for each sphere in the backscattering direction, i.e., d on the scattering curves in Fig. 10. Focusing on the non-absorbing sphere first, Fig. 15(a), one can see that, in general, the phasors have rotated about the origin to form a thick, ring-like distribution about the RDG approximation (red circle). Notable here are the phasors bunched into the radial-like "wings" that extend appreciably beyond the phasors in the ring. As a rough approximation, if the phasors spread around the ring cancel each other in the sum in Eq. ( 42), then the phasors in the wings constitute the primary contribution to the backscattered intensity. Now consider the absorbing sphere in Fig. 15(b). Here, we see essentially the same behavior except the phasor magnitudes are decreased in comparison to the non-absorbing sphere due to absorption, recall Sec. 3.3.3. Importantly, there remain wing-like groups of phasors, and so, we can again approximately attribute the backscattered intensity for the absorbing sphere to the phasors in these wings.

The salient point here is that we see that the phasors in the wings for the absorbing sphere have overall less magnitude than for the non-absorbing sphere, implying that the absorbing sphere should backscatter less than the non-absorbing sphere. Comparison of points d on the scattering curves in Fig. 10 shows that this is true. A physical interpretation revealed by this phasor analysis is as follows. The reason that the phasors spread to form the ring-like structure in Fig. 15 is because the phase factor in Eq. ( 41) has advanced to its maximum phase angle k ninc • r i for each phasor z i . The ring-like distribution means that the degree of destructive interference between the particle's wavelets is high, and consequently, the scattered intensity is much diminished compared to its forward scattering value. Yet, the phasors in the wings in Fig. 15 do not as effectively cancel-out due to their tight grouping, and the compression of these wings as θ → 180 • creates a surge in I sca , i.e., compare phasor plot c and d in Fig. 10. We note that others have also examined the backscattering behavior of particles, specifically its polarization [START_REF] Muinonen | Polarization of light backscattered by small particles[END_REF], from the perspective of the internal field based on the spatial structure and symmetry of the field.

As a final comment, the discussions here and in Sec. 3.3.3 regarding phasor analysis are inherently qualitative. While the sum of all phasors does yield the correct scattering curve, i.e., Eq. ( 43), it is not possible to uniquely pair phasors in the sum that cancel. For example, two phasors of equal magnitude opposed by 180 • in the complex plane sum to zero, but so do three phasors of equal magnitude that are 120 • separated in phase. If a particle exhibits a multitude of phasors with different magnitudes and phase angles, it will be possible to make countless combinations of individual phasors that add to zero, or conversely add to some non-zero value, and there appears to be no unique way to achieve the desired grouping. Thus, the interpretations above regarding phasors in ring-like or wing-like groups only have value when assessing the characteristics of the phasor distribution as a whole. In this sense, it is difficult to say that wavelets originating from specific portions of a particle interfere in a particular way to explain some feature of the scattering curve. This realization is essentially equivalent to the arbitrariness of describing backscattering effects as partial rays and surface wave above. The exception, with regard to phasor analysis, is the Guinier feature at small θ discussed in Sec. 3.3.3, where it is possible to identify regions of the particle that destructively interfere to cause a decrease of I sca , see [START_REF] Berg | Explanation of the patterns in mie theory[END_REF]. . Note that most phasors are distributed in a thick ring-like shape and that some cluster into discrete "wings" with greater magnitude.

Conclusion

This review covers the key elements of elastic backscatter lidar including the a derivation of the lidar equation and examination of a micro-lidar system, Colibri, where the new capabilities of short-range microlidar are demonstrated. The phenomena of electromagnetic extinction and backscattering by aerosol particles are shown to be the main mechanisms that affect the return signals measured in lidar. Extinction is examined from an energy conservation perspective and shown to be an interference phenomenon between scattered and unscattered waves. That recognition leads to a useful connection between the digital in-line hologram of a particle and a simple calculation yielding the extinction cross section. Connections of this sort could be useful for laboratory measurements of extinction intended to validate lidar inversion models. In an effort to gain deeper understanding for forward and backscattering, the semi-graphical method of phasor analysis is presented. Applying the analysis to non-absorbing and absorbing spheres illustrates how characteristics of the electric field within a particle affects the external scattered intensity and extinction cross section. When applied to the backward direction, phasor analysis reveals qualitative patterns that offer an interpretation for why backscattering for a non-absorbing sphere is greater than an absorbing sphere.

Figure 3 :

 3 Figure 3: Arrangement to measure 2D-SALS patterns from single microparticles with IR light, λ = 1550 nm in[START_REF] Ceolato | Two-dimensional smallangle scattering from single particles in infrared with a lensless technique[END_REF]. Individual particles are deposited on an anti-reflection coated window, i.e., "stage," (S). The right-most inset figure shows a particle on S, the z-axis, and the scattering angle θ. Unscattered (incident) light, is shown with solid lines while scattered light is in dashed lines. Scattered and unscattered light are separated by the off-axis parabolic (OAP) mirror, which features a 3 mm diameter through-hole. Scattered light is then relayed by a second OAP without a through-hole to the IR-CCD sensor. The left-most inset shows a typical 2D-SALS pattern in false color.

Figure 4 :

 4 Figure 4: Measured 2D-SALS patterns and scattering curves for a 50 µm diameter polyethylene microsphere and a single volcanic ash particle from the Popocatépetl volcano [125]. The measured 2D-SALS pattern is shown in (a) in false color in log scale and the azimuthal average of this pattern, i.e., the scattering curve I sca exp , is plotted as a function of q in log-log scale in (b) as the blue curve. The blue shaded region in (b) shows the azimuthal variation of the 2D pattern. Also in (b) is a comparison to Mie theory, I sca Mie , plotted in red dash for a sphere with D = 2R = 50.66 µm and m = 1.43 + 0.0245i. Plots (c) and (d)show the same for the volcanic ash particle, except a comparison to a theoretical curve is not possible in (d) as the particle properties are unknown. The notation I sca /I sca max refers to the curves being normalized to the maximum of the measured scattered intensity since it is not possible to measure the exact forward scattering.

Figure 5 :

 5 Figure 5: Measuring extinction with digital holography. In (a) are sketches of the surfaces S 1 and S 2 in addition to the associated θ and θsen needed to derive Eqs. (34)-[START_REF] Qing | Numerical simulation of the retrieval of aerosol size distribution from multiwavelength laser radar measurements[END_REF]. Note that S 2 is a surface covering a variable portion of the sensor. Also shown in (a) are the particle shapes used in[START_REF] Berg | Measuring extinction with digital holography: nonspherical particles and experimental validation[END_REF] to test this method through simulations and in (b) is shown the arrangement used in[START_REF] Berg | Measuring extinction with digital holography: nonspherical particles and experimental validation[END_REF] to verify it with measurements involving fixed particles. These measurements are presented in Fig.6.

Figure 6 :

 6 Figure 6: Estimation of extinction cross sections from digital hologram measurements. Shown here are the f (θ) curves of Eq. (35) obtained by integrating measured contrast holograms I con for a 50 µm diameter glass sphere, in (a), and a ragweed-pollen cluster in (b) [130]. Hologram-derived images of these particles are shown inset by applying the Fresnel-Kirchhoff diffraction integral to I con . Plot (b) inset also shows the particle image used to establish C geo by binarizing the holographic image, which gives estimated cross sections C ext est from the extinction paradox. Note that the f (θ) curve is normalized by C ext est .

  Figure 7 shows calculations of Q ext from Mie theory for spheres of a wide range of kR, where k is held fixed. In Fig. 7(a), m is varied, including both dielectric and conducting particles where Re {m} = 1.5 and Im {m} = 0.001i ranging to Im {m} = 0.1i.

Figure 7 :

 7 Figure 7: Extinction efficiencies Q ext for spheres. In (a) is shown monodisperse spheres with varying Im {m} where k is fixed. In (b) are polydisperse spheres, again with k fixed. Here, a normalized log-normal particle size distribution is used with varying σ as shown. For all of the spheres in (b), m = 1.5 + 0.001i.

Fig 7 .

 7 These ripples are the manifestations of partial-wave resonances appearing around definite kR values in real parts of the Mie coefficients a n and b n ,

Figure 8 :

 8 Figure 8: Figure from[START_REF] Berg | A review and reassessment of diffraction, scattering, and shadows in electrodynamics[END_REF] illustrating the Ewald-Oseen extinction theorem. Plots (a) and (b) show the x-z cross section through the center of a spherical particle with kR = 151.5 and m = 1.33 + 0i that is illuminated by a plane wave along the z-axis. The outline of the particle is shown in dash. In (a), the magnitude of the internal field |E int | is plotted inside the particle while the magnitude of the superposition of the incident and scattered fields |E inc + E sca | is plotted outside. In (b), the incident field is evaluated everywhere in the x-z plane, and is then added to the field generated by Eq. (38), and the magnitude of the result is plotted, i.e., |E inc + Eq. (38)|. The observation of a black particle-interior demonstrates that Eq. (38) yields -E inc inside the particle, while also giving the correct E sca outside to match the external total field in (a). The gray scale shown is given with respect to the magnitude of the incident wave Eo = |E inc |.

Figure 9 :

 9 Figure9: Representation and interpretation of phasor analysis. In (a) is shown phasor vectors z 1 and z 2 in the complex plane with points (blue) at the vector tips. The sum of the phasors z 1 + z 2 is shown in red. In (b) is depicted a spherical particle with two volume elements ∆V at different locations, r 1 and r 2 . Spherical waves, or wavelets, radiated from these points overlap at the observation point r. Similar to the description in[START_REF] Mishchenko | Far-field approximation in electromagnetic scattering[END_REF], if r resides in the far-field zone, i.e., R → ∞, all the wavelets coalesce to form the single spherical wave of Eq. (42).

Figure 10 :

 10 Figure 10: Phasor analysis of light scattering from spheres. The scattered light intensity I sca [Eq. (33)] is plotted in log-log scale as a function of qR for a non-absorbing sphere with m = 1.5 + 0i in (a) and an absorbing sphere with m = 1.5 + 0.1i in (b). Both spheres have the same size R and size parameter kR = 4.94. The blue curves are calculated from Mie theory while the red are calculated by summing the phasors via Eq. (43). The inset plots show the distribution of phasors in the complex plane for different scattering angles θ, which are indicated by the points a-d on the scattering curves.

Figure 11 := 1 .

 111 Figure 11: Phasor analysis for the optical theorem, Eq. (44). Plots (a) and (b) show, respectively, the phasor distribution and histogram of the imaginary part of the phasors for the non-absorbing sphere in Fig. (10). Plots (c) and (d) show the same for the absorbing sphere in Fig. (10). The red ring in (a) and (c) denotes the magnitude of phasors in the RDG approximation for the internal field when E inc o = 1. Note that the value for C ext obtained from the phasors in Eq. (44), called C ext pha , agrees well in each case to that calculated directly from Mie theory, i.e., C ext Mie . Specifically, C ext Mie = 3013 in (a) and C ext Mie = 2465 in (b), each with units of wavelength squared, [λ] 2 .

Figure 12 :

 12 Figure 12: Optical layout of the Colibri lidar used to measure backscatter profiles. A Nd:YaG laser along with a collimator emits a laser beam in the direction of the aerosol plume. The backscattered light is collected by a compact Cassegrain telescope and then relayed by an achromatic lens to the Si-APD sensor. An example of a typical backscatter pattern from an aerosol plume is shown in false color in the central inset.

Figure 13 :

 13 Figure 13: Spatio-temporal (left panel) and time-averaged (right panel) aerosol backscatter profiles of fog-oil plumes measured with high-spatial and temporal resolution by the Colibri micro-lidar. In the right panel, the time-averaged molecular and aerosol contributions are shown in red and blue, respectively.

Figure 14 :

 14 Figure 14: Backscattering efficiencies Q bac for monodisperse spheres (a) with varying Im {m} and polydisperse spheres (b) with a normalized log-normal particle size distribution and varying standard deviation σ as shown with m = 1.5 + 0.001i for all three curves.

Figure 15 :

 15 Figure 15: Phasor distributions for the non-absorbing (a) and absorbing (b) spheres of Fig. 10 for the backscattering direction θ = 180• . Note that most phasors are distributed in a thick ring-like shape and that some cluster into discrete "wings" with greater magnitude.

  

Table 1 :

 1 Specifications of the Colibri lidar. Laser Wavelength . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 532 nm Pulse duration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . < 800 ps Pulse repetition rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.0 kHz Pulse energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 µJ Beam divergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.5 mrad Beam diameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 mm Bi-static angle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-5 mrad Receiver Type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Cassegrain Effective diameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 mm Focal length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 500 mm F-number . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.3 processing signal Digital Bandwidth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 GHz Resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 bits System control . . . . . . . . . . . . . . . . . . . . . . embedded computer
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