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To interact with the external world, incoming sensory information informs us about situational changes that are of relevance to our behavior and we act upon 
these accordingly, be it in a produced movement or an internal reaction (e.g. an emotion, paying attention). Humans efficiently interact with their world and each 
other and to do this, a system is required to promote relevant sensory feedback to allow fast, accurate, and appropriate actions. We review findings from single 

-fusimotor system on their activity. This includes changes in firing from 
cognitive and emotional influences, which we postulate can prepare the body for responsive and appropriate action to a change in environment. 
 
We are frequently placed in different situations and the way our body reacts 
determines how we handle them. Humans are predisposed to react in certain 
ways (e.g. fight or flight) and these reactions are enriched by individual 
experience, resulting in constant adaptation and individual variability. To react 
appropriately, a feedforward system is ideal for efficiency, where the brain 
anticipates the best movement strategy suited to the situation. Muscle 
spindles (Box 1) are complex mechanoreceptors, which send afferent 
information to the central nervous system about muscle stretch, but they also 
have the particularity of being innervated by a sophisticated, descending, 

efferent system, called the (gamma) -fusimotor system (Fig. 1) [1]. This 
efferent signal can make the muscle spindle more or less sensitive to different 
parameters of a motor activity [2,3]. The existence of this efferent system to 
control muscle spindle sensitivity leads us to believe that its function is useful, 
such as proprioceptive adaptation during a movement in progress.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1. Schematic of how the -fusimotor drive influences the responses of muscle 
spindles. The descending influence of process such as cognition, emotions, and other 
senses (shown in red) can directly influence the static and/or dynamic sensitivity of 

muscle spindles via the selective control of static and/or dynamic -fusimotor efferents. 
The effect of this can be measured by imposing the exact same movement to a muscle 
under different conditions, as measured via single unit microneurography recordings 
from muscle afferents. 

 
Researchers in the field of proprioception have investigated which conditions 
engage the fusimotor system. The technique of microneurography (Box 2), 
which permits direct recordings from human peripheral nerves and access to 
the messages emitted by single afferents, has provided many insights into 

proprioceptive feedback [4,5]. Researchers have asked whether the -
fusimotor system allows a selective control of muscle spindle afferent 
sensitivity, which would allow us to adjust muscle proprioceptive feedback to 
the environmental context and the requirements of a motor activity [6].  
 
 
 
 
 
 
 
In animals, it has been demonstrated that sensitivity of muscle afferents can 

be modified by descending influences of the -fusimotor drive, where the 
central nervous system can 'set' the activity level independently [7]. Similar 
mechanisms have been investigated in humans, but only small effects of a 
descending drive have been found [8–10]. Most microneurographic 
recordings showed a coupling between muscle spindle activity and muscle 

contraction (- coactivation), which led to the conclusion that the fusimotor 
system functioned to compensate for the slackening of receptors during 
muscle shortening [2,11]. Although fully in agreement with this view of the 
role of the fusimotor system, microneurography work from our group, 
performed at the level of the leg, has provided evidence that this role is not 

exclusive, but that independent control of the -fusimotor system can also 
exist, which has opened the door to other functions of the muscle 
proprioceptive system [12–16]. We have found that it is imperative to control 
the environmental situation well and monitor the physiological state of the 
participant to ensure that these are stable, as during cognitive and emotional 
manipulation, a steady baseline is required. It is important for the participant 
to be comfortable in the environment and physiological signals of the 
participant (e.g. heart rate, electrodermal activity, electromyographic signals, 
see [13]) can be measured. These are useful during the whole 
microneurography processes, as fluctuations and high activity in these can 
indicate that the participant is not calm or comfortable, without having to 
continually explicitly ask them. 
 
1- Evidence for an independent gamma drive in subjects at rest 

a.  Recordings from single -fusimotor neurons 
Our first data on the fusimotor system were obtained by the direct recording 

of -fusimotor neurons in subjects at rest [16], where we showed that these 
efferents were activated by factors such as cognitive, behavioral, and 
environmental interventions. This was in contrast to the skeletomotor 
extrafusal muscle efferents, which could be clearly distinguished during 
movements and were not influenced by such top-down factors. We also 

observed that when -fusimotor activity was triggered, the subject could 
voluntarily stop it by seeking a deep state of physical and mental relaxation. 
This showed the importance of controlling the relaxation of the subject, since 
if the gamma system was already activated because the subject was alert (e.g. 
interested in the experimental approach), any test maneuver would not 

increase the -fusimotor activity relative to the control situation in a clear or 
true manner (see [17,18] for further information about experimental 
controls), although data modeling can also aid in accounting for descending 
influences under active conditions [19,20]. However, these recordings were 

rare and it took 5 years to collect data from the 6 -fibers presented in the 
paper. Communication with other microneurographers at the time revealed 
they had occasionally also encountered similar neurons. Characteristically, 
these neurons did not respond to sensory stimulation, and demonstrated 
intermittent behavioral changes with no clear cause. Due to the challenges in 
finding such activity and the difficulty in testing the neuron, it was not feasible 

to pursue our questioning of the influence of the -fusimotor system using 

direct -efferent recordings. Rather, as muscle spindle afferents are readily 

recorded, we sought to infer -activity through their influence on muscle 
spindles.  
 

b.  Recordings from single muscle spindle afferents during cognitive 
processes 

By taking particular care of the mental state of the participants, we 
subsequently showed an increase in the responsiveness of muscle spindle 
primary endings to movement in resting subjects performing mental 
computation [21]. It was unlikely that these changes could be attributed to 
changes in muscle sympathetic activity, despite a direct sympathetic 
innervation of intrafusal muscle fibers [22], since muscle spindle firing is not 
influenced by a strong and sustained physiological activation of muscle 
sympathetic outflow [23]. Rather, we postulated that switching from a relaxed 

state to an active mental state triggers a -fusimotor drive independent of the 
-motoneuron drive. Beyond this general excitatory effect, the question 

remained as to whether there could be a modulation of the static and/or 

Box 1. Muscle spindles: These are mechanoreceptors that respond to changes in 

the stretch of a muscle. Primary type Ia sensory fibers are the most numerous 

(signaling the degree of change in muscle movement), there are less secondary type 

II fibers (signaling the length of the muscle), and Golgi tendon organs (type Ib, 

sensing muscle tension) are even rarer. These messages are processed centrally and 

add to our sense of proprioception (kinesthesia), providing us with a sense of body 

position and self-movement. 

Box 2. Microneurography: This technique of percutaneously accessing peripheral 

nerve fibers in awake humans. In single unit microneurography, a needle electrode is 

inserted through the skin and into a peripheral nerve, where recordings from 

individual fibers, typically afferents, can be distinguished. Stimuli can be applied to 

the body, while single unit activity is monitored to different interventions. 

https://doi.org/10.1016/j.cophys.2020.11.010
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Figure 2. Examples of situations where there is a descending influence from the -fusimotor drive, as shown by changes in muscle afferent activity to imposed movements of the 

foot.  (A) The imposition of a letter as a 2D movement without the participant paying attention (top) and when the participant was instructed to pay attention to the movement to 

attempt to recognize the letter (bottom). The muscle afferent response was more variable during recognition. Adapted from Hospod et al (2007) [15]. (B) Sinusoidal movements of the 

foot were imposed during listening to sad, neutral or happy music, to induce the corresponding emotion. During sad music, the depth of modulation (change in instantaneous f iring 

frequency) was increased, as well as clear silences (lack of spontaneous activity) between sinusoids. Adapted from Ackerley et al (2017) [13]. (C) Sinusoidal movements of the foot 

were imposed when the participant either closed their eyes or watched their foot move. The depth of modulation (change in instantaneous firing frequency) was decreased when the 

participant had combined proprioceptive and visual input. Adapted from Ackerley et al (2019) [12]. All microneurography recordings were from Ia muscle spindle afferents originating 

in the extensor digitorum longus muscle of the leg. Horizontal scale bars = 1 s. 

dynamic parameters of muscle proprioceptive feedback in the regulation of 
movements. 
  
To answer this question, we investigated whether muscle proprioceptive 
sensitivity changed in a situation where the subject was asked to close their 
eyes and focus their attention on an imposed movement, in order to 
recognize it, as compared to a control situation where they did not pay 
attention to the movement [15]. We imposed movements in the shape of 
cursive letters because they are sufficiently complex to engage the subject's 
attention, but were easy to name once recognized. The neural response of 
muscle spindles to the same movement describing a letter was highly 
reproducible in the control condition; however, the afferent responses were 
modified when the subject paid attention to the movement to recognize it 
(Fig. 2A). The observed changes suggested that primary muscle spindle 
endings behaved like secondary endings. We interpreted this 
’secondarization’ as a means to facilitate the coding of the shape of the 
movement that would facilitate the task of recognizing letters. In all, the 
percentage of correct recognized movements increased when changes in 

muscle spindle sensitivity were observed. Thus, the -fusimotor drive seemed 
to adapt to select the most relevant muscle proprioceptive information 
according to the task.  
 
It was postulated that such spindle sensitization could also be the result of an 
aspecific effect, such as arousal, which could condition the receptivity of the 
whole organism to surrounding stimuli. We therefore extended this research 
and asked the subject to pay attention either to the speed of ramp 
movements of their foot or to its final position reached [14]. We observed 
changes in muscle afferent firing when participants attended to the velocity or 
amplitude, reflecting dynamic and static gamma activation, respectively. 

These results support the view that -fusimotor control is not an aspecific 
effect but results from a task-specific event and allows the parametric control 
of muscle spindle feedback to fit task requirements.  
 

c.  Recordings from single muscle spindle afferents during emotional 
processes 

It is not only cognitive processes that can engage the -fusimotor drive, but 
emotions can influence the feedback gained from muscle afferents. Emotions 
can evoke strong reactions that profoundly influence our bodies and 
modulate our preparedness to move [24], where pleasantness typically 
facilitates approach and unpleasantness primes withdrawal. The emotion 
derived from a situation can impact on the timing of movements [25], where 
unpleasant situations are particularly salient [26,27]. Recently we recorded 
muscle afferent activity [13], while changing the participant’s emotional state 
through listening to happy, sad, or neutral-emotional music. Muscle afferent 
firing in response to passive ankle movements was modified by the emotional 
context, especially for the induced sad emotion, where the muscle spindle 
dynamic response increased (Fig. 2B). This effect could be seen in the change 
in the depth of modulation of muscle afferent firing over each condition (i.e. 
the maximum minus the minimum firing rate), where in the sad condition, 
there were typically marked pauses between the sinusoidal movements that 
were not present in the neutral condition. This was supported by behavioral 
findings showing that under the same conditions, kinesthetic acuity was also 
affected by emotional state, where it was improved during imposed sadness 
[28]. Our findings are also congruent with those obtained using transcranial 
magnetic stimulation, showing that corticospinal excitability is increased when 
listening to emotional music [29]. The specific effect of emotions that we 
demonstrated may be exploited therapeutically, such as for priming 
movements in patients with depression, by listening to sad music and it is 
clear that emotions should be taken into account during movement 
investigations, especially as emotion is already known to shape our 
perception in vision and audition [30].  
 

d.  Recordings from single muscle spindle afferents during multisensory 
processes 

The effect of the -fusimotor system can be seen when unisensory, as 
compared to multisensory, information is received. For example, we found 

https://doi.org/10.1016/j.cophys.2020.11.010
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that when participants were not able to see their foot move, muscle afference 
was slightly increased, as compared to when participants had congruent 
proprioceptive and visual information (Fig. 2C)  [12]. Similarly, when 
proprioceptive information from a moving hand was coupled with 
incongruent visual information, proprioceptive sensitivity was reduced to 
resolve bi-sensory conflict [31]. Along the same lines, we would predict that in 
a rubber-hand illusion paradigm [32], the embodiment of the fake hand is 
accompanied by a decrease in muscle afferent inputs due to a decrease in the 

-fusimotor drive, which counterpart would be to give more weight to the 
visual information of touching the plastic hand, but this remains to be 
explored. The specific contribution of muscle proprioceptive signals to body 
ownership has been recently demonstrated where grasping an artificial finger 
induced a sense of ownership of it [33], as well as the influence of cognitive 
and environmental factors on brain process from these sensory inputs [34]. 
 
2- Independent gamma motor control for purposeful movements adapted to 

the situation 
The work summarized above and visualized in Figure 2 demonstrates the 

existence of an independent, top-down control of the -fusimotor system, 
since all changes have been shown in the resting subject, without concurrent 

-activity. Note that stronger modulation may have been predicted from 
animal work, but it has always been an intriguing observation that muscle 
spindle firing rates are much lower in humans than in animals [35]. For 
example, the fusimotor-induced increase in human spindle discharge during 
isometric contraction may be ~15 times lower in humans than in awake cats 
[36,37]. Such differences may therefore be present in the influence of the 
fusimotor system on muscle spindle sensitivity and small changes in muscle 
spindle sensitivity may nevertheless have a significant effect on 
proprioception. This was the case during listening to sad music [13,28] and 
during noise-induced increases in the variability of the spindle discharge [38], 
both showing improved movement sense. 
 

The selective and differential -fusimotor system that controls muscle spindle 
sensitivity is likely activated to adapt muscle proprioceptive feedback during 

voluntary motor activities. Although it is not easy to infer -activity from the 
recording of spindle endings in the active subject, a number of observations 
provide evidence of this. The finding that humans can finely-control muscle 
proprioceptive feedback through an optimized fusimotor drive is in line with 
the idea that proprioceptive training can improve motor performance [39]. 
There are also many studies showing that somatosensory factors play a major 
role in the process of learning, particularly at the early stage of motor skill 
acquisition [40–42]. In a direct way, Dimitriou showed an increase in the firing 

of muscle spindle afferents during a visuomotor task, reflecting a -fusimotor 
control that adjusted the muscle proprioceptive system in motor learning 
[20]. In a comparable visuomotor rotation task, other authors found a 
decrease in spindle firing [31], probably because of differences in 
experimental procedures, but both studies strongly suggest the presence of 
independent fusimotor control. Further, during simple block grasping with the 
thumb and finger, muscle afferent activity has been shown to better relate to 
the future muscle state, rather than the current state, demonstrating that an 
uncoupling of fusimotor and skeletomotor control would enable muscle 
spindles to work as a forward sensory model to predict the future kinematic 
activity of its muscle [19]. It is probable that focused movement training can 
increase proprioceptive acuity, which has been shown to be predictive of 
sport performance in elite athletes, such as dancers [43]. Our capacity to tune 
muscle proprioceptive feedback by optimizing gamma drive could also be a 
means to restore altered motor function [for a review, see 44].  
  
In conclusion, it is clear that muscle proprioceptive feedback can be 

modulated by the -fusimotor drive, to adapt behavior to the current 
situation. Although few studies have been performed in this area, especially 
due to the difficulty in accessing muscle afferents under controlled 
environmental conditions, the evidence shows that both cognitive and 
emotional factors, as well as input from other senses, play a role in modifying 
the descending drive to influence muscle receptor sensitivity. This 
feedforward drive therefore allows the rapid and efficient adaptation to a 
change in situation that can help prepare the body for responsive and 
appropriate action. 
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