
HAL Id: hal-03186608
https://hal.science/hal-03186608

Submitted on 7 May 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Formal Verification and Performance Analysis of a Data
Exchange Protocol for Connected Vehicles

Samir Chouali, Azzedine Boukerche, Ahmed Mostefaoui, Mohammed-Amine
Merzoug

To cite this version:
Samir Chouali, Azzedine Boukerche, Ahmed Mostefaoui, Mohammed-Amine Merzoug. Formal Verifi-
cation and Performance Analysis of a Data Exchange Protocol for Connected Vehicles. IEEE Trans-
actions on Vehicular Technology, 2020, 69 (12), pp.15385-15397. �10.1109/TVT.2020.3040817�. �hal-
03186608�

https://hal.science/hal-03186608
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Formal Verification and Performance Analysis of a New Data
Exchange Protocol for Connected Vehicles

Samir Chouali , Azzedine Boukerche , Fellow, IEEE, Ahmed Mostefaoui , and Mohammed Amine Merzoug

Abstract—In this article, we focus on the usage of MQTT (Mes-
sage Queuing Telemetry Transport) within Connected Vehicles
(CVs). Indeed, in the original version of MQTT protocol, the broker
is responsible “only” for sending received data to subscribers;
abstracting then the underlying mechanism of data exchange.
However, within CVs context, subscribers (i.e., the processing in-
frastructure) may be overloaded with irrelevant data, in particular
when the requirement is real or near real-time processing. To over-
come this issue, we propose MQTT-CV; a new variant of MQTT
protocol, in which the broker is able to perform local processing
in order to reduce the workload at the infrastructure; i.e., filtering
data before sending them. In this article, we first validate formally
the correctness of MQTT-CV protocol (i.e., the three components
of the proposed protocol are correctly interacting), through the
use of Promela language and its system verification tool; the model
checker SPIN. Secondly, using real-world data provided by our car
manufacturer partner, we have conducted real implementation and
experiments. The obtained results show the effectiveness of our
approach in term of data workload reduction at the processing
infrastructure. The mean improvement, besides the fact that it is
dependent of the target application, was in general about 10 times
less in comparison to native MQTT protocol.

Index Terms—Connected vehicles, data filtration, formal
analysis, formal verification, MQTT, promela, SPIN.

I. INTRODUCTION

N
OWADAYS, the Internet of Things (IoT) concept [1] is

prevalent in various sectors such as automotive, domotics,

health care, etc. This interesting technology connects several

smart objects, usually able to collect, process and transmit

data (environmental observations), that can be exploited by end

Samir Chouali is with the DISC Department, FEMTO-ST Institute/CNRS
UMR 6174, University of Bourgogne Franche-Comte, Besançon 25000, France
(e-mail: samir.chouali@univ-fcomte.fr).

Azzedine Boukerche is with PARADISE Research Lab., University of Ottawa,
Ottawa, Ontario K1N 6N5, Canada (e-mail: boukerch@site.uottawa.ca).

Ahmed Mostefaoui is with the DISC Department, FEMTO-ST Insti-
tute/CNRS UMR 6174, University of Bourgogne Franche-Comte, Besançon
25000, France, and also with PARADISE Research Lab., University of Ot-
tawa, Ottawa, Ontario K1N 6N5, Canada (e-mail: ahmed.mostefaoui@univ-
fcomte.fr).

Mohammed Amine Merzoug is with the Computer Science Department,
Faculty of Mathematics and Computer Science, University of Batna, Algeria,
and also with DISC Department, FEMTO-ST Institute/CNRS UMR 6174,
University of Bourgogne Franche-Comte, Besançon 25000, France (e-mail:
amine.merzoug@gmail.com).

applications and services. Because of the diversity of devises

as well as the heterogeneity of their related software, the data

communication protocol in these applications plays an important

since it abstracts the data exchange between all the components.

Currently, the most widely adopted communication protocols

in IoT systems are MQTT [2], XMPP [3], and others. In this

paper, we focus on MQTT; an application layer protocol that is

based on a publish/subscribe messaging model for distributing

data between networked applications through a message broker.

Given the high level of abstraction it offers, its processing

lightness and its implementation easiness, MQTT has been used

in many real applications and services including Connected

Vehicles (CVs). Indeed, MQTT is one of the protocols used

by PSA Group1 to gather and leverage data from connected

vehicles [4]. The authors in [4] assert that PSA Group vehicles

can send roughly 170 different types of data ranging from

vehicle identification number, GPS coordinates, engine rounds

per minute to the current angle of the steering wheel, etc. This

amount of data has great value for automotive manufacturers

as well as for third parties since it allows the development of

several applications and services in different domains (improve

driver’s safety, enhance mobility experience, personalize insur-

ance costs, etc.).

In PSA experience [4], MQTT is used as a communication

protocol that connects, through a broker, vehicles as publish-

ers and PSA automotive infrastructure as a subscriber. Data

is then collected from vehicles and processed in both off-line

and on-line (real or near real-time) fashions by PSA Big Data

infrastructure. As previously mentioned, the usage of MQTT has

been motivated by the numerous features it presents in terms

of fast communications, processing lightness and easiness of

implementation; i.e, integration within a large platform. This

last feature is particularly appreciable in industrial environments

where software compatibility and rapid deployment are vital

requirements.

Nevertheless, in the original version of MQTT, the role of the

broker is limited to data forwarding (i.e., transmission) between

publishers and subscribers. Hence, using it as it is in the context

of CVs will lead to the following problematic issues:
� The number of CVs (publishers) is very huge (expected

to be in the order of millions) and hence the infrastructure

is supposed to support a very heavy workload since the

1PSA Group (Peugeot-Citroen) is the second-largest automobile manufacturer
in Europe with about 3 million sold vehicles in 2015.

1

brokers are responsible for sending data without any pro-

cessing or filtering. The processing task is then located at

the infrastructure layer. Nevertheless, several applications

are interested only in a particular part of the sent data

and do not require it in its entirety. In some other cases,

only data that is greater or less than a certain threshold is

of interest. For instance, an after-sales application could

be interested to track vehicles that have their engine’s

temperature exceeding a certain value. In this case, as all

data is processed at the infrastructure layer, the latter has

to support a huge workload.
� The interaction system, which is constituted of CVs, a

broker, and the infrastructure, must be reliable because

it involves very sensitive applications (e.g., emergency

applications, drivers’ safety applications, etc.). Hence, it

is mandatory, in this context, to formally guarantee the

correctness of any protocol responsible of connecting CVs

to the infrastructure.2

In order to reduce the infrastructure’s workload, two ways

are possible: (a) the first one is filtering unnecessary data at

the sources; i.e., at the vehicles. So, only ”valuable” data are

sent to the infrastructure. This supposes that an extra-software,

controlled from the infrastructure, has to run on the vehicle in

order to perform such processing. From real experience (i.e.,

Group PSA), this approach has not been considered for security

reasons since vehicle are considered as sensitive hosts and hence

the number as well as the complexity of running software have

to be strictly controlled and reduced only to necessary ones. (b)

The second way is to perform filtering at the intermediate layer

(i.e., the broker). However, this was not possible in the original

version of MQTT protocol.

In this paper, we focus on a new variant of the MQTT pro-

tocol, we named MQTT-CV (MQTT for Connected Vehicles).

In our proposal, parts of the data processing are handled by the

broker layer, leading thus (as proven by the real experiments

we conducted) to a significant reduction in the workload that

was addressed for the infrastructure. In fact, the infrastructure

can define some conditions (mainly filtering) on the received

data from the broker. In other words, the broker will send to

the infrastructure only data that satisfies the defined conditions.

By doing so, the workload of the infrastructure can be substan-

tially reduced at the expense of a negligible processing cost

at the broker, as stated by our experiments. This infrastruc-

ture workload reduction can have a significant impact on the

overall performance of the system because of the huge number

of CVs.

Furthermore, because of the sensitivity of several automotive

applications, we provide in this paper formal proofs of the

correctness of our proposed protocol (i.e., the three components

will behave as they are supposed to do). To this end, we used

components formal validation based on Promela language [6]

and the model checker SPIN [7], [8].

2It is worthwhile to notice that some vulnerabilities have been identified in
the original MQTT protocol [5]

To the best of our knowledge, this is the first research work

addressing both formal verification and performance improve-

ment of a data exchange protocol specifically tailored to CVs

infrastructures.

The rest of the paper is organized, as follows: works related

to our proposition are presented in Section II. In Section III,

we succinctly present the MQTT protocol and provide a brief

introduction to the model checker SPIN and Promela language.

Section IV describes the proposed MQTT-CV protocol. Our for-

mal analyzing approach of MQTT-CV is presented in Section V.

Section VI presents and comments on the obtained experimental

results. Finally, Section VII concludes the paper and gives some

directions for future works.

II. RELATED WORK

Besides the increasing number of data exchange protocols

proposed for IoT applications, only few of them have been

adopted in the context of CVs [4]. Furthermore, to the extent

of our knowledge, only few research works have addressed

formal verification of such protocols. The work presented in [9]

for instance proposes to formally model the publish/subscribe

protocols to specify their essential properties such as minimality

and completeness. This work, however, has not considered the

verification aspect. In [10], the authors have proposed a formal

model, based on Petri nets, to specify the publish/subscribe

protocols in the domain of Grid computation. In [11], Zigbee

(which is widely used in IoT) has been formally modeled and

verified using the Event-B formal method.

Concerning the security properties, the authors in [12]

have presented a general discussion on the security is-

sues/requirements of the publish/subscribe protocols in the field

of Internet-based peer-to-peer systems. In the same context, in

[5], the author has proposed to analyze the MQTT protocol using

a formal approach based on timed-message passing process

algebra. This approach, which focuses on verifying the security

properties related to the protocol vulnerability against attackers,

demonstrates that there are some scenarios in which MQTT

fails to fulfill the QoS requirements. Some other performance

evaluation methods, that assess the MQTT protocol with regards

to its different QoS levels, were also proposed in [13], [14].

Several works which are close to our proposition were also

proposed. In more exact words, these works have adopted a

model checking technique to verify the reliability properties of

the publish/subscribe systems. For instance, the solutions pro-

posed in [15], [16] define a general framework that aims to verify

the publish/subscribe systems by model checking. The main

difference between these approaches and ours lies in the fact

that while these solutions are general, our proposition focuses

on MQTT-CV analysis and safety properties verification. In [17],

the authors utilized a probabilistic model checking to model and

validate the publish/subscribe systems. The validation in this

work was carried out using the PRISM model checker. Another

work which uses a probabilistic model checking was proposed

in [18]. This work allows analyzing the quality of prediction in

service-oriented architectures.

2

Fig. 1. MQTT: publishers send data to the broker which is in charge of
forwarding it to subscribers on given topics.

To summarize, we can say that compared with state-of-

the-art solutions, the originality and contribution of the work

presented in this paper are (1) the proposition of MQTT-

CV (a publish/subscribe protocol dedicated to connected vehi-

cles), (2) its specification with Promela language, and (3) its

analysis/verification with the SPIN model checker. Addi-

tionally, real implementation and experimentation have been

conducted to demonstrate the effectiveness of our ap-

proach in terms of noticeable performance improvement (i.e.,

workload reduction) in the context of automotive big-data

infrastructures.

III. BACKGROUND: MQTT, SPIN AND PROMELA

For the easiness of presentation, we start by introducing the

original MQTT protocol as well as the model checker SPIN and

its related language Promela.

A. MQTT Protocol

MQTT [2] is a publish-subscribe protocol designed to be

open, simple, lightweight, and easy to implement. Moreover,

MQTT is a machine-to-machine protocol designed to allow de-

vices with small storage and processing power to communicate

with each other over low-bandwidth and eventually unreliable

networks (with a high abstraction regarding the underlying

network functions). Before receiving data from other devices,

a subscriber subscribes to a given topic at the broker by the

mean of a subscription command. Then, at each time a data

is published on that topic, it will be immediately forwarded

to all subscribers. Similarly, a publisher can publish data by

the mean of a publish command. Fig. 1 summarizes the MQTT

communication paradigm.

In practice, MQTT gives the flexibility to connect multiple

publishers to multiple subscribers via a main central entity called

Broker. The number of connected devices to a given MQTT

broker depends on the intrinsic capacity, in terms of computing

power and network bandwidth, of the underlying platform which

runs it. In the context of connected vehicles, millions of cars

are expected to be connected. MQTT also handles the quality

of service for the delivered messages. In fact, it offers three

levels of QoS. The first level (QoS 0, called at most once)

represents the case where the sender issues a message only

once and does not wait for any acknowledgment. The second

level (QoS 1, called at least once) guarantees the delivery of

messages at least once by seeking acknowledgment for every

sent message (a message can be sent/received multiple times).

The third and last level (QoS 2, called exactly once) guarantees

that each message is delivered only once to the recipient(s) in

question.

B. Spin Model Checker and Promela Language

SPIN is one of the world’s most popular, and arguably

one of the world’s most powerful, tools for detecting soft-

ware defects in concurrent system designs [8]. More specif-

ically, SPIN is an open-source tool that has been developed

at Bell Labs by Gerard Holzmann, and since has been ap-

plied, so to speak, to everything; from the verification of com-

plex call processing software (used in telephone exchanges) to

the validation of intricate control software for interplanetary

spacecraft [8].

In SPIN, a formal specification is built using Promela; an im-

perative language close to C programming language (variables

declaration, data types, etc.). A Promela program is composed of

a set of processes that are defined with the statementproctype.

To perform system analysis and verification, SPIN transforms

each process into an automaton. Promela supports nondetermin-

ism and parallelism through:

1) The selection statement which describes a nondetermin-

istic choice among those guarded conditions prefixed by

‘::’.

if :: sequence[::sequence]* fi

2) The predefined operator; i.e., run, used to create a new

process, which will be asynchronously executed with the

currently active ones.

run process_name ([argument list]) ;

In Promela, repetitive instructions are expressed using a do-

statement; do :: sequence[::sequence]* od, which

is an if-statement caught in a cycle. Promela also allows

describing communication between processes via an explicit

message passing channel. Both synchronous and asynchronous

communications are supported. In the former (i.e., synchronous

communication), the channel works in a rendezvous mode with

a zero capacity. Whereas, in the latter (i.e., asynchronous com-

munication), the channel works as a FIFO buffer with a non-zero

capacity. The send/receive operations are, respectively, denoted

by:
� name ! arguments which sends messages to channel

specified by name.
� name ? arguments which receives messages from

channel specified by name.

Finally, as regards atomic (indivisible) sequences, they can

be expressed using the atomic {...} or d_step {...}

statements. More details about Promela grammar can be found

in [6].

IV. OUR PROPOSAL: MQTT-CV

In the context of connected vehicles (CVs), the publish-

subscribe paradigm is composed of vehicles (publishers), au-

tomotive infrastructures (subscribers), and a broker. In general,

depending on the target application, infrastructures do not need

3

to process all the received data but only a sub-set of it. For

instance, in a traffic congestion detection application, the in-

frastructures will be interested only in the positions of vehicles

having their corresponding speed below 30 km/h. However,

the current version of the MQTT broker does not support any

filtering and consequently will forward all the received data to

the infrastructures.

To overcome this issue which has a deep impact on the

overall performance of automotive infrastructures, we propose

MQTT-CV; an MQTT variant for connected vehicles. The key

idea behind our proposal is to allow the broker performing

(i.e., processing) some constraints/filtering tasks defined by the

subscribers (i.e., infrastructures) on the received data before

forwarding it. By doing so, we expect to reduce the infras-

tructures workload and hence improving the overall system

performance. Our proposition raises however the following

issues:
� Protocol correctness: given the sensitivity of several CV-

applications related to driver’s safety, the new proposed

protocol must remain correct in the sense that the new intro-

duced tasks in the broker will not alter the general behavior

of the three components; i.e., publisher-broker-subscriber.

Here, it is a matter of software verification.
� Computing overhead at the broker: because of the huge

workload faced in CV-applications, any slight processing

introduced in the platform hosting the broker must remain

below a certain threshold. In other words, the new broker

tasks must not slow down the overall system by causing

delays on messages sent to the infrastructure.

Concerning the first issue, we have paid particular attention

to it since we prove in this paper (through the use of well-known

software verification techniques) that our proposal remains cor-

rect (see next Section). The second issue has been addressed

through real implementation and experimental validation that

uses realistic data sets.

MQTT-CV defines the interaction between vehicles, broker,

and automotive infrastructures as presented by the three follow-

ing steps:

1) First, vehicles send data to the broker about a specific

topic. For example, a vehicle can publish, on the topic

“temperature,” its collected ambient temperature.

2) Second, infrastructures register their interests in certain

topics available at the broker. Infrastructures can also im-

pose conditions on the data values that must be sent to them

according to their subscriptions. For example, an infras-

tructure can require only temperatures that exceed 40 °C.

3) Finally, before distributing data (received from vehicles)

to infrastructures, the broker filters it by applying the

conditions defined by infrastructures.

We point out that in this paper, we focus on one mes-

sage processing within the broker (more precisely message

filtering operations). The processing of more complex oper-

ations such as messages aggregation, complex request pro-

cessing and composition, etc. is left for future work because

of its complexity. We also mention that whilst our proposal

targets specifically CV-applications (big-data context), it can

Fig. 2. MQTT-CV illustration.

be easily deployed/adopted in other contexts where the bro-

ker has to filter unnecessary data to relieve the burden on

subscribers.

V. MQTT-CV CORRECTNESS

In this section, we provide correctness proofs of our proposal

MQTT-CV. To this end, we used the well-know SPIN model

checker and its associated Promela language. Generally, the

proofs are depicted in four steps: (a) the use of a representative

case study, (b) this case study is modeled using UML language

and (c) implemented in the Promela language. (d) Finally, formal

verification is performed using SPIN. The aforementioned steps

are described in the following subsections.

A. Case Study

We use a case study in which there are two different vehicles3

(vehicle 1 and vehicle 2), two automotive infrastructures

(infrastructure 1 and infrastructure 2), and one broker (see

Fig. 2). We suppose that the two vehicles send data about two

topics related to ambient temperature and vehicle speed, whereas

infrastructure 1 has subscribed for both topics (i.e., temper-

ature and vehicle speed), and infrastructure 2 has registered

only for the speed topic. We also suppose that infrastructure

2 has not defined any conditions/restrictions on the received

data from the broker (condition set to true) and infrastructure 1

has imposed the following conditions on data: (a) temperature

must exceed 40 °C and (b) vehicle speed must be less than

30 km/h.

Concretely, the automotive infrastructures in this example

might exploit the collected ambient temperatures to analyze

temperature evolution in certain geographic zones of interest.

Concerning the collected vehicles’ speeds, they might be ex-

ploited, for example, to decide to broadcast an alert to drivers

in the case where the speed of a set of other drivers (in their

direction) has suddenly, and considerably decreased. The goal

here is to inform the concerned drivers about a possible accident

or road obstacle.

B. UML Modeling

Before formally analyzing MQTT-CV, we propose a UML

sequence diagram (Fig. 3) that models a scenario of interaction

between the main components implementing this protocol; that

is, broker, vehicles, and automotive infrastructures. This model

3From a verification point of view, the number of vehicles does not matter.

4

Fig. 3. MQTT-CV modeling with a UML sequence diagram.

will be utilized later in Section V-C to implement MQTT-CV

using Promela language.

As Fig. 3 demonstrates each of the three components is

modeled with a lifeline. The infrastructure starts interactions

by sending a reqsub message that allows it to subscribe to

a specific topic. The broker responds by sending an acknowl-

edgment ack. After that, two interactions occur in parallel (see

the UML parallel combined fragment). In the first interaction,

the vehicle sends data related to both topics; temperature and

vehicle speed. Whilst in the second one, the broker sends the

received data while (1) respecting the infrastructure conditions

and (2) taking into account its chosen topics. Actually, for this

last interaction, the broker considers three possibilities (defined

by topics to which the infrastructure has registered): the in-

frastructure can choose the temperature topic, the speed one,

or both.

C. Promela Implementation

To be able to use the model checker SPIN, MQTT-CV must

be implemented in Promela language. To do so, we consider

the UML protocol specification described in Fig. 3 and the case

study presented in Section V-A and Fig. 2. In more specific

words, we associate a Promela process (proctype statement)

to each interacting component (one broker, two vehicles, and

two automotive infrastructures). In SPIN, these five processes

will be executed in a parallel fashion and will be launched by

the init process:

The interactions between these concurrent processes can sim-

ply be implemented via the communicating channels allowing to

send/receive integers. Indeed, this abstraction of data exchange

is sufficient to simulate and verify the proposed protocol. The

channels we have defined to implement MQTT-CV are:

� chan_reqsub1 and chan_reqsub2: are, respec-

tively, used by the first and second subscribers to request a

subscription (from the broker) on one or many topics. The

subscriber sends an integer to indicate the desired topics.
� chan_acksub1 and chan_acksub2: used by the

broker to, respectively, send an acknowledgment to

the first and second subscribers after their subscription

requests.
� chan_cvbroker_tmp and chan_cvbroker_spd:

used by connected vehicles to send data about topics

defined in the broker. As their names indicate, these two

channels are, respectively, dedicated to the temperature and

speed topics.
� chan_brokersub1_tmp and

chan_brokersub1_spd:

used by the broker to send data (i.e., temperature and speed)

to the first subscriber (automotive infrastructure 1).
� chan_brokersub2_tmp and

chan_brokersub2_spd:

used by the broker to send data (i.e., temperature and speed)

to the second subscriber (infrastructure 2).

5

In the next subsections, we provide and discuss the Promela

code that we propose to implement the subscribers, publishers,

and broker.

1) Subscribers Code: The Promela process modeling infras-

tructure 1 can be implemented using the proctype statement,

as follows:

The process parameter topicsub determines topics to

which this first infrastructure requests to subscribe. More ex-

actly, the value 1 (topicsub == 1) means that the sub-

scription will be done for the temperature topic. The value

2 is for the speed one, and 3 is to indicate both topics. The

two first internal variables tempsub1 and spdsub1 are used

to, respectively, receive temperature and vehicle speed from

the broker. As a matter of fact, after receiving the expected

message from the broker (through chan_acksub1 channel)

and finding that respsub1 is equal to 1, Subscriber1

process will wait for data corresponding to the topic(s) in

which it has subscribed. As specified in the UML sequence

diagram depicted in Fig. 3, this last step will be executed in

a repetitive way using the do-statement (second inner-loop of

Fig. 3).

Fig. 4 shows the automaton generated by SPIN after exe-

cuting proctype Subscriber1(3). As indicated above,

in this case, the subscription is requested for both the tem-

perature and speed topics (topicsub == 3). The gener-

ated automaton, demonstrated in Fig. 4, describes the schedul-

ing of infrastructure 1 actions when it interacts with the

broker through the corresponding communication channels.

These different actions are defined by the transitions labels.

More specifically, according to this automaton, infrastructure

1 starts by sending a message that requests a subscription

from the broker. After receiving a response from the latter,

infrastructure 1 will reach a state in which it will wait for

data reception. Note that there are no deadlock states in this

automaton.

The Promela code of infrastructure 2 is relatively close to the

first one.

Fig. 4. Automotive infrastructure 1 automaton.

Fig. 5. Vehicle 1 automaton.

2) Publishers Code: The following Promela code shows

the implementation of the first considered connected

vehicle:

The above code corresponds to the first inner-loop of Fig. 3.

Note that this process defines two internal parameters; temp1

and speed1. These two variables, which represents tempera-

ture and speed, are, respectively, initialized to 30 and 130, and

will be sent to the broker through their corresponding channels.

The scheduling of vehicle 1 actions is described in Fig. 5.

We mention that in the Promela code of the second connected

vehicle (which has not been shown in this paper), the temperature

has been set to 45 and speed to 20.

6

3) Broker Code: The Promela code that implements an ex-

ample of the proposed MQTT-CV broker is presented below.

As this code clearly states, after receiving subscription re-

quests from both infrastructures, the broker will repeatedly

receive data from vehicles and forward it to those subscribers.

Note that the broker can utilize conditions and filter data sent to

the subscribed infrastructures. Indeed, as previously mentioned,

in the considered case study, the conditions concern only data

that will be sent to Subscriber 1 (which has registered for both

Fig. 6. Broker automaton.

temperature and speed topics). More exactly, the broker will pro-

vide infrastructure 1 with only temperatures that have exceeded

40 and speed values that are lower than 30 km/h. For instance,

in the latter scenario, that is, when infrastructure 1 receives, in

the same time, many of these speed values from vehicles that

are located in the same geographic zone, it can deduce that there

is an obstacle (or maybe an accident) preventing vehicles from

normally flowing.

The Broker process actions are scheduled by the automaton

depicted in Fig. 6. Note that there are no deadlocks in this

automaton. Note also that the size of this automaton is important

when compared with those of vehicles and subscribers. This

shows that it is difficult to manually analyze the broker behavior

(or, in general, the behavior of any other complex system). That

is why it is very interesting to exploit SPIN to automatically

simulate and verify this protocol. In fact, this will be the object

of the next section.

D. SPIN Formal Verification of MQTT-CV

After implementing MQTT-CV components using Promela

language, we focus, in this subsection, on SPIN verification of

our proposal.

1) MQTT-CV Simulation With SPIN: Fig. 7 represents an

extract of a random MQTT-CV simulation performed using

SPIN. As shown in this figure, the different processes interact

by sending messages using communicating channels which are

defined as integers. For example, the broker starts by receiving

7

Fig. 7. Extract of MQTT-CV simulation with SPIN.

the message 3 in channel 1 from Subscriber 1 (1!3). This

indicates that Subscriber 1 is requesting a subscription to both

topics; temperature and vehicles’ speed. The broker responds

by sending message 1 through channel 6 to Subscriber 1. The

interactions continue by sending data from Vehicle 1 and Vehicle

2 to the broker, and then, from the broker to Subscriber 1 and

Subscriber 2. Note that the broker applies a filter before sending

data to Subscriber 1. As Fig. 7 shows, Subscriber 1 receives only

the value 20 for speed (less than 30 km/h condition) and 45 for

temperature (greater than 40 °C condition).

We mention that SPIN also offers the possibility to execute

guided simulations (i.e., steps, that will be executed, can be

chosen in advance).

The simulation results, we obtained, have shown that the

proposed MQTT-CV protocol behaves correctly in some spe-

cific interaction scenarios. However, to prove that the protocol

is reliable in general, one must decide on the validity of all

possible behavior cases and scenarios. In other words, to prove

its correctness, MQTT-CV must be formally verified. This can be

done by specifying and verifying the properties that this protocol

must satisfy.

2) Safety Properties Verification: In this section, we verify

the safety properties which confirm that MQTT-CV always

stays in the allowed states in which nothing abnormal would

happen. More exactly, we focus on the safety properties related

to deadlock states. The latter are states from which a system

cannot progress (i.e., from which no transitions are enabled).

Actually, in general, the reachability of deadlock states is a

consequence of a wrong system specification. For example,

in our publish-subscribe system, a deadlock state might be a

scenario in which the broker sends a message to a subscriber,

while the latter is not ready to receive it.

It is worth mentioning that the absence of deadlocks in each

process of the system (automata presented in Fig. 4, 5, and 6)

does not guarantee the absence of deadlocks in the whole system.

In other terms, this means that the safety verification must

consist of checking the non-reachability of deadlock states in the

automaton corresponding to the whole system (i.e., the transition

system corresponding to the interaction between all processes).

This automaton, provided by SPIN, is obtained by calculating

the asynchronous product of the automata corresponding to each

considered process (broker, subscribers, and publishers).

After using SPIN to verify the property of deadlocks absence

in MQTT-CV, we obtained the result shown hereafter.

This result demonstrates that the interacting MQTT-CV pro-

cesses do not reach any deadlock states (errors: 0), and also

shows information on the generated automaton (size, etc.).

E. Formal Verification of Temporal Properties

The Promela specification of MQTT-CV protocol described

in the previous section allows only the simulation with SPIN

of MQTT-CV behaviors and the verification of a part of its

safety properties, for example those related to deadlock states.

In this section, we focus on the specification and the veri-

fication of MQTT-CV liveness properties. Informally, a live-

ness property asserts that program execution eventually reaches

some desirable states, which also means that system eventually

will do something good, for example by producing desired

outputs [19].

In our case, to prove that our protocol behaves correctly,

by allowing the broker to send only the required data by the

infrastructures, we need to verify some liveness properties, like:
� p1 : always when a broker receives a temperature t, where

t ≥ 40 ◦C, this data will be sent to infrastructures.
� p2 : always when a broker receives a temperature t, where

t < 40 ◦C, this data will be sent to infrastructures (this

property should not be satisfied).
� p3 : always when a broker receives a speed value v, where

v ≤ 30 km/h, it will send it to the infrastructures.
� p4 : always when the broker receives a speed value v, where

t > 30 km/h, this data will be sent to infrastructures (this

property should not be satisfied).
� p5 : always when a broker is active and the received

temperature is greater or equal to 40 °C (in our case it

is equal to 45 °C), then infrastructure 1 will receive this

data.
� p6 : always when a broker is active and the received

temperature is less than 40 °C (in our case it is equal to

30 °C), then infrastructure 1 will receive this data (this

property should not be satisfied).
� p7 : always when the broker is active and the received speed

is less or equal to 30 km/h (in our case is equal to 20 km/h),

then infrastructure 1 will receive this data.
� p8 : always when the broker is active and the received

speed is greater than 30 km/h (in our case it is equal to

8

130 km/h), then infrastructure 1 will receive this data (this

property should not be satisfied).

Notice that the properties p1 to p4 concern the broker be-

havior, and p5 to p6 are related to the interactions between the

broker and infrastructure 14 (or Subscriber 1). In order to prove

the correctness of MQTT-CV, we propose to verify whether the

broker behaves correctly by applying the filter and sending the

right data, and whether the subscribers (infrastructures) receive

right data from the broker. We notice also that in the section

V-D we verified a global safety property related to deadlock

lock states. So we proved that all processes (broker, subscribers,

vehicles) behave without deadlock.

The verification of these properties will ensures that our

protocol is correct with regard to the filtering of data that

will be sent to infrastructures. Nonetheless, to proceed with

their verification with SPIN, it is necessary to specify them

with Linear Temporal Logic (LTL) [20]. It is a mathematical

logic with modalities referring to time, which allows to ex-

press temporal properties on the system behaviors. Moreover in

Promela, we need to determine which process (Vehicles, Broker,

infrastructures) is sending/receiving what to/from whom at any

time of execution. Furthermore, we need also to know what

message is exchanged between the processes. In other word, it is

necessary to be aware of all event occurrences during the process

interactions.

However, with the implementation of MQTT-CV protocol

as it is proposed in the precedent section, the system state

does not change when a message exchange holds between

processes through the channels. To overcome this issue, we

propose to associate flags (a boolean variable) to each sending

and receiving event. This allows to keep track of the actions

performed by the processes and their environment reactions. By

doing so, SPIN will generate transition system corresponding

to Promela processes in which, transition will be enabled by

sending and receiving messages, and each state will be specified

by the flags that indicate: the entity (process) that performs

the last action, the last performed actions, the message used

in the last action, the entity to/from which the message was

sent/received. So, in Promela, for each process, each message,

and send/receive events, a flag is declared. These flags are

updated together with each send/receive event, using a atomic

statement to ensure the values assignment in one execution

step. For example, in the following we present the corre-

sponding Promela code of the process Broker, enriched with

the flags.

Send and receive flags indicate that the process is respec-

tively sending or receiving messages. For example, the flags

msg_speed, and msg_tmp refer respectively the last speed

and temperature message sent. And the flags lf_broker, lf_v1,

lf_inf1, indicate the last process (in this case broker, vehicle1,

and infrastructure1) sending or receiving data. These flags are

update at each sending and receiving events.

4It is sufficient to specify and verify properties only on infrastructure 1,
without considering those of infrastructure 2, because both infrastructures have
the same behavior.

To verify the LTL properties p_1 − p_8 expressed informally

above, we specify them with LTL and Promela as described in

the following listing:

We obtained the following results after their verification with

SPIN:

9

� p1 and p3 are verified, which confirms that the broker send

the received data that meet the conditions of the specified

filter.
� however, p2 and p4 are not verified, which insures that the

broker does not send the data that are not required by the

infrastructures.
� p5 and p7 are verified, which confirms that infrastructure 1

receives data sent by the broker which respect the specified

filter.
� however, p6 and p8 are not verified, which insures that

infrastructure 1 does not receive the data that do not respect

the specified filter.

VI. EXPERIMENTAL VALIDATION OF MQTT-CV

To conduct our experiments and assess both MQTT and

the proposed MQTT-CV solution, we have opted for Eclipse

Mosquitto [21]. In a nutshell, this tool, written in C, is a

message broker that implements the MQTT protocol versions

3.1 and 3.1.1. Actually, given its lightweight feature (i.e., its

lightweight technique of carrying out messaging using the pub-

lish/subscribe model), Mosquitto is also suitable for IoT messag-

ing and low-power single-board devices (such as low-power sen-

sors, mobile devices, cell phones, embedded microcontrollers,

etc.). Furthermore, Mosquitto, which is free, open-source, and

available for both Linux and Windows platforms, provides a

C library for implementing and launching MQTT publishers

and subscribers through their respectivemosquitto_pub and

mosquitto_sub command lines. This gives developers the

ability and freedom to completely modify/adapt the system be-

havior according to their needs and preferences. Finally, like any

other MQTT broker, Mosquitto allows creating and connecting

several publish/subscribe clients.

To ease its reading and understanding, the remainder of this

section has been organized in three subsections, as follows. First,

Section VI-A details the experimental environment configura-

tion (vehicles, broker, and infrastructure settings,...). Second,

Section VI-B provides the evaluation criteria according to which

MQTT-CV and MQTT will be compared. Finally, Section VI-C

presents the obtained results along with their corresponding

interpretation and analysis.

A. Validation Settings and Parameters

For the sake of comparison and evaluation, besides the origi-

nal MQTT functionalities offered by Mosquitto, we have reused

the provided C source code to implement our proposed MQTT-

CV broker and its corresponding subscribers/publishers. More in

detail, in order to (1) check the proper operation of our solution,

and (2) to compare its performance with that of the basic MQTT

broker, we have considered a connected vehicles scenario in

which there are one broker (MQTT or MQTT-CV), one automo-

tive infrastructure (i.e., one subscriber), and n vehicles (publish

clients).

The validation environment has been set in such a way that the

broker, automotive infrastructure and vehicles will be executed

separately. In other terms, we have used three physical machines.

The first one was used to run the broker (alternatively MQTT

or MQTT-CV). The second one was used as the automotive

infrastructure. The third one was utilized to run the implemented

processes (mosquitto_pub) that simulate vehicles. The de-

tails of the three utilized computers are depicted in Table I.

The major objective behind executing the broker (MQTT-CV

or MQTT) and its corresponding clients (i.e., infrastructure and

vehicle processes) on different physical machines was to avoid

affecting the obtained results (presented in Section VI-C).

The three following points will briefly talk about the specifics

of the three main components of our validation experiments;

namely, the vehicles, automotive infrastructure, and broker.
� First, note that temperatures collected and sent by our

virtual vehicles (processes) to the broker have not been

generated through a random process, but are, in fact, real

data that has been collected by real vehicles. This temper-

ature data set, provided by PSA Group, is related to the

external sensed temperature and internal oil temperature

of vehicles.
� Second, no specific tasks were performed by the imple-

mented automotive infrastructure client, except printing the

received temperature to the screen.
� Third, and finally, as for the implemented MQTT-CV bro-

ker, it proposes several predefined filtering functions. It

also gives subscribers the ability to formulate their own

requests/conditions on data they desire to receive (less-

than, greater-than, ...). For instance, a subscriber

can express its interest in receiving only data that exceeds

a certain threshold (e.g., temperatures that are higher than

36 °C). In our experiments, two scenarios have been con-

sidered. In the first one, the infrastructure requires only

temperatures that exceed 8 °C (which represents 50% of

the total data received by the broker). While in the second

scenario, the infrastructure demands only temperatures

that surpass 14 °C (which represents 2% of the total data

received by the broker).

The validation scenario starts as follows. First, the bro-

ker (MQTT-CV or MQTT) is launched (respectively through

the mosquitto-cv or mosquitto command lines). Sec-

ond, the automotive infrastructure (the only subscriber in the

system) is created and connected to the broker through the

mosquitto_sub command:

$ mosquitto_sub -v –id autoInfra -h

IP_address -t temperature/# -q 0

Finally, processes that represent vehicles are created, con-

nected to the broker, and their corresponding implemented

publishing mechanism starts reading and reporting real data. In

order to evaluate the scalability of both MQTT-CV and MQTT

brokers, the number of participating vehicles was progressively

increased through the gradual increase of Mosquitto processes

that simulate them. During this whole working phase, the con-

sidered evaluation metrics (detailed below in Section VI-B)

were continuously recorded at the level of both the broker and

infrastructure. The goal is to evaluate the effect of the proposed

solution on these two entities. Note that there is no difference

in the vehicles’ performance in both architectures; MQTT and

10

TABLE I
HARDWARE SETTINGS AND DETAILS

MQTT-CV. In both cases, vehicles read and report the same data

for fair comparison purposes.

The amount of data sent by each vehicle is set to 727 178

items. Of course, vehicles report this data (to the broker) with

a certain data rate of x messages/second. However, in order

to be more accurate, rather than tracking and reporting the

number of connected vehicles or their data rate (i.e., number of

published messages per second), we have measured the broker

load in terms of received “publish” messages over one minute. In

Mosquitto, this number (moving average) of published messages

can be obtained by simply creating a client and subscribing it to

the following provided system topic:

$mosquitto_sub -v –id bLoad -h IP_address

-t

\ $SYS/broker/load/publish/received/1min-q

0

As a last point in this first subsection, we mention that as was

the case for the automotive infrastructure during its subscription

(-t topic -q 0), each vehicle in the system also specifies

the lowest available Quality of Service (i.e., 0) to publish its

data (using the mosquitto_publish() function). In other

words, in these experiments, the only considered QoS is 0.

Recall that MQTT offers three levels of QoS (0, 1, and 2). A

higher QoS is more reliable but requires a higher latency and

higher bandwidth. These different levels of QoS determine how

the publisher-broker and broker-subscriber communications will

take place. In more specific words, 0 means that packets will be

delivered once (no confirmation), 1 means that they will be de-

livered at least once (confirmation required), and finally, 2 means

they will be delivered exactly once (a four-step handshake).

B. Validation Metrics

The two main criteria we used for the evaluation of MQTT-CV

and MQTT are the CPU and the RAM usage.
� CPU usage: this criterion, which is expressed in per-

centage, represents the processor load in both the broker

and infrastructure machines. The goal is to compare our

MQTT-CV approach with MQTT and measure their effect

on the broker and infrastructure performances (advantages

and disadvantages).

To collect this first information (i.e., CPU load), we have

considered several Linux tools/commands such as the well-

known top, ps, and PowerShell Core (Get-Process,

etc.).
� RAM usage: this evaluation metric measures the quantity

of memory that has been consumed by both the broker

and infrastructure entities during their working stages.

We mention that this information has been also collected

using the Linux tools mentioned above. The RAM usage,

collected by these tools, is expressed in percentage.

The obtained results, depicted in the next (last) subsection,

show the effect of both MQTT-CV and MQTT on resources’

consumption. In fact, the obtained results can be used as a

gauge to estimate the impact that the additional functionalities

(filtering operations,...) of MQTT-CV solution can have on the

complexity/performance of both the broker and infrastructure.

For instance:
� Will the MQTT-CV broker consume less or more resources

(CPU and RAM) due to its specific data processing tasks?

This question can be asked differently. Which task con-

sumes more CPU and RAM: (1) transmissions (i.e., creat-

ing and sending packets) or (2) local data processing?
� As regards the automotive infrastructure, intuitively speak-

ing, fewer received messages mean less processing. As was

the case for the previous point, this one also remains to be

confirmed through the obtained results.

These last two addressed points are very crucial because,

in addition to the Connected Vehicles context, the MQTT-CV

logic can be also considered in many other publish/subscribe

models. For example, in IoT applications, the broker can be

installed on a low-power device (e.g., a low-power sensor device,

embedded microcontroller,...). The same applies to subscribed

clients. Therefore, on the one hand, it would be very beneficial

not to burden these low-power clients with useless data. Rather,

the broker must feed them with only data that interests them. On

the other hand, data processing (filtering, etc.) tasks performed

by the broker must not move the burden from clients to the broker

itself. In other words, these tasks must not drastically augment

resources consumption at the broker level.

C. Validation Results

In the following, we start by depicting and discussing the

obtained broker results. Then, we move to the automotive infras-

tructures’ performance. Note that the obtained results (whether

those relating to the broker or infrastructure) were plotted against

the broker load which is expressed in million publish mes-

sages/minute.

1) Brokers Results: Fig. 8 shows the amount of CPU con-

sumed by MQTT-CV and MQTT brokers to perform their

respective tasks. As previously mentioned, we have considered

two MQTT-CV scenarios. In the first one, the MQTT-CV broker

sends only temperatures that exceed 8 °C, which represents 50%

of the total received data from vehicles. This broker is denoted

as “MQTT-CV Broker with 50% filter” in Fig. 8. In the second

11

Fig. 8. MQTT-CV and MQTT brokers: comparison in terms of CPU usage
(%).

scenario, the MQTT-CV broker forwards only temperatures that

exceed 14 °C, which represents 2% of the total data received

by the broker (denoted as “MQTT-CV Broker-98% filter”).

Indeed, this high value of 98% has been chosen in order to more

closely monitor the MQTT-CV broker behavior in those extreme

circumstances and to show the filtering effect on it.

To summarize, the main difference between MQTT-CV and

MQTT resides in the fact that the MQTT broker does not inspect

the received data or apply any treatment to it. This basic broker

acts just like a relay or bridge for subscribers that are interested

in that data. As for our MQTT-CV broker, it processes data

before forwarding it to subscribers. As explained above, in

this simulation scenario, MQTT-CV forwards only data that

is larger than a certain threshold imposed by the automotive

infrastructure. In general, we can say that MQTT sends more

packets, whereas MQTT-CV performs local computations and

sends fewer messages.

Fig. 8 reveals that the applied filter does not augment the

MQTT-CV resources’ consumption, but on the contrary, it re-

duces it. First, according to Fig. 8, we can say that the more a

broker sends data the more CPU it will consume, and vice versa.

Second, note that the filter threshold specified by the infras-

tructure considerably affects the MQTT-CV broker performance

because, in fact, it is tightly related to the number of sent packets

(to infrastructure). In other terms, depending on the set threshold,

less or more messages will be sent to the infrastructure. And,

more sent packets means more CPU consumption.

Regarding RAM usage, the obtained results (not depicted here

given their similarity) have shown that RAM consumption is

constant and very low for both MQTT and MQTT-CV. In more

exact words, the recorded RAM usage is 0.05% for MQTT

and MQTT-CV regardless of the considered load and applied

filters. We conclude that neither the local processing nor the huge

number of sent packets has affected the RAM consumption.

2) Infrastructures Results: The objective behind these per-

formance results is to confirm the benefits that the MQTT-CV

broker would allow the infrastructure to gain. As previously

stated, fewer received messages will (without a doubt) relieve the

Fig. 9. MQTT-CV and MQTT infrastructures: comparison in terms of CPU
usage (%).

infrastructure and allow it to consume less CPU. Fig. 9 confirms

this intuitive expectation and shows that the added MQTT-CV

functionalities relieve the infrastructure and allow it consume

less CPU when compared with the MQTT infrastructure.

As was the case for the brokers, the obtained results (not

depicted here given their similarity) have also shown that space

complexity (RAM consumption) is constant throughout the

operation of both MQTT and MQTT-CV infrastructures. The

recorded RAM usage was 0.25% regardless of the received data

quantity.

Based on the obtained results, we conclude that MQTT-CV

is more efficient than MQTT in terms of CPU usage. First, the

MQTT-CV broker consumes less CPU because it sends fewer

messages. Second, the MQTT-CV infrastructure also consumes

less CPU because it receives fewer messages. These results

can be also interpreted as follows: local data processing is

more efficient (and less energy-consuming) than transmissions.

Moreover, we also conclude that the added filtering functions

(e.g., greater than, less than, etc.) do not augment RAM and CPU

consumption. Instead, they allow the broker to reduce its need

for resources (by reducing the number of sent packets). Finally,

we estimate that with QoS 1 and QoS 2, MQTT performance

will be worse because, in this case, more messages will be sent.

VII. CONCLUSION AND FUTURE WORKS

This paper presented a proposal that aims to overcome the

MQTT protocol drawbacks in the context of connected vehicles.

These drawbacks are mainly related to (1) the huge volume of

data sent by connected vehicles to automotive infrastructures

(through a broker), and (2) the protocol reliability regarding the

safety properties. To remedy these limitations, first, we have

proposed a variant of MQTT, named MQTT-CV, which aims

to alleviate automotive infrastructures (subscribers) in terms of

data that will be sent to them by the broker (according to their

topic subscriptions). In other words, these infrastructures will

store/process only data that is important to them. Second, to

ensure the reliability of MQTT-CV, which is a critical system

that involves the drivers’ safety, we have formally analyzed it.

12

More in detail, to specify the interaction between its different

components (vehicles, broker, and automotive infrastructures),

we have modeled MQTT-CV using the UML sequence diagram.

After that, we have (1) implemented MQTT-CV using Promela

language, and (2) utilized SPIN to perform simulations that

allow analyzing some iteration scenarios. Finally, using SPIN,

we have verified that MQTT-CV satisfies the safety property

related to deadlock states, and liveness properties that express

temporal constraints on MQTT-CV behaviors. In more exact

words, we have proven that the broker, vehicles, and automotive

infrastructures behave correctly and that MQTT-CV will never

enter a deadlock situation. Moreover, we proved also, that the

broker ensures data filtering before their sent.

As future works, we intend to improve MQTT-CV and make it

able to handle more complex conditions that automotive infras-

tructures can express on proposed topics. In addition to this, we

plan to consider the imposed conditions at the verification level.

ACKNOWLEDGMENT

The authors would like to thank A. Haroun and F. Dessables

from PSA Group for their valuable help in providing us with

realistic vehicular data sets.

REFERENCES

[1] J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami, “Internet of Things
(IoT): A vision, architectural elements, and future directions,” Future

Gener. Comput. Syst., vol. 29, no. 7, pp. 1645–1660, 2013.
[2] D. Locke, “MQ telemetry transport (MQTT) v3. 1 protocol specification,”

IBM, 2010. [Online]. Available: http://www.ibm.com/developerworks/
webservices/library/ws-mqtt/index.html

[3] P. Saint-Andre, K. Smith, and R. Troncon, XMPP: The Definitive Guide:

Building Real-time Applications With Jabber, 1st ed. Sebastopol, CA,
USA: O’Reilly Media, 2009.

[4] A. Haroun, A. Mostefaoui, and F. Dessables, “A big data architecture
for automotive applications: PSA group deployment experience,” in Proc.

17th IEEE/ACM Int. Symp. Cluster, Cloud Grid Comput., Madrid, Spain,
2017, pp. 921–928.

[5] B. Aziz, “A formal model and analysis of an IoT protocol,” Ad Hoc Netw.,
vol. 36, pp. 49–57, 2016.

[6] “Verifying multi-threaded software with spin,” 2019. [Online]. Available:
http://spinroot.com/

[7] G. J. Holzmann, “The model checker spin,” IEEE Trans. Softw. Eng.,
vol. 23, no. 5, pp. 279–295, May 1997.

[8] G. Holzmann, Spin Model Checker, the: Primer and Reference Manual,
1st ed., Reading, MA, USA: Addison-Wesley Professional, 2003.

[9] R. Baldoni, M. Contenti, S. T. Piergiovanni, and A. Virgillito, “Modeling
publish/subscribe communication systems: Towards a formal approach,”
in Proc. 8th Int. Workshop Object-Oriented Real-Time Dependable Syst.,
Jan. 2003, pp. 304–311.

[10] L. Abidi, C. Cerin, and S. Evangelista, “A petri-net model for the publish-
subscribe paradigm and its application for the verification of the bon-
jourgrid middleware,” in Proc. IEEE Int. Conf. Serv. Comput., Jul. 2011,
pp. 496–503.

[11] A. Gawanmeh, “Embedding and verification of zigbee protocol stack in
event-b,” Procedia Comput. Sci., vol. 5, pp. 736–741, 2011.

[12] C. Wang, A. Carzaniga, D. Evans, and A. L. Wolf, “Security issues and
requirements for internet-scale publish-subscribe systems,” in Proc. 35th

Annu. Hawaii Int. Conf. Syst. Sci., Jan. 2002, pp. 3940–3947.
[13] S. Lee, H. Kim, D. k. Hong, and H. Ju, “Correlation analysis of mqtt loss

and delay according to qos level,” in Proc. Int. Conf. Inf. Netw., Jan. 2013,
pp. 714–717.

[14] D. Thangavel, X. Ma, A. Valera, H. X. Tan, and C. K. Y. Tan, “Performance
evaluation of mqtt and coap via a common middleware,” in Proc. IEEE

9th Int. Conf. Intell. Sensors, Sensor Netw. Inf. Process., Apr. 2014,
pp. 1–6.

[15] D. Garlan, S. Khersonsky, and J. S. Kim, “Model checking publish-
subscribe systems,” Model Checking Software, T. Ball and S. K. Rajamani,
Eds., Berlin, Germany: Springer, 2003, pp. 166–180.

[16] L. Baresi, C. Ghezzi, and L. Mottola, “On accurate automatic verification
of publish-subscribe architectures,” in Proc. 29th Int. Conf. Softw. Eng.,
May 2007, pp. 199–208.

[17] F. He, L. Baresi, C. Ghezzi, and P. Spoletini, “Formal analysis of publish-
subscribe systems by probabilistic timed automata,” in Proc. Int. Conf. For-

mal Techn. Networked Distrib. Syst., Berlin, Heidelberg: Springer-Verlag,
2007, pp. 247–262.

[18] S. Gallotti, C. Ghezzi, R. Mirandola, and G. Tamburrelli, “Quality pre-
diction of service compositions through probabilistic model checking,” in
Proc. 4th Int. Conf. Qual. Softw.-Architectures: Models Architectures, ser.
QoSA ’08. Berlin, Heidelberg: Springer-Verlag, 2008, pp. 119–134.

[19] S. S. Owicki and L. Lamport, “Proving liveness properties of concurrent
programs,” ACM Trans. Program. Lang. Syst., vol. 4, no. 3, pp. 455–495,
1982.

[20] A. Pnueli, “The temporal logic of programs,” in Proc.18th Annu. Symp.

Found. Comput. Sci., Oct. 1977, pp. 46–57.
[21] “Eclipse Mosquitto,” Mar. 2019. [Online]. Available: https://mosquitto.

org/

13

