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Prognostics and health management of proton exchange membrane fuel cell (PEMFC)

systems have driven increasing research attention in recent years as the durability of

PEMFC stack remains as a technical barrier for its large-scale commercialization. To

monitor the health state during PEMFC operation, digital twin (DT), as a smart

manufacturing technique, is applied in this paper to establish an ensemble remaining

useful life prediction system. A data-driven DT is constructed to integrate the physical

knowledge of the system and a deep transfer learning model based on stacked denoising

autoencoder is used to update the DT with online measurement. A case study with

experimental PEMFC degradation data is presented where the proposed data-driven DT

prognostics method has applied and reached a high prediction accuracy. Furthermore, the

predicted results are proved to be less affected even with limited measurement data.
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Introduction

In an era of accelerating change, the imperative to limit

climate change and achieve sustainable growth is strength-

ening the momentum of the global energy transformation. A

“hydrogen economy era” is coming into the human's horizon

towards establishing a cleaner energy system [1]. In this

context, fuel cells are regarded as the technology of choice to

maximise the potential benefits of hydrogen in terms of effi-

ciency [2]. Proton exchange membrane fuel cell (PEMFC) is

currently the leading technology for light-duty vehicles and

materials handling vehicles, and to a less extent for stationary

and other applications [3]. However, two primary challenges

have limited its massive commercialization, i.e. cost and

durability [4]. The unsatisfied durability and reliability of the

current PEMFC systems can be associated with the high

maintenance cost [5], while non-optimized operation could be

a critical reason leading to the unexpected shutdowns and

further degradation of the components [6]. Efforts have been

made to improve its durability: working on the materials,

reducing the causes of degradation, improving the structural

design, implementing new supervision and management de-

signs, etc.

Prognostics and health management (PHM), as a newly

developed discipline derived originally from condition-based

maintenance [7], has been applied to monitor and predict

the health state of PEMFC systems [8,9]. Various prognostics

approaches have been investigated for PEMFC applications

aiming at assessing its health state and predicting its

remaining useful life (RUL). For example, in the literature,

echo-state networks [10] and adaptive neuro fuzzy inference

system [11] have been used as data-driven approaches to

predict PEMFC's RUL. Besides, Javed et al. have used a

constraint-based summation wavelet-extreme learning ma-

chine to learn the systembehaviour directly from the data and

to train a single-layer feed-forward neural network to predict

the RULs of the PEMFC [12]. However, as data-driven prog-

nostics approaches are model-free and they rely only on

previously observed data when the measurements are not

sufficient, the predicted results can be highly influenced [13].

Although PHM methods and solutions have engaged in RUL

prediction, deficiencies are left over due to the lack of con-

nections between physical knowledge and prediction solu-

tions [14]. As a result, online prediction performance has been

limited due to the shortage of solutions to collect, connect and

control sensor data [15], and preprocess it through efficient

numerical models so that the models that are used for RUL

prediction are rarely updated over time. Also, physical phe-

nomena and their degradation profiles are not considered,

which further limits the PHM deployment at the machine

level. To overcome these drawbacks, the concept of a Digital

Twin (DT) as a smart manufacturing technique has begun to

find its place in different PHM process stages, ranging from

health state monitoring, diagnostics and prognostics.

DT is a virtual living model of a physical system that can

update its state continuously as the physical system changes.

It consists of three parts: physical space, virtual space and the

linkage between the physical space and the virtual space [16].

Instead of relying only on the sensor data to predict deviations

from the standard operation, DT provides a synthetic way to

interpret and integrate the collected data with the expertise

knowledge constructed in the virtual space [17]. DT is able to

deliver accurate health state predictions of complex systems

based on the continuous adaptation to the changes of envi-

ronment and operation conditions.

The first proposition of applying DT in PHM field is using it

to predict the aircraft structural health state [18]. Later on,

more interests have been generated. Tao et al. have proposed

a method of DT-based PHM to predict the health state of wind

turbines using the interaction mechanism and fused data of

DT [19]. To monitor a hydraulic support, Xie et al. [20] have

proposed a DT through a virtual monitoring method. The

attitude of the hydraulic supports is combinedwith the virtual

digital model using an information fusion algorithm. Zakraj-

sek et al. [21] have proposed a DT for healthmonitoring of tires

at touchdown to estimate the failure probability and improve

the mission decision, therefore, save the cost. Towards fault

diagnosis, Xu et al. have proposed a DT for car body-side

production line [22] and Wang et al. have presented a DT for

rotating machinery fault diagnosis [23].

In the energy domain, many works have introduced DT

to coordinate and support specific system goals, such as

energy management [24,25], energy optimization [26] and

monitoring the behaviour of the system, etc [27]. A recent

research has proposed a DT that combines multi-physical

and data-driven models for the multi-physics prediction of

a PEMFC [28]. A dataset is generated in 100 different oper-

ating condition scenarios using a 3D multi-physical model

of the PEMFC. Next, an artificial neural network and a

support vector machine have been applied to predict

different physical quantities of a PEMFC using the generated

data. To the best of our knowledge, the DT has not been

developed for the PEMFC prognostics in the literature. To fill

this gap, this paper proposed a data-driven DT based on

PEMFC behaviour using a stacked autoencoders model. The

health prediction is performed then using transfer learning

based on the analysis and mining of similar PEMFC degra-

dation data with individual variations. The main contribu-

tions of this paper are as follows:

∙ A DT structure is extended to the energy domain, which is

applied for PEMFC prognostics.

∙ A data-driven DT model of PEMFC is established on the

digital side.

Nomenclature

S standard deviation

AE autoencoder

DT digital twin

PEMFC proton exchange membrane fuel cell

PF particle filter

PHM prognostics and health management

ReAcc relative accuracy

RUL remaining useful life

SDA stacked denoising autoencoder
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∙ The degradation behaviour of the PEMFC is captured by

stacked autoencoders, while the online prognostics is

performed by transfer learning in the DT framework.

∙ A case study is presented to evaluate the performance of

the proposedmethod using the real data collected from the

long-term PEMFC degradation experiment.

Following parts of this paper are arranged as follows: Sec-

tion State of the art presents the principles and the state of the

art of applying DT in PHM. Our proposed data-driven DT

prognostics method for PEMFC is described in Section

Proposed data-driven DT prognostics method where a prog-

nostics model based on deep learning neural network is built.

A case study of PEMFC RUL prediction based on experimental

data is then presented in Section Case study. Finally, Section

Conclusion concludes the contribution of this paper.

State of the art

DT adapted for prognostics purpose can be regarded as a vir-

tual representation of the health state of the studied physical

system, which is equipped with sensors. These sensors give

operation data of the physical system in real time. On the

digital side of DT, themodel is built and updated to predict the

health state of the physical system and make real-time

decisions.

The creation of DT based on physical models is not always

straightforward due to the complexity of the machine in

modern production plants. To this concern, many works have

been interested in developing data-driven DT. For example,

Zhuang et al. have focused on managing the complex product

assembly shop-floors, in which a framework based on digital

twin and big data technologies have been proposed to pro-

motes the realization of predictive manufacturing in the

product assembly stage [29]. Tao et al. have proposed a data-

driven digital twin to deal with data logging problem in the

product life cycle [30]. To reschedule the aircraft mission

dynamically based on its structural damage, Kapteyn et al.

have proposed a data-driven physics-based DT where the

physical model has been used to generate a large dataset

containing the predictions of the aircraft structure states.

Then, the generated dataset has been used to train the ma-

chine learningmodel, and update the DT state. Min et al. have

proposed amachine learningmethod to update the DT used in

petrochemical industry [31]. The collected historical data has

been used to train the model and the on-line collected oper-

ation data has been used to update the twin dynamically

based on the changing environment in real time.

Previous works of data-driven DT for prognostics purpose

have been found in various applications, while it has been

rarely developed for fuel cell systems. As PEMFC system refers

to a PEMFC stack and all its auxiliaries, which is a multi-scale

system varying from nano-scale chemical reactions to

system-scale interactions, a great number of parameters exist

influencing its performance and bringing difficulties in system

maintenance [32]. Besides, the health prediction of PEMFCs

could be influenced by their operating profiles, as well as the

intercell differences [33]. Developing one model for each

condition is time-consuming, while an adaptive model seems

promising and can ensure the generalizability. Therefore,

instead of constructing a physical digital model, a data-driven

DT is proposed in this paper for PEMFC prognostics applica-

tions. Besides, a transfer learningmethod is applied to address

the problemof limited data and also save the time to construct

the intelligent neural network.

To sum up, developing a data-drive DT structure for PEMFC

prognostics is able to capture the degradation behaviour of the

fuel cell regardless of the operation conditions and other

varying physical parameters. The issues of limited learning

data and computation burden are addressed by transfer

learning. The proposed method is described in the following

sections.

Proposed data-driven DT prognostics method

In this work, we assume that the physical space is composed

of the PEMFC and the sensors required to collect the data in

real-time. We also assume that the connection between the

digital space and the physical space is already established.

Thus, we focus on creating a model to mirror the PEMFC be-

haviors on the digital side.

In this section, a data-driven DT prognostics method is

proposed for PEMFC applications, which is able to estimate the

health state of the fuel cell and predict its remaining useful

life.

Framework of proposed method

Fig. 1 shows the framework of the proposed data-driven DT

prognostics method applying to PEMFCs. The digital space

consists of two phases: modeling phase and updating phase.

At first, an offline modeling phase is deployed to build the DT

model to mirror the behaviour of the PEMFC based on the

historical data. This is performed based on transfer learning

where the historical data are used to train themodel to get the

Fig. 1 e Proposed data-driven DT prognostics method.
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PEMFC behaviour model. The input of the model is the sensor

data of the plant, which can indicate performance degrada-

tion. For PEMFCs, their performance is evaluated on a stack

level so that the stack voltage can be selected as the perfor-

mance indicator as it degrades along with the continuous

operation. The output of the model is, therefore, the RUL.

This is the digital side of the prognostics DT, i.e. in virtual

space. Then, for the online phase, the physical system,

namely, the target fuel cell system, is connected to the digital

model in order to transfer the online measurement to the

digital side. Based on the real-time data obtained from online

operation, the digital model is updated, while the RUL of the

target PEMFC is calculated. According to the predicted RUL,

maintenance decisions or strategies could be made to avoid

system shutdowns owing to the predictive feature.

Prognostics model based on SDA

Treating PEMFC as a black box, the technique of autoencoder

(AE) is used to find the virtual link between its input and

output. AE is a specific type of feedforward neural network

where the input has the same dimension as the output. It

compresses the input into a lower-dimensional code and then

reconstruct the output from this representation. It has three

layers: an input layer, a hidden (encoding) layer, and a

decoding layer and it is trained to learn a function:

hðbxÞzx (1)

where the input data x is firstly mapped into a hidden layer y,

parameterized by q ¼ {W, b}, y ¼ fq(x) ¼ s (Wx þ b). Then the

output bx is reconstructed from y, bx ¼ g0
q
ðyÞ ¼ sðW0yþb0Þ. The

parameters are optimized to minimize the average recon-

struction error between the input and the output [34]:

q; q
0 ¼ arg min

1

n

Xn

i¼1

Lðxi
; bxiÞ (2)

where L is a loss function, for example, the traditional squared

error Lðx; bxÞ ¼ kx � bxk2.
Besides, in order to force the hidden layer to discover more

robust features and prevent it from simply learning the

identity, the AE can be trained to reconstruct the input from a

corrupted version of it, the so-called denoising AE. This can be

done by adding some noise to the input data and make the AE

learn to remove it. By this means, the encoder will extract the

most important features and learn a robust representation of

the data.

Denoising AE has been found as a way to pretrain deep

neural networks by combining them in a stackedway, i.e. SDA

[35]. SDA is constructed by multiple denoising AEs stringing

together, in which the output of the layer below is the input to

the current layer. The unsupervised pre-training of such an

architecture is done one layer at a time. Each layer is trained

as a denoising AE byminimizing the error in reconstructing its

input. Once all layers are trained, the network goes through

the second stage of training called fine-tuning. To do this, a

logistic regression layer is added on the top of the network,

then the entire network is trained and only the encoding parts

of each AE are considered [36]. The process of training an SDA

prognostics model is summarized as:

Pre-training

A sequence of shallow AEs is trained with unsupervised data,

i.e. the stack voltage of PEMFC, based on (1) and (2).

Fine-tuning

The pre-trained encoders are used for training the last layer,

which is the RUL output layer. The weights and biases ob-

tained in the pre-training step are used to initialize the hidden

layers of the SDA. Here, labelled supervised data is used to

minimize the prediction error, written as:

q
*
; q0* ¼ arg min

1

n

Xn

i¼1

LðVi
L;RUL

i
LÞ (3)

where VL is the labelled stack voltage, RULL is the labelled RUL

values and the loss function L is calculated through LðVi
L;

RULiLÞ ¼ kVi
L � RULiLk

2. Then, the weights and biases of the

entire SDA are updated through a backpropagate algorithm.

Online RUL prediction

Once the SDA prognostics model is built, the next step is to

connect it with the physical space. The process of training the

SDA model and updating it using online data is shown in

Fig. 2. Four phases including the above described SDA

modeling are designed for online RUL prediction, summarized

as follows:

Data collecting

While the historical data is used to build the SDA prognostics

model, the measure stack voltage of the target PEMFC from

online operation is collected as testing data, which is injected

into the trained prognostics model and is used to update the

model.

Data pre-processing

Raw data with too much noise cannot be applied directly for

learning. In pre-processing phase, the collected data is first

going to be filtered and normalized. In this step, the historical

data should be prepared to model the SDA so that it is divided

into training datasets and testing datasets with batches for

forward and backpropagation learning. As our purpose is to

obtain RULs, labels are set to the processed data as the prior

knowledge of RULs.

SDA modeling

SDA architecture is built and parameters are initialized with

random values. By injecting historical datasets, learning and

backpropagation are gone through until the maximum num-

ber of epochs is reached. This same procedure is applied to

each layer of the SDA.



RUL prediction

The online measured stack voltage is then injected to the

trained SDA model. The parameters of SDA are updated and

the RUL predictions are calculated through the prognostics

model.

Case study

This section presents a case study of PEMFC prognostics using

the proposed data-driven DT prognostics method. A set of

experimental PEMFC degradation data is used to evaluate the

prognostics results.

PEMFC degradation data description

A PEMFC stack ageing experiment has been launched at

FCLAB Research Federation, France (http://eng.fclab.fr/). The

tested fuel cell is a 5-cell PEMFC stackwith 100 cm2 active area,

which is operated under a constant load profile with a current

density of 0.6 A/cm2 [37]. The tested PEMFC has gone through

its natural ageing process without any faulty conditions.

Characterizations of the stack have been conducted every

Fig. 2 e DT updating phase: online RUL prediction using the proposed SDA model.

Table 1 e PEMFC ageing experiment parameters [37].

Parameter Value

Current 60 A

Anode stoichiometry 1.5

Cathode stoichiometry 2

Absolute pressure of input H2 150 kPa

Absolute pressure of input air 150 kPa

Maximum pressure different 30 kPa

Temperature 60 ◦C

Anode relative humidity Drying

Cathode relative humidity 60%



week, i.e. every 168 h ideally. Some parameters of the ageing

experiment are listed in Table 1.

The ageing experiment has lasted for 1750 h with average

cell voltage degraded 10%, approximately. The five cell volt-

ages of the tested PEMFC stack obtained from the test bench

are plotted in Fig. 3. During the experiment, the operation is

interrupted by some characterization tests, i.e. polarization

curve generation and electrochemical impedance spectros-

copy (EIS) application, causing reversible degradation phe-

nomena of the stack. It is indicated by the power recoveries,

which may be caused by the major changes in gas flows after

the interruptions of resting periods. The reversible degrada-

tion is of transient regime and will disappear shortly once the

stack comes back to its normal operation [38].

As shown in Fig. 3, the five cells on the same stack are

similar, but do not degrade in the same manner due to the

location variation. The cells next to the edges of the stack

degrade faster than the cells in the middle [39]. Therefore, the

five degraded cell voltages are used to verify the effectiveness

of the proposed PEMFC prognostics method. Four of the

datasets are used as the historical datasets to build the SDA

prognostics model, while the other dataset is supposed to be

obtained from online operation, which is separated into two

parts, one part is injected into the model to update model

parameters and the other part is used to evaluate the results.

Data pre-processing

As it is noted that the peaks observed in the voltage signal are

due to the weekly PEMFC characterizations, which are

nonsense regarding irreversible stack degradation. However,

under the circumstance that there are few samples available

for learning (the cell voltage are recorded per hour), the peak

data tends to be unpredictable and will have a significant in-

fluence on the data-driven prognostics performance. A mul-

tiplicative model is used to decompose the observed signal

into level, trend, seasonal values and residual values, written

as:

yðtÞ ¼ Level*Trend*Seasonality*Residual (4)

Themultiplicative decomposition is suitable for the signals, in

which the magnitude of the seasonal fluctuations, or the

variation around the trend, varies with the level of the time

series. As in our case, the fuel cell characterization is per-

formed each week during the long-term degradation experi-

ment and causes different levels of voltage recoveries, the

multiplicative model is chosen to deal with the varying time

series magnitude. The decomposition result of Vcell1 is plotted

in Fig. 4, in which the variable “trend” shows the irreversible

degradation trend of the PEMFC, while all the seasonal varia-

tions, noise and peaks are decomposed into other terms.

SDA setup

Key parameters

After repeated trials, the SDA used for this study is set up with

the parameters listed in Table 2. The model input is the

labelled decomposed voltage trend and the model output is

the labelled RUL values. Two hidden layers are used to

recognize the PEMFC voltage degradation feature and a

behaviour model of its RUL is built based on the learned fea-

tures. The transfer function is sigmoid. The batch size is 16 to

separate input data into groups and a maximum epoch

number is defined as 20. The sparsity criterion is set as 0.15.

Drop-out

Drop-out refers to ignoring some of the neurons during the

training phase which is chosen at random. Drop-out tech-

nique is commonly used in the training phase of a deep

learning network in order to prevent over-fitting of the

training data, especially when the training samples are few.

This is because a fully connected layer occupies most of the

parameters, and hence, neurons develop co-dependency

amongst each other during the training phase. It curbs the

individual power of each neuron leading to over-fitting of

training data and poor performance on the testing data [40]. In

the proposed algorithm, the drop-out is achieved by setting a

proportion of the outputs of some hidden neurons to zero.

Then, they will not be considered in the forward propagation

training process. The proportion here is set as 0.15. However,

in the testing phase, drop-out is switched off and all hidden

neurons are included.

Fig. 3 e Experimental fuel cell voltage. Fig. 4 e Decomposition result of Vcell1.



Performance metrics

The performance of the proposed data-driven DT prognostics

model is evaluated by two groups of evaluation metrics: ac-

curacy and precision. Accuracy indicates quantitatively how

accurate the predicted RULs are, while precision indicates the

presence of uncertainty in the prediction results, which is an

important index for the decision-making process. In this

study, the accuracy is evaluated as relative accuracy (ReAcc)

and by calculating the variance, the precision is evaluated

based on the definition of the confidence interval limits. Both

of the twometrics depends on the RUL calculation so that it is

important to define the RUL calculationmethod. In this paper,

direct RUL estimation method is used, which relies on the

knowledge of the end-of-life, written as:

RUL ¼ tf � tl (5)

where tf is the end-of-life of the system and tl is the time

instant of implementing prognostics. This RUL estimation

method is commonly found in engine health prognostics and

will be used in this study to justify the effectiveness of the

proposed prognostics method [41]. Here, the end-of-life is set

to 0.64.

Then, the performance metrics are given below:

Relative accuracy

ReAcc ¼ 1� jRUL* � dRUL
̄

j
RUL*

(6)

where RUL* is the real RUL and dRUL
̄

is the average output of

the N estimated RULs, calculated by

dRUL
̄

¼ 1

N

XN

i¼1

dRULi (7)

Precision

Presicion ¼
dRUL

CIþ

� dRUL
CI�

RUL*
(8)

dRUL
CI±

¼ dRUL
̄

±z* �
ffiffiffiffiffi
s
2

p
(9)

where z* is the critical standard Gaussian distribution value of

a certain confidence level. For example, confidence level of

95% corresponds to a value of 1.96, which is utilised in our

case. s is the standard variation of the predicted RUL, which is

calculated by,

s
2 ¼ 1

N

XN

i¼1

ð dRULi � dRUL
̄

Þ2 (10)

Results evaluation

The prognostics are performed every 50 h from the 100th hour

until the 1100th hour during the online operation. A cross

validation procedure is designed. The historical and test

datasets are listed in Table 3.

The relative accuracy of the five tests versus different

prediction starting instants are plotted with blue line in Fig. 5.

For comparison, a prognostics method based on particle

filtering (PF) approach using an exponential empirical model

has been realized according to Jouin et al. [42]. The accuracy

results are plotted with the orange line in Fig. 5. As it could be

seen from the results, the accuracy of particle filteringmethod

is lower than 0.9 and at certain instants, the prediction results

are even worse than satisfied. This is due to the fact that there

are not enough learning datasets and the prediction perfor-

mance is highly dependent on the selection of model. On the

contrary, the prediction performance of the proposed method

rarely depends on the prediction horizon, i.e. even at the

beginning of the test, the prediction accuracy is superior to

that of PF prognostics method.

Fig. 6 shows the precision calculation results of the five

tests at different prediction time. The precision of the prog-

nostic results of the two methods have both showed an

obvious increase as the prognostics horizon becomes smaller:

this is because with more samples comes into the prognostics

model, the predicted RULs will have a higher variation, while

the precision of the proposed prognostics method shows a

better performance than that of the PF prognostics method.

Discussion

The results of average accuracy of the proposed method and

PFmethodwith half and allmeasurement input are calculated

in Table 4. The average accuracy of the proposed prognostics

data-driven DT prognostics method has reached an average

accuracy higher than 0.9 and near 0.95, and a similar average

accuracy higher than 0.9 even with only limited data input.

Based on the results, it has found that the proposed

method benefits from the established DT structure so that the

on-line prediction needs only small quantity of measurement

data from the physical space, which is sufficient to update the

digital model and output accurate RUL predictions. The real-

ized deep transfer learning model based on SDA structure can

Table 2 e Key parameters of SDA model.

Structure parameters Training parameters

Input layer neurons 4 Transfer function Sigmoid

Hidden layer 1 neurons 16 Batch size 16

Hidden layer 2 neurons 8 Epoch number 20

Output layer neurons 1 Sparsity criterion 0.15

Table 3 e Training and testing datasets.

Test No. Historical datasets Test dataset

Test 1 U2, U3, U4, U5 U1

Test 2 U1, U3, U4, U5 U2

Test 3 U1, U2, U4, U5 U3

Test 4 U1, U2, U3, U5 U4

Test 5 U1, U2, U3, U4 U5

7



physically present the degrading behaviour of the PEMFC,

which can also be updated during real-time operation when

similar fuel cells are observed. The trained SDA model is

robust and can be used to predict RULs with limited input

data, i.e. from the very beginning of the fuel cell life. Besides,

the physics model-free nature of the proposed method avoids

the dependence on selecting prediction models, which makes

it a competitive prognostics approach in PEMFC applications.

However, to scale up industrial applications of the devel-

oped data-driven DT prognostics method, some challenges

are facing: (1) the digital side of the DT is expected to be

constructed with more complicated measurements under

Fig. 5 e Relative accuracy comparison of the five tests using the proposed prognostics method and PF prognostics method.

Fig. 6 e Precision comparison of the five tests using the proposed prognostics method and PF prognostics method.

Table 4 e Comparison of the average relative accuracy.

Test 1 Test 2 Test 3 Test 4 Test 5

Data-driven DT (first 500 h) 0.971 0.940 0.873 0.937 0.960

Data-driven DT (all) 0.908 0.954 0.943 0.940 0.908

PF (first 500 h) 0.803 0.827 0.851 0.880 0.917

PF (all) 0.830 0.846 0.879 0.872 0.900
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different operation conditions; (2) cost-effectiveness of the

proposed method, i.e. the computation burden of the algo-

rithm, should be considered regarding the capability of the

industrial server.

Conclusion

This paper has proposed a date-driven DT prognosticsmethod

to predict the RULs for PEMFC applications. As PEMFC is usu-

ally operated in complex systems, its health state needs to be

monitored and predicted accurately so that adequate actions

could be conducted to ensure the integrity and reliability of

the system. The proposed data-driven DT prognostics method

is able to update the PEMFC degradation model on the digital

side with the online measurements from the physical side,

which improves the prognostics performance considering the

changing operating conditions and intercell differences. The

degradation model on the digital side of DT is built using an

SDA, which models the RUL of the PEMFC directly from the

input stack voltage. It is updated by connecting to the physical

side of DT where online measurements are collected. Results

show that the proposed prognostics method can effectively

predict the RUL of the target PEMFC with an average accuracy

higher than 0.9 and the predicted results are less affected even

with limited measurement data. For the perspectives, a

decision-making module is expected to be added to provide

following predictive maintenance actions.
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