Sensor development and optimization for a proton exchange membrane fuel cell system in automotive applications - Archive ouverte HAL
Article Dans Une Revue Journal of Power Sources Année : 2021

Sensor development and optimization for a proton exchange membrane fuel cell system in automotive applications

Résumé

This paper is on the subject of sensor development and sensor-set size optimization approaches for Proton Exchange Membrane Fuel Cell (PEMFC) system in Fuel Cell Electric Vehicles (FCEV) applications. Sensors are classified as physical sensors and gas sensors. Physical sensors are used to detect signals (pressure, mass flow, etc.) which are related to PEMFC system operating state and control. Gas sensors consist of the hydrogen leakage detector for safety reasons and the environment sensor system which is built with various gas sensors to detect gas contaminations (COx, SOx, etc.). Depending on the sensor development review and the sensor specifications comparisons, sensors owning low cost, small volume, fast response, high resolution, excellent stability and durability are favored in FCEV applications. Nevertheless, numerous sensors result in the increase of system complexity, cost, and even the reduction of effectiveness for the fuel cell prognostics and health management algorithms. Thus, sensor-set size optimization and capability validation approaches (model-based, data-driven and hybrid) are reviewed in detail. As a result, a sensor-set size optimization framework is proposed. Some future work on fuel cell sensor system development and optimization is also suggested to facilitate the move towards commercialization.
Fichier principal
Vignette du fichier
wang2021.pdf (1.76 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03186572 , version 1 (10-07-2022)

Licence

Identifiants

Citer

Hanqing Wang, Simon Morando, Arnaud Gaillard, Daniel Hissel. Sensor development and optimization for a proton exchange membrane fuel cell system in automotive applications. Journal of Power Sources, 2021, 487, pp.229415. ⟨10.1016/j.jpowsour.2020.229415⟩. ⟨hal-03186572⟩
72 Consultations
619 Téléchargements

Altmetric

Partager

More