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Introduction

In recent years, the synchronous reluctance motor (SynRM) has been regarded as a powerful alternative for the induction motor and the permanent-magnet synchronous motor in the variable-speed drive system due to its magnetless, windingless and cageless rotor structure [START_REF] Pellegrino | The Rediscovery of Synchronous Reluctance and Ferrite Permanent Magnet Motors[END_REF][START_REF] Vagati | The synchronous reluctance solution: a new alternative in AC drives[END_REF][START_REF] Moghaddam | Theoretical and experimental reevaluation of synchronous reluctance machine[END_REF][START_REF] Taghavi | A mechanically robust rotor with transverse laminations for a wide-speed-range synchronous reluctance traction motor[END_REF]. The SynRM drive system can provide a good compromise between the manufacturing cost and the drive performance.

Therefore, it has been successfully applied in some industrial areas, such as the renewable energy conversion system, the electric traction system and the water supply system [START_REF] Bilyi | Synchronous reluctance machine with integer-slot double-layer concentrated winding for wind energy applications[END_REF][START_REF] Bianchi | Electric vehicle traction based on synchronous reluctance motors[END_REF][START_REF] Ibrahim | Solar array fed synchronous reluctance motor driven water pump: an improved performance under partial shading conditions[END_REF][START_REF] Varshney | Self-regulated DC-link control of synchronous reluctance motor-driven solar water pumping system[END_REF][START_REF] Kumar | Development of an electric vehicle synchronous reluctance motor drive[END_REF].

With respect to the high-performance control of the SynRM drive system, the vector control strategy is one of the most popular choices [START_REF] Ibrahim | Solar array fed synchronous reluctance motor driven water pump: an improved performance under partial shading conditions[END_REF][START_REF] Varshney | Self-regulated DC-link control of synchronous reluctance motor-driven solar water pumping system[END_REF][START_REF] Kumar | Development of an electric vehicle synchronous reluctance motor drive[END_REF][START_REF] Liu | Sensorless control of synchronous reluctance motor drives based on the TLS EXIN neuron[END_REF][START_REF] Varatharajan | Sensorless synchronous reluctance motor drives: a general adaptive projection vector approach for position estimation[END_REF]. The existing vector control strategies of the SynRM drive system can be divided into two categories: 1) the dual-loop vector control strategy for the rotor angular speed tracking control, which consist of the speed control loop and the current control loop, and 2) the triple-loop vector control strategy for the rotor position tracking control, which is composed of the position control loop, the speed control loop and the current control loop [START_REF] Mei | Design and implementation of an online tuning adaptive controller for synchronous reluctance motor drives[END_REF]. The linear proportional-2 integral (PI) controller is widely used in the vector-controlled SynRM drive system. However, such a linear controller, which is designed using the linear system model, is sensitive to disturbances and uncertainties [START_REF] Yang | Disturbance/uncertainty estimation and attenuation techniques in PMSM drives-a survey[END_REF]. In practice, the SynRM suffers from strong magnetic nonlinearity caused by the magnetic saturation effect, resulting in highly nonlinear relationship between the stator flux linkage and the stator current [START_REF] Yamamoto | Maximum efficiency operation of vector-controlled synchronous reluctance motors considering cross-magnetic saturation[END_REF][START_REF] Yamamoto | A method to calculate transient characteristics of synchronous reluctance motors considering iron loss and cross-magnetic saturation[END_REF][START_REF] Armando | Experimental identification of the magnetic model of synchronous machines[END_REF][START_REF] Wiedemann | Dynamic testing characterization of a synchronous reluctance machine[END_REF]. Furthermore, the drive system is affected by a variety of external disturbances and parametric uncertainties [START_REF] Yang | Disturbance/uncertainty estimation and attenuation techniques in PMSM drives-a survey[END_REF]. Therefore, the SynRM drive system is a nonlinear system. In order to accomplish a high-performance vector-controlled SynRM drive system, it is preferred to replace linear PI controllers with well-designed nonlinear controllers in the vector control strategy.

Until now, various nonlinear controllers have been designed for vector control strategies of the SynRM drive system, such as the neural network-based controllers [START_REF] Lin | Admixed recurrent Gegenbauer polynomials neural network with mended particle swarm optimization control system for synchronous reluctance motor driving continuously variable transmission system[END_REF][START_REF] Lin | Adaptive backstepping control for synchronous reluctance motor based on intelligent current angle control[END_REF], the adaptive controllers [START_REF] Mei | Design and implementation of an online tuning adaptive controller for synchronous reluctance motor drives[END_REF][START_REF] Zarchi | Adaptive input-output feedback-linearization-based torque control of synchronous reluctance motor without mechanical sensor[END_REF], the predictive controllers [START_REF] Lin | Improved model-free predictive current control for synchronous reluctance motor drives[END_REF][START_REF] Liu | Model predictive current and capacitor voltage control of postfault three-level NPC inverter-fed synchronous reluctance motor drives[END_REF], and the sliding-mode controllers (SMCs) [START_REF] Boldea | Robust low-cost implementation of vector control for reluctance synchronous machines[END_REF][START_REF] Shyu | Incremental motion control of synchronous reluctance motor via multisegent sliding mode control method[END_REF][START_REF] Sharaf-Eldin | Nonlinear robust control of a vector -controller synchronous reluctance machine[END_REF][START_REF] Chiang | Sub-optimal algorithm second-order sliding mode control for a synchronous reluctance motor speed drive[END_REF][START_REF] Lin | Super-twisting algorithm second-order sliding mode control for a synchronous reluctance motor speed drive[END_REF]. Among them, the SMC-based vector control strategies have received considerable attention because of their attractive advantages including robustness and finite-time convergence. In [START_REF] Boldea | Robust low-cost implementation of vector control for reluctance synchronous machines[END_REF], a SMC-based triple-loop vector control strategy has been proposed for the SynRM drive system. In such a vector control strategy, two SMCs are employed by the position and speed control loops, respectively, while two linear PI controllers are adopted by the current control loop. In [START_REF] Shyu | Incremental motion control of synchronous reluctance motor via multisegent sliding mode control method[END_REF], a combined positon and speed control strategy based on the multi-segment SMC has been proposed for the SynRM drive system. Nevertheless, aforementioned SMCs are dependent on the first-order sliding-mode (FOSM) algorithm, which suffers from severe chattering phenomenon. This phenomenon reduces the control accuracy and increases the losses as well as the noise of the drive system [START_REF] Utkin | Chattering problem in sliding mode control systems[END_REF][START_REF] Utkin | Sliding Mode Control in Electro-Mechanical Systems[END_REF][START_REF] Shtessel | Sliding Mode Control and Observation[END_REF].

To alleviate the chattering phenomenon in the SMC, several schemes have been proposed [START_REF] Utkin | Sliding Mode Control in Electro-Mechanical Systems[END_REF][START_REF] Shtessel | Sliding Mode Control and Observation[END_REF][START_REF] Levant | Sliding order and sliding accuracy in sliding mode control[END_REF][START_REF] Levant | Principles of 2-sliding mode design[END_REF].

Amongst them, the second-order sliding-mode (SOSM) algorithms, which ensure the finite-time convergence of the sliding variable and its time derivative to the origin, have gained much attention [START_REF] Chiang | Sub-optimal algorithm second-order sliding mode control for a synchronous reluctance motor speed drive[END_REF][START_REF] Lin | Super-twisting algorithm second-order sliding mode control for a synchronous reluctance motor speed drive[END_REF][START_REF] Shtessel | Sliding Mode Control and Observation[END_REF][START_REF] Levant | Sliding order and sliding accuracy in sliding mode control[END_REF][START_REF] Levant | Principles of 2-sliding mode design[END_REF][START_REF] Shtessel | Super-twisting adaptive sliding mode control: a Lyapunov design[END_REF][START_REF] Zhang | Time-varying state observer based twisting control of linear induction motor considering dynamic end effects with unknown load torque[END_REF][START_REF] Evangelista | Lyapunov-designed super-twisting sliding mode control for wind energy conversion optimization[END_REF][START_REF] Vázquez | Super twisting control of a parametrically excited overhead crane[END_REF][START_REF] Zhao | Finite-time super-twisting sliding mode control for Mars entry trajectory tracking[END_REF][START_REF] Liu | Sliding mode control of a three-phase AC/DC voltage source converter under unknown load conditions: industry applications[END_REF][START_REF] Sadeghi | Super-twisting sliding mode direct power control of a brushless doubly fed induction generator[END_REF][START_REF] Davila | Second-order sliding-mode observer for mechanical systems[END_REF][START_REF] Liu | Robust model-based fault diagnosis for PEM fuel cell air-feed system[END_REF][START_REF] Wang | Static-errorless deadbeat predictive current control using second-order sliding-mode disturbance observer for induction machine drives[END_REF][START_REF] Wang | Second-order sliding-mode MRAS observer based sensorless vector control of linear induction motor drives for medium-low speed maglev applications[END_REF][START_REF] Huangfu | Robust voltage control of floating interleaved boost converter for fuel cell system[END_REF][START_REF] Moreno | A Lyapunov approach to second-order sliding mode controllers and observers[END_REF]. The super-twisting algorithm (STA) is an absolutely continuous SMSO algorithm that retains main attractive features of the FOSM algorithm without requiring the information of the time derivative of the sliding variable [START_REF] Shtessel | Sliding Mode Control and Observation[END_REF][START_REF] Levant | Sliding order and sliding accuracy in sliding mode control[END_REF][START_REF] Levant | Principles of 2-sliding mode design[END_REF]. In recent years, the standard STA-based SOSM (STA-SOSM) controllers and observers have been found wide applications [START_REF] Lin | Super-twisting algorithm second-order sliding mode control for a synchronous reluctance motor speed drive[END_REF][START_REF] Evangelista | Lyapunov-designed super-twisting sliding mode control for wind energy conversion optimization[END_REF][START_REF] Vázquez | Super twisting control of a parametrically excited overhead crane[END_REF][START_REF] Zhao | Finite-time super-twisting sliding mode control for Mars entry trajectory tracking[END_REF][START_REF] Liu | Sliding mode control of a three-phase AC/DC voltage source converter under unknown load conditions: industry applications[END_REF][START_REF] Sadeghi | Super-twisting sliding mode direct power control of a brushless doubly fed induction generator[END_REF][START_REF] Davila | Second-order sliding-mode observer for mechanical systems[END_REF][START_REF] Liu | Robust model-based fault diagnosis for PEM fuel cell air-feed system[END_REF][START_REF] Wang | Static-errorless deadbeat predictive current control using second-order sliding-mode disturbance observer for induction machine drives[END_REF][START_REF] Wang | Second-order sliding-mode MRAS observer based sensorless vector control of linear induction motor drives for medium-low speed maglev applications[END_REF][START_REF] Huangfu | Robust voltage control of floating interleaved boost converter for fuel cell system[END_REF]. Regarding the SynRM drive system, a STA-SOSM control strategy, which is a dual-loop vector control strategy using a standard STA-SOSM speed controller and two linear PI current controllers, has been proposed in [START_REF] Lin | Super-twisting algorithm second-order sliding mode control for a synchronous reluctance motor speed drive[END_REF]. To design the standard STA-SOSM speed controller, the speed tracking error dynamics is used. In such a dynamics, the lumped disturbance is mainly composed of the mechanical and electrical parametric uncertainties, the lord torque, and the friction torque. In many applications, the load changes frequently from one operating condition to another, often resulting in the sudden and significant change of the lumped disturbance in the speed tracking error dynamics. The standard STA-SOSM speed controller uses the sign function-based nonlinear feedback regulation mechanism to deal with such a strong disturbance. Since the sign function is bounded, theoretically, quite large gains are required by the standard STA-SOSM speed controller to achieve satisfactory tracking performance in the presence of a strong lumped disturbance. However, it aggravates the chattering phenomenon in practice. A solution to such an issue is the development of a composite speed controller which combines the standard STA-SOSM controller with a high-performance disturbance estimator (DE). In this speed controller, the DE is used to compensate the lumped disturbance in the speed tracking error dynamics in real time, such that relatively small gains are enough for the standard STA-SOSM controller adopted by the composite speed controller to achieve satisfactory tracking performance. With respect to the design of two stator current controllers, two current tracking error dynamics in the rotor reference frame are adopted. In these two dynamics, the lumped disturbances mainly consist of the electrical parametric uncertainties and the disturbance voltages caused by the effects of the inverter nonlinearities. Usually, such disturbance voltages do not change suddenly and significantly [START_REF] Choi | Inverter output voltage synthesis using novel dead time compensation[END_REF][START_REF] Liu | Online Estimation of the rotor flux linkage and voltage-source inverter nonlinearity in permanent magnet synchronous machine drives[END_REF][START_REF] Qiu | Adaptive-linear-neuron-based dead-time effects compensation scheme for PMSM drives[END_REF][START_REF] Tang | A new LMS algorithm based dead-time compensation method for PMSM FOC drives[END_REF]. The magnetic saturation effect is one of the main causes of above-mentioned electrical parametric uncertainties. Such an effect make each current tracking error dynamics in the rotor reference frame become a nonlinear system in terms of both direct and quadrature axes stator current components [START_REF] Yamamoto | Maximum efficiency operation of vector-controlled synchronous reluctance motors considering cross-magnetic saturation[END_REF][START_REF] Yamamoto | A method to calculate transient characteristics of synchronous reluctance motors considering iron loss and cross-magnetic saturation[END_REF][START_REF] Armando | Experimental identification of the magnetic model of synchronous machines[END_REF][START_REF] Wiedemann | Dynamic testing characterization of a synchronous reluctance machine[END_REF]. It means that the use of two linear PI current controllers cannot address the robust stator current tracking control problem. Therefore, two robust nonlinear current controllers should be developed for the vector control strategy of the SynRM drive system.

It is widely recognized that well-designed single hidden layer feedforward neural networks (SHLFNNs) can serve as high-performance DEs for control applications due to their good approximation abilities [START_REF] Fukuda | Theory and applications of neural networks for industrial control systems[END_REF]. In [START_REF] Feng | Super-twisting sliding mode control for micro gyroscope based on RBF neural network[END_REF], a composite controller, which combines a standard STA-SOSM controller with a radial basis function neural network-based DE (RBFNN-DE), has been proposed for the micro-gyroscope.

However, the presented stability analysis for the tracking error dynamics using this composite controller is not rigorous. Furthermore, the values of the center and the width of each Gaussian basis function in the hidden layer of the RBFNN-DE are chosen offline by means of simulation-based trial-and-error approach.

Regarding the lumped disturbance in the speed tracking error dynamics of the SynRM drive system, it can be described as a combination of a constant term, a linear term, second-order nonlinear terms and highorder nonlinear terms in the sense of the series expansion. As long as a sufficient number of terms in a series are adopted, the weighted sum of them can approximate any function to any degree of accuracy [START_REF] Zou | Basis Function Neural Networks and Their Applications[END_REF]. Due to this attractive feature, several orthogonal polynomial basis functions, such as Chebyshev polynomial basis functions, Legendre polynomial basis functions and Hermite polynomial basis functions, have been selected as activation functions in the hidden layer to construct different SHLFNNs [START_REF] Zou | Finite-time attitude tracking control for spacecraft using terminal sliding mode and Chebyshev neural network[END_REF][START_REF] Kulkarni | Tracking control for a class of uncertain nonlinear systems using Legendre neural network[END_REF][START_REF] Zou | Basis Function Neural Networks and Their Applications[END_REF][START_REF] Gaglio | Using the hermite regression formula to design a neural architecture with automatic learning of the "hidden" activation functions[END_REF][START_REF] Mackenzie | Hermite neural network correlation and application[END_REF][START_REF] Ma | Constructive feedforward neural network using Hermite polynomial activation functions[END_REF][START_REF] Siniscalchi | Hermite polynomial for speaker adaptation of connectionist speech recognition systems[END_REF][START_REF] Lin | Tracking control of thrust active magnetic bearing via Hermite polynomial-based recurrent neural network[END_REF][START_REF] Chen | Robust nonsingular terminal sliding-mode control for nonlinear magnetic bearing system[END_REF].

Among them, the Hermite polynomial basis function-based SHLFNN, or as often called the Hermite neural network (HNN), has a more efficient search space and better representational ability due to the unlimited input range of the Hermite polynomial basis functions [START_REF] Ma | Constructive feedforward neural network using Hermite polynomial activation functions[END_REF]. Moreover, there is no need for each activation function in the hidden layer of the HNN to choose any parameter offline. Because of these attractive features, the HNN has been used to design the DE for improving the tracking performance of the SMC. In [START_REF] Chen | Robust nonsingular terminal sliding-mode control for nonlinear magnetic bearing system[END_REF], a composite controller, which consists of a nonsingular terminal SMC, a HNN-based DE (HNN-DE) and an error compensator, has been proposed for the nonlinear magnetic bearing system. However, in order to obtain the nonsigular terminal sliding variable and the learning laws for this HNN-DE, a quite complex fractional exponent term with respect to the time derivative of the tracking error has to be calculated online, which increases the implementation complexity of such a composite controller.

In this paper, considering external disturbances and parametric uncertainties of the SynRM drive system, a novel HNN-based SOSM (HNN-SOSM) control strategy is proposed for the SynRM drive system. The proposed control strategy is a dual-loop vector control strategy. The main contributions can be summarized as follows.

1) In the speed control loop, a composite speed controller consisting of a standard STA-SOSM controller, a HNN-DE and an error compensator is proposed to regulate the rotor angular speed.

Rigorous stability analysis for the speed tracking error dynamics using such a controller is presented.

Based on that, the learning laws for the HNN-DE and the error compensator are derived.

2) In the current control loop, two composite current controllers, each of which consists of two standard STA-SOSM controllers, are proposed to regulate direct and quadrature axes stator current components in the rotor reference frame. Rigorous stability analyses for two current tracking error dynamics using such controllers are presented.

3) The performance of the proposed HNN-SOSM control strategy is compared with that of the conventional STA-SOSM control strategy based on a standard STA-SOSM speed controller and two linear PI current controllers.

The rest of this paper is organized as follows. In Section 2, the mathematical model of the two-level voltage-source inverter (2L-VSI)-fed SynRM drive system is presented. In Section 3, the design of the adopted HNN-DE is presented. In Section 4, the design and the rigorous stability analysis of the composite controller, which consists of a standard STA-SOSM controller, a HNN-DE and an error compensator, are presented. In Section 5, the proposed HNN-SOSM control strategy is described in detail.

In Section 6, the results of the comparative hardware-in-the-loop (HIL) tests between the proposed HNN-SOSM control strategy and the conventional STA-SOSM control strategy are presented and analyzed.

The conclusions are given in Section 7.
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Fig. 1. The 2L-VSI-fed SynRM drive system.

Problem formulation

Mathematical model of the 2L-VSI

The 2L-VSI-fed SynRM drive system is illustrated in Fig. 1 

    , , , , , (1) 
Regarding each phase of the 2L-VSI, within a switching period T s , the relationship between the actual and applied conducting time of the upper power switching device Q x1 can be expressed as [START_REF] Vagati | The synchronous reluctance solution: a new alternative in AC drives[END_REF], and the corresponding high-frequency model of the pole voltage can be described as (3) [START_REF] Choi | Inverter output voltage synthesis using novel dead time compensation[END_REF][START_REF] Liu | Online Estimation of the rotor flux linkage and voltage-source inverter nonlinearity in permanent magnet synchronous machine drives[END_REF][START_REF] Qiu | Adaptive-linear-neuron-based dead-time effects compensation scheme for PMSM drives[END_REF][START_REF] Tang | A new LMS algorithm based dead-time compensation method for PMSM FOC drives[END_REF]. 
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where U dead is written as
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For the balanced three-phase loads, the three-phase stator voltages u an , u bn and u cn can be calculated as 
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Substituting ( 6) into [START_REF] Varshney | Self-regulated DC-link control of synchronous reluctance motor-driven solar water pumping system[END_REF], the low-frequency model of the 2L-VSI considering the effects of the inverter nonlinearities is derived as 
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where , and represent ideal three-phase stator voltages, , and denote the three-phase disturbance voltages caused by the effects of the inverter nonlinearities.

Mathematical model of the SynRM

With respect to the SynRM, considering the effects of the magnetic saturation and the inverter nonlinearities, its stator voltage and stator flux linkage equations in the rotor reference frame can be expressed as [START_REF] Liu | Sensorless control of synchronous reluctance motor drives based on the TLS EXIN neuron[END_REF] 
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The reluctance torque equation of the SynRM is described as follow [START_REF] Pellegrino | The Rediscovery of Synchronous Reluctance and Ferrite Permanent Magnet Motors[END_REF]:

  3 2 r p sd sq sq sd T n i i   (14) 
where T r is the reluctance torque. In this paper, the viscous friction torque, which is dependent on the rotor angular speed, is considered as the main contributor to the friction torque of the SynRM. Thus, the friction torque equation of the SynRM can be described as follow [START_REF] Pyrhönen | Electrical Machine Drives Control: An Introduction[END_REF]:

f m m TB   ( 15 
)
where T f is the friction torque, B m denotes the viscous friction coefficient. The motion equation of the SynRM is expressed as follow [START_REF] Pyrhönen | Electrical Machine Drives Control: An Introduction[END_REF]:

m r l f d J T T T dt     ( 16 
)
where J is the rotor inertia and T l denotes the load torque. Based on (10)-( 16), the dynamic model of the SynRM in terms of i sd , i sq and  m can be derived as 
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where M L dd L qq L dq L qd .

External disturbances and parametric uncertainties

From [START_REF] Wiedemann | Dynamic testing characterization of a synchronous reluctance machine[END_REF], it can be seen that the dynamic model of the SynRM contains , , T l , T f , and parameters including L d , L q , L dd , L dq , L qd , L qq , R s and J. In practice, their values are not constant and usually vary with different operating conditions of the SynRM drive system. In this paper, , , T l and T f are regarded as the external disturbances. As for the parametric uncertainties, the variations of L d , L q , L dd , L dq , L qd , L qq , R s and J are considered. Up to now, several models have been proposed to formulate apparent inductances based on measured data [START_REF] Yamamoto | Maximum efficiency operation of vector-controlled synchronous reluctance motors considering cross-magnetic saturation[END_REF][START_REF] Yamamoto | A method to calculate transient characteristics of synchronous reluctance motors considering iron loss and cross-magnetic saturation[END_REF][START_REF] Armando | Experimental identification of the magnetic model of synchronous machines[END_REF][START_REF] Wiedemann | Dynamic testing characterization of a synchronous reluctance machine[END_REF]. In this paper, the apparent inductance model proposed in [START_REF] Yamamoto | Maximum efficiency operation of vector-controlled synchronous reluctance motors considering cross-magnetic saturation[END_REF], which can approximate the values of L d and L q for different combinations of i sd and i sq in a wide range, is adopted. According to such a model, L d and L q can be formulated as
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Based on (11), ( 13) and ( 18), the incremental inductances can also be formulated. Defining L d0 , L q0 , L dd0 , L dq0 , L qd0 , and L qq0 as nominal apparent and incremental inductances for a certain combination of i sd and i sq , the apparent and incremental inductances can be expressed as 
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where R s0 and J 0 are nominal values of R s and J, respectively, R s and J denote parametric uncertainties in respect of R s and J, respectively.

Control objectives

The control objectives of the dual-loop vector control strategy of the SynRM drive system can be summarized as follow:

1)  m should track its reference  mr . 2) i sd and i sq should track their references i sdr and i sqr , respectively.

Disturbance estimator design

In this section, the Hermite functions are introduced. Based on them, a single-input-single-output HNN-DE is designed. 

Hermite functions

The Hermite polynomials

, which is defined in the interval ( , ), can be expressed by the following so-called Rodrigues' formula [START_REF] Zou | Basis Function Neural Networks and Their Applications[END_REF].
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Based on [START_REF] Lin | Improved model-free predictive current control for synchronous reluctance motor drives[END_REF], a useful recurrence relation to calculate each H n (x) can be derived as

            0 1 1 2 1, 2 , 2 2 1 , 2 n n n H x H x x H x xH x n H x n        (22) 
Although are orthogonal with regard to the weight function  (x)

, they are not orthonormal. Regarding polynomial-based activation functions in the hidden layer of the SHLFNN, the orthonormal polynomials are preferred [START_REF] Mackenzie | Hermite neural network correlation and application[END_REF][START_REF] Ma | Constructive feedforward neural network using Hermite polynomial activation functions[END_REF][START_REF] Siniscalchi | Hermite polynomial for speaker adaptation of connectionist speech recognition systems[END_REF][START_REF] Lin | Tracking control of thrust active magnetic bearing via Hermite polynomial-based recurrent neural network[END_REF][START_REF] Chen | Robust nonsingular terminal sliding-mode control for nonlinear magnetic bearing system[END_REF]. Toward this end, based on , the so-called Hermite functions , which are orthonormal functions, are derived as follow [START_REF] Mackenzie | Hermite neural network correlation and application[END_REF][START_REF] Ma | Constructive feedforward neural network using Hermite polynomial activation functions[END_REF][START_REF] Siniscalchi | Hermite polynomial for speaker adaptation of connectionist speech recognition systems[END_REF][START_REF] Lin | Tracking control of thrust active magnetic bearing via Hermite polynomial-based recurrent neural network[END_REF][START_REF] Chen | Robust nonsingular terminal sliding-mode control for nonlinear magnetic bearing system[END_REF]:

    2 2 1 2! x n n n h x H x e n    (23) 
The first six Hermite functions are illustrated in Fig. 2.
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Fig. 3 The block diagram of the HNN-DE.

HNN-DE

The structure of the HNN-DE adopted in this paper is illustrated in Fig. 3. Such a DE consists of the input layer, the hidden layer and the output layer. The first five Hermite functions are selected as the activation functions in the hidden layer, while the linear function is selected as the activation function in the output layer. The signal propagation in each layer of the HNN-DE is introduced as follows.

There is one node in the input layer. The signal propagation of such a node is described as

    (1) (1) 11 y n x n  ( 24 
)
where n represents the nth iteration, and are the input and output signals of the node in the input layer, respectively.

There are five nodes in the hidden layer. For the ith node (i 1, 2, 3, 4, 5), the signal propagation is described as

    (2) (1) 1 i x n y n  (25)       (2) ( 2 
)
i i i y n h x n  (26)
where and are the input and output signals of the ith node in the hidden layer, respectively, and h i (•) is the ith Hermite function. There is one node in the output layer. The signal propagation of such a node is described as

      5 (3) (2) 1 1 i i i x n W n y n    (27) 
        (3) (3) (3) 1 1 1 l y n f x n x n   (28) 
where and are the input and output signals of the node in the output layer, respectively, denotes the ith output weight, and f l (•) represents the linear activation function.

Remark 1

In the HNN-DE, all elements in the output weight vector W [W 1 , W 2 , W 3 , W 4 , W 5 ] T need to be updated online. To maintain the stability of the control system, the learning laws for the update of W should be derived by the Lyapunov synthesis approach [START_REF] Chen | Robust nonsingular terminal sliding-mode control for nonlinear magnetic bearing system[END_REF].

Controller design

In this section, the design of the standard STA-SOSM controller for a single-input uncertain nonlinear system is briefly introduced. Afterward, a composite controller composed of a standard STA-SOSM controller, a HNN-DE and an error compensator is developed. The rigorous stability analysis for the dynamics of the sliding variable using the proposed composite controller is presented. Based on that, the learning laws for the HNN-DE and the error compensator are derived.

Design of the standard STA-SOSM controller

Considering a single-input uncertain nonlinear system represented by the following form [START_REF] Shtessel | Super-twisting adaptive sliding mode control: a Lyapunov design[END_REF].

      , , , , ss dx a x t b x t e e x t dt     (29) 
where x R n is the state vector,  R denotes the control law, e s (x,t): R n+1 → R is the sliding variable and the only measured output signal, a(x,t) and b(x,t) are smooth uncertain functions.

The control objective is to let e s and its time derivative converge to the origin in a finite time, and keep it at the origin thereafter. Assuming that the input-output dynamics of the system (29) is a relative degree one system and the internal dynamics are stable, the input-output dynamics of the system (29) can be described as 

                    ,, , , , , , , , s s 
                      (30) 
where  (x,t) and g (x,t) are smooth uncertain functions.

Assuming that g (x,t) can be described as

      0 ,,, g x t g x t g x t    (31) 
where g 0 (x,t) > 0 is a known function and g(x,t) is the bounded uncertainty for x R n and t [0,

).

Substituting ( 31) into [START_REF] Shtessel | Sliding Mode Control and Observation[END_REF], the input-output dynamics of the system (29) can be rewritten as

        0 , , , s de x t g x t g x t dt      (32) 
Regarding the system (32), the standard STA-SOSM control law  s can be designed as follow [START_REF] Shtessel | Sliding Mode Control and Observation[END_REF][START_REF] Levant | Sliding order and sliding accuracy in sliding mode control[END_REF][START_REF] Levant | Principles of 2-sliding mode design[END_REF]: 

        12 
     (33)
where p 1 and p 2 are positive constant gains.

Substituting [START_REF] Shtessel | Super-twisting adaptive sliding mode control: a Lyapunov design[END_REF] into [START_REF] Levant | Principles of 2-sliding mode design[END_REF], the dynamics of e s using the standard STA-SOSM control law can be written as 

                      1 0 0 , 1 2 1 , , , , , , = sgn sgn 
                  ( 34 
)
where  1 (x,t) is the lumped disturbance.

Assuming that  1 (x,t) is differentiable, the system (34) can be converted to the following system.

      

        (35) 
where  1 (x,t) is the time derivative of  1 (x,t).

Definition 1 [START_REF] Bhat | Finite-time stability of continuous autonomous systems[END_REF][START_REF] Shtessel | Smooth second-order sliding modes: missile guidance application[END_REF]. The system is said to be globally finite-time stable if it is globally asymptotically stable in the sense of Lyapunov with a finite settling time for any solution and initial conditions.

The following Theorem can be used to select p 1 and p 2 for the standard STA-SOSM control law to ensure the globally finite-time stability of the system [START_REF] Evangelista | Lyapunov-designed super-twisting sliding mode control for wind energy conversion optimization[END_REF].

Theorem 1 [START_REF] Huangfu | Robust voltage control of floating interleaved boost converter for fuel cell system[END_REF][START_REF] Moreno | A Lyapunov approach to second-order sliding mode controllers and observers[END_REF] Considering the system [START_REF] Evangelista | Lyapunov-designed super-twisting sliding mode control for wind energy conversion optimization[END_REF], suppose  1 is bounded as [START_REF] Vázquez | Super twisting control of a parametrically excited overhead crane[END_REF] for a positive constant  1 and the Lyapunov candidate function V s designed as [START_REF] Zhao | Finite-time super-twisting sliding mode control for Mars entry trajectory tracking[END_REF] is used to perform the stability analysis. Then, if p 1 and p 2 are selected as [START_REF] Liu | Sliding mode control of a three-phase AC/DC voltage source converter under unknown load conditions: industry applications[END_REF], the origin is a globally finite-time-stable equilibrium point. Moreover, the corresponding settling-time function T 1 for the finite-time convergence of all trajectories of the system (35) to the origin is upper bounded by [START_REF] Sadeghi | Super-twisting sliding mode direct power control of a brushless doubly fed induction generator[END_REF]. 

  0 1 1 2 s V T q   (38) 
where 

[√| |

,  1 ] T ,  0 is the initial condition of , q 1 is a constant related to p 1 , p 2 and  1 , P is a positive definite matrix expressed as 

 

(2) 0 ,

T h y g x t  Wy (41)   0 , h c y g x t   (42) 
where y h and y c denote the HNN-DE term and the error compensation term in the composite control law, respectively, and  h is the estimated minimum approximation error for the HNN-DE. Substituting (40) into [START_REF] Levant | Principles of 2-sliding mode design[END_REF], the dynamics of e s using the proposed composite control law can be expressed as 

                      2 0 0 , (2) 1 2 2 , , , , , , sgn sgn 
                     Wy ( 43 
)
where  2 (x,t) is the lumped disturbance.

Regarding the HNN-DE adopted by the proposed composite controller, e s is selected as the input signal, i.e., . Based on the universal approximation property, there is an optimal output weight vector [ , , , , ] T for the HNN-DE, such that the lumped disturbance in (43) can be expressed as [START_REF] Huangfu | Robust voltage control of floating interleaved boost converter for fuel cell system[END_REF] where [ , , , , ] T is the output signal vector of the hidden layer of the HNN-DE, is the minimum approximation error of the HNN-DE.

* (2) * 2 T h   = W y
Assumption 1 All elements in and can be considered as constants in each sampling period.

Substituting ( 44) into ( 43), the dynamics of e s using the proposed composite control law can be rewritten as [START_REF] Qiu | Adaptive-linear-neuron-based dead-time effects compensation scheme for PMSM drives[END_REF] With regard to the system (48), the following Lyapunov candidate function V c1 is chosen. [START_REF] Fukuda | Theory and applications of neural networks for industrial control systems[END_REF] Substituting ( 48) into (50), the following equation can be obtained. [START_REF] Feng | Super-twisting sliding mode control for micro gyroscope based on RBF neural network[END_REF] Substituting ( 46) and ( 47) into ( 51), the time derivative of V c1 can be expressed as 

        (2) * (2) * 1 2 ( 
          W W
                ( 
                                                        W W y W W W y W W W y
Since the time derivative of V c1 is negative semidefinite, the following inequality can be derived.

                    1 2 1 2 , , , 0 , 0 , 0 , 0 c s h c s h V e t t t t V e      W W   (53) 
According to [START_REF] Kulkarni | Tracking control for a class of uncertain nonlinear systems using Legendre neural network[END_REF], e s (t),   (t), W i (t) and  h (t) are bounded. Based on ( 52) and ( 53), the following function is defined.

              1 2 1 2
, , ,

c s c s h d t p p e t V e t t t t dt       W  (54) 
Combining ( 54) with ( 53), the following inequality can be derived.

                      1 2 1 2 0 0 , 0 , 0 , 0 , , , t c c s h c s h d V e V e t t t t           WW  (55) 
Since V c1 (e

s (0),   (0), W (0),  h (0)) is bounded and V c1 (e s (t),   (t), W (t),  h (t)
) is a non-increasing bounded function, the following inequality can be derived.

  0 lim t c t d       (56) 
Since ∫ exists and is a uniformly continuous function, according to Barbălat's Lemma [START_REF] Slotine | Applied Nonlinear Control[END_REF], holds. It means that holds. Therefore, the origin is a globally asymptotically stable equilibrium point of the system [START_REF] Moreno | A Lyapunov approach to second-order sliding mode controllers and observers[END_REF]. The proof is completed.

■

The system ( 43) can be converted to another equivalent system described as 

      3 1 3 2 
        (57) 
where  3 (x,t) is expressed as

      (2) (2) (2) (2) (2) (2) 3 1 2 2 2
sgn sgn 22), ( 23) and ( 26), and its time derivative are bounded. Thus,  3 is bounded.

In order to ensure the globally finite-time stability of the system (57), based on Theorem 1, the following Theorem is derived to select p 1 and p 2 for the proposed composite control law. 

  20 2 2 2 c V T q   ( 62 
)
where 

[√| | ,  3 ] T ,  0 is the initial condition of , q 2 is related to p 1 , p 2 and  3 . Proof It can be observed that the system (57) has the same structure as the system [START_REF] Evangelista | Lyapunov-designed super-twisting sliding mode control for wind energy conversion optimization[END_REF] and V c2 can be obtained from V c1 by replacing  with . Since  3 is bounded as [START_REF] Lin | Tracking control of thrust active magnetic bearing via Hermite polynomial-based recurrent neural network[END_REF], the inequalities ( 61) can be obtained from [START_REF] Liu | Sliding mode control of a three-phase AC/DC voltage source converter under unknown load conditions: industry applications[END_REF] by replacing  1 with  2 . Therefore, according to Theorem 1, it can be concluded that, with p 1 and p 2 selected as ( 61), the globally finite-time stability of the system (57) with the settling-time function upper bounded as ( 62) is guaranteed. The proof is completed.

■ 5 Proposed HNN-SOSM control strategy

The cascaded control structure comprising the speed control loop and the current control loop is adopted by the proposed HNN-SOSM control strategy to accomplish the control objectives, as illustrated in Fig. 4, where

[ , ] T , i sr [i sdr , i sqr ] T and i s [i sd , i sq ]
T are the reference stator voltage vector, the reference and the measured stator current vectors in the rotor reference frame, respectively. In the speed control loop, the proposed composite speed controller is used to let  m track  mr . In the current control loop, two composite current controllers, each of which comprises two standard STA-SOSM controllers, are employed to let i sd and i sq track i sdr and i sqr , respectively. i sdr is kept at a constant value to excite the SynRM and i sqr is generated by the composite speed controller. Since the dynamics of the current control loop is much faster than that of the speed control loop, the composite speed controller and the composite current controllers are designed separately.

Composite speed controller design

The tracking error for the rotor mechanical angular speed is defined as

mr m e    (63) 
where e  denotes the tracking error for the rotor mechanical angular speed.

Based on ( 17) and ( 63), the dynamics of e  can be calculated as

  3 11 2 p mr l f d q sd sq sq g n de d T T L L i i g i dt dt J J J               (64) 
Considering external disturbances and parametric uncertainties presented in [START_REF] Lin | Adaptive backstepping control for synchronous reluctance motor based on intelligent current angle control[END_REF] and [START_REF] Zarchi | Adaptive input-output feedback-linearization-based torque control of synchronous reluctance motor without mechanical sensor[END_REF], the dynamics of e  can be rewritten as

   00 sq sqr sqr sqr de g g i i i g i dt                (65) 
where g 0 and g  denote nominal value and parametric uncertainties of g  , respectively, and     g 0 i sqr (g 0 g  ) (i sq i sqr ) represents the lumped disturbance.

Selecting e  as the sliding variable, the proposed composite speed control law i sqr is designed as 

sqr h c i y y        (66) 
           (67)   2 0 T h y g     Wy (68) 0 h c y g      (69) 
where   , y h and y c denote the standard STA-SOSM control term, the HNN-DE term and the error compensation term in the proposed composite control law, respectively, p 1 and p 2 are positive constant gains,

 = [W 1 W 2 W 3 W 4 W 5 ] [ , , , , ] T and W 
T are the output signal vector of the hidden layer and the output weight vector of the adopted HNN-DE, respectively  h is the estimated minimum approximation error for the adopted HNN-DE.

Remark 2 If the HNN-DE term and the error compensation term are removed, the proposed composite speed control law is turned into the standard STA-SOSM speed control law, which is expressed as [START_REF] Zhang | Second order sliding mode observer of linear induction motor[END_REF].

With regard to the HNN-DE adopted by the proposed composite speed control law, e  is selected as the input signal. Therefore, the learning laws for W  and  h are designed as

    2 12 sgn d pe dt        W y (70)   22 sgn h d pe dt        (71) 
where  1 and  2 are positive learning rates.

Substituting (66) into (65), the dynamics of e  using the proposed composite speed control law can be expressed as Considering Assumption 3, based on Theorem 2 and Theorem 3, it can be concluded that, with the proposed composite speed control law (66) as well as learning laws (70) and ( 71), e  will converge to the origin in a finite time if p 1 and p 2 are selected as

         
                                Wy ( 72 
  12 12 1 4 8, 48 
p pp p        (73) 
The block diagram of the proposed composite speed controller is shown in Fig. 5.

Composite current controller design

The tracking errors for direct and quadrature axes stator current components are defined as

d sdr sd q sqr sq e i i e i i     , (74)
where e d and e q denote the tracking errors for direct and quadrature axes stator current components, respectively.

According to [START_REF] Wiedemann | Dynamic testing characterization of a synchronous reluctance machine[END_REF], the dynamics of i sd and i sq can be described as 

        * *
                 (75) where , , , , , dq qd 
LLL L g g g g R i n L i R i n L i M M M M            
Considering parametric uncertainties presented in [START_REF] Lin | Adaptive backstepping control for synchronous reluctance motor based on intelligent current angle control[END_REF] and [START_REF] Zarchi | Adaptive input-output feedback-linearization-based torque control of synchronous reluctance motor without mechanical sensor[END_REF], the dynamics of i sd and i sq can be rewritten as 

                                            (76)
where g dd , g dq , g qd , g qq ,  dd , and  qq represent parametric uncertainties in respect of g dd , g dq , g qd , g qq ,  dd , and  qq , respectively, g dd , g dq , g qd , g qq ,  dd , and  qq are nominal values of g dd , g dq , g qd , g qq ,  dd , and  qq , respectively, which are expressed as 

0 0 0 0 0000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 , ,
LLL L g g g g M M M M M L L L L R i n L i R i n L i            ,
According to (74) and (76), the dynamics of e d and e q can be described as 

        * * * * 0 0 0 0 0 0 0 0 , q d qq
                 (77) 
where  d and  q represent lumped disturbances expressed as 

                * *
                                                 
Assumption 4 There are positive constants  d ,  d ,  q ,  q such that , and their time derivatives 

u L L u L L             (78) 
where  d and  q are two standard STA-SOSM control laws expressed as ( 79) and (80), respectively.

   

12 sgn sgn    

12 sgn sgn q q q q q q p e e p e dt

   (80) 
where p d1 , p d2 , p q1 , p q2 are positive constant gains.

Substituting (78) into (77), the dynamics of e d and e q using the proposed composite current control laws can be expressed as 

        1 2 1 2 sgn sgn , sgn sgn q d d d d d d d q q q q q q de de
            (81) 
Considering Assumption 4, according to Theorem 1, it can be concluded that, with the proposed composite current control laws (78), e d and e q will converge to the origin in a finite time if p d1 , p d2 , p q1 , p q2 are selected as     

          , (82)
The block diagram of the proposed composite current controllers are shown in Fig. 6. 

Measured Signals

HIL test results

To perform comparative tests between the proposed HNN-SOSM control strategy and the conventional STA-SOSM control strategy, a HIL test bench based on two is built, as presented in Fig. 7. It is a cost-effective real-time verification platform to test the control strategy [START_REF] Zhang | Time-varying state observer based twisting control of linear induction motor considering dynamic end effects with unknown load torque[END_REF][START_REF] Gebregergis | Implementation of fuel cell emulation on DSP and dSPACE controllers in the design of power electronic converters[END_REF][START_REF] Zhang | Second order sliding mode observer of linear induction motor[END_REF].

There are two dSPACE DS1104 Research and Development Boards in the HIL test bench: one is used as the hardware controller to implement the tested vector control strategies, where the sampling frequency is 5 kHz, the other is employed as the emulator to emulate the 2L-VSI-fed SynRM drive system, where the sampling frequency is 10 kHz. With regard to the emulator, it adopts the low-frequency model of the 2L-VSI presented in ( 9) and the dynamic model of the SynRM presented in [START_REF] Wiedemann | Dynamic testing characterization of a synchronous reluctance machine[END_REF]. Moreover, the Park's transformation and its inverse form are used to achieve the transformation of stator voltage and current components between the three-phase stator reference frame and the rotor reference frame. With regard to the hardware controller, it generates , and for the 2L-VSI in the emulator, which is based on the space-vector modulation, and samples i an , i bn , i cn and rotor mechanical position  m from the emulator, as illustrated in Fig. 8. where l denotes the boundary layer and its value is selected as 1 in this paper. 

U

Conclusions

In this paper, a novel robust dual-loop vector control strategy is proposed for the SynRM drive system, which is on the cascaded control structure consisting of the speed control loop and the current control loop. The external disturbances and parametric uncertainties are considered in the controller design. In the speed control loop, a composite speed controller consisting of a standard STA-SOSM controller, a HNN-DE and an error compensator is designed to regulate the rotor angular speed. Moreover, the learning laws for the HNN-DE and the error compensator are derived by the Lyapunov synthesis approach. The rigorous stability analysis for the speed tracking error dynamics using the proposed composite speed controller is presented. In the current control loop, two composite current controllers, each of which is composed of two standard STA-SOSM controllers, are proposed to regulate direct and quadrature axes stator current components in the rotor reference frame. The rigorous stability analyses for the current tracking error dynamics using proposed composed current controllers are presented. The results of the HIL tests show that the SynRM drive system using the proposed HNN-SOSM control strategy is able to accomplish better tracking performance and higher robustness against external disturbances and parametric uncertainties in comparison with the SynRM drive system using the conventional STA-SOSM vector control strategy.
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 42 Design of the proposed composite controllerFrom[START_REF] Zhang | Time-varying state observer based twisting control of linear induction motor considering dynamic end effects with unknown load torque[END_REF], it can be seen that the standard STA-SOSM control law uses the sign function-based feedback regulation mechanism to guarantee the finite-time convergence of e s to the origin and reject the lumped disturbance. In general, the selection of p 1 and p 2 has to trade off the disturbance rejection and the chattering phenomenon. Moreover, as mentioned in Section 1, quite large values of p 1 and p 2 need to be selected for achieving satisfactory control performance in the presence of a strong lumped disturbance.Nevertheless, it aggravates the chattering phenomenon. To tackle such a limitation, a composite controller combining the standard STA-SOSM control law with the HNN-DE and the error compensator is developed in this subsection. In this composite controller, the sign function-based feedback regulation mechanism mainly focus on guaranteeing the finite-time convergence of e s to the origin, and the disturbance rejection is mainly accomplished by the HNN-DE-based feedforward compensation mechanism. Therefore, the selection of p 1 and p 2 can mainly focus on the control performance specifications. It means that, with the same values of p 1 and p 2 , the composite controller can achieve better control performance than the standard STA-SOSM controller in the presence of a strong lumped disturbance. Regarding the error compensator, it is used to compensate the approximation error of the HNN-DE.The proposed composite control law  c is designed as

  1, the time derivative of V c1 can be calculated as
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 4 Fig.[START_REF] Taghavi | A mechanically robust rotor with transverse laminations for a wide-speed-range synchronous reluctance traction motor[END_REF] Block diagram of the cascaded control structure adopted by the proposed HNN-SOSM control strategy.
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 5 Fig. 5 Block diagram of the proposed composite speed controller.
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 3 There are positive constants   and   such that and its time derivative ̇ are bounded as | | ≤   and | ̇ | ≤   .

̇
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 6 Fig. 6 Block diagram of the proposed composite current controllers.Selecting e d and e q as the sliding variables, two proposed composite current control laws u sdr and u sqr are designed as
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 7 Fig. 7 Block diagram of the HIL test bench.
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 91011121314 Fig. 9 Apparent inductance maps of the SynRM. (a) L d (i sd , i sq ), (b) L q (i sd , i sq )

  and[START_REF] Varatharajan | Sensorless synchronous reluctance motor drives: a general adaptive projection vector approach for position estimation[END_REF], respectively.
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Theorem 3

 3 Considering the system (57), suppose  3 is bounded as[START_REF] Lin | Tracking control of thrust active magnetic bearing via Hermite polynomial-based recurrent neural network[END_REF] for a positive constant  2 and the

	Lyapunov candidate function V c2 designed as (60) is used to perform the stability analysis. Then, if p 1 and
	p 2 are selected as (61), the origin is a globally finite-time-stable equilibrium point. Moreover, the
	corresponding settling-time function T 2 for the finite-time convergence of all trajectories of the system
	(57) to the origin is upper bounded by (62).		
	32  	(59)
	2 VP  T c 	(60)
	12 8, pp 	 4 48 12  1 p p   	(61)

  Block diagram of the implementation of the vector-controlled SynRM drive system in HIL tests.
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Table 1

 1 Parameters of the SynRM

	Parameter		Value
	Nominal stator resistance, R s0		1.05 
	Nominal angular speed,  mn		1500 rpm
	Nominal torque, T rn Nominal rotor inertia, J 0 Nominal viscous friction coefficient, B mn	2.08 2.68	4.8 N⸱m 10 -2 kg⸱m 2 10 -3 N⸱m⸱s/rad
	Pole pairs, n p		2

Table 2

 2 Specifications of the 2L-VSI 2 200, and the parameters of two PI current controllers are the same as each other, i.e., the proportional gain is selected as 30 and the integral gain is selected as 4000. Regarding the implementation of STA-based controllers in the hardware controller, the sign function is usually replaced

				Parameter				Value
			DC-bus voltage, U d				200 V
			Switching period, T s			100 s
				Turn-on time, T on				1.3 s
			Turn-off time, T off				1.3 s
				Dead time, T dead				2.0 s
			Saturation voltage, U sat				1.6 V
			Diode forward voltage, U diode				1.5 V
		The parameters of the SynRM are presented in Table 1 [15]. The specifications of the 2L-VSI are
	shown in Table 2 [49]. The adopted apparent inductance model of the SynRM is illustrated in Fig. 9,
	whose parameters are presented as follow: c d1	0.0391, c d2	45.4, c d3	12.9, c d4	1329, c d5
	19.9, c d6	13, c d7	795, c dq	0.0133, c q1	0.01, c q2	0.571, c q3	0, c q4	58, c q5	0.825,
	c q6	0, c q7	63.8, c qd	0.0833 [14]. With respect to the proposed HNN-SOSM control strategy, the
	parameters of the composite speed controller are selected as L d0	L d (0,0), L q0	L q (0,0), p 1	100,
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