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Abstract: This paper proposes a novel Hermite neural network-based second-order sliding-mode (HNN-

SOSM) control strategy for the synchronous reluctance motor (SynRM) drive system. The proposed 

HNN-SOSM control strategy is a nonlinear vector control strategy consisting of the speed control loop 

and the current control loop. The speed control loop adopts a composite speed controller, which is 

composed of three components: 1) a standard super-twisting algorithm-based SOSM (STA-SOSM) 

controller for achieving the rotor angular speed tracking control, 2) a HNN-based disturbance estimator 

(HNN-DE) for compensating the lumped disturbance, which is composed of external disturbances and 

parametric uncertainties, and 3) an error compensator for compensating the approximation error of the 

HNN-DE. The learning laws for the HNN-DE and the error compensator are derived by the Lyapunov 

synthesis approach. In the current control loop, considering the magnetic saturation effect, two composite 

current controllers, each of which comprises two standard STA-SOSM controllers, are designed to make 

direct and quadrature axes stator current components in the rotor reference frame track their references, 

respectively. Comparative hardware-in-the-loop (HIL) tests between the proposed HNN-SOSM control 

strategy and the conventional STA-SOSM control strategy for the SynRM drive system are performed. 

The results of the HIL tests validate the feasibility and the superiority of the proposed HNN-SOSM 

control strategy. 

Keywords: Synchronous reluctance motor, second-order sliding-mode control, super-twisting algorithm, 

Hermite neural network, disturbance estimator. 

1 Introduction 

In recent years, the synchronous reluctance motor (SynRM) has been regarded as a powerful 

alternative for the induction motor and the permanent-magnet synchronous motor in the variable-speed 

drive system due to its magnetless, windingless and cageless rotor structure [1-4]. The SynRM drive 

system can provide a good compromise between the manufacturing cost and the drive performance. 

Therefore, it has been successfully applied in some industrial areas, such as the renewable energy 

conversion system, the electric traction system and the water supply system [5-9].  

With respect to the high-performance control of the SynRM drive system, the vector control strategy 

is one of the most popular choices [7-11]. The existing vector control strategies of the SynRM drive 

system can be divided into two categories: 1) the dual-loop vector control strategy for the rotor angular 

speed tracking control, which consist of the speed control loop and the current control loop, and 2) the 

triple-loop vector control strategy for the rotor position tracking control, which is composed of the 

position control loop, the speed control loop and the current control loop [12]. The linear proportional-
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integral (PI) controller is widely used in the vector-controlled SynRM drive system. However, such a 

linear controller, which is designed using the linear system model, is sensitive to disturbances and 

uncertainties [13]. In practice, the SynRM suffers from strong magnetic nonlinearity caused by the 

magnetic saturation effect, resulting in highly nonlinear relationship between the stator flux linkage and 

the stator current [14-17]. Furthermore, the drive system is affected by a variety of external disturbances 

and parametric uncertainties [13]. Therefore, the SynRM drive system is a nonlinear system. In order to 

accomplish a high-performance vector-controlled SynRM drive system, it is preferred to replace linear PI 

controllers with well-designed nonlinear controllers in the vector control strategy. 

Until now, various nonlinear controllers have been designed for vector control strategies of the 

SynRM drive system, such as the neural network-based controllers [18, 19], the adaptive controllers [12, 

20], the predictive controllers [21, 22], and the sliding-mode controllers (SMCs) [23-27]. Among them, 

the SMC-based vector control strategies have received considerable attention because of their attractive 

advantages including robustness and finite-time convergence. In [23], a SMC-based triple-loop vector 

control strategy has been proposed for the SynRM drive system. In such a vector control strategy, two 

SMCs are employed by the position and speed control loops, respectively, while two linear PI controllers 

are adopted by the current control loop. In [24], a combined positon and speed control strategy based on 

the multi-segment SMC has been proposed for the SynRM drive system. Nevertheless, aforementioned 

SMCs are dependent on the first-order sliding-mode (FOSM) algorithm, which suffers from severe 

chattering phenomenon. This phenomenon reduces the control accuracy and increases the losses as well 

as the noise of the drive system [28-30].  

To alleviate the chattering phenomenon in the SMC, several schemes have been proposed [29-32]. 

Amongst them, the second-order sliding-mode (SOSM) algorithms, which ensure the finite-time 

convergence of the sliding variable and its time derivative to the origin, have gained much attention [26, 

27, 30-45]. The super-twisting algorithm (STA) is an absolutely continuous SMSO algorithm that retains 

main attractive features of the FOSM algorithm without requiring the information of the time derivative 

of the sliding variable [30-32]. In recent years, the standard STA-based SOSM (STA-SOSM) controllers 

and observers have been found wide applications [27, 35-44]. Regarding the SynRM drive system, a 

STA-SOSM control strategy, which is a dual-loop vector control strategy using a standard STA-SOSM 

speed controller and two linear PI current controllers, has been proposed in [27]. To design the standard 

STA-SOSM speed controller, the speed tracking error dynamics is used. In such a dynamics, the lumped 

disturbance is mainly composed of the mechanical and electrical parametric uncertainties, the lord torque, 

and the friction torque. In many applications, the load changes frequently from one operating condition to 

another, often resulting in the sudden and significant change of the lumped disturbance in the speed 

tracking error dynamics. The standard STA-SOSM speed controller uses the sign function-based 

nonlinear feedback regulation mechanism to deal with such a strong disturbance. Since the sign function 

is bounded, theoretically, quite large gains are required by the standard STA-SOSM speed controller to 

achieve satisfactory tracking performance in the presence of a strong lumped disturbance. However, it 

aggravates the chattering phenomenon in practice. A solution to such an issue is the development of a 

composite speed controller which combines the standard STA-SOSM controller with a high-performance 

disturbance estimator (DE). In this speed controller, the DE is used to compensate the lumped disturbance 
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in the speed tracking error dynamics in real time, such that relatively small gains are enough for the 

standard STA-SOSM controller adopted by the composite speed controller to achieve satisfactory 

tracking performance. With respect to the design of two stator current controllers, two current tracking 

error dynamics in the rotor reference frame are adopted. In these two dynamics, the lumped disturbances 

mainly consist of the electrical parametric uncertainties and the disturbance voltages caused by the effects 

of the inverter nonlinearities. Usually, such disturbance voltages do not change suddenly and significantly 

[46-49]. The magnetic saturation effect is one of the main causes of above-mentioned electrical 

parametric uncertainties. Such an effect make each current tracking error dynamics in the rotor reference 

frame become a nonlinear system in terms of both direct and quadrature axes stator current components 

[14-17]. It means that the use of two linear PI current controllers cannot address the robust stator current 

tracking control problem. Therefore, two robust nonlinear current controllers should be developed for the 

vector control strategy of the SynRM drive system. 

It is widely recognized that well-designed single hidden layer feedforward neural networks 

(SHLFNNs) can serve as high-performance DEs for control applications due to their good approximation 

abilities [50]. In [51], a composite controller, which combines a standard STA-SOSM controller with a 

radial basis function neural network-based DE (RBFNN-DE), has been proposed for the micro-gyroscope. 

However, the presented stability analysis for the tracking error dynamics using this composite controller 

is not rigorous. Furthermore, the values of the center and the width of each Gaussian basis function in the 

hidden layer of the RBFNN-DE are chosen offline by means of simulation-based trial-and-error approach. 

Regarding the lumped disturbance in the speed tracking error dynamics of the SynRM drive system, it can 

be described as a combination of a constant term, a linear term, second-order nonlinear terms and high-

order nonlinear terms in the sense of the series expansion. As long as a sufficient number of terms in a 

series are adopted, the weighted sum of them can approximate any function to any degree of accuracy 

[54]. Due to this attractive feature, several orthogonal polynomial basis functions, such as Chebyshev 

polynomial basis functions, Legendre polynomial basis functions and Hermite polynomial basis functions, 

have been selected as activation functions in the hidden layer to construct different SHLFNNs [52-60]. 

Among them, the Hermite polynomial basis function-based SHLFNN, or as often called the Hermite 

neural network (HNN), has a more efficient search space and better representational ability due to the 

unlimited input range of the Hermite polynomial basis functions [57]. Moreover, there is no need for each 

activation function in the hidden layer of the HNN to choose any parameter offline. Because of these 

attractive features, the HNN has been used to design the DE for improving the tracking performance of 

the SMC. In [60], a composite controller, which consists of a nonsingular terminal SMC, a HNN-based 

DE (HNN-DE) and an error compensator, has been proposed for the nonlinear magnetic bearing system. 

However, in order to obtain the nonsigular terminal sliding variable and the learning laws for this HNN-

DE, a quite complex fractional exponent term with respect to the time derivative of the tracking error has 

to be calculated online, which increases the implementation complexity of such a composite controller. 

In this paper, considering external disturbances and parametric uncertainties of the SynRM drive 

system, a novel HNN-based SOSM (HNN-SOSM) control strategy is proposed for the SynRM drive 

system. The proposed control strategy is a dual-loop vector control strategy. The main contributions can 

be summarized as follows. 
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1) In the speed control loop, a composite speed controller consisting of a standard STA-SOSM 

controller, a HNN-DE and an error compensator is proposed to regulate the rotor angular speed. 

Rigorous stability analysis for the speed tracking error dynamics using such a controller is presented. 

Based on that, the learning laws for the HNN-DE and the error compensator are derived.  

2) In the current control loop, two composite current controllers, each of which consists of two standard 

STA-SOSM controllers, are proposed to regulate direct and quadrature axes stator current 

components in the rotor reference frame. Rigorous stability analyses for two current tracking error 

dynamics using such controllers are presented. 

3) The performance of the proposed HNN-SOSM control strategy is compared with that of the 

conventional STA-SOSM control strategy based on a standard STA-SOSM speed controller and two 

linear PI current controllers. 

The rest of this paper is organized as follows. In Section 2, the mathematical model of the two-level 

voltage-source inverter (2L-VSI)-fed SynRM drive system is presented. In Section 3, the design of the 

adopted HNN-DE is presented. In Section 4, the design and the rigorous stability analysis of the 

composite controller, which consists of a standard STA-SOSM controller, a HNN-DE and an error 

compensator, are presented. In Section 5, the proposed HNN-SOSM control strategy is described in detail. 

In Section 6, the results of the comparative hardware-in-the-loop (HIL) tests between the proposed HNN-

SOSM control strategy and the conventional STA-SOSM control strategy are presented and analyzed. 

The conclusions are given in Section 7. 

C

a
b

c

Qb1

Ud

Qa1 Qc1
ian

ibn

icn

SynRM

n

Qb2Qa2 Qc2
C

o

Dc1

Dc2

Db1Da1

Db2Da2

 

Fig. 1. The 2L-VSI-fed SynRM drive system. 

2 Problem formulation 

2.1 Mathematical model of the 2L-VSI 

The 2L-VSI-fed SynRM drive system is illustrated in Fig.1, where Ud is the dc-bus voltage, C is the 

dc-bus capacitor, Qa1-Qc2 are six power switching devices, Da1-Dc2 are six freewheeling diodes, ian, ibn and 

icn are three-phase stator currents. With respect to the mathematical model of the 2L-VSI, the effects of 

the inverter nonlinearities including the dead time, the turn-on/off time, the saturation voltage of the 

power switching device and the diode forward voltage are taken into account. At first, the switching 

function for each leg of the 2L-VSI is defined as 

 1 2

1 2

1 if   on   off
, ,

0 if   off   on

x x
x

x x

Q Q
S x a b c

Q Q


 


， ，
，

， ，
  (1) 

Regarding each phase of the 2L-VSI, within a switching period Ts, the relationship between the actual 

and applied conducting time of the upper power switching device Qx1 can be expressed as (2), and the 

corresponding high-frequency model of the pole voltage can be described as (3) [46-49]. 

    * sgnx x off on dead xnT T T T T i      (2) 

         



5 

      
1 1

sgn
2 2

xo dc sat diode x sat diode xnu U U U S U U i
 

      
 

  (3) 

where    and   
  denote the actual and applied conducting time of Qx1, respectively, Ton, Toff, Tdead 

represent the turn-on time, the turn-off time and the dead time of the power switching device, 

respectively, Usat and Udiode denote the saturation voltage of the power switching device and the diode 

forward voltage of the freewheeling diode, respectively, uxo is the pole voltage for the phase x, and sgn(•) 

is the sign function written as 

  

1 if  0

sgn 0 if 0

1 if  0

xn

xn xn

xn

i

i i

i

 


 
 

，   

， 

，

  (4) 

Based on (2), the actual duty cycle dx, which denotes the average value of Sx in a switching period, is 

expressed as 

  * sgn
off on deadx

x x xn
s s

T T TT
d d i

T T

 
     (5) 

where   
  

  
 

  
 denotes the applied duty cycle of Qx1 

By replacing Sx in (3) with dx, the low-frequency model of the pole voltage considering the effects of 

the inverter nonlinearities can be derived as 

    * 1
sgn

2
xo dc sat diode x dead xnu U U U d U i

 
     

 
  (6) 

where Udead is written as 

  
2

off on dead sat diode
dead dc sat diode

s

T T T U U
U U U U

T

  
      (7) 

For the balanced three-phase loads, the three-phase stator voltages uan, ubn and ucn can be calculated as 

 
2 1 1

1
1 2 1

3
1 1 2

an ao

bn bo

cn co

u u

u u

u u

     
    

      
         

  (8) 

Substituting (6) into (8), the low-frequency model of the 2L-VSI considering the effects of the 

inverter nonlinearities is derived as  

 

       

 

*

*

* * * * * *
*

* * * * * *

2 2
2sgn sgn sgn

3 3 3

2 2

3 3 3

d
an an

bn

da b c a b c dead
an dc diode sat an bn cn an an

u u

b a c b a c dead
bn dc diode sat

u

d d d d d d U
u U U U i i i u u

d d d d d d U
u U U U

   
         

   
         

       

*

*

* * * * * *
*

2sgn sgn sgn

2 2
2sgn sgn sgn

3 3 3

d
bn

d
cn cn

d
bn an cn bn bn

u

c a b c a b dead
cn dc diode sat cn an bn cn

u u

i i i u u

d d d d d d U
u U U U i i i u

     

   
        

d
cnu














 




 (9) 

where    
 ,    

  and    
  represent ideal three-phase stator voltages,    

 ,    
  and    

  denote the 

three-phase disturbance voltages caused by the effects of the inverter nonlinearities. 
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2.2 Mathematical model of the SynRM 

With respect to the SynRM, considering the effects of the magnetic saturation and the inverter 

nonlinearities, its stator voltage and stator flux linkage equations in the rotor reference frame can be 

expressed as (10) and (11), respectively.  

 * *,
sqd dsd

sd sd s sd p m sq sq sq sq s sq p m sdsd

dd
u u u R i n u u u R i n

dt dt


               (10) 

        , , , ,sd sd sd sq d sd sq sd sq sq sd sq q sd sq sqi i L i i i i i L i i i      ，   (11) 

where usd and usq are the direct and quadrature axes stator voltage components, respectively,    
  and 

   
  are the ideal direct and quadrature axes stator voltage components, respectively,    

  and    
  are 

the direct and quadrature axes disturbance voltage components caused by the effects of the inverter 

nonlinearities, respectively, isd and isq are the direct and quadrature axes stator current components, 

respectively, Ld and Lq are the apparent inductances, sd and sq are the direct and quadrature axes stator 

flux linkage components, respectively, Rs represents the stator resistance, np is the pole pairs, and m 

denotes the rotor mechanical angular speed. 

Since both sd and sq are nonlinear functions in terms of isd and isq, the following equations can be 

obtained [61]. 

 sq sq sqsd sd sd
dd dq qd qq

di d did di di
L L L L

dt dt dt dt dt dt


   ，   (12) 

where Ldd, Ldq, Lqd, and Lqq are the incremental inductances calculated as follow [61]:  

 
constant constant

constant constant

,

,

sq sd

sq sd

sd sd sd sd
dd dq

sd sd sq sqi i

sq sq sq sq
qd qq

sd sd sq sqi i

L L
i i i i

L L
i i i i

   

   

 

 

   
   
   

   
   
   

  (13) 

The reluctance torque equation of the SynRM is described as follow [1]:  

  
3

2
r p sd sq sq sdT n i i     (14) 

where Tr is the reluctance torque. 

In this paper, the viscous friction torque, which is dependent on the rotor angular speed, is considered 

as the main contributor to the friction torque of the SynRM. Thus, the friction torque equation of the 

SynRM can be described as follow [62]: 

 f m mT B    (15) 

where Tf is the friction torque, Bm denotes the viscous friction coefficient. 

The motion equation of the SynRM is expressed as follow [62]:  

 m
r l f

d
J T T T

dt


     (16) 

where J is the rotor inertia and Tl denotes the load torque. 

Based on (10)-(16), the dynamic model of the SynRM in terms of isd, isq and m can be derived as  
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   

   

 

* *

* *

3 1 1

2

qq dqd dsd
sd s sd p m q sq sq sq s sq p m d sdsd

sq qd d ddd
sd s sd p m q sq sq sq s sq p m d sdsd

pm
d q sd sq l f

L Ldi
u u R i n L i u u R i n L i

dt M M

di L L
u u R i n L i u u R i n L i

dt M M

nd
L L i i T T

dt J J J

 

 




       




        



   


  (17) 

where M   LddLqq LdqLqd. 

2.3  External disturbances and parametric uncertainties 

From (17), it can be seen that the dynamic model of the SynRM contains    
 ,    

 , Tl, Tf, and 

parameters including Ld, Lq, Ldd, Ldq, Lqd, Lqq, Rs and J. In practice, their values are not constant and 

usually vary with different operating conditions of the SynRM drive system. In this paper,    
 ,    

 , Tl 

and Tf are regarded as the external disturbances. As for the parametric uncertainties, the variations of Ld, 

Lq, Ldd, Ldq, Lqd, Lqq, Rs and J are considered.  

Up to now, several models have been proposed to formulate apparent inductances based on measured 

data [14-17]. In this paper, the apparent inductance model proposed in [14], which can approximate the 

values of Ld and Lq for different combinations of isd and isq in a wide range, is adopted. According to such 

a model, Ld and Lq can be formulated as  

                0 1 2 0 2 1, , ,d sd sq d sd d sd q sq q sd sq q sq d sd q sqL i i L i L i L i L i i L i L i L i      (18) 

where 

           
           

4 2 4 2 2
0 0 1 2 3 1 4 5 6 2

4 2 4 2 2
0 0 1 2 3 1 4 5 6 2

, 1 1 1

, 1 1 1

d sd d d sd d sd d d sd d sd d sd d d sd dq sd

q sq q q sq q sq q q sq q sq q sq q q sq qd sq

L i c c i c i c L i c i c i c L i c i

L i c c i c i c L i c i c i c L i c i

         

         

，

，
  

Based on (11), (13) and (18), the incremental inductances can also be formulated. Defining Ld0, Lq0, 

Ldd0, Ldq0, Lqd0, and Lqq0 as nominal apparent and incremental inductances for a certain combination of isd 

and isq, the apparent and incremental inductances can be expressed as 

 

   

   

   

0 0

0 0

0 0

, , ,

, , ,

, , ,

d sd sq d d q sd sq q q

dd sd sq dd dd dq sd sq dq dq

qd sd sq qd qd qq sd sq qq qq

L i i L L L i i L L

L i i L L L i i L L

L i i L L L i i L L

     

     

     

  (19) 

whereLd, Lq, Ldd, Ldq, Lqd, and Lqq are parametric uncertainties in respect of Ld, Lq, Ldd, Ldq, Lqd, 

and Lqq, respectively, for different combinations of isd and isq. 

With regard to Rs and J, they can be rewritten as 

 0 0s s sR R R J J J   ，   (20) 

where Rs0 and J0 are nominal values of Rs and J, respectively, Rs and J denote parametric uncertainties 

in respect of Rs and J, respectively. 

2.4  Control objectives 

The control objectives of the dual-loop vector control strategy of the SynRM drive system can be 

summarized as follow: 

1) m should track its reference mr. 

2) isd and isq should track their references isdr and isqr, respectively.  
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3 Disturbance estimator design 

In this section, the Hermite functions are introduced. Based on them, a single-input-single-output 

HNN-DE is designed. 

3.1 Hermite functions 

4  
x
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0.0

-2.5 5.00.0 2.5

-0.5

0.5

-1.0

1.0

h
0

     x
-5.0

0.0

-2.5 5.00.0 2.5

-0.5

0.5
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1.0

h
1

     x
-5.0

0.0

-2.5 5.00.0 2.5

-0.5

0.5

-1.0

1.0

h
2

 

5  
x

-5.0

0.0

-2.5 5.00.0 2.5

-0.5

0.5

-1.0

1.0

h
3

     x
-5.0

0.0

-2.5 5.00.0 2.5

-0.5

0.5

-1.0

1.0
h

4

     x
-5.0

0.0

-2.5 5.00.0 2.5

-0.5

0.5

-1.0

1.0

h
5

 

Fig. 2 First six Hermite functions. 

The Hermite polynomials           
 , which is defined in the interval (  ,  ), can be expressed 

by the following so-called Rodrigues' formula [54].  

    
2 2

1 , 0,1,2,...
n

n x x
n n

d
H x e e n

dx

 
   

 
  (21) 

Based on (21), a useful recurrence relation to calculate each Hn (x) can be derived as 

            0 1 1 21, 2 , 2 2 1 , 2n n nH x H x x H x xH x n H x n         (22) 

Although           
  are orthogonal with regard to the weight function  (x)      

, they are not 

orthonormal. Regarding polynomial-based activation functions in the hidden layer of the SHLFNN, the 

orthonormal polynomials are preferred [56-60]. Toward this end, based on           
 , the so-called 

Hermite functions           
 , which are orthonormal functions, are derived as follow [56-60]:  

    
2 21

2 !

x
n n

n
h x H x e

n

   (23) 

The first six Hermite functions are illustrated in Fig. 2.  

6 

Output LayerHidden LayerInput Layer

   
  

h2

h5

x1
(1)

(n) y1
(3) 

(n)

h1

fl

 

Fig. 3 The block diagram of the HNN-DE. 

3.2 HNN-DE 
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The structure of the HNN-DE adopted in this paper is illustrated in Fig. 3. Such a DE consists of the 

input layer, the hidden layer and the output layer. The first five Hermite functions are selected as the 

activation functions in the hidden layer, while the linear function is selected as the activation function in 

the output layer. The signal propagation in each layer of the HNN-DE is introduced as follows. 

There is one node in the input layer. The signal propagation of such a node is described as 

    (1) (1)
1 1

y n x n   (24) 

where n represents the nth iteration,   
   

    and   
   

    are the input and output signals of the node in 

the input layer, respectively. 

There are five nodes in the hidden layer. For the ith node (i   1, 2, 3, 4, 5), the signal propagation is 

described as 

    (2) (1)
1ix n y n   (25) 

     (2) (2)
ii iy n h x n   (26) 

where   
   

    and   
   

    are the input and output signals of the ith node in the hidden layer, 

respectively, and hi  (•) is the ith Hermite function. 

There is one node in the output layer. The signal propagation of such a node is described as 

      
5

(3) (2)
1

1
i i

i

x n W n y n



   (27) 

       (3) (3) (3)
1 1 1ly n f x n x n    (28) 

where   
   

    and   
   

    are the input and output signals of the node in the output layer, respectively, 

      denotes the ith output weight, and fl (•) represents the linear activation function. 

Remark 1 In the HNN-DE, all elements in the output weight vector W   [W1, W2, W3, W4, W5]
T need to 

be updated online. To maintain the stability of the control system, the learning laws for the update of W 

should be derived by the Lyapunov synthesis approach [60]. 

4 Controller design 

In this section, the design of the standard STA-SOSM controller for a single-input uncertain nonlinear 

system is briefly introduced. Afterward, a composite controller composed of a standard STA-SOSM 

controller, a HNN-DE and an error compensator is developed. The rigorous stability analysis for the 

dynamics of the sliding variable using the proposed composite controller is presented. Based on that, the 

learning laws for the HNN-DE and the error compensator are derived. 

4.1 Design of the standard STA-SOSM controller 

Considering a single-input uncertain nonlinear system represented by the following form [33].  

      , , , ,s s
dx

a x t b x t e e x t
dt

     (29) 

where x   Rn is the state vector,    R denotes the control law, es(x,t): Rn+1 → R is the sliding variable 

and the only measured output signal, a(x,t) and b(x,t) are smooth uncertain functions. 

The control objective is to let es and its time derivative converge to the origin in a finite time, and 

keep it at the origin thereafter. Assuming that the input-output dynamics of the system (29) is a relative 
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degree one system and the internal dynamics are stable, the input-output dynamics of the system (29) can 

be described as 

         

 

 

 

   

, ,

, , , , , , ,s s s s s
s

x t g x t

e e e e ed
e x t a x t b x t a x t b x t x t g x t

dt t x t x x



   
    

       
    

  (30) 

where  (x,t) and g (x,t) are smooth uncertain functions. 

Assuming that g (x,t) can be described as 

      0, , ,g x t g x t g x t    (31) 

where g0(x,t) > 0 is a known function and g(x,t) is the bounded uncertainty for  x   Rn and t   [0, 

 ). 

Substituting (31) into (30), the input-output dynamics of the system (29) can be rewritten as 

       0, , ,sde
x t g x t g x t

dt
       (32) 

Regarding the system (32), the standard STA-SOSM control law s can be designed as follow [30-

32]:  

 
 

    1 2
0

1
sgn sgn

,
s s s sp e e p e dt

g x t
       (33) 

where p1 and p2 are positive constant gains.  

Substituting (33) into (32), the dynamics of es using the standard STA-SOSM control law can be 

written as  

 
          

 

 

     

1

0 0

,

1 2 1

, , , , , ,

= sgn sgn ,

s
s s s

x t

s s s

de
x t g x t g x t x t g x t g x t

dt

p e e p e dt x t



    



       

  

  

(34)

 

where 1(x,t) is the lumped disturbance. 

Assuming that 1(x,t) is differentiable, the system (34) can be converted to the following system.  

      1
1 1 2 1sgn , sgn ,s

s s s
de d

p e e p e x t
dt dt


        (35) 

where 1 (x,t) is the time derivative of 1(x,t). 

Definition 1 [63, 64]. The system is said to be globally finite-time stable if it is globally asymptotically 

stable in the sense of Lyapunov with a finite settling time for any solution and initial conditions. 

The following Theorem can be used to select p1 and p2 for the standard STA-SOSM control law to 

ensure the globally finite-time stability of the system (35). 

Theorem 1 [44, 45] Considering the system (35), suppose 1 is bounded as (36) for a positive constant 1 

and the Lyapunov candidate function Vs designed as (37) is used to perform the stability analysis. Then, if 

p1 and p2 are selected as (38), the origin is a globally finite-time-stable equilibrium point. Moreover, the 

corresponding settling-time function T1   for the finite-time convergence of all trajectories of the system 

(35) to the origin is upper bounded by (39). 

 1 1    (36) 

 T
sV P    (37) 
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 

1 1
1 2

1

4
8,

4 8

p
p p

p


 


  (38) 

  0
1

1

2 sV
T

q


   (39) 

where    [√|  |       , 1]
T, 0 is the initial condition of , q1 is a constant related to p1, p2 and 1, P 

is a positive definite matrix expressed as 

 
2

2 1 1

1

4

2

p p p
P

p

  
  

  

   

4.2 Design of the proposed composite controller 

From (34), it can be seen that the standard STA-SOSM control law uses the sign function-based 

feedback regulation mechanism to guarantee the finite-time convergence of es to the origin and reject the 

lumped disturbance. In general, the selection of p1 and p2 has to trade off the disturbance rejection and the 

chattering phenomenon. Moreover, as mentioned in Section 1, quite large values of p1 and p2 need to be 

selected for achieving satisfactory control performance in the presence of a strong lumped disturbance. 

Nevertheless, it aggravates the chattering phenomenon. To tackle such a limitation, a composite controller 

combining the standard STA-SOSM control law with the HNN-DE and the error compensator is 

developed in this subsection. In this composite controller, the sign function-based feedback regulation 

mechanism mainly focus on guaranteeing the finite-time convergence of es to the origin, and the 

disturbance rejection is mainly accomplished by the HNN-DE-based feedforward compensation 

mechanism. Therefore, the selection of p1 and p2 can mainly focus on the control performance 

specifications. It means that, with the same values of p1 and p2, the composite controller can achieve 

better control performance than the standard STA-SOSM controller in the presence of a strong lumped 

disturbance. Regarding the error compensator, it is used to compensate the approximation error of the 

HNN-DE.  

The proposed composite control law c is designed as 

 c s h cy y      (40) 

 
 

(2)

0 ,

T

hy
g x t


W y

  (41) 

 
 0 ,

h
cy

g x t


   (42) 

where yh and yc denote the HNN-DE term and the error compensation term in the composite control law, 

respectively, and h is the estimated minimum approximation error for the HNN-DE. 

Substituting (40) into (32), the dynamics of es using the proposed composite control law can be 

expressed as 

 
          

 

 

     

2

0 0

,

(2)
1 2 2

, , , , , ,

sgn sgn ,

s
c c c

x t

T
s s s h

de
x t g x t g x t x t g x t g x t

dt

p e e p e dt x t



    

 

       

      W y

  

(43)

 

where 2(x,t) is the lumped disturbance. 
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Regarding the HNN-DE adopted by the proposed composite controller, es is selected as the input 

signal, i.e.,   
   

   . Based on the universal approximation property, there is an optimal output weight 

vector      [  
 ,   

 ,   
 ,   

 ,   
 ]T for the HNN-DE, such that the lumped disturbance in (43) can 

be expressed as 

 * (2) *
2

T
h = W y   (44) 

where        [  
   

,   
   

,   
   

,   
   

,   
   

]T is the output signal vector of the hidden layer of the HNN-

DE,   
  is the minimum approximation error of the HNN-DE. 

Assumption 1 All elements in    and   
  can be considered as constants in each sampling period. 

Substituting (44) into (43), the dynamics of es using the proposed composite control law can be 

rewritten as 

 
   

   

(2) * (2) *
1 2

(2)
1 2

sgn sgn

sgn sgn

T Ts
s s s h h

T
s s s h

de
p e e p e dt

dt

p e e p e dt

 



      

    





W y W y

W y

  
(45)

 

where W   W – W
 *   [W1, W2, W3, W4, W5]

T, and            
 . 

The following Theorem can be used to rigorously derive the learning laws for the HNN-DE and the 

error compensator adopted by the proposed composite controller. 

Theorem 2 Considering the system (45) and the composite control law (40), if p1 and p2 are positive 

constants and the learning laws for the HNN-DE and the error compensator are designed as (46) and 

(47), respectively, the origin is a globally asymptotically stable equilibrium point. 

   (2)
1 2sgn s

d
p e

dt


W
y   (46) 

  2 2sgnh
s

d
p e

dt


   (47) 

where 1 and 2 are positive learning rates. 

Proof At first, the system (45) is converted to the following equivalent system.  

    (2) 2
1 2 2sgn , sgnTs

s s h s
de d

p e e p e
dt dt


       W y   (48) 

With regard to the system (48), the following Lyapunov candidate function Vc1 is chosen. 

 2 2
1 2 2

1 2

1 1 1
=

2 2 2

T
c s hV p e  

 
   W W    (49) 

Considering the Assumption 1, the time derivative of Vc1 can be calculated as 

  1 2
2 2

1 2

1 1
sgn Tc s h

s h
dV de dd d

p e
dt dt dt dt dt


 

 
     

W
W   (50) 

Substituting (48) into (50), the following equation can be obtained. 

 

      

   

   

(2)1
2 1 2 2 2

1 2

(2)
1 2 2 2

1 2

(2)
1 2 2 2

1 2

1 1
sgn sgn sgn

1 1
sgn sgn

1 1
sgn sgn

T Tc h
s s s h s h

T T h
s s s h h

T h
s s h s

dV dd
p e p e e p e

dt dt dt

dd
p p e p e p e

dt dt

dd
p p e p e p e

dt dt


   

 


 

 




 

          

         

   
          

   

W
W y W

W
W y W

W
W y

 

(51)

 

Substituting (46) and (47) into (51), the time derivative of Vc1 can be expressed as  
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 1
1 2 0c

s
dV

p p e
dt

     (52) 

Since the time derivative of Vc1 is negative semidefinite, the following inequality can be derived.  

                  1 2 1 2, , , 0 , 0 , 0 , 0c s h c s hV e t t t t V e   W W    (53) 

According to (53), es(t), (t), Wi (t) and h(t) are bounded. Based on (52) and (53), the following 

function is defined.  

             1 2 1 2, , ,c s c s h
d

t p p e t V e t t t t
dt

      W   (54) 

Combining (54) with (53), the following inequality can be derived.   

                    1 2 1 20
0 , 0 , 0 , 0 , , ,

t
c c s h c s hd V e V e t t t t        W W    (55) 

Since Vc1 (es(0), (0), W (0), h(0)) is bounded and Vc1 (es(t), (t), W (t), h(t)) is a non-increasing 

bounded function, the following inequality can be derived.  

  
0

lim
t

c
t

d 


    (56) 

Since       ∫        
 

 
 exists and       is a uniformly continuous function, according to 

Barbălat’s Lemma [65],               holds. It means that               holds. Therefore, the 

origin is a globally asymptotically stable equilibrium point of the system (45). The proof is completed.                 

■ 

The system (43) can be converted to another equivalent system described as 

      3
1 3 2 3sgn , sgn ,s

s s s
de d

p e e p e x t
dt dt


         (57) 

where 3 (x,t) is expressed as 

      
(2) (2)

(2) (2) (2) (2)
3 1 2 2 2sgn sgnT T T T Th

h s s
dd d d d

p e p e
dt dt dt dt dt


             

W y y
W y y W y y W    (58) 

Assumption 2 The time derivative of es is bounded. 

Since Wi, es and it time derivative are bounded, based on (22), (23) and (26),   
   

 and its time 

derivative are bounded. Thus, 3 is bounded.  

In order to ensure the globally finite-time stability of the system (57), based on Theorem 1, the 

following Theorem is derived to select p1 and p2 for the proposed composite control law. 

Theorem 3 Considering the system (57), suppose 3 is bounded as (59) for a positive constant 2 and the 

Lyapunov candidate function Vc2 designed as (60) is used to perform the stability analysis. Then, if p1 and 

p2 are selected as (61), the origin is a globally finite-time-stable equilibrium point. Moreover, the 

corresponding settling-time function T2 for the finite-time convergence of all trajectories of the system 

(57) to the origin is upper bounded by (62).  

 3 2    (59) 

 2
T

cV P    (60) 

 
 

1 2
1 2

1

4
8,

4 8

p
p p

p


 


  (61) 
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  2 0
2

2

2 cV
T

q


   (62) 

where    [√|  |       , 3]
T, 0 is the initial condition of , q2 is related to p1, p2 and 3. 

isqr

isdr

+

 mr

-

 m

+

-

isr

is

Composite 

Speed 

Controller

Composite 

Current

Controllers 

SynRM 

Drive

System 

usr
*

 

Fig. 4 Block diagram of the cascaded control structure adopted by the proposed HNN-SOSM control strategy. 

Proof It can be observed that the system (57) has the same structure as the system (35) and Vc2 can be 

obtained from Vc1 by replacing  with . Since 3 is bounded as (59), the inequalities (61) can be obtained 

from (38) by replacing 1 with 2. Therefore, according to Theorem 1, it can be concluded that, with p1 

and p2 selected as (61), the globally finite-time stability of the system (57) with the settling-time function 

upper bounded as (62) is guaranteed. The proof is completed.                                        

■ 

5 Proposed HNN-SOSM control strategy 

The cascaded control structure comprising the speed control loop and the current control loop is 

adopted by the proposed HNN-SOSM control strategy to accomplish the control objectives, as illustrated 

in Fig. 4, where    
    [    

 ,     
 ]T, isr   [isdr, isqr]

T and is   [isd, isq]
T are the reference stator voltage 

vector, the reference and the measured stator current vectors in the rotor reference frame, respectively. In 

the speed control loop, the proposed composite speed controller is used to let m track mr. In the current 

control loop, two composite current controllers, each of which comprises two standard STA-SOSM 

controllers, are employed to let isd and isq track isdr and isqr, respectively. isdr is kept at a constant value to 

excite the SynRM and isqr is generated by the composite speed controller. Since the dynamics of the 

current control loop is much faster than that of the speed control loop, the composite speed controller and 

the composite current controllers are designed separately. 

5.1 Composite speed controller design 

The tracking error for the rotor mechanical angular speed is defined as  

 mr me      (63) 

where e denotes the tracking error for the rotor mechanical angular speed. 

Based on (17) and (63), the dynamics of e can be calculated as 

  
31 1

2

pmr
l f d q sd sq sq

g

nde d
T T L L i i g i

dt dt J J J

 


 




         (64) 

Considering external disturbances and parametric uncertainties presented in (19) and (20), the 

dynamics of e can be rewritten as 

   0 0sq sqr sqr sqr
de

g g i i i g i
dt


              (65) 
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where g0 and g denote nominal value and parametric uncertainties of g, respectively, and     

  g0isqr   (g0   g) (isq   isqr) represents the lumped disturbance. 

Selecting e as the sliding variable, the proposed composite speed control law isqr is designed as 

 sqr h ci y y       (66) 

isqre Standard STA-SOSM 

Control Term (67) 

HNN-DE

Error Compensation 

Term (69)

Learning Law (70) 

Learning Law (71) 

+

+

+


yc

yh

 

Fig. 5 Block diagram of the proposed composite speed controller. 

     1 2
0

1
sgn sgnp e e p e dt

g
     


      (67) 

 
 2

0

T

hy
g

 





W y   (68) 

 
0

h
cy

g







   (69) 

where , yh and yc denote the standard STA-SOSM control term, the HNN-DE term and the error 

compensation term in the proposed composite control law, respectively, p1 and p2 are positive constant 

gains,   
   

   [   
   

,    
   

,    
   

,    
   

,    
   

]T and W = [W1 W2 W3 W4 W5]
T are the output signal 

vector of the hidden layer and the output weight vector of the adopted HNN-DE, respectively h is the 

estimated minimum approximation error for the adopted HNN-DE.  

Remark 2 If the HNN-DE term and the error compensation term are removed, the proposed composite 

speed control law is turned into the standard STA-SOSM speed control law, which is expressed as (67). 

With regard to the HNN-DE adopted by the proposed composite speed control law, e is selected as 

the input signal. Therefore, the learning laws for W and h are designed as  

    2
1 2sgn

d
p e

dt


   

W
y   (70) 

  2 2sgnhd
p e

dt


  


   (71) 

where 1 and 2 are positive learning rates. 

Substituting (66) into (65), the dynamics of e using the proposed composite speed control law can be 

expressed as 

 
     

   

2
1 2

1 2

sgn sgn

sgn sgn

T
h

de
p e e p e dt

dt

p e e p e dt




        



     

 



     

   





W y

  

(72)
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Assumption 3 There are positive constants  and such that    and its time derivative  ̇  are 

bounded as |  | ≤  and | ̇ | ≤ . 

Considering Assumption 3, based on Theorem 2 and Theorem 3, it can be concluded that, with the 

proposed composite speed control law (66) as well as learning laws (70) and (71), e will converge to the 

origin in a finite time if p1 and p2 are selected as  

 
 

1 2
1 2

1

4
8,

4 8

p
p p

p

 
 




 


  (73) 

The block diagram of the proposed composite speed controller is shown in Fig. 5. 

5.2 Composite current controller design 

The tracking errors for direct and quadrature axes stator current components are defined as  

 d sdr sd q sqr sqe i i e i i   ，   (74) 

where ed and eq denote the tracking errors for direct and quadrature axes stator current components, 

respectively. 

According to (17), the dynamics of isd and isq can be described as  

        * * * *,
sqd d d dsd

qq sd dd dq sq sq qq qd sd dd dd sq sq qqsd sd

didi
g u u g u u g u u g u u

dt dt
                  (75) 

where 

 , , , , ,
dq qd qqdd

dd dq qd qq dd s sd p m q sq qq s sq p m d sd

L L LL
g g g g R i n L i R i n L i

M M M M
              

Considering parametric uncertainties presented in (19) and (20), the dynamics of isd and isq can be 

rewritten as  

 
     

     

* *
0 0 0 0

* *
0 0 0 0

d dsd
qq qq sd dd dd dq dq sq sq qq qqsd

sq d d
qd qd sd dd dd dd dd sq sq qq qqsd

di
g g u u g g u u

dt

di
g g u u g g u u

dt

   

   


             


               


  (76) 

where gdd, gdq, gqd, gqq, dd, and qq represent parametric uncertainties in respect of gdd, gdq, gqd, 

gqq, dd, and qq, respectively, gdd, gdq, gqd, gqq, dd, and qq are nominal values of gdd, gdq, gqd, gqq, dd, 

and qq, respectively, which are expressed as 

 
0 0 00

0 0 0 0
0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

, , ,

,

dq qd qqdd
dd dq qd qq

dd qq dq qd dd s sd p m q sq qq s sq p m d sd

L L LL
g g g g

M M M M

M L L L L R i n L i R i n L i   

   

     ，

   

According to (74) and (76), the dynamics of ed and eq can be described as   

        * * * *
0 0 0 0 0 0 0 0,

qd
qq sdr dd dq sqr qq d qd sdr dd dd sqr qq q

dede
g u g u g u g u

dt dt
                  (77) 

where d and q represent lumped disturbances expressed as 

 
       

       

* * * * * *
0 0

* * * * * *
0 0

+

+

d d sdr
d qq sd sdr dd dq sq sqr sq qq qq sdr dd dq sqr qqsd

sqrd d
q qd sd sdr dd dd sq sqr sq qq qd sdr dd dd sqr qqsd

di
g u u u g u u u g u g u

dt

di
g u u u g u u u g u g u

dt

    

    


                


                


 

Assumption 4 There are positive constants d, d, q, qsuch that   ,    and their time derivatives 

 ̇  and  ̇  are bounded as |  | ≤ d, |  | ≤ q, | ̇ | ≤ d, and | ̇ | ≤ q. 
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Fig. 6 Block diagram of the proposed composite current controllers. 

Selecting ed and eq as the sliding variables, two proposed composite current control laws usdr and usqr 

are designed as  

 * *
0 0 0 0 0 0,sdr dd dd d dq q sqr qq qd d qq qu L L u L L             (78) 

where d and q are two standard STA-SOSM control laws expressed as (79) and (80), respectively. 

    1 2sgn sgnd d d d d dp e e p e dt      (79) 

    1 2sgn sgnq q q q q qp e e p e dt      (80) 

where pd1, pd2, pq1, pq2 are positive constant gains. 

Substituting (78) into (77), the dynamics of ed and eq using the proposed composite current control 

laws can be expressed as  

        1 2 1 2sgn sgn , sgn sgn
qd

d d d d d d q q q q q q

dede
p e e p e dt p e e p e dt

dt dt
            (81) 

Considering Assumption 4, according to Theorem 1, it can be concluded that, with the proposed 

composite current control laws (78), ed and eq will converge to the origin in a finite time if pd1, pd2, pq1, pq2 

are selected as  

 
   

1 21 2
1 2 1 2

1 1

44
8, 8,

4 8 4 8

q qd d
d d q q

d q

pp
p p p p

p p

 
   

 
，   (82) 

The block diagram of the proposed composite current controllers are shown in Fig. 6. 

Measured Signals

Control Signals

Control  Algorithm System Model

Data Monitoring
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Host Computer 1 Host Computer 2

Data Monitoring

 

Fig. 7 Block diagram of the HIL test bench. 

6. HIL test results 

To perform comparative tests between the proposed HNN-SOSM control strategy and the 

conventional STA-SOSM control strategy, a HIL test bench based on two dSPACE is built, as presented 
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in Fig. 7. It is a cost-effective real-time verification platform to test the control strategy [34, 66, 67]. 

There are two dSPACE DS1104 Research and Development Boards in the HIL test bench: one is used as 

the hardware controller to implement the tested vector control strategies, where the sampling frequency is 

5 kHz, the other is employed as the emulator to emulate the 2L-VSI-fed SynRM drive system, where the 

sampling frequency is 10 kHz. With regard to the emulator, it adopts the low-frequency model of the 2L-

VSI presented in (9) and the dynamic model of the SynRM presented in (17). Moreover, the Park’s 

transformation and its inverse form are used to achieve the transformation of stator voltage and current 

components between the three-phase stator reference frame and the rotor reference frame. With regard to 

the hardware controller, it generates   
 ,   

  and   
  for the 2L-VSI in the emulator, which is based on 

the space-vector modulation, and samples ian, ibn, icn and rotor mechanical position m from the emulator, 

as illustrated in Fig. 8. 
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Fig. 8 Block diagram of the implementation of the vector-controlled SynRM drive system in HIL tests. 

Table 1 Parameters of the SynRM 

Parameter Value 

Nominal stator resistance, Rs0 1.05  

Nominal angular speed, mn 1500 rpm 

Nominal torque, Trn 4.8 N⸱m 

Nominal rotor inertia, J0 2.08   10-2 kg⸱m2 

Nominal viscous friction coefficient, Bmn 2.68   10-3 N⸱m⸱s/rad 

Pole pairs, np 2 

 

Table 2 Specifications of the 2L-VSI 

Parameter Value 

DC-bus voltage, Ud 200 V 

Switching period, Ts 100 s 

Turn-on time, Ton 1.3 s 

Turn-off time, Toff 1.3 s 

Dead time, Tdead 2.0 s 

Saturation voltage, Usat 1.6 V 
Diode forward voltage, Udiode 1.5 V 

 

The parameters of the SynRM are presented in Table 1 [15]. The specifications of the 2L-VSI are 

shown in Table 2 [49]. The adopted apparent inductance model of the SynRM is illustrated in Fig. 9, 

whose parameters are presented as follow: cd1   0.0391, cd2   45.4, cd3    12.9, cd4   1329, cd5   

19.9, cd6    13, cd7   795, cdq   0.0133, cq1   0.01, cq2   0.571, cq3   0, cq4   58, cq5   0.825, 

cq6   0, cq7   63.8, cqd   0.0833 [14]. With respect to the proposed HNN-SOSM control strategy, the 

parameters of the composite speed controller are selected as Ld0   Ld (0,0), Lq0   Lq (0,0), p1   100, 
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p2   200, 1   100, 2   0.1, and the parameters of two composite current controllers are selected 

as Ld0   Ld (0,0), Lq0   Lq (0,0), Ldd0   Ldd (1,1), Ldq0   Ldq (1,1), Lqd0   Lqd (1,1), Lqq0   Lqq (1,1), 

pd1   pq1   5000, pd2   pq2   20000. With respect to the conventional STA-SOSM control strategy, 

the parameters of the standard STA-SOSM speed controller are selected as Ld0   Ld (0,0), Lq0   Lq (0,0), 

p1   100, p2   200, and the parameters of two PI current controllers are the same as each other, i.e., 

the proportional gain is selected as 30 and the integral gain is selected as 4000. Regarding the 

implementation of STA-based controllers in the hardware controller, the sign function is usually replaced 

by the saturation function [68] or the hyperbolic tangent function [69] to further alleviate the chattering 

phenomenon. Therefore, in this paper, the sign function in STA-based controllers is replaced by the 

following saturation function in HIL tests  

  
 

if  
sat

sign if 

s s
s

s s

e l e l
e

e e l

 
 



，      

， 
  (83) 

where l denotes the boundary layer and its value is selected as 1 in this paper. 
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Fig. 9 Apparent inductance maps of the SynRM. (a) Ld (isd, isq), (b) Lq (isd, isq) 
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Fig. 10 Speed responses for the first test. (a) Conventional STA-SOSM control strategy. (b) Proposed HNN-SOSM 

control strategy 
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Fig. 11 Current responses for the first test. (a) Conventional STA-SOSM control strategy. (b) Proposed HNN-SOSM 

control strategy 

In the first test, the values of mr, isdr, J and Rs are set to 1000 rpm, 5 A, 0 and 0, respectively. The 

value of Tl declines from 4.8 N∙m to 0 N∙m at first, and then the value of Tf steps tenfold by raising the 

value of Bm to ten times. Fig. 10 presents the speed responses of the proposed HNN-SOSM control 

strategy and the conventional STA-SOSM control strategy, while the current responses of these two 

tested control strategies are illustrated in Fig. 11. It can be seen that, in comparison with the conventional 

STA-SOSM control strategy, the proposed HNN-SOSM control strategy can achieve smaller maximum 

tracking error and shorter settling time for the speed and current tracking control under the sudden change 

of external disturbances. 
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Fig. 12 Speed responses for the second test. (a) Conventional STA-SOSM control strategy. (b) Proposed HNN-

SOSM control strategy 
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Fig. 13 Current responses for the second test. (a) Conventional STA-SOSM control strategy. (b) Proposed HNN-

SOSM control strategy 

In the second test, the values of Tl, isdr, J and Rs are set to 2.4 N∙m, 5 A, 4J0 and 0, respectively. 

The value of mr steps from 1000 rpm to 1500 rpm at first, and then it is back to 1000 rpm. The speed and 

current responses of two tested control strategies are presented in Fig. 12 and Fig. 13, respectively. It can 

be observed that, in the presence of the rotor inertia uncertainty, the proposed HNN-SOSM control 

strategy can accomplish smaller overshoot and shorter settling time for the speed and current tracking 

control under the sudden change of the reference rotor mechanical angular speed, compared with the 

conventional STA-SOSM control strategy. 
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Fig. 14 Current responses for the third test. (a) Conventional STA-SOSM control strategy. (b) Proposed HNN-SOSM 

control strategy 

In the third test, the values of mr, Tl, isdr and J are set to 1000 rpm, 2.4 N∙m, 5 A and 0, respectively, 

while the value of Rs steps from 0 to Rs. The current responses of two tested control strategies are 

shown in Fig. 14. It can be seen that the variations of stator current components of the proposed HNN-

SOSM control strategy is smaller than those of the conventional STA-SOSM vector control strategy. 

7. Conclusions 

In this paper, a novel robust dual-loop vector control strategy is proposed for the SynRM drive system, 

which is based on the cascaded control structure consisting of the speed control loop and the current 

control loop. The external disturbances and parametric uncertainties are considered in the controller 

design. In the speed control loop, a composite speed controller consisting of a standard STA-SOSM 

controller, a HNN-DE and an error compensator is designed to regulate the rotor angular speed. Moreover, 

the learning laws for the HNN-DE and the error compensator are derived by the Lyapunov synthesis 

approach. The rigorous stability analysis for the speed tracking error dynamics using the proposed 

composite speed controller is presented. In the current control loop, two composite current controllers, 

each of which is composed of two standard STA-SOSM controllers, are proposed to regulate direct and 

quadrature axes stator current components in the rotor reference frame. The rigorous stability analyses for 

the current tracking error dynamics using proposed composed current controllers are presented. The 

results of the HIL tests show that the SynRM drive system using the proposed HNN-SOSM control 

strategy is able to accomplish better tracking performance and higher robustness against external 

disturbances and parametric uncertainties in comparison with the SynRM drive system using the 

conventional STA-SOSM vector control strategy. 
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