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Abstract

This text presents one of the first successful applications of a rare events method for the study of
multistability in a turbulent flow without stochastic energy injection. The trajectories of collapse of
turbulence in plane Couette flow, as well as their probability and rate of occurrence are systematically
computed using Adaptive Multilevel Splitting (AMS). The AMS computations are performed in a
system of size Lx×Lz = 24×18 at Reynolds number R = 370 with an acceleration by a factor O(10)
with respect to DNS and in a system of size Lx × Lz = 36 × 27 at Reynolds number R = 377 with
an acceleration by a factor O(103). The AMS results are validated with a comparison to DNS in the
system of size Lx × Lz = 24× 18. Visualisations in both systems indicate that turbulence collapses
because the self sustaining process of turbulence fails locally. The streamwise vortices decay first in
streamwise elongated holes, leaving streamwise invariant streamwise velocity tubes that experience
viscous decay. These holes then extend in the spanwise direction. The examination of more than a
thousand of trajectories in the (Ec,x =

∫
u2

x/2 d
3
x, Ec,y−z =

∫
(u2

y/2+u2

z/2) d
3
x) plane in the system

of size Lx × Lz = 24 × 18 confirms the faster decay of streamwise vortices and shows concentration
of trajectory. This hints at an instanton phenomenology in the large size limit. The computation
of turning point states, beyond which laminarisation is certain, confirms the hole formation scenario
and shows that it is more pronounced in larger systems. Finally, the examination of non reactive
trajectories, where a hole opens then closes, indicates that hole opening and closing are distinct
processes. Both the vortices and the streaks reform concomitantly when the laminar holes close.

PACS: 47.27-Cn: Transition to turbulence & 47.27-nd: Channel flow & 05.70-Ln: Non equilibrium and
irreversible thermodynamics

1 Introduction

Many turbulent flows of aerodynamical or geophysical interest are not homogeneous nor isotropic. They
often display several possible turbulent flow configurations and rare switches between these flow configura-
tions. For these reasons these flows are often termed multistable. Examples of multistability in turbulent
flows include turbulent dynamos [Berhanu et al., 2007], turbulent convection [Podvin and Sergent, 2017],
bluff body wakes [Grandemange et al., 2013], jets in the wake of a pair of cylinders [Kim and Durbin, 1988]
and barotropic atmospheric-type jets [Bouchet et al., 2019]. In order to understand these turbulent
flows, uncovering what drive the switches is as important as explaining the mechanisms maintaining
each metastable configuration. These switches are characterised by the mean first passage time before a
change of configuration occurs. The switches often take place through the same chain of events, termed a
transition path or a reactive trajectory, a notion originating from kinetic chemistry [Metzner et al., 2006].
It is fairly difficult to compute mean first passage times and transition paths, either experimentally or
numerically for two main reasons.
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a) One firstly has to deal with the very large number of degrees of freedom of turbulent flows, particularly
in numerical simulation. These complex flows are often difficult to simulate even by means of Large
Eddy Simulations.

b) One secondly has to deal with the extremely long waiting times between each event. These waiting
times are several orders of magnitude larger than the duration of a realisation of a switch and even
longer than the typical eddy turnover time [Kim and Durbin, 1988]. This means that the cost of
sampling more than a few events is prohibitive by classical means (see table in [Bouchet et al., 2019]).

In order to propose a method to systematically study multistability, one first needs a turbulent sys-
tem which has fewer effective degrees of freedom but is still complex enough to display multistability,
with a moderate need for extrinsic stochastic forcing. One can thus temporarily bypass problem a).
A transitional wall flow such as plane Couette flow can provide such a situation (see Fig. 1). Unlike
thermal convection, for instance, a wall flow like plane Couette flow is linearly stable for all Reynolds
numbers [Romanov, 1973]. Meanwhile transitional turbulence can exist at moderate Reynolds num-
bers, albeit transiently [Eckhardt et al., 2008, Schmiegel and Eckhardt, 1997, Bottin and Chaté, 1998,
Eckhardt et al., 2007]. Meanwhile, turbulence can build up from laminar flow under a finite amplitude
forcing [Wan and Yu, 2017, Rolland, 2018, Liu et al., 2020], or somewhat equivalently from a finite am-
plitude initial condition [Faisst and Eckhardt, 2003]. This gives a first type of multistability, where the
transitional turbulence of plane Couette flow can collapse down to laminar flow under its own fluctua-
tions, and go back to turbulence if it is forced. In a way this is a purely temporal view, this image should
be completed by noting that transitional wall flow turbulence tends to be localised (the type of organ-
isation depends on the flow geometry). At moderate Reynolds numbers, wall flows where transitional
turbulence extends in one dimension (such as Hagen–Poiseuille flow [Moxey and Barkley, 2010], or tilted
plane Couette flow [Gomé et al., 2020]) can display splitting: the turbulent puff elongates and splits in
half. This can lead to an effective extension of the area occupied by turbulence. This can provide a
third type of multistability events in some flow configurations. Aside from the relevance of wall flows for
stable boundary layers, canonical flows such as plane Couette can thus provide a good laboratory to test
rare events methods on turbulent flows. These multistable turbulent flows are not so complex that they
cannot be simulated by Direct Numerical Simulations (DNS).

Even if the number of degrees of freedom is reduced, as is the case for transitional wall, one still
has to deal with problem b). Transitional turbulence, like other multistable system, displays very
long waiting time before a multistability event occurs [Eckhardt et al., 2007, Bottin and Chaté, 1998,
Gomé et al., 2020]. This means that even for the study of turbulence collapse in plane Couette flow, the
use of DNS to sample many events comes with a prohibitive computational cost. There are of course
alternate methods to study rare events. Many of them originate from the study of kinetic chemistry
and borrow much of its vocabulary. All these methods aim at performing the computation of both the
reactive trajectories and the mean waiting time before they occur. These methods can be divided in two
main families.

• On the one hand, one finds mostly theoretical, optimisation methods, which are applied to systems
where a stochastic forcing is clearly identified. In that case, in the limit where the variance of said
forcing goes to zero, all the transition paths concentrate around an instanton [Touchette, 2009]
§ 6. The instanton represents the most probable transition path and can be computed using action
minimisation [Grafke and Vanden-Eijnden, 2019, Wan and Yu, 2017]. One fundamental property
of said instantons is that they evolve from a first multistable state toward a saddle point of the
deterministic dynamics under the action of the noise. The instanton then evolves freely from the
saddle point toward the second multistable state. The mean first passage time can be estimated us-
ing the result of said action minimisation and can loosely be thought of as depending on the distance
between the first metastable state and the saddle point. In gradient stochastic systems, this yields
the celebrated Eyring–Kramers formula, also known as the Arrhenius law [Hänggi et al., 1990], such
result can be extended to non gradient systems [Bouchet and Reygner, 2016]. While these methods
give a lot of qualitative results on the structure of transition paths, they can prove tricky to im-
plement for fluid flows [Wan and Yu, 2017]. A key property of these formula and methods is that
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they are formulated as large deviations [Touchette, 2009]. This means that they correspond to an
asymptotic writing of the small parameter times the logarithm of probability, a probability density
function or a rate of probability, which has a finite value independent of said small parameter.

• On the other hand, one finds mostly numerical cloning methods, which use the actual fluctuat-
ing dynamics of the system and push them toward realisations of the reactive trajectories. These
methods compute the transition paths using N clone dynamics of the system and apply a mutation
selection procedure to compute the reactive trajectories. One such method is termed Adaptive Mul-
tilevel Splitting (AMS) [Cérou and Guyader, 2007, Cérou et al., 2019]. AMS and its variants have
been successfully used to compute reactive trajectories and extreme events in kinetic chemistry
[Lopes and Lelièvre, 2019] theoretical physics models [Rolland et al., 2016], models of transitional
flows [Rolland, 2018], idealised atmospheric flows [Bouchet et al., 2019, Simonnet et al., 2020]. Some
variants have been applied to the study of extreme two dimensional turbulent wakes [Lestang et al., 2018,
Lestang et al., 2020] and oceanic flow reversals [Baars et al., 2021].

In practice, these two types of methods are often used hand in hand. Once a small parameter that
controls the effective noise variance has been identified, the qualitative insight from theory is used to
guide numerical studies and propose manners in which results can be presented. Applying such a program
to the collapse of turbulence in plane Couette flow is actually not that straightforward. Because energy
is not injected in the flow through a stochastic forcing whose variance decays, the small parameter is
not readily identified and cloning methods cannot be applied as such [Lestang et al., 2020]. Applying
basic cloning rules leads to so called extinction: the flow does not separate trajectories from one another
and the method does not manage to create reactive trajectory to would contain an excursion far enough
from the starting metastable state. A first goal is therefore to propose a modified cloning method that
can bypass this problem and can at least succeed in computing reactive trajectories faster than a DNS
would. This is the purpose of anticipated AMS, which is presented and used in this text. Once the
reactive trajectories are computed, if they display concentration around a typical transition path, one
needs to make sense of this concentration. For this purpose, one can use both AMS and DNS to identify
the right small parameter from the study of probability density functions, probability of transition, mean
first passage times etc. We will keep this in mind in our study. We also note that there are examples
very relevant reactive trajectories (see [Rolland et al., 2016] for instance) that are not necessarily of the
instanton type. As a consequence, one does not always have to try to force the results in a large deviations
framework.

We present the study of the collapse of transitional turbulence of plane Couette flow in the following
manner. We first present Anticipated Adaptive multilevel splitting in section 2.1. We then remind the
configuration of plane Couette flow in section 2.2.1, how initial conditions are generated in section 2.2.2
and what reaction coordinates are used in section 2.2.3. The DNS which are used as reference are
presented in the next section (§ 2.3). The reaction coordinate used to compute reactive trajectories is
presented in section 2.2.3. We then present the systematic comparison of reactive trajectories computed
by AMS and DNS in a system of size Lx × Lz = 24 × 18 (§ 3.1). We perform the validation of the
computation probability of crossing and mean first passage time in this system in section 3.2. AMS is
then applied to the computation of very rare trajectories and laminar hole formation in section 4. These
results are finally discussed together in the conclusion (§ 5).

2 Method

2.1 AMS

Before presenting the principle of anticipated AMS, let us first give a formal phase space description of
the rare events we will study in this text. Let us sketch the collapse of turbulence in figure 2 (a) and
consider the set A, a neighbourhood of the turbulent flow in phase space, and the set B, a neighbourhood
of the laminar flow . A realisation of the dynamics which starts in A fluctuates around it, has several
excursions out of C, an hypersurface closely surrounding A, and eventually crosses C and reaches B before
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Figure 1: Overview of transition to turbulence: the bottom axis indicates the Reynolds number and the
text on the top indicating typical states. The left panel displays a sketch of plane Couette flow. The
middle panel displays colour levels of the kinetic energy density in a y = 0 plane at R = 370, showing
banded laminar turbulent coexistence. The green box indicates a domain of size Lx × Lz = 36× 27, the
blue box indicates a domain of size Lx × Lz = 24 × 18. The right panel displays colour levels of the
kinetic energy in a y = 0 plane at R = 500.

coming back to A, is termed a first passage. Its average duration is termed the mean first passage time
T . The last stage of the dynamics is termed a reactive trajectory: this is the part of the dynamics that
starts in A, crosses C and reaches B before A. Precise definitions of sets A, B and hypersurface C for
collapse will be given in sections 3 and 4, based on reaction coordinates defined in section 2.2.3.

We then give a brief overview of the variant of AMS, termed Anticipated Adaptive Multilevel Splitting,
which was used for the computation presented in this text (see [Cérou and Guyader, 2007, Rolland and Simonnet, 2015,
Bréhier et al., 2016, Rolland, 2018, Cérou et al., 2019, Lestang et al., 2020] for more details on the gen-
eral methods). All variants of AMS use a reaction coordinate (or observable) φ(u) = Φ(t), which measures
the position of the flow relatively to starting set A and arrival set B. All variants run N clone dynamics
of the system to compute iteratively at least N −Nc > 0 reactive trajectories going from a hypersurface
C close to set A to the set B. The algorithm is sketched in figure 2 (b) and proceeds in the following
manner

• There is a first stage of natural dynamics, where each clone dynamics starts inside set A. As much
as possible, these initial conditions should be distributed according to the natural flow, restricted
to A (see § 2.2.2 for an example of procedure). We let all the initial conditions evolve according to
their natural dynamics until they cross C and we stop them when they reach either A or B.

• The algorithm runs the stages of mutation selection. At each stage, the clones 1 ≤ i ≤ Nc (with
Nc < N), ordered by maxtΦi(t), are suppressed. They are branched on Nc clones drawn uniformly
out of the N − Nc other clones at level maxtΦNc

(t), the maximal value of Φ reached by the
suppressed trajectories. The branched trajectories then follow their natural dynamics until they
reach either A or B, with a new realisation of the noise.

The algorithm stops after k iterations when Nr ≥ N −Nc + 1 clones trajectories have reached B. This
yields an estimator of the probability α of reaching B before A [Cérou and Guyader, 2007], and the
corresponding mean first passage time T [Cérou et al., 2011]

α̂ =

〈

r

(

1− Nc
N

)k

︸ ︷︷ ︸

=α

〉

o

, T̂ =

〈(
1

α
− 1

)

(t1 + τ̃) + (t1 + τ)

〉

o

, (1)

where τ is the mean duration of reactive trajectories, t1 is the mean duration to go from A to C and τ̃ is
the mean duration of non reactive trajectories, computed in each AMS run. The notation 〈·〉o =

∑o
l=1 ·l

corresponds to an average over o independent AMS runs [Cérou and Guyader, 2007, Rolland, 2018].
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We will often record the velocity field, noted ulast and termed the last state at the last stage, that
corresponds to maxtΦNc

(t) during the last stage of the algorithm. It often gives a precise idea of the
turning point in reactive trajectories. Before the flow visits the neighbourhood of that state, returning
towards turbulence is more likely, beyond that point, relaminarising becomes more likely. In systems
which correspond to a simple deterministic part forced by noise, that state actually corresponds to the
saddle point of the deterministic part of the dynamics crossed by the instanton in the limit of the noise
variance going to 0. This has been verified for models with few degrees of freedom and the one dimensional
Ginzburg–Landau equation (not shown here). It can be used to educe an effective saddle between two
multistable states [Simonnet et al., 2020]. Note that it does not a priori corresponds to an actual saddle
of the Navier–Stokes equations (as computed by dichotomy or other methods [Schneider et al., 2007,
Willis and Kerswell, 2009]).

The algorithm is naturally parallelised over the Nc suppressed clones. This will be done for the
calculation presented in this text. We usually choose the number of threads c such that Nc/c is an
integer larger than or equal to two. Since the trajectories have a random duration, we cannot have a
perfect load balancing in this parallelisation. Note however that as Nc/c increases, it has been observed
that the differences in trajectories durations average out and that we can reach a reasonable load balancing
between threads.

Note that in deterministic systems, we more often than not add a small background noise which helps
the separation of trajectories after branching. When we branch on a trajectory, we change the realisation
of this noise. This background noise will be noted as an additional stochastic forcing in the equation
and its properties will be given. In AMS computations, we will use a simple “tick” a forcing exerted just
at branching, white in space and time with variance σ = 10−10 so as not to perturb the laminar flow
too much. The trade-off is that we compute trajectory properties with a small error : T + δT , α + δα
and τ + δτ . We will comment on the visible effects of this additional force on the trajectories and their
properties.

Schematically, we can apply AMS to two types of systems. On the one hand, we find systems with
a large time scale separation between some fast fluctuating degrees of freedom and slower degrees of
freedom which represent the main features of the flow travelling between A and B. This is often the case
for stochastically forced systems. In these systems, two slightly different initial conditions will quickly
separate and the odds of creating an excursion toward B instead of A by slightly changing the noise
realisation at a branching are non negligible. On the other hand, we find systems with absolutely no
clear time scale separation between degrees of freedom. This is often the case of purely deterministic
systems. Two slightly different initial conditions do not separate until it is too late (they both reach A).
We can find situations where, no matter the structure of the small perturbation (typically at a branching),
the odds of creating a further excursion toward B instead of A can be exceedingly small. This is especially
the case if we perturb at the peak of an existing fluctuation. If we apply basic AMS to this second type
of system, where we branch at ΦÑc

, we run the risk of a so called extinction [Lestang et al., 2020]. This
occurs when all trajectories have the same maximum which is strictly outside the arrival set ∀1 ≤ i ≤
N,maxtΦi = Φext < Φ(∂B). The algorithm does not manage to proceed any further1. In order to
bypass this limitation, we can perform anticipated branching, that is to say branch the new trajectories
at Φb < ΦNc

. In that case, it may be necessary to reiterate the branching several times in order to
ensure that the branched trajectories have maxtΦ > ΦÑc

. In figure 2 (c), we give two examples of
relations Φb(ΦNc

) that were tested for place Couette flow. Each one is adapted to a given situation. The
converging anticipation is mostly used in this article. The point is to take advantage of higher mixing
and faster separation of trajectories that take place when the flow is closer to the fully turbulent state. It
converges to the line so as not to lose too much computational time rerunning trajectories when the flow
is very close to turbulence collapse. The saturated anticipation takes a very different point of view. It
has proved very efficient in very small domains where the collapse of turbulence is very well described by
transient chaos. It uses the fact that there is much more mixing when the flow is close to the turbulent
state, but that mixing gradually stops during excursions. If a trajectory is on the wrong track, there is
no derailing it at large Φ. In this type of systems, the task of AMS is really about finding the right exit

1In that case, when extinction is detected, the computation is terminated and the way AMS is used is reassessed.
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Figure 2: (a) Sketch of two bistable states A and B and the hypersurface C closely surrounding A. two
realisations of the dynamics are sketched: a single excursion in blue and a first passage trajectory in black
and red. The red part of the first passage trajectory is the reactive trajectory. (b) Sketch of the principle
of AMS, showing two iterations of the algorithm, withN = 3 clones, indicating the starting stateA and its
neighbourhood, the arrival state and its neighbourhood B, three trajectories are ordered by their maxtΦ.
Trajectory one (dashed blue line) is suppressed and branched on another trajectory at level maxtΦ1

and then ran according to its natural dynamics. Trajectory 2 is then suppressed and branched on 3 at
level maxtΦ2. (c) Two examples of anticipation of branching level of reaction coordinate as a function of
maximum reaction coordinate reached by suppressed trajectories ΦNc

(Φb) tested in anticipated branching
(see § A, Eq. (12), (13) for details, both examples use a parameter ξ = 0.25).

point. More details on the necessity of anticipation are given in appendix A.

2.2 plane Couette flow

2.2.1 Set up

We will perform the study of collapse in plane Couette flow, the flow between two parallel walls located
at y = h and y = −h, respectively moving at velocities Uex and −Uex (Fig. 1, left). We term ex
the streamwise direction, ey the wall normal direction and ez the spanwise direction. Lengths are
nondimensionalised by h, velocities are nondimensionalised by U and times by h/U . The first and
foremost control parameter is the Reynolds number R = hU/ν, with ν the kinematic viscosity. The
nondimensional streamwise and spanwise sizes Lx and Lz are two other control parameters of the system.
The full velocity field is written v = yex + u, where yex is the laminar baseflow.

The forced incompressible Navier–Stokes equations for the field u, the departure to the laminar base
flow yex and the pressure q, read

∂ui
∂t

+ uj
∂ui
∂xj

+ y
∂ui
∂x

+ δi,xuy = − ∂q

∂xi
+

1

R

(
∂2ui
∂x2

+
∂2ui
∂y2

+
∂2ui
∂z2

)

+ fi(x, t) , ∂iui = 0 , (2)

using tensorial notations. We include the term f . It is a very general forcing which can be switched on or
off. When it is on, it is white in time and in y. It can be red or white in x− z: in AMS simulations, we
will use a temporally localised fully white perturbation, while in perturbed DNS, we use a red forcing (see
§ 2.2.2, 2.3 for details). These equations are discretised in space on Nx and Nz de-aliased Fourier modes
(so that 3

2Nx and 3
2Nz modes are used in total) in the streamwise ex and ez directions and Ny Chebyshev

modes in the ey. Time integration is performed using channelflow, by J. Gibson [Gibson et al., 2008].
We investigate in detail systems of two sizes. The smaller system has size Lx×Lz = 24× 18 (see Fig. 1
for scale), we set Ny = 27, 3

2Nx = 128 and 3
2Nz = 96. The larger system has size Lx × Lz = 36 × 27,

we set Ny = 27, 3
2Nx = 196 and 3

2Nz = 144. In both cases we will set constant dt during the time
integrations, dt = 0.05 (at R = 370 and R = 377) and dt = 0.02 (at R = 600). Both these values ensure
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stability of the time integration and respect the CFL criterion. We do not use adaptive time step in
order to have more control on trajectory reconstruction and effect of the time step on convergence.

We define the spatially averaged kinetic energy as

Ec =
1

2LxLz

∫ Lx

x=0

∫ 1

y=−1

∫ Lz

z=0

u2x + u2y + u2z
2

dxdydz . (3)

We will also distinguish the kinetic energy contained in the streamwise component, on the one hand, and
the kinetic energy contained in the spanwise and wall normal components, on the other hand

Ec,x =
1

2LxLz

∫ Lx

x=0

∫ 1

y=−1

∫ Lz

z=0

u2x
2

dxdydz , Ec,y−z =
1

2LxLz

∫ Lx

x=0

∫ 1

y=−1

∫ Lz

z=0

u2y + u2z
2

dxdydz . (4)

The first kinetic energy Ec,x roughly quantifies the energy contained in velocity streaks, while the sec-
ond Ec,y−z roughly quantifies the energy contained in streamwise vortices [Jiménez and Moin, 1991,
Hamilton et al., 1995]. These are the two main quantities of transitional wall flow turbulence.

2.2.2 Initial condition generation

In this section we present the procedure used for the generation of turbulent initial conditions used to
study the collapse at Reynolds number R (by mean of DNS or AMS).

a) We first create an artificial velocity field uy = 0, uz = 0, q = 0, ux = 0.4 sin
(
π y+1

2

)
cos

(

4π z
Lz
Mz

)

,

with Mz = max
(
1,
⌊
Lz

5

⌋)
. This corresponds to streamwise velocity tubes which are prone to streaks

instability [Waleffe, 1997] and should thus lead to wall turbulence.

b) On top of the streamwise velocity components we add a noise red in x and z and white in y, this yields
u0. This red noise is such that the variance of its nx, nz Fourier mode on component i is σiγnx

γnz
,

with γx,z = 1 for 0 ≤ |nx,z| ≤ 6, γx,z = 6
|nx,z|

for nx,z > 6. We set γx,z = 0 if nx,z > 28 in the

Lx × Lz = 24 × 18 system and nx,z > 36 in the Lx × Lz = 36 × 27 system. We use σx = 0.05,
σy = 0.0025 and σz = 0.015.

c) This initial condition is evolved for T0 = 500 in the Lx × Lz = 24 × 18 system and T0 = 200 in the
Lx × Lz = 36× 27 system at R+ = 600. It has been checked that this duration was long enough so
that natural buffer layer turbulence forms. If the kinetic energy of this velocity field is larger than
0.03, this yields uR+,1,0, qR+,1,0, otherwise we go back to step b) and generate a new u0 with a new
realisation of the red noise.

d) We then generate the Ni initial conditions {un, qn}0≤n<Ni
in the following manner . We first evolve

uR+,1,n, qR+,1,n at R+ for T+ = 500 (Lx × Lz = 24× 18) or T+ = 200 (Lx × Lz = 36× 27), yielding
{uR+,2,n, qR+,2,n} = uR+,1,n+1, qR+,1,n+1.

e) We then set the Reynolds atR (where we study collapse) and we set {uR,1,n, qR,1,n} = {uR+,2,n, qR+,2,n}.
This velocity field is evolved atR during T− = 750 (Lx×Lz = 24×18) or T− = 500 (Lx×Lz = 36×27).
This duration is chosen so that enough mixing has occurred and each initial condition is decorrelated
from the others. We obtain {uR,2,n, qR,2,n}. We then let it evolve until the kinetic energy is either
within 1.25% of E0, in which case we have our nth initial condition un or is below 0.03. In that case
we restart at d) by setting {uR+,1,n, qR+,1,n} = {uR+,2,n, qR+,2,n}. We use E0 = 0.055 in the system
of size Lx × Lz = 24× 18 and E0 = 0.052 in the system of size Lx × Lz = 36× 27.

This approach ensures that we have N decorrelated initial conditions which verify a given constraint
on kinetic energy (for instance). It is of course easily parallelised with a minimal load imbalance. If we
use c threads, we generate Ni =

⌈
N
c

⌉
or Ni =

⌊
N
c

⌋
on each thread, each thread uses an independent

uR+,1,0.
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Figure 3: (a) Example of a time series of kinetic energy in a domain of size Lx×Lz = 24×18 at Reynolds
number R = 370 The black dashed lines indicate were the sampling is stopped for the construction of
the empirical probability density function of kinetic energy conditioned to not collapse happening. (b)
Conditional average of the kinetic energy as a function of the Reynolds number for domains of size
Lx × Lz = 24 × 18, Lx × Lz = 36 × 27. (c) Conditional variance of the kinetic energy as a function of
the Reynolds number for domains of size Lx × Lz = 24× 18, Lx × Lz = 36× 27.

2.2.3 Reaction coordinates

Since the kinetic energy Ec (Eq. 4) of the turbulent flow is fluctuating around a conditional average,
while the kinetic energy of the laminar flow is zero (Fig. 3 (a)), a first choice to construct the reaction
coordinate is to use Ec(t). We can therefore propose the reaction coordinate φE defined as

ΦE(t) =
Et − Ec(t)

∆E
. (5)

It is natural to choose Ei close to some average of the kinetic energy and ∆E . Et. In order to estimate
Et, one can sample Ec(t) and construct the empirical probability density function conditioned on the
flow experiencing no collapse of turbulence, in a system of given size and Reynolds number. One can
for instance retain the part of the times series where Ec(t) ≥ 0.025 (indicated by the black dashed line
in figure 3 (a)). Using this, one can compute a sample mean of the kinetic energy E (Fig. 3 (b)), and
then choose close enough Et and ∆E accordingly. We will state what values of Et and ∆E are chosen in
AMS computations in section 3 and section 4. We also compute the conditional variance as a function
of the Reynolds number for the two system sizes (Fig. 3 (c)): we will use this quantity to choose the
hypersurface C, so that we typically have Et − Ec(t) ≃ σ

2 on C. This corresponds to a short excursion
when the kinetic energy is away from its conditional average by typically half a standard deviation. Using
the reaction coordinate, we set A as all velocity fields such that ΦE ≤ 0 and B as all velocity fields such
that ΦE ≥ 1.

In appendix A, we use an other reaction coordinate Φa, based on ψ(t), the asymmetry of the stream-
wise velocity field with respect to the midplane y = 0

ψ(t) =
1

V

∫ Lx

x=0

∫ 1

y=−1

∫ Lz

z=0

uxsgn(y) dxdydz , (6)

where sgn(y) stands for the sign of y. The choice of this reaction coordinate is motivated by the fact
that we have mostly ux < 0 (coming from low speed streaks) for y > 0 and mostly ux > 0 (coming from
high speed streaks) for y < 0 when velocity streaks (and thus wall turbulence) are present in the flow
[Jiménez and Moin, 1991, Hamilton et al., 1995, Kawahara et al., 2003]. Note that with this definition
ψ is mostly negative. We proceeded in the same manner as with the kinetic energy in order to construct

a reaction coordinate: conditional averages of ψ are performed in order to calculate Φa(t) = 1− ψ(t)
〈ψ〉 .

8



2.3 Direct numerical simulations of collapses

We perform two types of direct numerical simulations of turbulent collapse. The first kind of simula-
tion consists in letting the flow freely evolve from initial conditions computed following the method of
section 2.2.2. These simulations are stopped when the flow has laminarised. This is deemed to have
happened when the reaction coordinate has reached one. In these simulations, we only save time series,
such as those of Ec, Ec,x, Ec,yz and ΦE (an example of such time series in given in figure 3 (a)). From the
last part of each DNS, we can extract the time series of these quantities in natural collapse trajectories.
We will perform two types of such DNS: some free natural DNS, and some forced DNS, in order to
check the effect of additional noise on the collapse of turbulence. An additional noise will necessarily be
included in AMS computations, and we wish to know what is the minimal error caused on the probability
of collapse, trajectory features and durations and mean first passage times by the addition of this noise.
Since we cannot add a comparable white tick in DNS, we will add a red permanent noise. In that case
the forcing f (Eq. (2)) is exerted at all time and it is red in x and z. The forcing noise is characterised
by its spatial correlation function, which is prescribed through its spectrum

〈fi(x, t)fj(x′, t′)〉 = δijδ(t− t′)Ci(x− x′, z − z′)C̃i(y − y′) , Ĉi(nx, nz) = Γi,nx,nz
. (7)

In Γi,nx,nz
, i stands for the component ex, ey and ez (i = 1, 2, 3), nx stands for the Streamwise wavenum-

ber, nz stands for the spanwise wave number. In this text we always use C̃i(y−y′) = δ(y−y′) in numerical
simulations using a finite number Ny of Chebyshev modes in the wall normal direction. In DNS, we will
always use Γi,nx,nz

= γnx
γnz

with the previously defined γ (see § 2.2.2). We set σ = 10−9.
Another kind of direct numerical simulation consists in repeating the stage 0 of AMS, where we start

the simulation from our initial conditions, let them cross the hypersurface C and then either laminarise
or go back to φ < 0. From these, we can compute the proportion of trajectory that laminarises and
thus have an unbiased estimate of the probability of collapse and trajectory durations and validate AMS
estimates of these quantities.

3 System of size Lx × Lz = 24 × 18: reactive trajectories and

validation of AMS computations

In this section, we will compare the properties of the reactive trajectories computed by mean of AMS
and by mean of DNS as well as discuss the trajectory properties in a system of size Lx × Lz = 24 × 18
at Reynolds number R = 370. We choose rectangular shaped domains which are comparable to what is
feasible in experiments (see Fig. 1). The values of the domain size and Reynolds number imply that the
study of turbulence collapse is affordable by means of direct numerical simulations. Results of DNS and
AMS computations will be compared to assert what degree of trust can be placed in general outputs of
AMS computations. For estimates (of the probability of collapse α, the average duration of trajectories
τ , and the mean first passage time T and paths followed by trajectories) coming from both types of
computations, we will provide intervals of confidence and check whether they overlap or if biases are
present in the results of AMS computations. From these we will be able to deduce what should be the
errors bars a minima that should be placed on the results of anticipated AMS computations. This will
be useful when no DNS are available for comparison, for instance in larger domains at larger Reynolds
numbers, in section 4.

In these computations, we will use Et = 0.05, ∆E = 0.048 for the reaction coordinate ΦE (Eq. (5)),
in conjunction with the conditional average of the kinetic energy (Fig. 3 (b)). The properties of the
initial conditions in A are given in section 2.2.2. The hypersurface C will correspond to the set of velocity
fields such that Φ = 0.06, which roughly corresponds to half a standard deviation from the conditional
average (Fig. 3 (c)). We set the parameter ξ = 0.2 with the converging Φb (Eq. (13), § A, Fig. 2 (c))
for the anticipation of branching. This corresponds to a good trade-off between the need for mixing and
separation of trajectories, and the minimisation of the number of retries when branching trajectories.
The AMS computations use N = 120 clones and suppress Nc = 32 clones at each iteration. They are
ran on 16 threads, which leads to reasonable load balancing.
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3.1 Collapse trajectories

3.1.1 Visualisation of the collapse trajectories

We first describe the velocity fields during the collapse, in trajectories computed by AMS. These are
available in three dimensions for the three components in much greater quantity than for direct numerical
simulations. We only need to record the collapse trajectories at time intervals (sampled at time intervals
δt > 1) from the final set of reactive trajectories as well as non reactive trajectories obtained at the last
step of AMS computations. We do not need to discard the very long fluctuations around set A contained
in DNS of natural collapse, thus drastically reducing the disk space requirements for systematic studies
of the collapses.

We display colour levels of the streamwise and spanwise components of the velocity field in a mid-
plane at successive instants during a collapse trajectory in figure 4 and during one of the non reactive
trajectory remaining at the last stage of AMS in figure 5. We will focus on the two fields (ux, uz) be-
cause of the physics of wall flows and experimental constraints. On the one hand, it has been shown
in models and observed in some experiments and simulations that there was a distinct behaviour of
velocity components. One finds velocity streaks contained mostly in ux as well as streamwise vortices
ωx that can be observed through the component uz (they are the main contribution to this velocity
component) [Hamilton et al., 1995]. Moreover it has been observed in models, simulations and experi-
ments that decay of turbulence was much faster in streamwise vortices (or its proxies) than in velocity
streaks [Rolland, 2018, Liu et al., 2020, Gomé et al., 2020]. We will endeavour to discuss this observation
in specifically computed collapse trajectories. On the other hand, most experimental observations are
performed by PIV using a plane parallel to the wall, thus capturing ux and uz in a x− z plane near the
midgap [Liu et al., 2020, De Souza et al., 2020].

We first visualise the velocity fields as turbulence collapses. The reactive trajectory starts from uni-
form buffer layer turbulence in the whole domain (Fig. 4, t = 50). The kinetic energy is of course close
to the conditional average. As time goes on (t = 174), the kinetic energy decreases, and observation
indicates that the spanwise component of the velocity field is much less intense than in the initial condi-
tion. Moreover the largest values of uz are spatially localised (intense small scales for 9 . z . 14, less
intense, largest scales for 0 . z . 9). The streamwise velocity field has not yet decayed in amplitude,
however it is streamwise invariant where uz is almost 0. As the flow laminarises (t = 200), the spanwise
velocity field further decays while the streamwise velocity field becomes even more streamwise invariant.
The amplitude of ux remains comparable to what was found in the initial condition |ux| . 0.6. This
finally leads to a situation where uz is negligible and only streamwise velocity tubes are left in the flow
(t = 300). These tubes then undergo viscous decay.

We can comparably examine a non reactive trajectory, that is to say a realisation of the dynamics
that undergoes a large enough excursion of kinetic energy to be retained at the last stage of AMS
computations, but that still goes back to a fully turbulent flow (Fig. 5). As with all other trajectories,
this one starts with turbulence in the whole domain (Fig. 5, t = 2). We again observe that uz decays
faster than ux (t = 74). In that case the spanwise localisation of the decay is not disputable. Along
with the decay of uz, the streamwise velocity component becomes streamwise invariant (t = 200). The
kinetic energy fluctuates for some time around a plateau (150 . t . 350), then increases again. The
values taken by uz are getting more intense over an increase area of the domain (t = 400). Note that
the streamwise velocity field had decayed locally during the plateau (for 0 . z . 7). We observe an
asymmetry between the decay and the reinvasion processes. While uz retracts to smaller areas than ux
during the decay: the laminar-turbulent boundary (typically planes z = cst) for ux and uz. Both uz and
a streamwise dependent ux then fully reinvades the domain (t = 600). We thus observe a concomitant
restart of both components of the self sustaining process of turbulence.

We can complement this view by observing the streamwise vorticity field ωx,last = ∂yuz,last−∂zuy,last
leading to the larger reaction coordinate in the last suppressed state in the last stage of AMS (Fig. 6).
In this system of relatively moderate size, even if one always has an impression that turbulence collapses
through the formation of a laminar hole, the structure of this turning point state varies from run to run.
One can observe clearly localised streamwise vortices (Fig. 6 (a)), an almost entirely quiescent flow (Fig. 6
(b)) or rather active streamwise vortices all over the domain (Fig. 6 (c)). One of the reasons we have
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Figure 4: Time series of the kinetic energy (left panels) with a dot indicating the point in time of each
line (t = 50, t = 174, t = 200, t = 400), alongside colour levels of the streamwise velocity (central panels)
and spanwise velocity (right panels), at corresponding times, in the midplane y = 0 during a collapse
trajectory in a domain of size Lx × Lz = 24× 18 computed by AMS.
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Figure 5: Time series of the kinetic energy (left panels) with a dot indicating the point in time of each
line (t = 2, t = 74, t = 200, t = 400, t = 600), alongside colour levels of the streamwise velocity (central
panels) and spanwise velocity (right panels) in the midplane y = 0 during a non reactive trajectory (hole
opening then closing), at corresponding times, in a domain of size Lx×Lz = 24× 18 computed by AMS.
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Figure 6: Streamwise vorticity in the midplane y = 0 in the system of size Lx×Lz = 24×18 for last states
at the last branching stage of several AMS computations. (a) Run estimating α̂ = 0.045, T̂ = 1.5 · 104,
(b) run estimating α̂ = 0.086, T̂ = 1.1 · 104, (c) run estimating α̂ = 0.022, T̂ = 3.7 · 104.
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Figure 7: Normalised distribution of duration of collapse trajectories sampled by AMS (≃ 1600 samples),
by DNS (≃ 189 samples) and compared to a normalised Gumbel distribution, in a system of size Lx×Lz =
24× 18 at Reynolds number R = 370.

fairly different ωx,last is that they correspond to different instants on similar trajectories that do display
a hole opening. This is also caused by the fact that reactive trajectories are not yet that concentrated
around a typical trajectory.

In any case, we can have a first view of the path followed during the collapse of turbulence. The self
sustaining process of wall turbulence fails because the streamwise vortices disappear. No more energy is
extracted from the base flow so that the velocity streaks, turned into tubes, slowly decay. They do not
undergo any new streaks instability that would refuel the streamwise vortices [Marquillie et al., 2011,
Jiménez and Moin, 1991]. We will examine all the reactive trajectory to show that far from being some
picked visualisations, this description is statistically significant. We observed spanwise localisation of this
failure of the self sustaining process of turbulence. From the observations and monitoring of turbulent
fraction, one can note that there is more variability in this respect. We will examine a larger system in
the next section to check whether this observation is disputable or not in section 4.

3.1.2 Comparison between trajectories computed by AMS and by DNS

We then start our comparison of the collapse trajectories computed by AMS and DNS by describing
the duration of collapse trajectories, that is to say the time s elapsed between the instant where the
flow crossed the hypersurface C and the instant where the reaction coordinate reaches Φ = 1. We have
obtained 1138 trajectories from AMS and 189 trajectories form DNS. We firstly compute the sample mean
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τ and the sample variance σ of the trajectory durations, we obtain τAMS = 413 ± 3, τDNS = 410 ± 7
and σAMS = 105 and σDNS = 91. The error bars on τ are given by σ divided by the square root of the
number of samples2. We can see that both are within a few percent of one another and within the 66%
confidence interval of each other. This shows that the reactive trajectories computed by AMS and DNS
have almost the same duration, and thus that AMS has very little bias in the way it computes the collapse
trajectories. We then compare the sampled distributions of trajectory durations. In figure 7, we display
the distribution of normalised durations s̃ = s−τ

σ
of collapse trajectories computed by mean of AMS and

of DNS. Both are very similar and seem to be very close to a Gumbel distribution. This distribution
of duration has been reported to be very close to a Gumbel in many instances of stochastically driven
systems [Rolland, 2018, Rolland et al., 2016, Rolland and Simonnet, 2015]. This was often related to a
simple structure of the reactive trajectory that went through a saddle of the deterministic part of the
system. It is actually demonstrated that reactive trajectories durations have this distribution in one
dimensional stochastic systems [Cérou et al., 2013]. To our knowledge, this is possibly the first time
that such a distribution shape has been shown in turbulence without stochastic injection of energy. This
suggests us that the manner in which turbulence collapses in systems of large enough size is most certainly
not unrelated to reactive trajectories in stochastic systems, in that it quite possibly follows some effective
dynamics agitated by background turbulence. While it is more difficult to separate the dynamics into a
deterministic part and a stochastic part, this indicates that the reactive trajectories can follow a rather
simple path.

In order to investigate to what extent the dynamics could follow a stochastic system-type transi-
tion path (see [Metzner et al., 2006]) when turbulence collapses, we can then examine the trajectories
themselves, computed by mean of AMS and DNS. Since we obtained mostly time series from direct
numerical simulations, we will compare the path followed in the (Ec,x, Ec,y−z) plane by the reactive
trajectories (Fig 8). We produce a visualisation in a small dimension space comparable to figure 6
of [Bouchet et al., 2019]. Therefore, In order to examine the most probable path in this plane and how
far trajectories depart from these, we construct the probability density functions ρe in the (Ec,x, Ec,y−z)
plane using solely the collapse trajectories computed in free Direct Numerical Simulations (Fig. 8 (a)),
in noisy direct numerical simulations (Fig. 8 (b)) and AMS computations (Fig. 8 (c)). We first note
that the trajectories computed in all three cases have very similar beginnings: we observe in all three
cases a decrease of Ec,y−z much faster than that of Ec,x. While Ec,x is divided by 5 (from approximately
0.05 = exp(−3) to 0.01 ≃ exp(−4.5)), Ec,y−z is divided by 400 (from approximately 0.0025 ≃ exp(−6) to
5 · 10−6 ≃ exp(−12)). This difference in decay rate quantifies what is observed in the velocity field: the
streamwise vortices (whose amplitudes mostly contribute to uy and uz) decay before the velocity streaks
(whose amplitudes mostly contribute to ux). We note that as Ec,y−z becomes smaller, the three PDF
deviate in shape. In the case of free DNS (Fig. 8 (a)), both Ec,x and Ec,y−z keep decreasing, albeit at a
smaller rate for Ec,y−z. However, in situations where some noise in added to the flow (noisy DNS (Fig. 8
(b)) or AMS computations (Fig. 8 (c))), one way or the other, the kinetic energy contained in the wall
normal and spanwise components Ec,y−z reaches a neighbourhood of a minimal value while Ec,x keeps
decreasing (the now streamwise invariant streaks keep decaying in amplitude). This minimum value is
the consequence of the forcing exerted on the flow: uy and uz respond almost linearly to this forcing and
fluctuate around these small values. In the case of AMS, this is the partially numerical effect of what is
left of the white ticks in the spectrum. The value around which the components fluctuate is a function of
the noise variance and spectrum. It has been checked in an AMS study of the build up of turbulence that
the amount of energy given to the flow by this noise is small enough so that the probability of turbulence
to restart from this forcing is negligible. The differences of amplitude along the paths in theses PDF are
(among other things) the consequence of the number of bins and the number of trajectories.

We can compare the trajectories more precisely by computing the conditional average 〈log(Ec,y−z)〉
as a function of log(Ec,x). Indeed, if we define the probability of having the value log(Ec,x) during the

2It is safe enough to assume each value is decorrelated enough from the large majority of the others to assert that

the central limit theorem can be applied to the sampled mean: the most general formulation only require short length

correlations. There may be some degree of correlations between durations of reactive trajectories that arise from the same

genealogy, but each genealogy is small enough compared to the sample size.
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reactive trajectories

ρx(log(Ec,x)) =

∫

rhoe(log(Ec,x), log(ec,y−z)) d log(ec,y−z) , (8)

we have the conditional probability

ρc
(
log(ec,y−z)

∣
∣ log(Ec,x)

)
=
ρe(log(ec,x), log(Ec,y−z))

ρx(log(Ec,x))
. (9)

and the conditional average is

〈log(Ec,y−z)〉(log(Ec,x)) =
∫

ρc
(
log(ec,y−z)

∣
∣ log(Ec,x)

)
log(ec,y−z) d log(ec,y−z) . (10)

We can also compute the variance

σy−z(log(Ec,x)) =

√
∫

ρc(log(ec,y−z))| log(Ec,x) log(ec,y−z)2 d log(ec,y−z)− 〈log(Ec,y−z)〉2(log(Ec,x)) .

(11)
We display the average 〈log(Ec,y−z)〉(log(Ec,x)) in full line and the average plus/minus the variance
〈log(Ec,y−z)〉(log(Ec,x)) ± σy−z(log(Ec,x)) in dashed line for all three types of reactive trajectories in
figure 8 (d). This quantitatively confirms the observation of a faster decay of the streamwise vortices
and thus of Ec,y−z than of the streaks, and thus of Ec,x. This also confirms that up to the effect of the
noise when Ec,y−z is very small, using the AMS leads to the same collapse trajectories as using DNS,
at a much smaller cost. We can finally note that the trajectories seem to be concentrated around this
average. Note however that the constant variance of log(Ec,y−z) actually corresponds to a variance of
Ec,y−z which decreases exponentially as the collapse of turbulence goes on. There is a larger variance
of Ec,y−z among the initial conditions and thus in the amplitude and distribution of streamwise vortices
in the initial conditions and stronger fluctuations in the beginning of the trajectory. On a final note, let
us remind that in order to rigourously obtain instantons in stochastic systems, one has to take a limit
of the variance of the added noise going to 0. In our turbulent case, this means either identifying an
effective noise (which is a difficult task) or displaying large deviations in quantities like the probability
density functions, the probability of collapse or the mean first passage time. Quantitatively speaking, this
amounts to identifying a small parameter ǫ, proportional to the square of the suspected noise variance
such that limǫ→0 ǫ log(α) or limǫ→0 ǫ log(T ) are independent on ǫ (these two limits are often the opposite of
one another) [Touchette, 2009]. As it happens, such scalings have been displayed in probability density
functions in simulations [Rolland, 2015], where ǫDNS = 1

LxLz
and in mean first passage times before

collapse in models, where ǫ = 1
L

[Rolland, 2018], when the sizes Lx, Lz and L of the system was
increased. Thus, in the limit of large system length, one should expect to observe narrower and narrower
concentration of trajectories. In order to observe more concentration of trajectories, and more generally
large deviations of the probabilities and rate of probability of collapse, it may very well be necessary to
observe said collapses in larger and larger domains. For this purpose increasing the streamwise size Lx
may be more efficient than increasing the spanwise size Lz. This may be a consequence of the specific
mechanism of hole formation, leading to the formation of two laminar turbulent fronts that moves on.
Such situations have already been observed in theoretical physics systems [Rolland et al., 2016]. The rare
event is the formation of the hole and of the front themselves. Once said hole is created, the probability
that it will entirely open is small and decreases with size, but this decrease is slower than exponential.

We finally note that even if each AMS run has some collapse trajectories in its first iterations (ap-
proximately 3.8% of the trajectories generated in the first stage), and that it will generate other collapse
trajectories by branching on these collapse trajectories, it generates even more variability than this
through mutation/selection on other initial conditions. This means that each run generates distinct,
independent reactive trajectories, in particular trajectories with distinct initial conditions. These trajec-
tories are even more distinct in their later stages. The amount of variability generated can be estimated
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Figure 8: Probability density functions in the (Ec,x, Ec,y−z) plane, conditioned on being in a collapse
trajectory, for (a) Trajectories from free DNS, (b) trajectories from noisy DNS, (c) 1138 trajectories from
AMS. (d) Conditional Average trajectories and their variances.
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by counting the number of genealogies, that is to say the number of group of trajectories that share the
same starting point. Each group will display trajectories decorrelated from those of another genealogy.
On average, we generate 24 genealogies per AMS run with 120 clones. This value is obtained by averaging
over all available AMS runs the number of distinct initial conditions in computed reactive trajectories.
See [Ragone and Bouchet, 2020] for a view of genealogies of trajectories with a different algorithm applied
to climate.

3.2 Mean first passage time and probability of collapse

We now compare the mean first passage time T and probability α of collapse computed by mean of
direct numerical simulations and AMS. While the mean first passage time before collapse is the most
physical quantity, the probability of collapse is always worth discussing. Looking into its statistics
is always a good way of validating the AMS computations. This is all the more true because this
is the one quantity for which we have mathematical results of convergence [Cérou and Guyader, 2007,
Bréhier et al., 2016]. Using the methods presented in sections 2.1 and 2.3, we obtain 〈α〉o = αAMS =
0.042 ± 0.003 with a variance σα,AMS ≃ 0.016 using AMS, and αDNS = 0.037 ± 0.002 using direct
numerical simulations. This indicates that the estimation of the probability of collapse is precise, we
have an overlap of both 66% interval of confidence. When we suppress a fixed number (strictly larger
than one) of clones at each iteration, the ideal variance of the probability of collapse is given by σ2

id =
α2

N

(

〈k〉 Nc

N−Nc
+ 1−ρ

ρ

)

(where 〈k〉 is the average number of iterations of AMS and ρ = 〈r〉 is the average

proportion of reactive trajectories computed at the last iteration) [Cérou and Guyader, 2007]. This is
the minimum of variance of the estimator of α. It is obtained when the ideal reaction coordinate, the
committor is used [Bréhier et al., 2016]. When this minimal variance is reached, AMS computations are
performed with a minimal error. In practice this gives a value of the ideal variance σAMS,id ≃ 0.007.
The variance on the estimate of the probability is twice that of the ideal variance. This indicates that
the quality of the computation is acceptable, but not perfect, quite possibly due to imperfections in the
reaction coordinate we used.

We then compare the mean first passage times before collapse. By means of DNS, we sample the
cumulated density of waiting times before collapse in simulations performed with and without additional
noise, in order to estimate the mean first passage time as well as test the effect of noise on it. We can see
that cumulated densities F (t) =

∫∞

t
f(ζ) dζ, with f(ζ) the PDF of passage times, computed with and

without noise decrease linearly in logarithmic scale. This is thus entirely consistent with an exponential
distribution of passage times. Both cumulated density functions have very similar slopes, which is itself
almost equal to the estimated mean first passage time (Fig. 9). We estimate the mean first passage time
before collapse in DNS by averaging over all sampled durations, we obtain TDNS = 1.10 · 104 ± 8 · 102
without noise and TDNS,noisy = 1.3 · 104 ± 103 with additional noise. In both cases, the variance is
equal to the average and the median is equal to

√
2T , further confirming that we have an exponential

distribution. While the addition of noise may increase the mean first passage time, it does not increase it
dramatically, so that it is acceptable to use an additive small noise in simulations and AMS to help the
separation of trajectories. In turn, we estimate TAMS = 2.4 ·104±3 ·103, which is clearly an overestimate.
In order to understand why the estimate of the mean first passage time is not as good as what is obtained
for other quantities, we examine the histograms of mean first passage times (Fig. 10 (a)) and probability
of collapse (Fig. 10 (b)) computed by AMS. While the histogram of α is symmetric, that of T is skewed.
We note that the estimate of T is polluted by a handful of very high values, originating from fairly small
values of α, which have a much smaller effect on αAMS . On top of the improvement brought by a better
reaction coordinate, the computation of the mean first passage time may very well be improved in AMS
computations using more clones.

One can finally compare the relative cost of trajectory computations with AMS and DNS. Strictly
speaking, the average physical duration of simulation to obtain one reactive trajectory by DNS is of
order O(104), meanwhile the simulation time by means of AMS is of order O(103). Such a factor 10 of
acceleration of computation already seems interesting. Moreover, one needs to remember that when we
use DNS to compute reactive trajectories, the data of a large part of these O(104) time units have to be
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discarded (which means that more often than not, only time series can be obtained). Meanwhile a large
part of the simulation time performed by AMS corresponds to directly usable data (for the purpose of
studying reactive trajectories) and it makes sense to record not only the time series, but also velocity
fields during the collapses. We therefore not only optimise the computation time, we also optimise the
records of trajectories. This means that even in this case where the study of the system by DNS seems
affordable, using AMS already leads to a substantial acceleration of computations.

4 A very rare collapse in a domain of size Lx × Lz = 36 × 27:

spatial organisation

The observation of collapse of turbulence in the domain of size Lx × Lz = 24 × 18 indicated that,
locally, collapse occurred by a more rapid failure of streamwise vortices than velocity streaks. In that
domain, however, it was not entirely clear whether this collapse was always a local process, leading to
a streamwise laminar hole that then extended in the spanwise direction, or whether this could happen
in a synchronous manner everywhere. The question is open as both behaviours have been observed in a
finite number of decays forced by decrease of the Reynolds number to very low value [Manneville, 2011,
De Souza et al., 2020]. We can therefore ask the question of whether we would always see both types
of collapse when the domain size is increased and the simulation is closer to what can be observed in
experiments. For this reason we will consider the collapse of turbulence in a domain of size Lx × Lz =
36× 27 at Reynolds number R = 377 (see Fig. 1 for an illustration of the domain size). This will also be
the occasion to test anticipated AMS in a situation where the mean first passage time before collapse is
much larger than in section 3.2. In that case direct numerical simulations are not affordable and there
will be no collapse trajectory computed at stage 0 of AMS. This will indicate how expensive an AMS
computation is in that situation and whether AMS manages to create collapse trajectories and ensure
that there is some variability between these trajectories.

For the AMS computations, we use Et = 0.05, ∆E = 0.047 in ΦE (Eq. (5)). We set the hypersurface
C as the set of velocity fields such that Φ = 0.07. The initial conditions within A are prepared as
stated in section 2.2.2. We use the parameter ξ = 0.15, with the converging Φb (Eq. (13), § A) for
the anticipation of branching. In each computation, we use 60 clones and suppressed 16 clones at each
iterations. On 8 threads, this gives reasonable load balancing for the simulations. Due to the rarity of
collapse of turbulence for these control parameters, there is no collapse trajectory in the very first stage
of AMS computation: the method selects them naturally. A downside is that there is less variability
between the trajectories computed in the same AMS run, in their first 100 time units. There is of course
variability from one AMS run to the other. We note that the larger the domain is, the more decorrelated
fluctuations are adding up in the flow and the less need there is for anticipation of branching. With
these parameters, we estimate α = 8 ± 7 · 10−5 and T = 8 ± 7 · 107, while we have to simulate the flow
for approximately 5000 time units per trajectory obtained. Even if one takes into account the fact that
mean first passage times are somewhat overestimated with a finite number of clones, this still represents
an acceleration of computations by a factor of more than one thousand.

We display the last state at the last branching stage ulast, ωx,last from one of the AMS computations in
figure 11. This state (which is not steady in any way) displays a laminar hole localised in z and occupying
the whole streamwise length of the domain. For the streamwise component of the flow (Fig. 11 a,e), this
hole is rather narrow and is situated for 17 . z . 24. It is flanked by streamwise invariant streaks for
8 . z . 17 and 24 . 27, 0 . 3 (due to periodic boundary conditions in z). In the wall normal component
(Fig. 11 (b)), the spanwise component (Fig. 11 (c)) and subsequently the streamwise vorticity (Fig. 11
(d)), the laminar hole is actually much wider. These components are away from zero only for 3 . z . 8,
that is to say where the streamwise component displays fluctuations. This is the only area left in the flow
where the self sustaining process of turbulence is still active. This shift in the laminar-turbulent front
between the streaks and streamwise vortices flow components highlights again the scenario of collapse
where the vortices disappear before the streaks. Unlike in the domain of size Lx × Lz = 24× 18, all the
last state at the last branching stage that have been computed display such an opening of hole. This has
also been observed at other Reynolds numbers (R = 351, 357 and 370, not shown here). The observation
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Figure 11: Colour levels of the streamwise (a), wall normal (b) and spanwise (c) components of the
velocity field, in the y = 0, ~ex × ~ez plane for the last stage at the last branching step in an AMS
computation of collapse trajectories at R = 377 in a domain of size Lx × Lz = 36×, along with (d) the
streamwise vorticity. (e) Colour levels of streamwise averaged streamwise velocity as a function of y and
z for the same state.

of this state confirms that for this regime of parameters, the scenario of collapse of turbulence is far more
univocal. As we will see in the observation of collapse and partial collapse trajectories, there is again a
local failure of streamwise vortices that disappear in a streamwise long hole leaving streamwise invariant
streaks that decay viscously. These holes then extend in the streamwise direction.

We display a typical collapse trajectory obtained using AMS in figure 12. We follow the decay of
the kinetic energy (left panels) along with the streamwise velocity and spanwise velocity in the midplane
(central and right panels). The trajectory starts from typical uniform wall turbulence at t = 2, where the
streamwise velocity is organised in low speed and high speed streaks, and the spanwise velocity varies at
much shorter lengthscales, as would be expected from the participation in spanwise vortices. After some
slight decay in amplitude of the spanwise velocity component from t = 2 to t = 292, a laminar hole forms
in uz from t = 292 to t = 440 as seen in the decay of kinetic energy. In that case, this hole is located
in 14 . z . 25 for all x. As to ux, the velocity streaks are still present at that location, albeit almost
streamwise invariant. At t = 624, this hole has extended in the spanwise direction. The velocity streaks
are now streamwise invariant for z & 13 and decay in amplitude in this part of the flow. Meanwhile
the spanwise component of the flow has fallen to zero at the center of the laminar hole. As time moves
forward, at t = 876, ux totally falls to zero for 27 & z & 19, one can notice that the boundary of the
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laminar turbulent domain has moved in the spanwise direction from z ≃ 16 to z ≃ 19. Observation
indicates that since the laminar turbulent boundary is the same for uz and ux in that case. After this
event, one nevertheless can note that at t = 824 the amplitude of the spanwise velocity field has decreased
in the turbulent domain indicating a failure of the streamwise vortices in the whole 3 . z . 19 area.
The remaining streamwise vortices then completely decay, leaving only at t = 1076 totally streamwise
invariant streaks localised in z that viscously decay.

We display one of the n < Nc non reactive trajectories left at the last stage of an AMS computation
in figure 13. This trajectory corresponds to an excursion toward laminar flow that evolves back to a fully
turbulent flow. We follow the excursion toward low values then increase of the kinetic energy (left panels)
along with the streamwise velocity and spanwise velocity in the midplane (central and right panels). This
trajectory starts like the one of figure 12, by the opening of a laminar hole, first by decay of uz (for all x,
for 20 . z . 27 at t = 352), leaving almost streamwise invariant streaks at t = 432. Part of this similarity
may be explained by the fact that the two trajectories share a common beginning, being branched from
the same genealogy. However they quickly separate, while displaying common features of laminar hole
opening, and of simplification of the streak preceded by failure of the streamwise vortices. At t = 806,
there is a laminar hole in ux for all x and 17 . z . 22 and the vortices have almost decayed. At t = 1076
the streaks have further receded, however, the self sustaining process of turbulence has restarted in the
middle of the turbulent domain, as seen by the increase of amplitude of uz in the 2 . z . 10. From this
point on, turbulence reinvades the domain. We can note that at t = 1370, the turbulent hole is closing, as
seen in the surge of kinetic energy. However the opening and the closing are different processes: now the
laminar/turbulent front are almost at the same position in z for both ux and uz. In the end, turbulence
reinvades the whole domain.

We can observe the movement of the laminar and turbulent fronts in more detail for the reactive
trajectory (Fig. 14 (a)) and the non reactive trajectory (Fig. 14 (b)). These figures use both the contours

of

√
∫ 36

x=0 u
2
z dx−

(∫ 36

x=0 uz dx
)2

= 0.03 and
√
∫ 36

x=0 u
2
x dx = 0.15 which respectively indicate the spanwise

location of laminar-turbulent interface for the streamwise vortices and for the velocity streaks. These can
be compared to earlier visualisations (Fig. 12 and Fig. 13), that justified the study of the purely spanwise
location of the laminar-turbulent interface in this type of domain. In the case of the collapse trajectory,
we can observe the survival of streaks where streamwise vortices have disappeared for 500 . t . 800
and 20 . z . 27 and for 900 . t . 1100 and 5 . z . 20 (Fig. 14 (a)). The concomitant advance of
the laminar turbulent interfaces can be seen. Note that at z = 15, between t = 400 and t = 600, the
receding laminar-turbulent interfaces for the streaks and the streamwise vortices have almost the same
location. While this is partially caused by the method of detection of the interface (see Fig. 12 t = 624)
and while the scenario is not at one hundred percent univocal, the situation where streamwise vortices
survive where streaks have decayed is never observed in the reactive and non reactive trajectories. Similar
observations can be made in the case of the non reactive trajectory (Fig. 14 (b)), while we have an
apparent collapse of both streaks and vortices at t = 400 and for 15 . z . 20, for 500 . t . 800, only
the laminar-turbulent interface of the vortices recedes. For 800 . 1200, we can see some reduction of
the surface occupied by the streaks. For t & 1200, we can see that the surface occupied by the vortices
increases again until the laminar turbulent-interface for the streaks and the vortices is again the same
and they both reinvade the domain.

5 Conclusion

In this work we have presented one of the first applications of a rare event method to study multistability
in a turbulent flow not forced stochastically. Namely, Adaptive Multilevel Splitting was used with
anticipated branching to compute and study turbulence collapse trajectories in transitional plane Couette
flow. A large number of collapse trajectories could thus be computed using a dramatically reduced amount
of computational time. In some of the cases considered here, simulations can be more than one thousand
times faster. Even greater accelerations may be possible for rarer events. Calculations may be even more
accelerated for rarer events as the computational cost of AMS typically evolves like the logarithm of the
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Figure 12: Following a collapse trajectory in a domain of size Lx × Lz = 36 × 27, R = 377. The left
panels show a time series of kinetic energy, with the dot indicating the instant at which the colour
levels of streamwise velocity in the y = 0 plane (middle panels) and spanwise velocity (right panels) at
corresponding times in the y = 0 plane are shown. 22
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Figure 13: Following a non reactive trajectory (hole opening then closing) in a domain of size Lx×Lz =
36×27, R = 377. The left panels show a time series of kinetic energy, with the dot indicating the instant
at which the colour levels of streamwise velocity in the y = 0 plane (middle panels) and spanwise velocity
(right panels) at corresponding times in the y = 0 plane are shown.23
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computational time of DNS. Moreover, collapse trajectories can be recorded in full details since they are
the direct output of the AMS computation, not just a part of the simulation that occurs after a random
duration. The reactive trajectories in phase space, statistics of reactive trajectories durations, velocity
fields during reactive and non reactive trajectories as well as estimates of the probability of turbulence
collapse and mean first passage time before turbulence collapse (with their respective error bars) are then
available at low cost using this approach.

A first step in this work has been to ensure the validity of the result of AMS computations. This has
been done in a system of size Lx ×Lz = 24× 18 at Reynolds number R = 370. Computation of reactive
trajectories and mean first passage time are amenable in this system, so that rare event computations
could be compared to a reference. It could thus be shown that reactive trajectories (trajectories in phase
space, statistics of durations) are computed precisely. Some effects of the low noise added on the flow
for the separation of trajectories was identified in the very last stages of reactive trajectories, when the
flow is finally laminar. The bias added to the collapse computations is small enough so that the use of
this additional noise is entirely acceptable. Similarly, the probability of collapse computed using AMS
was shown to be in the same 66% interval of confidence as the one computed by DNS. The computed
mean first passage times are overestimated. Histograms of the computed probabilities of collapse and
mean first passage time before collapse indicate that this overestimate is cause by a handful of overly
large estimates of T related to underestimates of α. This is most likely an effect of the number of clones
used in this computation. Other estimators of mean first passage time could be used to improve the
computation [Lestang et al., 2020], which have their own drawbacks for trajectory computations.

A large part of this work was of course devoted to the study of the collapse trajectories proper-
ties. In the system of size Lx × Lz = 24 × 18, the visualisation of collapse trajectories showed that the
laminarisation could be sketched in two stages. The velocity components uy and uz, and as a conse-
quence, streamwise vortices, decayed first, so that the flow is driven out of the self sustaining process of
turbulence [Waleffe, 1997]. As a consequence, streamwise velocity has less dependence on x, and then
slowly decays without display streaks instability [Marquillie et al., 2011, Kawahara et al., 2003]. Exam-
ination of the velocity fields shows that this process can happen locally, leading to a streamwise long
laminar hole in uy, uz and then extends in z or more globally: streamwise vortices decay everywhere
in this small domain. Viewed in the quadrant Ec,x ≥ 0, Ec,y−z ≥ 0, these visualisations all correspond
to trajectories concentrated along the same path. While this path is more continuous than the sketch
given here, it still displays a first stage where Ec,y−z decays much faster than Ec,x, then a second stage
where Ec,y−z is small (around the noise level) and Ec,x decays in turn. Such concentration of trajectories
are commonplace in stochastic models which display rare transitions when the noise variance goes to
zero. While the separation of the dynamics of an actually turbulent flow into a deterministic part and
a noise part is very difficult to make, and that the flow displays transient chaos when the domain is
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very small [Eckhardt et al., 2007], this is a first indication that the collapse of turbulence in Couette or
Poiseuille flows of increasing size is best understood as a stochastic system. Given the concentration
of trajectory, one may be tempted to draw a comparison to Instantons computed in stochastic systems
[Bouchet et al., 2019, Grafke and Vanden-Eijnden, 2019]. In order to give a meaning to such a descrip-
tion, one would need a low noise limit. This can possibly be the case in the large size limits as observed
in models [Rolland, 2018] and in the large deviations of the kinetic energy [Rolland, 2015]. The statistics
of reactive trajectories durations are another feature of the trajectories which are very close to their
stochastic counterparts. Both DNS and AMS computations show that the normalised distribution of du-
rations is very close to a Gumbel distribution. In stochastic multistable systems it is demonstrated in one
dimensional systems that this is the distribution of durations [Cérou et al., 2013]. In highly dimensional
systems, it is observed that this distribution is found when the multistability occurs when the system
transits through a single curved saddle of its deterministic part [Rolland et al., 2016, Rolland, 2018].
This would place the collapse of turbulence in plane Couette flow in systems of increasing sizes in this
category.

The second part of the study of trajectories concerned the question of the localisation of the laminar
holes. For this matter the size of the studied system has been increased, from Lx × Lz = 24 × 18 to
36 × 27. Increasing the domain size led to the computation of a single type of reactive trajectories.
They all display the local opening of a spanwise localised streamwise elongated hole, first in stream-
wise vorticity, then in streamwise velocity as this hole extends in the spanwise direction. Laminar–
turbulent front movements have been presented by [Duguet et al., 2011]. There has been some obser-
vations of similar hole opening, as well as global collapse in numerical simulations and in experiments
[Manneville, 2011, De Souza et al., 2020], there has been so far no general way to ascertain the weight of
each scenario in turbulence collapse for given values of control parameters. Using a method like AMS and
sampling a large number of trajectories at a comparably low cost can therefore help give some statistical
weight to each scenario of collapse. Moreover, this suppressed the need to perform a quench or a more
continuous decrease of the Reynolds number in order to observe said collapses. This reopens the way
for the collapse of non isolated turbulent puffs and spots, which had been considered experimentally
[Bottin and Chaté, 1998] and more recently in models. The dynamics are even richer than in the case of
the collapse of the canonical pipe flow puff [Rolland, 2018].

Another interesting point of the use of a method like AMS is the ability to identify a turning point in
the dynamics of collapse [Simonnet et al., 2020]. This is done by recording the state leading to the largest
reaction coordinate in the suppressed trajectories of the last stage of AMS. In stochastically forced sys-
tems, this state corresponds to an effective saddle between the two metastable states, and can alternatively
be computed through a dichotomy procedure (see [Willis and Kerswell, 2009, Schneider et al., 2007]), or
even by computing the saddle point of the deterministic point of the system in systems forced by an
additive noise. This turning point gives us some information on the mechanism of multistability and in
our case on collapse of turbulence. They displayed localised streaks and streamwise vortices in the largest
system, which backs the scenario of collapse through hole formation. In the case of collapse of turbulence
in plane Couette flow, these states did not necessarily make good starting points for edge tracking. Note
that edge tracking can be performed using the result of AMS computation: this has been done in the
study of build up of turbulence under some additive noise and should be presented in a later text.

While the use of AMS to compute the reactive trajectories has proven successful, there is still
some room for improvement, in particular for the estimation of the mean first passage time before
collapse. With a given set up, one can always bring improvement on the estimate by increasing the
number of clones used to compute the trajectories (and thus their numerical cost). This has been re-
peatedly measured in stochastically driven systems [Rolland and Simonnet, 2015] and demonstrated for
such systems in some limits [Bréhier et al., 2016]. However, one could wish to perform these improve-
ments at little additional numerical cost. Said studies have also shown that much improvement can
be brought by improving the reaction coordinate used in computations [Rolland and Simonnet, 2015,
Bréhier et al., 2016, Rolland et al., 2016]. This has been so far performed by hand with trial and error
by integrating physical properties of the system in the reaction coordinate in order to mimic the com-
mittor function: the probability of reach the arrival state before the departure state from any given state
[Onsager, 1938, Bréhier et al., 2016, Rolland and Simonnet, 2015]. Indeed it has been demonstrated that
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it was the ideal reaction coordinate: the one that lead to perfect estimates. However, this committor
function is in a way the answer to the question we ask when we study multistability. Systematic methods
to approximate the committor and improve the reaction coordinate are being validated in few degrees of
freedom systems. They could be directly applied to transitional turbulence. Indeed, the requirement for
these methods to function are met: trajectories, reactive or not, are reasonably well estimated. These ap-
proaches may provide another estimate of the mean first passage time. This could improve the estimates
of T provided in this text and avoid the accumulation of error that occur when equation (1).

Finally, the computation of reactive trajectories in transitional wall turbulence opens the way for
similar computations in high Reynolds number turbulence. Systematic computation of reactive trajecto-
ries in systems of aerodynamical interest [Kim and Durbin, 1988], or geophysical interest are more than
conceivable [Herbert et al., 2020].
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A Anticipated AMS

The various anticipated branching strategies proposed in section 2.1 help increasing the variability
amongst trajectories. More importantly this approach helps avoiding so called extinction. Indeed,
when using AMS, we wish to avoid a situation where no trajectories are able to go further than
Φext < Φ(B). In that case, no matter how many additional steps are performed, we have at stage k
Φmax,k = maximaxt(Φi(t)) = Φext and reactive trajectories cannot be computed. We illustrate this
situation in figure 15 where we display the time series of the reaction coordinate Φ for all trajectories
successively computed by AMS in a run where no anticipation is performed. The reaction coordinate
used here is based on the asymmetry of the flow (see Eq. 6). The figure was obtained in a sequential
run of AMS where all the time series of the reaction coordinate for all the trajectories simulated were
successively saved. We draw a distinction between the trajectories computed in the initial step of the
algorithm (times before the black vertical line) and those computed during the mutation selection process
(times after the black line). During the initial free run stage of AMS (“stage 0”), the maximum over all
trajectories is Φmax,0 = 0.248 ± 0.001. Note that this maximum of Φ on a trajectory corresponds to a
turning point where Φ(t) will decrease with an extremely high probability even if slightly perturbed. In
the first steps of the classical AMS computation, the levels of reaction coordinate at which trajectories
are branched are rather below Φmax,0, so that variability among trajectories is initially created and the
maximum of Φ eventually reaches Φmax,k = 0.430 ± 0.001 after k stages. Extinction occurs because
branching are performed at higher and higher levels of φ which are closer and closer to the value Φmax,k.
Eventually all trajectories reach that value, all branching is performed at Φmax,k and even with small
perturbation, all trajectories subsequently decay in Φ. Closer examination show that they all differ from
one another after some time. The issue here is not that trajectories do not separate from one another, but
that they do so during a decay phase of Φ and thus cannot lead to a progress of the reaction coordinate.
This has also been seen in the study of turbulent wakes [Lestang et al., 2020]. Anticipation of branching
consists in branching trajectories before these turning points so that they all have the time to separate
and generate new trajectories going further and further in Φ.

The anticipation strategy which should be followed depends on the properties of the system. In the
case of the collapse of turbulence in plane Couette flow, this depends on the size of the system. The line is
drawn between small systems (typically of size Lx . 15, and Lz . 10) and larger systems. Small systems
which have very few degrees of freedom, display at most four or five velocity streaks (high or low velocity)
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and a handful of streamwise vortices. Their behaviour can be described by the escape away from a chaotic
repeller [Eckhardt et al., 2008]. They necessarily collapse globally in space, this means that the larger Φ
is, the more globally quiescent the flow becomes: the mixing is less intense and there is little separation
of trajectories. This is shown in figure 16 in a small system of size Lx × Lz = 12× 8. The flow required
some reorganisation before collapse was possible (part of the trajectory for 0 ≤ t ≤ 300), and at most
two low speed and two high speed streaks are present. When the collapse takes place (between t = 350
and t = 400) uz collapses almost uniformly. Larger systems have more and more degrees of freedom,
and contain more velocity streaks and vortices. An important feature is that they collapse through the
formation of a laminar hole. This means that for a large portion of the reactive trajectory some area
of the flow remains turbulent. This turbulent area can serve as some sort of heat bath which fuels the
trajectory with perturbations and thus can greatly help the separation of trajectories. This means that
in small systems, branching must indeed be performed on trajectories having greater excursions, but on
their initial stages, where the flow is still agitated and thus will separate the trajectories. In that case,
we use a so called saturated anticipation

Φb,sat = ξ

(

1− exp

(

−ΦNc

ξ

))

(12)

this function is shown with ξ = 0.25 in figure 2 (c), with the “saturated” label. If we follow that strategy
in the case of larger systems, it will require too many tries for branched trajectories to reach ΦNc

. A
more efficient strategy is to anticipate the branching with a small shift, this can for instance be done
with a function that slowly reaches its asymptote, the line of slope 1,

Φb,conv =
ΦNc

(

1 + tanh
(

ΦNc−ξ
ξ

))

2
, (13)

This function is displayed in figure 2 (c), with the “converging” label.
On a final note, we state that the strong necessity for anticipated branching may come from the

imperfection of the reaction coordinate. Indeed, we have so far used a reaction coordinate constructed
with a formula under simple physical arguments. For instance, in the case of the kinetic energy, we
considered that E decreases as the flow goes toward the laminar state. In the case of large systems, it
may very well be that the committor, the function which associates the probability of reaching the final
state to (in our case) an instantaneous velocity field, may not be so far from an affine function of E. In
the case of very small systems, which display a behaviour close to temporal chaos, it is likely that the
committor has very large variation on isosurfaces of constant E, in particular when one move slightly away
from turbulence. This is caused by the complex structure of the laminar-turbulent boundary in small
scale systems [Schmiegel and Eckhardt, 1997]. Both situations are relevant to collapse of turbulence in
shear flows in general. Indeed, pipe flows will most of the time display a localised turbulence puff which
keeps a small number of degrees of freedom as the length of the pipe is increase. Meanwhile spatially
extended Channel flows such as Couette or Poiseuille flow will display localised turbulence which will have
more and more degrees of freedom as the domain size is increased. The option of anticipated branching
should remain on the table as there is no certainty that methods to estimate better reaction coordinate
could work without prior runs of AMS.
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Unbiasedness of some generalized adaptive multilevel splitting algorithms. The Annals of Applied
Probability, 26(6):3559–3601.

[Cérou and Guyader, 2007] Cérou, F. and Guyader, A. (2007). Adaptive multilevel splitting for rare
event analysis. Stochastic Analysis and Applications, 25(2):417–443.

[Cérou et al., 2013] Cérou, F., Guyader, A., Lelievre, T., and Malrieu, F. (2013). On the length of
one-dimensional reactive paths. ALEA, 10(1):359–389.

[Cérou et al., 2011] Cérou, F., Guyader, A., Lelievre, T., and Pommier, D. (2011). A multiple replica
approach to simulate reactive trajectories. The Journal of chemical physics, 134(5):054108.

[Cérou et al., 2019] Cérou, F., Guyader, A., and Rousset, M. (2019). Adaptive multilevel splitting:
Historical perspective and recent results. Chaos: An Interdisciplinary Journal of Nonlinear Science,
29(4):043108.

[De Souza et al., 2020] De Souza, D., Bergier, T., and Monchaux, R. (2020). Transient states in plane
couette flow. Journal of Fluid Mechanics, 903.

[Duguet et al., 2011] Duguet, Y., Le Maitre, O., and Schlatter, P. (2011). Stochastic and determinis-
tic motion of a laminar-turbulent front in a spanwisely extended couette flow. Physical Review E,
84(6):066315.

[Eckhardt et al., 2008] Eckhardt, B., Faisst, H., Schmiegel, A., and Schneider, T. M. (2008). Dynamical
systems and the transition to turbulence in linearly stable shear flows. Philosophical Transactions of
the Royal Society A: Mathematical, Physical and Engineering Sciences, 366(1868):1297–1315.

[Eckhardt et al., 2007] Eckhardt, B., Schneider, T. M., Hof, B., and Westerweel, J. (2007). Turbulence
transition in pipe flow. Annu. Rev. Fluid Mech., 39:447–468.

28



0 100 200 300 400 500
t

0

0.01

0.02

0.03

0.04

0.05

E
c

0 6 12
x

0

4

8

z

t=200

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0 6 12
x

0

4

8

z

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0 200 400
t

0

0.01

0.02

0.03

0.04

0.05

E
c

0 6 12
x

0

4

8

z
t=350

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0 6 12
x

0

4

8

z

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0 200 400
t

0

0.01

0.02

0.03

0.04

0.05

E
c

0 6 12
x

0

4

8

z

t=400

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0 6 12
x

0

4

8

z

-0.02

-0.01

0

0.01

0.02

0 100 200 300 400 500
t

0

0.01

0.02

0.03

0.04

0.05

E
c

0 6 12
x

0

4

8

z

t=560

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0 6 12
x

0

4

8

z

-3

-2

-1

0

1

2

3
×10 -3

Figure 16: Collapse of turbulence in a very small system of size Lx × Lz = 12 × 8. Left column: time
series of kinetic energy with dot indicating the instant in the simulation. middle column, colour levels of
streamwise velocity in the horizontal midplane. Right column: colour levels of spanwise velocity in the
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