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Abstract

We define representations for downwards-closed subsets of a rich family of
well-quasi-orders, and more generally for closed subsets of an even richer family of
Noetherian topological spaces. This includes the cases of finite words, of multisets,
of finite trees, notably. Those representations are given as finite unions of ideals,
or more generally of irreducible closed subsets. All the representations we explore
are computable, in the sense that we exhibit algorithms that decide inclusion, and
compute finite unions and finite intersections. The origin of this work lies in the
need for computing finite representations of sets of successors of the downward
closure of one state, or more generally of a downwards-closed set of states, in a
well-structured transition system, and this is where we start: we define adequate
notions of completions of well quasi-orders, and more generally, of Noetherian
spaces. For verification purposes, we argue that the required completions must be
ideal completions, or more generally sobrifications, that is, spaces of irreducible
closed subsets.
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1 Introduction
Well-structured transition systems (WSTS) are a paradigmatic class of infinite-state
transition systems on which many properties of interest in verification are decidable
[Finkel, 1987, Abdulla et al., 1996, Finkel and Schnoebelen, 2001]. They include Petri
nets, affine counter systems, lossy channel systems, data nets, and many more.

Briefly put, a WSTS is a triple (X,→,≤) where ≤ is a well quasi-order on the
(possibly infinite) state space X , and→ is a monotonic transition relation on X . (We
define well quasi-orders in Section 2.1.) To simplify things slightly, by monotonic
we mean strongly monotonic, namely that if x → x′ and x ≤ y, then there is a
state y′ such that x′ ≤ y′ and y → y′. The set of one-step predecessors Pre(E) =
{x ∈ X | ∃x′ ∈ E, x → x′} of any upwards-closed subset E is then upwards-
closed again, where E is upwards-closed if and only if x ∈ E and x ≤ y imply
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y ∈ E. Similarly, the sets Prek(E) of k-step predecessors, Pre≤k(E) of at-most-
k-step predecessors, and Pre∗(E) =

⋃
k∈N Pre≤k(E) of iterated predecessors of the

upwards-closed setE are upwards-closed. The fact that≤ is a well quasi-order implies
(see Section 2.1 again) that every upwards-closed subset is the upward closure ↑A of
a finite set of points A (a basis of the set). This implies that Pre∗(E) = Pre≤k(E)
for some k ∈ N: write Pre∗(E) as ↑A with A = {x1, · · · , xn}, realize that for each
i, xi must be in Pre≤k(E) for some k, and take the largest of these ks. In particular,
there is a simple algorithm that decides coverability in WSTS, namely, which decides
whether, given x ∈ X and a basis for an upwards-closed subset E, whether one can
reach an element of E in finitely many→ steps starting from x [Abdulla et al., 2000]:
compute Pre≤0(E) = E, iterate using Pre≤k+1(E) = E ∪ Pre(Pre≤k(E)) until
Pre≤k+1(E) ⊆ Pre≤k(E), at which point Pre≤k(E) = Pre∗(E); then test whether
x ∈ Pre∗(E). For this to work, we need the WSTS to be effective, which means that
we can compute Pre(E) for E upwards-closed, and we can test inclusion.

This was generalized to topological WSTS by the second author [Goubault-Larrecq, 2010];
the algorithm is the same, but X must now be a Noetherian space (see Section 2.3),
the sets E are required to be open, and→ is a lower semi-continuous relation. Topo-
logical WSTS include WSTS, but also some other infinite-state systems, among which
the class of lossy concurrent polynomial games is probably the most interesting new
instance—see Section 6 of [Goubault-Larrecq, 2010].

The algorithm described above works backwards, but sometimes we would prefer
a forward algorithm that would compute ↓Post∗({x}), where ↓ denotes downward
closure, Post(E) = {x′ ∈ X | ∃x ∈ E, x → x′} is the set of one-step successors of
E and Post∗(E) =

⋃
k∈N Postk(E). The set ↓Post∗({x}) is called the cover of x,

and can be used to decide coverability as well: one can reach ↑E from x if and only if
↓Post∗({x}) intersects E.

However, although the backward procedure always terminates, it is often slow. For-
ward procedures, when they exist, may fail to terminate: on lossy channel systems,
any terminating forward procedure would enable us to decided boundedness, which
is undecidable [Mayr, 2003]. But they often give results faster in practice. For this
reason, only the non-terminating forward procedure is implemented in the tool TREX
[Abdulla et al., 1998].

The cover also provides more useful information than the set computed by the back-
ward algorithm. For example, the cover is a good first approximation of the reachability
set Post∗({x}), and the original reachability algorithms for Petri nets rely on the com-
putation of covers [Kosaraju, 1982, Mayr, 1981, Lambert, 1992]. This can also serve as
a first step toward model checking liveness properties, as in [Emerson and Namjoshi, 1998]
and more recently in [Blondin et al., 2017a, Blondin et al., 2017b].

For Petri nets, the cover can be computed by the so-called coverability tree algo-
rithm of Karp and Miller [Karp and Miller, 1969]. Part II of this paper generalizes this
to a large class of WSTS [Finkel and Goubault-Larrecq, 2012]. Part III of this paper
defines and studies very-WSTS, a subclass of WSTS, for which the cover is computable
and for which linear temporal logic (introduced in [Pnueli, 1977]) model checking is
decidable. The present part I deals with an important preparatory step: characteriz-
ing downwards-closed subsets of well quasi-ordered sets X . We shall see that such
downwards-closed subsets can always be written as the downward closure of finitely
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many points in a completion X̂ of X . In fact, we start by defining the possible relevant
completions from a verification perspective, and realize that the smallest possible one
is the ideal completion, or equivalently (in the more general, Noetherian case) the so-
brification ofX . We shall then explore concrete computer representations for elements
of X̂ , for a large class of Noetherian spaces X (in particular, well quasi-orders) that
includes most of the spaces needed in the verification of WSTS today.

This paper is an extended version of [Finkel and Goubault-Larrecq, 2009]. Before
this paper, and except for some partial results [Finkel, 1990, Emerson and Namjoshi, 1998,
Geeraerts et al., 2006], a general theory of downwards-closed sets was missing. This
may explain the scarcity of forward algorithms for WSTS. Quoting Abdulla et al.
[Abdulla et al., 2004b]: “Finally, we aim at developing generic methods for building
downwards-closed languages, in a similar manner to the methods we have developed
for building upwards-closed languages in [Abdulla et al., 2000]. This would give a
general theory for forward analysis of infinite state systems, in the same way the work
in [Abdulla et al., 2000] is for backward analysis.” Our contribution is to provide such
a theory of downwards-closed sets.

Related Work
The coverability for general WSTS was shown decidable by using a backward algo-
rithm presented in 1996 [Abdulla et al., 1996]; this algorithm was an abstraction of the
coverability algorithm for lossy channel systems [Abdulla and Jonsson, 1993]. Cover-
ability for vector addition systems with resets had been shown decidable by Arnold and
Latteux [Arnold and Latteux, 1978, Theorem 5, p. 391]. Interestingly, the latter algo-
rithm is an early instance of the backward algorithm presented in [Abdulla et al., 1996],
and applied to Nn.

While this paper is not about algorithms, it is worth recalling that the inspiration for
our line of work, which culminates in part III [Blondin et al., 2017a, Blondin et al., 2017b],
comes from Karp and Miller’s celebrated finite coverability tree algorithm [Karp and Miller, 1969]
for Petri nets. This arguably computes a finite representation of the cover ↓Post∗({x}),
and we expand on that in [Finkel and Goubault-Larrecq, 2012, Section 4.1] and in
[Blondin et al., 2017a, Blondin et al., 2017b]. Further related work on this issue can
be found in that paper. What matters to us here is that, while the state space of a Petri
net is Nk, Karp and Miller’s finite representation is given by finitely many points in the
completion Nkω , where Nω is N plus a fresh, infinite element ω.

The focus of this paper is on finite representations of downwards-closed subsets of
well quasi-ordered sets, and more generally of closed subsets of Noetherian spaces. In
computer speak, we focus on data structures rather than algorithms. Mathematically,
we shall need to define the right notion of completion X̂ for well quasi-ordered sets,
resp., Noetherian spaces X—these will be the familiar constructions of ideal com-
pletion, resp. sobrification—and to study finite representations of their (downwards-
)closed subsets.

Data structures are a prerequisite to define algorithms. In our context, one may
argue that what we need is a so-called adequate domain of limits (ADL), as defined
by Ganty, Geeraerts, Raskin and van Begin [Geeraerts et al., 2006, Ganty et al., 2006].
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An ADL is an axiomatization of a data structure on which the authors’ expand, enlarge
and check procedure, which computes the cover, works. Alternatively, an ADL is an
axiomatization for a relevant completion X̂ . We shall see that these completions have
strong ties with the ideal completion, resp., sobrification, mentioned above.

In the special case of finite words, such finite representations were developed by
Abdulla, Colomb-Annichini, Bouajjani and Jonsson [Abdulla et al., 1998] as specific
regular expressions called SREs (simple regular expressions) and word products. In
their case, the alphabet is finite, with equality as well quasi-order. Similar representa-
tions also apply to certain more complex well quasi-ordered sets of letters, as demon-
strated in [Abdulla et al., 2004b] for example. More generally, it had been shown by
Kabil and Pouzet that this representation is in fact valid for any arbitrary well quasi-
ordered set of letters [Kabil and Pouzet, 1992]. We improve on this slightly by showing
that this even works for all Noetherian sets of letters (Section 6). Interestingly, one of
the key notions we use in the proof is that of an irreducible (closed) subset, which
comes from topology. This is also a central concept in Kabil and Pouzet’s proof, nar-
rowed down to well quasi-orders.

We define finite representations for (downwards-)closed subsets of a large class of
Noetherian data types, including tuples of natural numbers or finite words, as men-
tioned above, but also many more. Some of them are representations of (downwards-
)closed subsets in well-known well quasi-orders, as in the case of finite multisets (Sec-
tion 7), or of finite labeled trees (Section 10; by far the most technical part of this
paper. The fact that the right completion for languages of trees can be described as
certain regular tree languages was also observed by Wies, Zufferey and Henzinger, for
finite sets of labels [Wies et al., 2010]. They did not characterize what kind of regular
tree language is required precisely, which we do.) Some others are representations of
closed subsets of Noetherian spaces that do not arise from well quasi-orders. For in-
stance, we deal with polynomial ideals in Section 5, with finite words again but with a
different topology, the prefix topology, in Section 8.
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2 Preliminaries
We shall borrow from theories of well quasi-orderings, as used classically in well-
structured transition systems [Abdulla et al., 2000, Finkel and Schnoebelen, 2001], from
domain theory [Abramsky and Jung, 1994, Gierz et al., 2003], as well as from topol-
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ogy [Goubault-Larrecq, 2013]. We recap most of what we need. The purpose is not to
give a crash course on these three fields, rather to fix notations and notions.

2.1 Order
A quasi-ordering ≤ is a reflexive and transitive relation on a set X . It is a (partial)
ordering iff it is antisymmetric. A set X equipped with a partial ordering is a poset.

We write ≥ for the opposite quasi-ordering, ≈ for the equivalence relation ≤ ∩ ≥,
< for the associated strict ordering (≤ r ≈), and > for the converse (≥ r ≈) of <.
The upward closure ↑E of a set E is {y ∈ X | ∃x ∈ E, x ≤ y}. The downward
closure ↓E is {y ∈ X | ∃x ∈ E, y ≤ x}. A subset E of X is upwards-closed if and
only if E = ↑E, i.e., any element greater than or equal to some element in E is again
in E, which was the definition we gave in the introduction. The notion of downwards-
closed sets is defined similarly. When the ambient space X is not clear from context,
we shall write ↓X E, ↑X E instead of ↓E, ↑E. We also write ↑x instead of ↑{x}, and
↓x instead of ↓{x}.

A quasi-ordering is well-founded iff it has no infinite strictly descending chain, i.e.,
x0 > x1 > · · · > xi > · · · . An antichain is a set of pairwise incomparable elements.
A quasi-ordering is well if and only it is well-founded and has no infinite antichain.

There are a number of equivalent definitions for well quasi-orderings (wqo). One is
that, from any infinite sequence x0, x1, · · · , xi, · · · , one can extract an infinite ascend-
ing chain xi0 ≤ xi1 ≤ · · · ≤ xik ≤ · · · , with i0 < i1 < · · · < ik < · · · . Another one
is that any upwards-closed subset can be written ↑E, with E finite. Such a finite E is
called a finite basis for the upwards-closed set. In a wqo, every upwards-closed set has
a minimal finite basis, composed of the subset of its pairwise incomparable, minimal
elements. We shall see another, topological, characterization of wqos below.

There is a rich supply of wqos. First, for any k ∈ N, Nk is a wqo in the product
ordering ((x1, · · · , xk) ≤ (y1, · · · , yk) iff xi ≤ yi for every i, 1 ≤ i ≤ k): this is
Dickson’s Lemma [Dickson, 1913]. Nk is the set of configurations of Petri nets, or
more generally, of counter machines.

For every well-quasi ordered alphabet Σ, Σ∗ with the embedding (a.k.a. scat-
tered subword, a.k.a. divisibility) quasi-ordering is wqo: this is Higman’s Lemma
[Higman, 1952]. This is instrumental in the backward analysis of lossy channel sys-
tems [Abdulla and Jonsson, 1993]. Under the same assumptions, the collection of finite
trees labeled with elements from Σ, with the tree embedding quasi-ordering, is wqo:
this is Kruskal’s Tree Theorem [Kruskal, 1960].

A map f from a quasi-ordered set X to a quasi-ordered set Y is monotonic if and
only if x ≤ x′ implies f(x) ≤ f(x′), for all x, x′ ∈ X . (We write≤ for the underlying
ordering of any poset, unless mentioned otherwise.) We call it a quasi-order embedding
if and only if x ≤ x′ is equivalent to f(x) ≤ f(x′). The order embeddings are the
injective quasi-order embeddings; there is no difference between the two notions when
X is a poset. An order isomorphism is a surjective (hence bijective) order embedding.
Hence f : X → Y is an order embedding if and only f is an order isomorphism onto
its image.

Given any quasi-ordered set X , the order quotient of X is defined as the set of
equivalence classes [x] of elements x ∈ X under ≈, quasi-ordered by letting [x] be
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below [y] iff x ≤ y. (We then write [x] ≤ [y].) This is well-defined, and a partial order.
We shall say that a set is well-ordered by ≤ iff it is well-quasi-ordered by ≤ and ≤

is an ordering. The well-ordered posets are exactly the order quotients of wqos.
In a quasi-ordered set X , an upper bound of a family (xi)i∈I of points of X is an

element x ∈ X such that xi ≤ x for every i ∈ I . A least upper bound is one that is
less than or equal to all other upper bounds of the same family. If X is a poset, then
the least upper bound of a family is unique if it exists at all.

2.2 Domain Theory
Domain theory is, prima facie, concerned with certain posets, called dcpos, where
certain least upper bounds exist, and so-called Scott-continuous maps, which are not
just monotonic but also preserve these least upper bounds. Over the years, domain
theory has revealed itself as having firm grounds in general topology as well. Let us
start with the order-theoretic view.

A directed family in a poset X is any non-empty family (xi)i∈I such that, for all
i, j ∈ I , there is a k ∈ I with xi, xj ≤ xk. A directed-complete partial order, in short
a dcpo, is a poset X in which every directed family (xi)i∈I of points of X has a least
upper bound supi∈I xi.

A map f from a poset X to a poset Y is Scott-continuous if and only if it is mono-
tonic and preserves least upper bounds of directed families, i.e., if (xi)i∈I is a directed
family in X with least upper bound x, then f(x) is the least upper bound of the (nec-
essarily directed) family (f(xi))i∈I .

An element x ∈ X is finite iff, for every directed family (zi)i∈I that has a least
upper bound z ≥ x, then zi ≥ x for some i ∈ I already. The poset X is algebraic
iff the family of finite elements below any given element x is directed, and admits x as
least upper bound. The finite elements are often much simpler to describe than arbitrary
elements, and act as approximants to the latter.

Let us give a few examples. The power P(X) of a setX is a dcpo, in fact a complete
lattice, under inclusion ⊆. Its finite elements, in the sense above, are the finite subsets
of X , in the usual sense of the word, and P(X) is algebraic. We write Pfin(X) for the
set of finite subsets of X , ordered by inclusion.

Neither P(X) nor Pfin(X) is wqo under inclusion, unless X is finite. N, with its
natural ordering, is an algebraic poset, which is also a wqo. N is not a dcpo, since
N itself is a directed family without a least upper bound. However, Nω , obtained by
adjoining a new top element ω to N, is a dcpo. Its finite elements are the elements of
N, and Nω is algebraic.

Some dcpos fail to be algebraic. E.g., the only finite element of [0, 1], with its
natural ordering, is 0. However, [0, 1] is continuous, in the following sense.

Define the way below relation � on a poset X by x � y iff, for every directed
family (zi)i∈I that has a least upper bound z ≥ y, then zi ≥ x for some i ∈ I already.
So, in particular, the finite elements are those that are way below themselves.

Note that x � y implies x ≤ y, and that x′ ≤ x � y ≤ y′ implies x′ � y′.
However, � is not reflexive or irreflexive in general. Write ↑↑E = {y ∈ X | ∃x ∈
E, x� y}, ↓↓E = {y ∈ X | ∃x ∈ E, y � x}.
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The poset X is continuous iff, for every x ∈ X , ↓↓x is a directed family, and has x
as least upper bound. More finely, call a basis (not to be confused with the finite bases
of upwards-closed subsets of wqos) any subset B of X such that any element x ∈ X
is the least upper bound of a directed family of elements way below x in B. Then X is
continuous if and only if it has a basis, and in this case X itself is the largest basis. On
the other hand, every algebraic poset is continuous, and has a least basis, namely its set
of finite elements.

An essential property of continuous posets is interpolation [Mislove, 1998, Lemma 4.16]:
if x � y, then x � z � y for some z ∈ X . We may even choose z to be in any pre-
scribed basis B. For example, in [0, 1], x � y iff x < y or x = 0, and we may
choose B to be, say, the set of rational points in [0, 1]. Interpolation fails in general,
non-continuous posets, even non-continuous dcpos.

Any finite product of dcpos is a dcpo, where product is taken in the order-theoretic
sense, i.e., with the product ordering. Then any finite product of algebraic (resp., con-
tinuous) posets is again algebraic (resp., continuous).

Given a poset X , which might fail to be a dcpo, there is a canonical way to obtain a
completion, called the ideal completion I(X) ofX . An ideal I ofX is any downwards-
closed set that is also directed. I(X) is defined as the poset of all ideals of X , ordered
by inclusion. I(X) is then a dcpo, where directed suprema are computed as unions,
and X order-embeds into I(X) through the function ηI : X → I(X) that maps x to
↓x. For example, I(N) consists of all the ideals ↓n, n ∈ N, plus a fresh element above
all others, which we write ω and, as an ideal, is just the whole of N. In this sense, I(N)
is the completion Nω we have already mentioned in the context of the Karp-Miller
algorithm.

I(X) is the free dcpo over X , meaning that for every monotonic map f from X
to a dcpo Y extends to a unique Scott-continuous map g from I(X) to Y—namely,
f = g ◦ ηI, see [Goubault-Larrecq, 2013, Exercise 5.5.3, or comment pages 175–176].
I(X) is also an algebraic dcpo [Goubault-Larrecq, 2013, Proposition 5.1.46], with the
elements of X forming a basis.

2.3 Topology
A topologyO on a setX is a collection of subsets (the opens) ofX that is closed under
arbitrary unions and finite intersections. In particular, considering empty unions and
empty intersections, both ∅ and X itself are open. We say that X itself is a topological
space, leaving O implicit. The complements of opens are the closed sets. The largest
open contained in A is its interior, the smallest closed subset cl(A) containing it is its
closure.

A famous topology in domain theory is the Scott topology on a poset X . Its opens,
the Scott opens, are all upwards-closed subsets U such that every directed family
(xi)i∈I that has a least upper bound x in U intersects U , i.e., xi ∈ U for some i ∈ I .
In other words, the closed subsets of the topology, namely the Scott closed subsets,
are the downwards-closed subsets F that are stable under taking least upper bounds of
directed families of elements of F . The non-empty Scott closed subsets of [0, 1] are the
intervals [0, t], 0 ≤ t ≤ 1, and its Scott open subsets are the half-open intervals (t, 1],
0 ≤ t ≤ 1, plus [0, 1] itself.
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Order Topology
upwards-closed open

downwards-closed closed
monotonic continuous

wqo Noetherian
ideal irreducible closed

ideal completion I(X) sobrification S(X)

Figure 1: Informal, order vs. topology glossary

A topology is coarser than another iff it contains less opens. Conversely, a topology
if finer than another iff it contains more opens.

For example, consider the Alexandroff topology of a quasi-order X , whose opens
are all upwards-closed subsets. This is finer than the Scott topology, and in general
strictly finer: on [0, 1], [1/2, 1] is Alexandroff open but not Scott open. On N, the Scott
and Alexandroff topologies agree, and the non-empty opens are of the form ↑n, n ∈ N.
The discrete topology is the finest possible topology, where all subsets are open. Note
that this is also the Alexandroff topology of the equality ordering.

The Alexandroff topology converts a quasi-order into a topological space, and sug-
gests a glossary of generalizations of order-theoretic notions as topological notions,
see Figure 1. We have just explained the first row: the upwards-closed subsets of a
quasi-order are the opens in the Alexandroff topology. We shall explain the other rows
below.

We shall writeXσ forX with its Scott topology, andXa forX with its Alexandroff
topology. It is easy to see that the downwards-closed subsets of X are exactly the
closed subsets of Xa, and we shall use this fact several times. This is the second row
of Figure 1.

A map f from a topological space X to a topological space Y is continuous if and
only if f−1(V ) is open in X for every open subset V of Y . When both X and Y
are posets equipped with the Alexandroff topology, a map f : X → Y is continuous
if and only if it is monotonic. This is the third row of Figure 1. When X and Y
are posets equipped with their Scott topology, then f is continuous if and only if it is
Scott-continuous.

A homeomorphism is a topological isomorphism, i.e., a continuous, bijective map
whose inverse is also continuous.

Given any collection C of subsets of a set X , there is a smallest (coarsest) topology
containing all elements of C. This is the topology generated by C, C is then called a
subbase for the topology, and the elements of C are subbasic opens. Their complements
are the subbasic closed subsets. Any open in the topology is then a (possibly infinite)
union of finite intersections of subbasic opens. If any open can be written as a union
of elements of C, then one says that C is a base of the topology, and the elements of C
are basic opens. This occurs typically when C contains X and is closed under binary
intersections.

In a continuous poset, ↑↑x is Scott-open for all x, and every Scott-open set U is a
union of such sets, viz. U =

⋃
x∈U ↑↑x [Abramsky and Jung, 1994]. I.e., the subsets
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↑↑x form a base of the Scott topology. Note that the subsets ↑x form a base of the
Alexandroff topology instead.

Every topology comes with a specialization quasi-ordering ≤, defined as x ≤ y
iff every open that contains x also contains y; equivalently, iff x ∈ cl{y}. It is easy to
see that every open is upwards-closed with respect to ≤. The converse need not hold.
A subset A of X is saturated iff A equals the intersection of all opens U containing
A, equivalently iff it is upwards-closed with respect to ≤. The specialization quasi-
ordering of both the Scott and Alexandroff topologies of a poset X ordered by ≤ is ≤
again.

In fact, the Alexandroff topology is the finest having this property. The coarsest
is called the upper topology; its opens are arbitrary unions of complements of sets of
the form ↓E, E finite. And the Scott topology is somewhere inbetween. The sets ↓E,
with E finite, will play an important role, and we call them the finitary closed subsets.
These are closed in the upper, Scott, and Alexandroff topologies.

Paralleling the notations Xσ , Xa, we write Xu for X with its upper topology.
A topological spaceX is T0 iff for any two distinct points x, y ∈ X , there is an open

subset containing x but not y, or conversely. X is T0 if and only if its specialization
quasi-ordering ≤ is a partial ordering, i.e., x ≤ y and y ≤ x imply x = y.

A subspace of a topological spaceX is a subsetA ofX with the so-called subspace
topology, whose opens are A ∩ U , U open in X .

The product
∏
i∈I Xi of a family (Xi)i∈I of topological spaces is the space of

tuples ~x = (xi)i∈I where each xi is in Xi, and with the product topology. The latter
is the coarsest that makes the projection maps πi : ~x 7→ xi continuous. In other words,
the sets π−1

i (U), i ∈ I , U open in Xi, form a subbase of the product topology. The
binary product of X and Y is written X × Y , and the open subsets of the product
topology on the latter are the unions

⋃
i∈I Ui × Vi, where I is an arbitrary index set,

Ui is open in X and Vi is open in Y .
A topological embedding f of X into Y is a map from X to Y that is a homeomor-

phism of X onto the image f [X] = {f(x) | x ∈ X} of f , seen as a subspace of Y .
Equivalently, f is a topological embedding if and only if it is injective, continuous, and
almost open in the sense that every open subset U of X is the inverse image f−1(V )
of some open subset V of Y . A trivial example is the canonical injection i : A → X
of a subspace A of X into X . Up to homeomorphism, these are the only topological
embeddings: any topological embedding f : X → Y is by definition the composition
of the canonical injection of f [X] into Y with the homeomorphism f : X → f [X].

Given an equivalence relation ≡ on a topological space X , we can form the quo-
tient space X/≡. Its elements are the equivalence classes of elements of X modulo
≡. The map q : X → X/≡ sending every element to its equivalence class is called the
quotient map, and X/≡ is then given the quotient topology, defined as the finest topol-
ogy on X/≡ that makes q continuous. Explicitly, the opens of the quotient topology
are exactly the subsets V of X/≡ such that q−1(V ) is open in X .

A crucial notion in topology is compactness. A subset K of X is compact iff every
open cover (Ui)i∈I (a family of opens Ui whose union contains K) contains a finite
subcover. Alternatively, K is compact iff, for every directed family (Ui)i∈I of opens
(directed with respect to inclusion) such that K ⊆

⋃
i∈I Ui, then K ⊆ Ui for some

i ∈ I already.
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A topological spaceX is Noetherian iff every open subset ofX is compact [Grothendieck, 1960,
chapitre 0, § 2]. A less intimidating definition is that X is Noetherian if and only if
its lattice of open subsets has the ascending chain condition: every properly ascend-
ing chain U0 ( U1 ( · · · ( Un ( of opens must be finite [Goubault-Larrecq, 2013,
Proposition 9.7.6].

There is a strong link between Noetherian spaces and wqos: a poset X is wqo
if and only if X is Noetherian in its Alexandroff topology [Goubault-Larrecq, 2013,
Proposition 9.7.17]. So wqos are a special case of Noetherian spaces, yielding the
fourth row of Figure 1. But there are more Noetherian spaces. We shall see a few of
them in this paper, and we only mention two examples for now.

One of the simplest examples, although somehow artificial, is N with the cofinite
topology, whose closed subsets are N plus all finite subsets of N. This is Noetherian,
because every properly descending chain of closed sets must be finite; by taking com-
plements, every properly ascending chain of open sets is finite. If that were a wqo with
the Alexandroff topology of some quasi-ordering, that quasi-ordering would have to be
the specialization quasi-ordering of the space, which is equality. However, equality on
N is not wqo, since N itself is an infinite antichain. In fact, the Alexandroff topology
of = is the discrete topology, which is much finer than the cofinite topology.

The primary example of a Noetherian space, Ck with its Zariski topology [Goubault-Larrecq, 2013,
Exercise 9.7.53], is far from arising from a wqo as well: its specialization quasi-
ordering is equality = again, and the whole space is an infinite antichain. This is one of
the ingredients used in the study of the lossy concurrent polynomial games mentioned
in the introduction.

2.4 Sobriety
For this section, we refer to [Abramsky and Jung, 1994, Section 7.2.1] or to Chapter 8
of [Goubault-Larrecq, 2013].

A closed subset C of a topological space is irreducible if and only if C is non-
empty, and whenever C ⊆ F1 ∪ F2 with F1, F2 closed, then C ⊆ F1 or C ⊆ F2.
Equivalently, if C is included in a finite union of closed subsets F1, . . . , Fn (whatever
n ∈ N), then C ⊆ Fi for some i, 1 ≤ i ≤ n.

The finitary closed subset ↓x = cl({x}) (x ∈ X) is always irreducible. (When we
write ↓x in a topological space, this is relative to its specialization quasi-ordering.) A
space X is sober iff every irreducible closed subset C is the closure of a unique point,
i.e., C = ↓x for some unique x. Every sober space is T0, and every continuous dcpo
is sober in its Scott topology, see [Abramsky and Jung, 1994, Proposition 7.2.27] or
[Goubault-Larrecq, 2013, Proposition 8.2.12 (b)].

Much as we could complete a poset X to a dcpo I(X), we can complete a topolog-
ical space to its sobrification S(X). The elements of S(X) are the irreducible closed
subsets of X . Its opens are the subsets of the form �U = {C ∈ S(X) | C ∩ U 6= ∅},
U open in X . (This is a topology, not just a subbase.)

As an example, in a poset X with its Alexandroff topology, not only all sets of the
form ↓x are irreducible closed, but every ideal is irreducible closed, too. We let the
reader check this, and also that the converse holds: the ideals of a poset X are exactly
the irreducible closed subsets of Xa, leading to the fifth row of Figure 1. This goes
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much further: by Hoffmann’s Theorem [Hoffmann, 1979b], for a posetX , the sobrifica-
tion S(Xa) coincides with the ideal completion I(X) exactly [Goubault-Larrecq, 2013,
Fact 8.2.49]. This means that the points are the same, but also the topologies, that is,
the topology of S(Xa) is the Scott topology of I(X). This justifies the sixth row of
Figure 1.
S(X) is always sober, and the map ηSX : x 7→ ↓x is a topological embedding of X

inside S(X) as soon as X is T0. I.e., up to isomorphism, any T0 space can be seen as
a subspace of its sobrification S(X), equating x ∈ X with ↓x in S(X).

The sobrification S(X) ofX can be thought of asX together with all missing limits
from X . Note in particular that a sober space is always a dcpo in its specialization or-
dering, see [Abramsky and Jung, 1994, Proposition 7.2.13] or [Goubault-Larrecq, 2013,
Corollary 8.2.23].

A topological spaceX is Noetherian if and only if S(X) is Noetherian [Goubault-Larrecq, 2013,
Lemma 9.7.9]. This is clear from the fact that, up to natural order isomorphism,
X and S(X) have the same opens, see [Gierz et al., 2003, Proposition V-4.7(i)] or
[Goubault-Larrecq, 2013, Lemma 8.2.26]. Actually, S(X) is the free sober space
above the topological space X , meaning that every continuous map f from X to a
sober space Y extends to a unique continuous map g from S(X) to Y , in the sense
that f = g ◦ ηSX , see [Gierz et al., 2003, Exercise V-4.9] or [Goubault-Larrecq, 2013,
Theorem 8.2.44]. This is a form of extension by continuity theorem, and is the proper
categorical way of saying that S(X) is X plus all missing limits.
S(X), as a space of specific closed subsets of X , embeds into the Hoare pow-

erdomain HV(X), namely the space of all non-empty closed subsets of X . Let also
HV(X)⊥ be the lifted Hoare powerdomain of X , which one can see either as HV(X)
plus a fresh bottom element ⊥ added, or as the set of all closed subsets of X , includ-
ing the empty set. The topology of both HV(X) and HV(X)⊥ is the so-called lower
Vietoris topology, whose subbasic opens are 3U = {F ∈ HV(X) | F ∩ U 6= ∅},
U open in X . With this topology, S(X) can be considered a subspace of HV(X),
and the latter as a subspace of HV(X)⊥. We use a slightly different symbol 3U here,
compared to the open subsets �U of S(X): although they denote very similar sets (and
�U = 3U ∩ S(X)), the sets 3U only form a subbase of the lower Vietoris topology
onHV(X) andHV(X)⊥, while the sets �U are exactly all the open subsets of S(X).

Remarkably, HV(X) and HV(X)⊥ are Noetherian for every Noetherian space
X [Goubault-Larrecq, 2013, Exercise 9.7.14], even though their specialization quasi-
ordering, which is inclusion, is in general not wqo.

3 Completions of Wqos

We have announced that the proper completion X̂ of a wqo, or more generally of a
Noetherian space X , would be its ideal completion, or more generally its sobrification.
Before we compute finite representations, it is in order to vindicate this choice.

A rational way to define a completion is to state the properties we need for it first,
and then derive what it should be. In our case, there are various properties we might
want for a completion, depending on the point of view we take. In the conference
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version of this paper [Finkel and Goubault-Larrecq, 2009], we had explored several of
these points of view.

Let us concentrate on just one: Geeraerts et al.’s axiomatization of so-called ad-
equate domain of limits for well-quasi-ordered sets X , used in their expand, enlarge,
and check forward procedure [Geeraerts et al., 2006]. We stress that this notion is in-
dependent of their algorithm, and of any particular algorithm: adequate domains of
limits are merely an axiomatization of some basic requirements on the representability
of downwards-closed subsets. These requirements are also needed in our own approach
[Finkel and Goubault-Larrecq, 2012].

An adequate domain of limits [Geeraerts et al., 2006] (ADL) for a well-ordered set
X is a triple (L,�, γ) where L is a set disjoint from X (the set of limits); (L1) the map
γ : L ∪ X → P(X) is such that γ(z) is downwards-closed for all z ∈ L ∪ X , and
γ(x) = ↓X x for all non-limit points x ∈ X; (L2) there is a limit point > ∈ L such
that γ(>) = X; (L3) for all z, z′ ∈ L∪X , z� z′ if and only if γ(z) ⊆ γ(z′); and (L4)
for any downwards-closed subset D of X , there is a finite subset E ⊆ L∪X such that
γ̂(E) = D. Here γ̂(E) =

⋃
z∈E γ(z).

No explicit construction for such adequate domains of limits is given by Geeraerts
et al., and they have to be found by trial and error. Our first result, below, is that there
is a unique least (weak) adequate domain of limits of X , and this is I(X) = S(Xa)
minus X . This not only gives a concrete construction of such an adequate domain of
limits, but also shows that we do not have much freedom in defining one: any other
one must contain S(Xa).

The definition of ADLs above is slightly awkward. Let us simplify it.
Requirement (L2) in [Geeraerts et al., 2006] only serves to ensure that all closed

subsets of L ∪ X can be represented as ↓L∪X E for some finite subset E: the closed
subset L ∪ X itself is then exactly ↓L∪X{>}. However, (L2) is unnecessary for this,
since L ∪ X already equals ↓L∪X E by (L3), where E is the finite subset of L ∪ X
such that γ̂(E) = L ∪X as ensured by (L4). We will not need (L2) either in our own
subsequent work [Finkel and Goubault-Larrecq, 2012], and shall call weak adequate
domain of limits (WADL) any triple (L,�, γ) satisfying (L1), (L3), and (L4).

Even so, this definition remains awkward. First, the real space of interest is not L,
butZ = L∪X; L can always be recovered asZrX . Then γ(z) should be downwards-
closed for every z ∈ Z, i.e., it should be closed in Xa. The space of downwards-closed
subsets is the Hoare powerdomainHV(Xa)⊥. As a consequence, (L1) can be expressed
more succinctly by requiring that γ be a map from Z to HV(Xa)⊥, and that every
subset of the form ↓X x, x ∈ X , is obtained as γ(x). Requirement (L3) means that γ is
a quasi-order embedding. In other words, the elements z of Z can be thought as syntax
for particular elements γ(z) of HV(Xa)⊥, and we define � on syntax by z � z′ iff
γ(z) ⊆ γ(z′). So we may safely omit � from the definition, and remove requirement
(L3).

The only important requirement is (L4), which states that every downwards-closed
subset of X should be describable as a finite union of representable subsets, i.e., of
elements of the form γ(z), z ∈ Z. (L1) also requires all elements of the form ↓X x,
x ∈ X , to be representable. However, this is a consequence of (L4): ↓X x is a finite
union of representable subsets γ(z1), . . . , γ(zn); then x ∈ γ(zi) for some i, 1 ≤ i ≤ n,
from which we deduce that γ(zi) = ↓X x.
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We therefore arrive at the following definition.

Definition 3.1 (ADL, WADL) LetX be a quasi-ordered set. A weak adequate domain
of limits, or WADL, onX is a pair (Z, γ) of a setZ and a map γ : Z → HV(Xa)⊥ (the
representation map) such that every downwards-closed subset of X is a finite union of
representables. A representable subset of X is by definition one of the form γ(z) for
some z ∈ Z.

(Z, γ) is an adequate domain of limits (ADL) iff, additionally, the whole set X is
representable.

In any case, the limit points of Z are those z ∈ Z such that γ(z) is not of the form
↓X x, x ∈ X .

We check the formal relationship with Geeraerts et al.’s conditions. The easy proof
is left to the reader.

Lemma 3.2 Let X be a quasi-ordered set.
If (L,�, γ) satisfies (L1), (L3) and (L4), then (L ∪X, γ) is a WADL.
If (L,�, γ) satisfies (L1), (L2), (L3) and (L4), then (L ∪X, γ) is an ADL.
Conversely, if (Z, γ) is a WADL (resp., ADL) on X , then (L,�, γ′) satisfies (L1),

(resp., and (L2)), (L3) and (L4) where L is the set of limit points of Z, � is defined by
z � z′ iff γ′(z) ⊆ γ′(z′), and γ′ is defined by γ′(z) = γ(z) if z ∈ L, γ′(x) = ↓X x if
x ∈ X .

Definition 3.1 displays a tension between mathematical practice and computer sci-
ence needs. That every downwards-closed subset of X be a finite union of repre-
sentables γ(z1), . . . , γ(zn) means that we can represent any downwards-closed set by
finitely many pieces of information z1, . . . , zn. However, from a computer science
perspective, we have not (yet) put any computability conditions on WADL. We repair
this now.

Definition 3.3 (Effective WADL) A WADL (Z, γ) on X is an effective WADL iff the
relation � on Z, defined by z � z′ iff γ(z) ⊆ γ(z′), is decidable.

This naturally assumes that Z is a domain of objects representable on a computer, e.g.,
a word, or a natural number.

From a mathematical standpoint, on the other hand, one usually reasons up to order
quotients and order isomorphisms. Then γ and Z are useless in Definition 3.1, and the
only relevant part of a WADL is the collection of representable subsets. I.e., a WADL
is, up to these details, a collection of downwards-closed subsets, the representable
subsets, such that every downwards-closed subset is a finite union of representables.

We can then bound precisely all WADLs between two well-known spaces of downwards-
closed subsets (i.e., closed in Xa).

Lemma 3.4 Let X be a poset, and (Z, γ) be a WADL on X . The set γ[Z] of repre-
sentable subsets is such that:

S(Xa) ⊆ γ[Z] ⊆ HV(Xa)⊥
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Proof. We must show that S(Xa) ⊆ γ[Z], the other inclusion being by definition.
Let C ∈ S(Xa), i.e., assume C is irreducible closed. C must be a finite union of
representables

⋃n
i=1 γ(zi) by the definition of WADLs. So C ⊆ γ(zi) for some i,

1 ≤ i ≤ n, by irreducibility (and since each γ(zi) is closed in Xa). It follows that
C = γ(zi), hence C ∈ γ[Z]. 2

So, up to order quotients and order isomorphisms, there cannot be any WADL smaller
than the sobrification S(Xa). We shall see later that the latter is effective in a large
number of practical cases.

Naturally, the statement of Lemma 3.4 does not require any topology. Purely order-
theoretically, Lemma 3.4 states that the collection of representable subsets must lie
between the collection of ideals (I(X) = S(Xa)) and the collection of all downwards-
closed subsets (HV(Xa)⊥).

The interest in using topology is in the proof of Lemma 3.4: the point is that the
key notion is irreducibility, a topological notion. In turn, these notions and proofs will
generalize to the topological, Noetherian case with no effort later.

When X is a wqo, the ideal completion I(X) = S(Xa) is not just a lower bound
below any WADL, it is itself a WADL. This follows from the following more general
topological statement.

Proposition 3.5 Let X be a Noetherian space. Then S(X) is the least collection C
of closed subsets of X such that every closed subset of X can be expressed as a finite
union of elements of C.

Proof. First, if C is as above, then S(X) ⊆ C. The proof is as in Lemma 3.4, which is
in fact a topological proof: every element C of S(Xa) must be written as a finite union
of elements of C, and by irreducibility it must equal one of them.

Conversely, we need to show that every closed subset of X is a finite union of
irreducible closed subsets, provided that X is Noetherian. This is a well-known fun-
damental result, and occurs as part of [Goubault-Larrecq, 2013, Theorem 9.7.12]. We
give an elementary proof of it in Lemma 3.6 below, for the sake of completeness. 2

Lemma 3.6 In a Noetherian space, every closed subset is a finite union of irreducibles.

Proof. By taking complements, in a Noetherian space X every properly descending
chain F0 ) F1 ) · · · ) Fn ) · · · of closed subsets must be finite, in other words
HV(Xa), ordered by inclusion, is well-founded. Imagine there were a closed subset C
that cannot be written as a finite union of irreducibles. By well-foundedness, we can
choose C minimal. C is not empty, since the empty set can be written as a finite union
of irreducibles, namely none. C cannot be irreducible either, so there are two closed
subsets F1 and F2 such that C ⊆ F1 ∪ F2, but C 6⊆ F1 and C 6⊆ F2. Because of the
latter, C ∩ F1 and C ∩ F2 are strictly smaller than C. By the minimality of C, C ∩ F1

and C ∩F2 can be written as finite unions of irreducibles, so C = (C ∩F1)∪ (C ∩F2)
is also a finite union of irreducibles: contradiction. 2

As a special case, we obtain that every downwards-closed subset of a wqo X is
a finite union of ideals. This can also be deduced from the observation by Erdős and
Tarski [Erdős and Tarski, 1943] that a poset has no infinite antichain if and only if every
downwards-closed subset is a finite union of ideals.
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Remark 3.7 Generalizing the above cited result of Erdős and Tarski to the topological
setting, we have the following: a topological space has no infinite discrete subspace if
and only if every closed subset is a finite union of irreducibles [Goubault-Larrecq, 2019].

Proposition 3.5, once toned down to wqos, translates to the following.

Corollary 3.8 (Least WADL) Let X be a wqo. The ideal completion I(X) = S(Xa)
is the least WADL, in the sense that:

1) for any WADL (Z, γ) on X , every element of S(Xa) is representable;

2) (S(Xa), i) is itself a WADL, where i is the canonical injection of S(Xa) into
HV(Xa)⊥.

In other words, up to the coding function γ, there is a unique minimal WADL on
any given wqo X . We contend that S(Xa) is, in all practical cases, the sole WADL
worth considering, and will in particular be effective.

Our treatment so far uses topology for no particular good reason apart from math-
ematical elegance. Our presentation, however, lends itself to the following natural
topological extension of WADLs. We have claimed that the additional generality ob-
tained by shifting focus from wqos to the larger class of Noetherian spaces was useful
in [Goubault-Larrecq, 2010]. Notably, the class of polynomial concurrent programs in-
troduced there is naturally seen as a topological WSTS, that is, as a pair (X,→) where
X is Noetherian space (instead of a wqo) and → is a lower semi-continuous binary
relation—this is the natural generalization of WSTS to a topological setting. Using
Noetherianness, and algorithms and proof arguments that are variants of WSTS argu-
ments, it was shown in that same paper that the reachability of sets of states defined
by so-called forbidden patterns is decidable for polynomial concurrent programs. Note
that the latter are not WSTS. In that context, studying topological WADLs instead of
WADLs is the logical next step.

Definition 3.9 Let X be a topological space. A topological WADL on X is a pair
(Z, γ) of a set Z and a map γ : Z → HV(X)⊥ (the representation map) such that
every closed subset of X is a finite union of representables. A representable subset of
X is by definition one of the form γ(z) for some z ∈ Z.

So WADLs are topological WADLs, in the special case where X comes with the
Alexandroff topology of some quasi-ordering. We have just seen (Proposition 3.5) that,
when X is Noetherian, S(X) is the least topological WADL. We state it as follows.

Proposition 3.10 (Least Topological WADL) Let X be a Noetherian space. The so-
brification S(X) is the least topological WADL, in the sense that:

1) for any topological WADL (Z, γ) on X , every element of S(X) is representable;

2) (S(X), i) is itself a topological WADL, where i is the canonical injection of S(X)
intoHV(X)⊥.
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D ::= A (finite poset; Theorem 4.3)
| N (natural numbers; Theorem 4.4)
| D1 ×D2 × · · · ×Dn (product; Theorem 4.5)
| D1 +D2 + · · ·+Dn (coproduct; Theorem 4.6)
| S(D) (sobrification; Theorem 4.7) ∗
| P(D) (powerset; Theorem 4.11) ∗
| P∗(D) (non-empty powerset; Theorem 4.11) ∗
| HV(D) (Hoare powerdomain; Theorem 4.8) ∗
| HV(D)⊥ (lifted Hoare powerdomain; Theorem 4.8) ∗
| Spec(R) (spectrum of ring R; Proposition 5.1) ∗
| D∗ (finite words; Theorem 6.15)
| D~ (finite multisets; Theorem 7.7)
| .+∞

n=1Dn (words, prefix; Theorem 8.10) ∗
| T (D) (finite trees; Theorem 10.36)

Figure 2: An algebra of Noetherian datatypes

4 S-Representations

We shall devote the rest of this paper to describe completions D̂ = S(D) for those
datatypes of Figure 2. As we shall see, these datatypes include most of the datatypes
encountered in the literature on WSTS (e.g, Petri nets and more generally counter
machines, lossy channel systems, data nets), and contain several new ones.

All the datatypes in this Figure are Noetherian spaces, as can be gathered from
Section 9.7 of [Goubault-Larrecq, 2013]. We also state the relevant theorem is in each
case. Stars indicate constructs that, while preserving Noetherianness, do not preserve
well-quasi-orderedness. What the values of these types are, what their topologies are
(and associated specialization quasi-orderings) will also be made precise in each cor-
responding section.

The completion process is modular: the completion D̂ of a type D, built from D1,
. . . , Dn, will be defined as a function of D̂1, . . . , D̂n. In each case, we shall show that
if D̂1, . . . , D̂n are effective, then so is D̂.

As a result, all the datatypes defined in Figure 2 will be effective. This is important:
Definition 3.3, applied to the WADL X̂ = S(Xa) (when X is wqo), requires us to
decide the ordering (i.e., inclusion) on S(X). We shall require—and obtain—more:
we shall be able to compute finite intersections of closed subsets (i.e., downwards-
closed subsets in wqos) as well.

We consider topological WADLs—e.g., the starred rows in Figure 2—for added
generality, but also because the topological approach, relying on the notion of irre-
ducibility, provides a unifying perspective on the matter. This leads to the following
notion of an effective, finite representation of irreducible closed subsets. The closed,
not necessarily irreducible, subsets are all finite unions of irreducibles (Lemma 3.6) and
can therefore be represented as finite sets of codes. Below, this is how we represent the

17



closed sets X (item D) and JaK ∩ JbK (item E).

Definition 4.1 (S-Representation) LetX be a topological space. An S-representation
of X is a tuple (S, J_K ,�, τ,∧) where:

(A) S is a recursively enumerable set of so-called codes (of irreducible closed sub-
sets);

(B) J_K is a surjective map from S to S(X);

(C) � is a decidable relation such that, for all codes a, b ∈ S, a� b iff JaK ≤ JbK;

(D) τ is a finite subset of S, such that X =
⋃
a∈τ JaK;

(E) ∧ is a computable map from S × S to the collection Pfin(S) of finite subsets of S
(and we write a ∧ b for ∧ (a, b)) such that JaK ∩ JbK =

⋃
c∈a∧b JcK.

We call ∧ the intersection map.

The idea is that codes represent irreducible closed subsets, through the semantic func-
tion J_K, that � implements inclusion, τ denotes the whole set X , and ∧ implements
intersection.

We justify this now, in a more precise way. We represent closed subsets F through
finite sets {a1, · · · , am} of codes. The denotation of such a finite set is the union⋃m
i=1 JaiK. Since J_K is surjective, and using Lemma 3.6, every closed subset of a

Noetherian space X can be represented this way. This is in particular true for the
whole set X (item D) and the intersection JaK ∩ JbK in item E.

While � allows us to test two (codes of) irreducible closed subsets for inclusion,
one can extend the inclusion test to arbitrary closed subsets: this is what we show now.

Lemma 4.2 Given irreducible closed subsetsC1, . . . ,Cm,C ′1, . . . ,C ′n of a topological
space X , the following are equivalent:

• C1 ∪ · · · ∪ Cm ⊆ C ′1 ∪ · · · ∪ C ′n;

• {C1, · · · , Cm} ⊆[ {C ′1, · · · , C ′n}, that is, for every i (1 ≤ i ≤ m), there is a j
(1 ≤ j ≤ n) with Ci ⊆ C ′j .

Proof. C1 ∪ · · · ∪ Cm ⊆ C ′1 ∪ · · · ∪ C ′n if and only if for every i, Ci is included in
C ′1 ∪ · · · ∪C ′n. Since Ci is irreducible, the latter is equivalent to the existence of j such
that Ci ⊆ C ′j . 2

In general,≤[ is the Hoare quasi-ordering on subsets, also called the domination quasi-
ordering: A ≤[ B iff for every a ∈ A, there is a b ∈ B such that a ≤ b. We will use
≤[ for various quasi-orderings ≤, and will accordingly use the notations ⊆[ as above,
or �[ later.

Given an S-representation, we can then test two closed sets for inclusion: given two
finite sets {a1, · · · , am} and {b1, · · · , bn} of codes,

⋃m
i=1 JaiK is included in

⋃n
j=1 JbjK

iff for every i, there is a j such that ai � bj .
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Finite intersections are computable, too, using ∧: the intersection of two closed
sets represented by finite sets {a1, · · · , am} and {b1, · · · , bn} of codes is

⋃m
i=1 JaiK ∩⋃n

j=1 JbjK =
⋃
i,j JaiK∩JbjK, and is therefore represented by the finite set

⋃
i,j ai ∧ bj .

Finite unions are, of course, easily computable as well.
Our purpose is to show that every spaceX that occurs as the space of values of some

type D in Figure 2 has an S-representation. In each case, we will actually define an S-
representation of D as a function of given S-representation of its constituent datatypes,
and we shall use a uniform presentation: each result will be given in the form of a
proposition of the following shape.
“Proposition XXX (S-Representation, datatype D) Let Xi be Noetherian spaces, and
(Si, J_Ki ,�i, τi,∧i) be an S-representation ofDi for each i. Then (S′, J_K′ ,�′, τ ′,∧′)
is an S-representation of D, where:

(A) S′ is . . .

(B) J· · ·K′ is defined as . . .

(C) �′ is defined as . . .

(D) τ ′ is defined as . . .

(E) ∧′ is defined by a′ ∧′ b′ = . . .”

We start with the easiest cases. The more difficult cases will be dealt with in sep-
arate sections. Our first instance is trivial: in a finite quasi-ordered set A, irreducible
closed subsets, that is, ideals, are all of the form ↓x, x ∈ A, so Â = S(Xa) = I(X) is
isomorphic to A.

Theorem 4.3 (S-Representation, Finite Quasi-Orders) LetA be any finite quasi-ordered
set. An S-representation of A is (S, J_K ,�, τ,∧) where:

(A) S is A itself,

(B) J_K is the identity map,

(C) � is the given ordering on A,

(D) τ is the set of maximal elements of A,

(E) a ∧ b is the set of maximal lower bounds of a and b.

All this is computable, by just maintaining all needed information in tables. As a
particular case, one finds the finite sets: these are the posets whose ordering is equality.
In particular, the above provides an S-representation for finite sets Q of control states
of various kinds of machines. In this case, τ = Q, a ∧ b = {a} if a = b, and a ∧ b = ∅
otherwise.

The next case is an easy exercise.

Theorem 4.4 (S-Representation, N) An S-representation of N is (S, J_K ,�, τ,∧) where:

(A) S = Nω ,
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(B) J_K maps n to ↓n and ω to N,

(C) � is the usual ordering on Nω ,

(D) τ = {ω},

(E) m ∧ n = {min(m,n)}.

Theorem 4.5 (S-Representation, Products) LetX1, . . . ,Xn be n Noetherian spaces,
X = X1 × · · · × Xn, and (Si, J_Ki ,�i, τi,∧i) an S-representation of Xi for each i,
1 ≤ i ≤ n. Then (S, J_K ,�, τ,∧) is an S-representation of X , where:

(A) S = S1 × · · · × Sn;

(B) J(a1, · · · , an)K = Ja1K× · · · × JanK;

(C) (a1, · · · , an) � (b1, · · · , bn) iff a1 �1 b1 and . . . and an �n bn;

(D) τ = τ1 × · · · × τn;

(E) (a1, · · · , an) ∧ (b1, · · · , bn) = (a1 ∧1 b1)× · · · × (an ∧n bn).

Proof. The elements of S(X) are the products C1 × · · · × Cn of irreducible closed
subsets C1 of X1, . . . , Cn of Xn (see Lemma A.2 in the Appendix), which justifies
items A and B: we represent C1 × · · · × Cn as the n-tuple of codes for C1, C2, . . . ,
Cn. The if direction of item C follows from the fact that product is monotonic with
respect to inclusion. Conversely, if

∏n
i=1 JaiK ⊆

∏n
i=1 JbiK, then JaiK ⊆ JbiK for every

i: since JajK is non-empty, we can pick an element xj from JajK for every j 6= i; then,
for every x ∈ JaiK, the tuple (x1, · · · , xi−1, x, xi+1, · · · , xn) is in

∏n
i=1 JaiK, hence in∏n

i=1 JbiK, showing that x is in JbiK. Items D and E are clear. 2

So, for example, an S-representation for Nk, the datatype of configurations of Petri
nets, and more generally, of counter machines, is as expected: S = Nkω , (m1, · · · ,mk)�
(n1, · · · , nk) iffmi ≤ ni for every i, 1 ≤ i ≤ k, τ = {(ω, · · · , ω)}, and (m1, · · · ,mk) ∧
(n1, · · · , nk) = {min(m1, n1), · · · ,min(mk, nk))}.

Theorem 4.6 (S-Representation, Coproducts) LetX1, . . . ,Xn be nNoetherian spaces,
and X = X1 + · · ·+Xn. Then S(X) is homeomorphic to S(X1) + · · ·+ S(Xn).

Let (Si, J_Ki ,�i, τi,∧i) be an S-representation of Xi for each i, 1 ≤ i ≤ n. Then
(S, J_K ,�, τ,∧) is an S-representation of X = X1 + · · ·+Xn, where:

(A) S = {(i, a) | 1 ≤ i ≤ n, a ∈ Si};

(B) J(i, a)K = JaKi (up to the homeomorphism between S(X) and S(X1) + · · · +
S(Xn));

(C) (i, a) � (j, b) iff i = j and a�i b;

(D) τ =
⋃n
i=1{i} × τi;

(E) (i, a) ∧ (j, b) = ∅ if i 6= j, (i, a) ∧ (i, b) = {(i, c) | c ∈ a ∧i b}.
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Proof. For the first part, see [Goubault-Larrecq, 2013, Fact 8.4.3], which states that S
commutes with coproducts (in fact with all colimits, since S is a left adjoint). The rest
is clear. 2

A trivial case of S-representation is provided by sobrifications themselves, because
S(S(X)) is canonically isomorphic to S(X). Indeed, Y = S(X) is sober, and for ev-
ery sober space Y , ηS is an isomorphism between Y and S(Y ) [Goubault-Larrecq, 2013,
Fact 8.2.5]. It follows that any S-representation (S, J_K ,�, τ,∧) for X yields an S-
representation for S(X) with the same set S of codes and the same operations �, τ ,
and ∧, namely (S, ηSX ◦ J_K ,�, τ,∧):

Theorem 4.7 (S-Representation, Sobrifications) Let X be a Noetherian space, and
X ′ = S(X). Let (S, J_K ,�, τ,∧) be an S-representation of X . Then (S′, J_K′ ,�′,
τ ′,∧′) is an S-representation of X ′ where:

(A) S′ = S;

(B) for every a ∈ S, JaK′ = ↓X′ JaK;

(C) a�′ b iff a� b;

(D) τ ′ = τ ;

(E) a ∧′ b = a ∧ b.

Let us deal with the Hoare powerdomainHV(X) of X and its lifted version.

Theorem 4.8 (S-Representation, Hoare Powerdomains) LetX be a Noetherian space,
andX ′ = HV(X)⊥ (resp.,X ′ = HV(X)). Let (S, J_K ,�, τ,∧) be an S-representation
of X . Then (S′, J_K′ ,�′, τ ′,∧′) is an S-representation of X ′ where:

(A) S′ = Pfin(S) (resp., S′ = P∗fin(S));

(B) for every a′ ∈ S′, Ja′K′ = ↓X′{
⋃
a∈a′ JaK};

(C) a′ �′ b′ iff a′ �[ b′, where a′ �[ b′ iff for every a ∈ a′, there is a b ∈ b′ such that
a� b (compare Lemma 4.2);

(D) τ ′ = {τ};

(E) a′ ∧′ b′ = {
⋃
a∈a′,b∈b′(a ∧ b)}.

Proof. By Lemma 3.6, every element F ofHV(X)⊥ is a finite union of irreducible
closed subsets, which are each of the form JaK with a ∈ S by assumption, since J_K is
surjective. So J_K′ is surjective.

Next, a′�′b′ iff Ja′K′ ⊆ Jb′K′ , iff
⋃
a∈a′ JaK ⊆

⋃
b∈b′ JbK, iff a′�[b′, by Lemma 4.2.

We must check thatX ′ =
⋃
a′∈τ ′ Ja

′K′. The right-hand side is JτK′ = ↓X′{
⋃
a∈τ JaK} =

↓X′{X} = X ′.
Finally, let us compute Ja′K′ ∩ Jb′K′. This is ↓X′{

⋃
a∈a′ JaK} ∩ ↓X′{

⋃
b∈b′ JbK} =

↓X′{
⋃
a∈a′ JaK∩

⋃
b∈b′ JbK} = ↓X′{

⋃
a∈a′,b∈b′(JaK∩JbK)} = ↓X′{

⋃
a∈a′,b∈b′

⋃
c∈a∧b JcK} =

↓X′{
⋃
c∈

⋃
a∈a′,b∈b′ (a∧b)

JcK} =
r⋃

a∈a′,b∈b′(a ∧ b)
z′

. 2
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Let P∗(X) be the set of non-empty subsets of X . We topologize X ′ = P(X)
(resp., X ′ = P∗(X)) by the lower Vietoris topology, generated by the subbasic opens
3U = {A ∈ X ′ | A∩U 6= ∅}, where U ranges over the open subsets ofX . (Although
there is a risk of confusion with the lower Vietoris topology onHV(X)⊥, we shall see
that the two are strongly tied.)

It is worth to point out that A is below B in the specialization quasi-ordering of
those spaces if and only if cl(A) ⊆ cl(B). This is well-known, and appears for exam-
ple as part of Proposition 7.3 of [Goubault-Larrecq, 2007]. We include the proof for
completeness.

Lemma 4.9 The specialization quasi-ordering of P(X), resp. P∗(X), is inclusion of
closures.

Proof. Let us temporarily write � for that specialization quasi-ordering.
If A � B in P(X) (resp., P∗(X)), then consider the (open) complement U of

cl(B). Since A � B, if A ∈ 3U then B ∈ 3U . However, B does not intersect U ,
since U is the complement of cl(B), so B is not in 3U . It follows that A is not in 3U
either. This means that A does not intersect U , and therefore that it is included in its
complement, cl(B). Since cl(B) is closed, contains A, and cl(A) is by definition the
smallest closed subset of X containing A, cl(A) is included in cl(B).

In the converse direction, we use the standard fact that, for an open subset U of X ,
cl(A) intersects U if and only if A intersects U . Let us assume that cl(A) ⊆ cl(B).
Let U =

⋃
i∈I
⋂
j∈Ji 3Uij (where each Ji is finite) be any open subset of P(X) (resp.,

P∗(X)) containing A. Then, for some i ∈ I , A intersects Uij for every j ∈ Ji. The
larger set cl(B) must then intersect each Uij as well. Hence (see standard fact) B also
intersects each Uij . It follows that B is in U . Since U is arbitrary, A � B. 2

WhenX is equipped with the Alexandroff topology of a quasi-ordering≤, cl(A) =
↓A and cl(B) = ↓B, and therefore the specialization quasi-ordering of P(X) and
P∗(X) is the familiar Hoare quasi-ordering ≤[ in that case.

Even when ≤ is wqo, ≤[ fails to be wqo in general. However, P(X) and P∗(X)
are Noetherian for X Noetherian, as first remarked in [Goubault-Larrecq, 2007]. This
stems from the following result, and the fact that sobrifications of Noetherian spaces
are Noetherian.

Lemma 4.10 For a topological space X , HV(X)⊥ is the sobrification of P(X), and
HV(X) is the sobrification of P∗(X), up to homeomorphism.

Proof. We deal with the first claim, by exhibiting a homeomorphism 2 between
HV(X)⊥ and S(P(X)). To distinguish closure in X and closure in P(X), let us write
clX for the former and clP(X) for the latter.

For every closed subset C ofX , clP(X)({C}) is the closure of the point C in P(X),
and that is equal to the downward closure of {C} with respect to the specialization
quasi-ordering of P(X). By Lemma 4.9, this is the set of subsets A of X such that
clX(A) ⊆ clX(C). Since clX(C) = C, and since clX(A) ⊆ C is equivalent to A ⊆ C
(since C is closed in X), clP(X)(C) is therefore just the set 2C of subsets of C.

The notation 2C is justified by the fact that it is the complement of 3U where U
is the complement of C. (Admittedly, we could also have written it as ↓C.) Since
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2C is equal to clP(X)({C}), it is in particular irreducible closed. This defines a map
2 : HV(X)⊥ → S(P(X)).

Conversely, let I be an irreducible closed subset of P(X). As a closed set, we
can write it as

⋂
i∈I
⋃
j∈Ji 2Cij , where each Ji is finite and each Cij is closed. For

each i ∈ I , I ⊆
⋃
j∈Ji 2Cij , and since I is irreducible, there is a ji ∈ Ji such that

I ⊆ 2Ciji . Therefore I ⊆
⋂
i∈I 2Ciji , and as the right-hand side is clearly included

in I, this inequality is in fact an equality. It is easy to see that 2 commutes with
arbitrary intersections. As a consequence, I is of the form 2C, where C =

⋂
i∈I Ciji .

It follows that 2 is surjective.
Note furthermore that C is unique: if I = 2C, then C is necessarily the largest

closed set that is an element of I. Hence the map 2 : HV(X)⊥ → S(P(X)) is bijec-
tive.

To show that a map is continuous, it is enough to show that the inverse image of
a subbasic open is open. A subbase of opens of S(P(X)) consists of the sets of the
form �3U , U open in X , because the outer � commutes with all unions and finite
intersections. (Both � and 3 commute with unions; we let the reader check that the
outer � also commutes with finite intersections, as a consequence of irreducibility.)

To show that 2 is continuous, it therefore suffices to show that 2−1(�3U) is open
for every open subset U ofX . For every C inHV(X)⊥, C ∈ 2−1(�3U) if and only if
2C intersects 3U , if and only if some closed subset C ′ of C intersects U , if and only
if C itself intersects U . So 2−1(�3U) = 3U , showing that 2 is continuous.

Conversely, the inverse image of 3U by the inverse map 2−1 is �3U , showing
that 2−1, too, is continuous. Therefore 2 is a homeomorphism. 2

This not only shows that P(X) and P∗(X) are Noetherian for X Noetherian, but
also that they have the same sobrifications asHV(X)⊥ andHV(X) respectively, hence
can be given the same S-representations:

Theorem 4.11 (S-Representation, Powersets) LetX be a Noetherian space, andX ′ =
P(X) (resp., X ′ = P∗(X)). Let (S, J_K ,�, τ,∧) be an S-representation of X . Then
(S′, J_K′ ,�′, τ ′,∧′) is an S-representation of X ′ where:

(A) S′ = Pfin(S) (resp., S′ = P∗fin(S));

(B) for every a′ ∈ S′, Ja′K′ = ↓X′{
⋃
a∈a′ JaK};

(C) a′ �′ b′ iff a′ �[ b′;

(D) τ ′ = {τ};

(E) a′ ∧′ b′ = {
⋃
a∈a′,b∈b′(a ∧ b)}.

5 Completing Ring Ideals
The primary example of Noetherian spaces, historically, are the spectra of Noetherian
rings. Mentioning them is therefore mandatory. The non-algebraically inclined reader
is invited to proceed to finite words (Section 6).
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Let R be a commutative ring (with unit). Recall that an ideal I is any additive
subgroup of R such that for any r ∈ I , r′ ∈ R, the product rr′ is in I . A prime ideal
p is an ideal that does not contain the multiplicative unit 1 of R (equivalently, which
is different from the whole of R), and such that whenever rr′ ∈ p, then r or r′ is in
p. The spectrum Spec(R) of R is the set of all prime ideals of R. It is equipped with
the Zariski topology, whose closed subsets are FI = {p ∈ Spec(R) | I ⊆ p}, where I
ranges over the ideals of R.

Union and intersection is computed on such sets by FI ∩ FI′ = FI+I′ , where
I + I ′ = {r + r′ | r ∈ I, r′ ∈ I ′}, and FI ∪ FI′ = FI∩I′ .

A ring R is Noetherian iff every ⊆-increasing sequence of ideals I0 ⊆ I1 ⊆
· · · ⊆ In ⊆ · · · in R is stationary: for some n ∈ N, all the ideals In, In+1, . . . ,
are equal. For example, the ring K[X1, · · · , Xk] of all polynomials over the variables
X1, . . . , Xk with coefficients in K is Noetherian for any field K, in fact even for
any Noetherian ring K. For any Noetherian ring R, Spec(R) is a Noetherian topo-
logical space [Grothendieck, 1960, corollaire 1.1.6, p.81]. The specialization ordering
of Spec(R) is reverse inclusion ⊇ [Grothendieck, 1960, corollaire 1.1.7, p.81]. By
[Grothendieck, 1960, proposition 1.1.10, (i), p.82], the sets Spec(R) r ↓ (r) form a
base of the Zariski topology, where (r) is the (prime) ideal generated by r ∈ R, so that
↓ (r) = {p | p ⊇ (r)} = {p | r ∈ p}. In particular, the Zariski topology coincides
with the upper topology of ⊇ (even when R is not Noetherian).

There are in general several ideals I that yield the same closed set FI . In fact, two
ideals yield the same closed set if and only if they have the same radical; the radical√
I is defined as {r ∈ R | ∃k ≥ 1, rk ∈ I}.

Whatever the ringR, Spec(R) is always sober [Grothendieck, 1960, corollaire 1.1.14,
(ii), p.82]. It follows that its irreducible closed subsets are exactly its subsets of the
form Fp, p a prime ideal, which are exactly the downward closure (with respect to ⊇)
of p. When Spec(R) is also Noetherian, it follows from Lemma 3.6 that every closed
subset FI of Spec(R) is a finite union of irreducible closed subsets Fp1 ∪ · · · ∪ Fpn .
Since the latter is equal to Fp1∩···∩pn ,

√
I =

√
p1 ∩ · · · ∩ pn, and the latter equals

p1 ∩ · · · ∩ pn since radical commutes with intersections and since
√
p = p for ev-

ery prime ideal p. So, every radical ideal I in a Noetherian ring is the intersection of
finitely many prime ideals: this is Kaplansky’s Theorem [Faith, 1999, Theorem 14.34].
Applying this to the closed subset Fp ∩Fp′ , where p and p′ are prime ideals, we obtain
that Fp ∩ Fp′ = Fp+p′ is a finite union of irreducible closed subsets Fp1 ∪ · · · ∪ Fpn
by Lemma 3.6. So

√
p+ p′ = p1 ∩ · · · ∩ pn. Applying this to the whole space

Spec(R) = F{0}, we obtain that
√
{0} = {0} = p1 ∩ · · · ∩ pn for finitely many prime

ideals p1, . . . , pn.
We therefore obtain an S-representation for Spec(R), with enough computability

assumptions on the ring R. The following proposition is almost vacuous, and only
reflects our needs for S-representations at the level of rings.

Proposition 5.1 (Spec(R)) LetR be a Noetherian ring, and assume that the set Spec(R)
of prime ideals of R is recursively enumerable, that the relation � defined by p� p′ iff
Fp ⊆ Fp′ iff

√
p ⊇
√
p′ is decidable, and that given p, p′ ∈ Spec(R) one can compute

a finite set p ∧ p′ of elements p1, . . . , pn ∈ Spec(R) such that
√
p+ p′ = p1∩· · ·∩pn.

Let also τ be a finite set of prime ideals whose intersection is {0}.
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Then (Spec(R), idSpec(R),�, τ,∧) is an S-representation of Spec(R).

An important special case is given by taking the polynomial ring K[X1, · · · , Xk]
for R, where K is a Noetherian ring. For the purpose of computability, we shall even
concentrate on Q[X1, · · · , Xk]. The latter is an interesting space as far as verification
of so-called polynomial programs is concerned [Müller-Olm and Seidl, 2002]: such
programs have k rational-valued variables, and the only allowed operations are +, −,
×, assigning an arbitrary value to a variable non-deterministically, and testing for non-
equality. The natural state space for such programs is Qk. However, Qk embeds into
Spec(Q[X1, · · · , Xk]), by mapping every tuple (v1, · · · , vk) of values to the prime
ideal generated by the polynomialsX1−v1, . . . ,Xk−vk. While Müller-Olm and Seidl
computed with polynomial ideals directly [Müller-Olm and Seidl, 2002], one can al-
ternatively notice that polynomial programs form a topological WSTS, where the state
space Qk has the subspace topology from Spec(Q[X1, · · · , Xk]) [Goubault-Larrecq, 2010]1.

To satisfy the requirements of Proposition 5.1 for Spec(Q[X1, · · · , Xk]), we repre-
sent polynomial ideals using Gröbner bases [Buchberger and Loos, 1983, Section 11],
which are certain finite sets of polynomials u = {P1, · · · , Pn} representing the ideal
(u) = {Q1P1 + · · · + QnPn | Q1, . . . , Qn ∈ Q[X1, · · · , Xk]}. Given a Gröbner ba-
sis u, one can decide whether (u) is a prime ideal: see [Adams and Loustaunau, 1994,
Algorithm 4.4.1, p.244] or [Grieco and Zucchetti, 1989, Section 5, end]. So the set S
of all Gröbner bases u such that (u) is prime is recursively enumerable.

We can now define JuK as F(u).
Given two Gröbner bases u and v, it is easy to check whether (u) ⊇ (v). It suffices

to check whether P ∈ (u) for every P ∈ v, and this proceeds by using the polynomials
of u as rewriting rules and checking whetherP rewrites to 0 [Buchberger and Loos, 1983,
Section 11]. However, one needs to decide whether

√
(u) ⊇

√
(v), equivalently,√

(u) ⊇ (v), i.e., to decide whether P ∈
√

(u) for every P ∈ v. The easiest way
to decide this is to use the Rabinowitch trick [Rabinowitch, 1929]: P ∈

√
(u) iff

1 ∈ (u ∪ {1− Y P}), where Y is a fresh variable.
It is clear that one can take τ = {{0}}, the ideal generated by 0, or equivalently by

the empty family of polynomials, since {0} is a prime ideal in Q[X1, · · · , Xk], and in
fact the minimal prime ideal, soF{0} is the unique largest element of Spec(Q[X1, · · · , Xk]).

The really tricky part is in defining the intersection map ∧, i.e., to give an effec-
tive version of Kaplansky’s Theorem. The algorithms that allow us to do this are too
complicated to even give a glimpse of here. One may consult [Laplagne, 2006].

Theorem 5.2 (S-Representation, Spectrum of a Polynomial Ring) An S-representation
(S, J_K ,�, τ,∧) of Spec(Q[X1, · · · , Xk]) in its Zariski topology is given by:

(A) S is the collection of Gröbner bases u on Q[X1, · · · , Xk] such that (u) is a prime
ideal.

(B) JuK = F(u).

(C) u� v iff 1 ∈ (u ∪ {1− Y P}), where Y is a fresh variable, for every P ∈ v.

1The state space was erroneously claimed to be Ck in that paper.
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(D) τ = {{0}}.

(E) u ∧ v is a finite collection of Gröbner bases u1, . . . , un such that (u1), . . . ,
(un) are prime ideals and

√
u+ v = (u1) ∩ · · · ∩ (un), computed by Laplagne’s

algorithm [Laplagne, 2006].

An alternative S-representation of Spec(R) is given by using for S the set of all
those finite sets u of polynomials such that (u) is a primary ideal, instead of a prime
ideal. A primary ideal p is such that whenever rr′ is in p, then r ∈ p or some power of r′

is in p. Every prime ideal is primary, but the converse fails. The radical
√
p of a primary

ideal is always prime. Given a set u of polynomials, one can decide whether (u) is pri-
mary [Grieco and Zucchetti, 1989, Theorem 3.2], and in fact one can compute a Gröb-
ner basis for

√
(u) in this case. So S is again, in particular, recursively enumerable. We

define again JuK as F(u). Since F(u) = F√
(u)

and
√

(u) is prime, F(u) is certainly an
irreducible closed subset. Next, � and τ are defined as above, while ∧ is now based on
a computable variant of the Lasker-Noether Theorem, instead of Kaplansky’s Theorem.
This states that every ideal I in a Noetherian ringR can be written as the intersection of
finitely many primary ideals. When R = Q[X1, · · · , Xk], then one can even compute
a finite collection of Gröbner bases w1, . . . , wm such that (u+v) = (w1)∩ · · ·∩ (wm)
and (w1), . . . , (wm) are primary ideals, see [Sturmfels, 2002, Chapter 5]. Now given
u, v ∈ S, JuK ∩ JvK = F(u) ∩ F(v) = F(u+v) = F√

(u+v)
. One can compute a finite

collection of Gröbner bases w1, . . . , wk such that
√

(u+ v) =
√

(w1)∩ · · · ∩
√

(wk)
and (w1), . . . , (wk) are primary ideals. Then JuK ∩ JvK = F√

(w1)
∪ · · · ∪ F√

(wk)
=

F(w1) ∪ · · · ∪ F(wk) =
⋃k
i=1 JwiK: define u ∧ v as {w1, · · · , wk}.

To sum up:

Theorem 5.3 (S-Representation, Spectrum of a Polynomial Ring, Alternate) An S-
representation (S, J_K ,�, τ,∧) of Spec(Q[X1, · · · , Xk]) in its Zariski topology is given
by:

(A) S is the collection of Gröbner bases u on Q[X1, · · · , Xk] such that (u) is a pri-
mary ideal.

(B) JuK = F(u).

(C) u� v iff 1 ∈ (u ∪ {1− Y P}), where Y is a fresh variable, for every P ∈ v.

(D) τ = {1}.

(E) u ∧ v is a finite collection of Gröbner bases u1, . . . , un such that (u1), . . . , (un)
are primary ideals and

√
u+ v = (u1)∩· · ·∩(un), computed as in [Sturmfels, 2002,

Chapter 5].

We finish this section by mentioning an issue with our polynomial program exam-
ple. We really think of the state space as Qk, not the larger space Spec(Q[X1, · · · , Xk]).
To make things formal, this means equipping Qk with the subspace topology, whose
closed subsets are exactly those sets of the form Z(u) = {~x ∈ Qk | ∀P ∈ u, P (~x) =
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0}, for u an ideal in Q[X1, · · · , Xk]. That topology is usually called the Zariski topol-
ogy on Qk, and makes polynomial programs topological WSTS. Whether we use Qk
or Spec(Q[X1, · · · , Xk]) is of little consequence if we use the backward algorithm
mentioned in the introduction, because the only thing it cares about is open subsets,
which can be encoded as complements of sets Z(u), namely as ideals u.

The situation is different with S-representations, since S-representations do not en-
code closed sets, but irreducible closed subsets, and Spec(Q[X1, · · · , Xk]) contains
many more irreducible closed subsets than Qk. This boils down to the fact that we do
not know of an S-representation for Qk with its Zariski topology: the situation for the
apparently more complex space Spec(Q[X1, · · · , Xk]) is simpler.

The situation is the following: we have two spacesX = Qk and Y = Spec(Q[X1, · · · , Xk]),
and X is a subspace of Y ; we know of an S-representation for Y , can we infer one for
X?

Proposition 5.4 Let X be a subspace of a topological space Y . Then S(X) embeds
into S(Y ), i.e., every irreducible closed subset of X can be equated, in a canonical
way, with some irreducible closed subset of Y .

Proof. Let m : X → Y be the inclusion map. Then S(m) is a topological embedding
[Goubault-Larrecq, 2013, Lemma 8.4.11]. In other words, every irreducible closed
subset C of X can be equated with S(m)(C), namely the closure of C in Y , and that
is irreducible closed in Y . 2

In our case, this means that an S-representation for Qk consists in a subset of either
set of codes considered in Proposition 5.2 or in Proposition 5.3. Characterizing those
codes remains to be elucidated.

6 Completing Words
If X is a wqo, then X∗ is a wqo again under the embedding quasi-ordering by Hig-
man’s Lemma. This is often used when X is a finite alphabet Σ, with equality as
quasi-ordering, but more general wqos are sometimes needed. For instance, Abdulla
et al. [Abdulla et al., 2004b] need to use X∗ where X = Σ~, the set of finite multi-
sets on a finite alphabet Σ. (We will deal with multisets in Section 7.) In that case,
X itself is infinite. That paper is also one where a suitable theory of downwards-
closed subsets was first developed, on (Σ~)∗, and our constructions will generalize
theirs. Data nets [Lazič et al., 2008] are transition systems on a state space of the form
X∗ with X = Nk, for some k ∈ N, and again X is infinite in this case. More re-
cently, Leroux and Schmitz have analyzed the question of reachability in Petri nets
[Leroux and Schmitz, 2015], and required to work on ideals in the space of runs of
Petri nets, which is a subspace of (Nk)

∗.
We work at the more general level of Noetherian spaces. In that context, the ana-

logue of Higman’s Lemma reads: for every Noetherian space X , the set X∗ of finite
words over X taken as alphabet, is Noetherian again, with the so-called word topol-
ogy [Goubault-Larrecq, 2013, Theorem 9.7.33]. (The converse also holds.) The lat-
ter topology is generated by basic open subsets X∗U1X

∗U2X
∗ · · ·X∗UnX∗, where
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n ∈ N and U1, . . . , Un are open subsets of X . We write AB for the sets of concate-
nations ww′ of words w ∈ A and w′ ∈ B, and equate subsets of X such as Ui with
the set of one-letter words whose letter is in Ui. SoX∗U1X

∗U2X
∗ · · ·X∗UnX∗ is the

(open) subset of words containing a not necessarily contiguous word a1a2 · · · an with
a1 ∈ U1, a2 ∈ U2, . . . , an ∈ Un. We stress that such subsets form a base, not just a
subbase:

Lemma 6.1 Let X be a topological space. Call elementary open of X∗ any subset of
the form X∗U1X

∗U2X
∗ · · ·X∗UnX∗, with all Ui open in X . Every finite intersec-

tion of elementary opens can be expressed as a finite union of elementary opens. In
particular, the elementary opens form a base of the word topology.

Proof. This is Exercise 9.7.28 of [Goubault-Larrecq, 2013]. An empty intersection is
just X∗, and the intersection of X∗U1X

∗U2X
∗ . . . X∗UmX

∗ and X∗V1X
∗V2X

∗ . . .
X∗VnX

∗ is computed by induction onm+n using the auxiliary formulaeX∗∩V = V ,
U ∩X∗ = U , and X∗U1U ∩X∗V1V = X∗U1(U ∩X∗V1V) ∪X∗V1(X∗U1U ∩ V) ∪
X∗(U1 ∩ V1)(U ∩ V). 2

If≤ is the specialization quasi-ordering ofX , then the specialization quasi-ordering
ofX∗ is the standard embedding quasi-ordering≤∗, a.k.a. Higman’s divisibility quasi-
ordering [Higman, 1952]: w ≤∗ w′ iff, writingw as the sequence ofm letters a1a2 · · · am,
one can write w′ as w0a

′
1w1a

′
2w2 · · ·wm−1a

′
mw
′
m with a1 ≤ a′1, a2 ≤ a′2, . . . , am ≤

a′m. Higman’s Lemma states that if X is well-quasi-ordered by ≤, then X∗ is well-
quasi-ordered by ≤∗ [Higman, 1952]. The fact that X∗ is Noetherian if and only if X
is Noetherian is a natural generalization of Higman’s Lemma: the latter can be obtained
as a special case by considering Alexandroff topologies [Goubault-Larrecq, 2013, Ex-
ercise 9.7.34].

The completion S(X∗) is well-known in case X is wqo. As mentioned in the in-
troduction, this is due to Kabil and Pouzet [Kabil and Pouzet, 1992]. Kabil and Pouzet
also look at the (ideal) completion of spaces of finite words over more general ordered
sets X . We explore another direction, that where X is Noetherian. This will include
the result by Kabil and Pouzet in the wqo case as a by-product. Additionally, we give
a simple, dynamic programming algorithm for deciding inclusion between irreducible
closed subsets, and computing intersections, retrieving formulae that were known in
the case where X is finite [Abdulla et al., 1998].

To study the completion S(X∗), we start by examining the shape of closed subsets
of X∗. For any subset A of X , let A∗ denote the set of all words a1a2 · · · an with
a1, a2, . . . , an ∈ A, n ∈ N (n is possibly equal to 0). Let A? be A ∪ {ε}. We delegate
the proof of the following Lemma to Appendix B, and similarly for a certain number
of other results of this Section. Our aim is to avoid disrupting the flow of arguments,
and to proceed as fast as we can to the final result.

Lemma 6.2 Let X be a topological space. The complement of X∗U1X
∗U2X

∗ · · ·
X∗UnX

∗ (n ∈ N, U1, U2, . . . , Un open in X) in X∗ is ∅ when n = 0, and F ∗1X
?

F ∗2X
? · · ·X?F ∗n−1X

?F ∗n otherwise, where F1 = X r U1, . . . , Fn = X r Un.
If X is Noetherian, then this complement can be expressed as a finite union of sets

of the form F ∗1C
?
1F
∗
2C

?
2 · · ·C?

n−1F
∗
n , where C1, C2, . . . , Cn−1 range over irreducible

closed subsets of X .
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Definition 6.3 (Word-Product, Word-SRE) Let X be a topological space. Call a
word-product P on X any expression of the form e1e2 · · · en, where n ≥ 0, and each
ei is an atomic expression, i.e., either F ∗i with Fi closed inX , or F ?

i with Fi irreducible
closed in X . The components of P are the closed sets F1, . . . , Fn. Word-products are
interpreted as the obvious subsets of X∗. When n = 0, this notation is abbreviated as
ε, and denotes the one-element set {ε}.

Call word-SRE any finite sum of word-products, where sum is interpreted as union.

There is no harm in requiring Fi non-empty in addition, in atomic expressions F ∗i :
indeed ∅∗ = {ε}, so such atomic expressions can simply be erased.

This definition is inspired from the products and simple regular expressions (SRE)
of [Abdulla et al., 2004a]. Indeed, we get back the latter from Definition 6.3 in the
case where X is a finite alphabet Σ, with the discrete topology (hence its specializa-
tion quasi-ordering is =). Then each closed subset Fi is just a finite subset, and each
irreducible closed subset Ci is just a singleton.

Lemma 6.4 Let X be a topological space. For every closed subset F of X , for every
closed subset F of X∗, F ?F is closed in X∗.

Lemma 6.5 Let X be a topological space. For every closed subset F of X , for every
closed subset F of X∗, F ∗F is closed in X∗.

Corollary 6.6 Let X be a topological space. Every word-product, every word-SRE is
closed in X∗.

We can in fact say more:

Lemma 6.7 Let X be a topological space. Every word-product is irreducible closed
in X∗.

It is instructive to see how X∗ embeds in its completion S(X). Recall that the
topological closure ηSX(x) of a point x ∈ X is also its downward closure ↓ x, for the
specialization quasi-ordering of X .

Lemma 6.8 (Embedding) LetX be a topological space. The closure ηSX∗(x1x2 · · ·xn)
of the word x1x2 · · ·xn in X∗ is the word-product ηSX(x1)?ηSX(x2)? · · · ηSX(xn)?.

Proof. The latter is easily seen to be the downward closure of x1x2 · · ·xn with respect
to ≤∗, which is the specialization quasi-ordering of X∗. 2

We shall see that the converse of Lemma 6.7 holds: the irreducible closed subsets
of X∗, i.e., the elements of S(X∗), are exactly the word-products when X is Noethe-
rian. The following lemmas will serve to show this, as well as to give some ways of
computing on word-products. We do not make an explicit distinction between syntax
and semantics, on purpose, so as to avoid excessively formal notation.

Lemma 6.9 Let X be a topological space. Inclusion between word-products can be
checked in polynomial time (precisely in time proportional to the product of the lengths
of the two word-products), modulo an oracle testing inclusion of closed subsets of X .

Explicitly, we have: ε ⊆ P for any word-product P , P 6⊆ ε unless all the atomic
expressions in P are syntactically equal to ∅∗, and for all C,C ′ ∈ S(X), for all
F, F ′ ∈ HV(X), for all word-products P , P ′:
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• C?P ⊆ C ′?P ′ if and only if C ⊆ C ′ and P ⊆ P ′, or C 6⊆ C ′ and C?P ⊆ P ′.

• C?P ⊆ F ′
∗
P ′ if and only if C ⊆ F ′ and P ⊆ F ′

∗
P ′, or C 6⊆ F ′ and C?P ⊆

P ′.

• F ∗P ⊆ C ′?P ′ if and only if F is empty and P ⊆ C ′?P ′, or F is non-empty and
F ∗P ⊆ P ′.

• F ∗P ⊆ F ′
∗
P ′ if and only if F ⊆ F ′ and P ⊆ F ′

∗
P ′, or F 6⊆ F ′ and F ∗P ⊆

P ′.

The above formulae lend themselves immediately to a dynamic programming al-
gorithm, modulo an oracle O testing inclusion of closed subsets of X . Assume that we
wish to test whether P ⊆ P ′, where P = e1e2 · · · em and P ′ = e1e2 · · · en. We create
an (m + 1) × (n + 1) array A = (aij)0≤i≤m,0≤j≤n. At the end of the algorithm, aij
will be true if and only if ei+1 · · · em ⊆ ej+1 · · · en. We initialize A by letting amj be
true for every j, 0 ≤ j ≤ n. For every i, 0 ≤ i < m, we set ain to false, unless ei+1,
. . . , em are all equal to ∅∗, in which case ain is set to true; explicitly, we initialize a flag
b to true, and enumerating i from m− 1 to 0, we do the following: if ei+1 is not of the
form F ∗, or is of the form F ∗ with F 6⊆ ∅ (which we can decide using the oracle O),
then set b to false, otherwise leave b unchanged; then set ain to b. This completes the
initialization phase. Then, using two nested loops on i and j, one enumerating i from
m − 1 to 0, the other one enumerating j from n − 1 to 0 (for each value of i), we set
aij to true if and only if:

• ei+1 is of the form C?, ej+1 is of the form C ′
?, and either C ⊆ C ′ (which we

decide using the oracle O) and a(i+1)(j+1) is true, or C 6⊆ C ′ and ai(j+1) is true;

• or ei+1 is of the form C?, ej+1 is of the form F ′
∗, and either C ⊆ F ′ and a(i+1)j

is true or C 6⊆ F ′ and ai(j+1) is true;

• or ei+1 is of the form F ∗, ej+1 is of the form C ′
?, and either F is empty (which

we decide using O on F and ∅, as in the second part of the initialization phase)
and a(i+1)j is true, or F is non-empty and ai(j+1) is true;

• or ei+1 is of the form F ∗, ej+1 is of the form F ′
∗, and either F ⊆ F ′ and a(i+1)j

is true, or F 6⊆ F ′ and ai(j+1) is true.

Otherwise, we set aij to false. At the end of the nested loops, we return a00, which
is true if and only if P ⊆ P ′. Alternatively to dynamic programming, we may use a
directed recursive implementation, with memoization [Michie, 1968].

We can rephrase the equations of Lemma 6.9 in the slightly more synthetic, follow-
ing form. This happens to be the inclusion of products as specified in [Abdulla et al., 2004a],
in the case where X is a finite set. The fourth case is not needed if we first remove
all atomic expressions ∅∗. We will refer to this specific formulation in the proof of
Lemma 10.22, and in Definition 10.31.

Lemma 6.10 Let X be a topological space. Given two atomic expressions e1 and e′1,
and two word-products P1 and P ′1, letting P = e1P1 and P ′ = e′1P

′
1, then P v P ′ if

and only if:
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1) e1 6v e′1 and P ⊆ P ′1,

2) or e1 = C?, e′1 = C ′
?, C ⊆ C ′ and P1 ⊆ P ′1,

3) or e′1 = F ′
∗, e1 v e′1 and P1 ⊆ P ′,

4) or e1 = ∅∗ and P1 ⊆ P ′.

The relation v on atomic expressions is defined by: C? v C ′
? if and only if C ⊆ C ′;

F ∗ v F ′
∗ if and only if F ⊆ F ′; C? v F ′

∗ if and only if C ⊆ F ′; and F ∗ v C ′
? if

and only if F is empty.

Corollary 6.11 Let X be a topological space. Inclusion between word-SREs can be
checked in polynomial time, modulo an oracle testing inclusion of closed subsets of X .

Proof. By Lemma 4.2, and since word-products are irreducible closed (Lemma 6.7),
inclusion of word-SREs P1∪ · · ·∪Pm and P ′1∪ · · ·∪P ′n reduces to mn inclusion tests
Pi ⊆ P ′j between word-products, which we decide using the dynamic programming
algorithm mentioned after Lemma 6.9. 2

We can also compute intersections of word-products.

Lemma 6.12 Let X be a topological space. Any finite intersection of word-products
is expressible as a finite union of word-products. Specifically, the intersection of two
word-products is given by: ε ∩ P = ε for every word-product P , and by the recursive
formulae:

• C?P ∩ C ′?P ′ = (C?P ∩ P ′) ∪ (P ∩ C ′?P ′) ∪ (C ∩ C ′)?(P ∩ P ′);

• C?P ∩ F ′∗P ′ = (C ∩ F ′)?(P ∩ F ′∗P ′) ∪ (C?P ∩ P ′);

• F ∗P ∩ F ′∗P ′ = (F ∩ F ′)∗(P ∩ F ′∗P ′) ∪ (F ∩ F ′)∗(F ∗P ∩ P ′).

Recall that the components of a word-product P = e1e2 · · · en are the compo-
nents of each ei, where the component of C? is C, and the component of F ∗ is F .
Lemma 6.12 yields the following, more computation-oriented description of the inter-
section algorithm for word-products. Our particular way of presenting it will be helpful
in Theorem 6.15, in Lemma 10.26, and in the proof of Lemma 10.34.

Lemma 6.13 Let X be a Noetherian space. Define the finite set MeetE(P, P ′) of
word-products as follows, where P and P ′ are word-products, and the oracle E maps
pairs (F, F ′) of a component F of P and a component F ′ of P ′ to a finite set of
irreducible closed subsets of X .
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First, let MeetE(ε, P ′) = {ε}, MeetE(P, ε) = {ε}. Then, let:

MeetE(C?P,C ′
?
P ′) = {C ′′?P ′′ | C ′′ ∈ E(C,C ′), P ′′ ∈MeetE(P, P ′)}

∪MeetE(C?P, P ′) ∪MeetE(P,C ′
?
P ′)

MeetE(C?P, F ′
∗
P ′) =

 {C
′′?P ′′ | C ′′ ∈ E(C,F ′),
P ′′ ∈MeetE(P, F ′

∗
P ′)} ∪MeetE(C?P, P ′) if E(C,F ′) 6= ∅,

MeetE(P, F ′
∗
P ′) ∪MeetE(C?P, P ′) otherwise

MeetE(F ∗P,C ′
?
P ′) =


{C ′′?P ′′ | C ′′ ∈ E(F,C ′),

P ′′ ∈MeetE(F ∗P, P ′)} ∪MeetE(P,C ′
?
P ′) if E(F,C ′) 6= ∅,

MeetE(F ∗P, P ′) ∪MeetE(P,C ′
?
P ′) otherwise

MeetE(F ∗P, F ′
∗
P ′) = {(

⋃
C′′∈E(F,F ′)

C ′′)∗P ′′ | P ′′ ∈MeetE(F ∗P, P ′) ∪MeetE(P, F ′
∗
P ′)}.

If E computes intersections of closed subsets of X , i.e., is such that for any component
F of P and any component F ′ of P ′, E(F, F ′) is a finite family of irreducible closed
subsets of X whose union is F ∩ F ′, then MeetE(P, P ′) is a finite family of word-
products whose union is P ∩ P ′.

Note that the map (F, F ′) 7→ E(F, F ′) is well-defined, by Lemma 3.6. We will later
require to be able to compute it.

Proof. The lemma is a simple consequence of Lemma 6.12.
In the first case, if C ∩ C ′ is non-empty, we conclude since (C ∩ C ′)?(P ∩ P ′) =⋃

C′′∈E(C,C′) C
′′?(P ∩P ′), P ∩P ′ is the union of the word-products inMeetE(P, P ′),

and unions distribute over concatenation. There is a subtle issue when C∩C ′ is empty.
In that subcase, (C ∩ C ′)?(P ∩ P ′) is equal to P ∩ P ′, and that is different from⋃
C′′∈E(C,C′) C

′′?(P ∩ P ′), which is empty; however, (C ∩ C ′)?(P ∩ P ′) is equal to

(P ∩ P ′) ∪ (C?P ∩ P ′) ∪ (P ∩ C ′?P ′), hence also to (C?P ∩ P ′) ∪ (P ∩ C ′?P ′),
because P ∩ P ′ is included in C?P ∩ P ′ (or in P ∩ C ′?P ′), and that justifies the
indicated formula again. In the second case (and symmetrically, the third case), we
rely on (C ∩ F ′)?(P ∩ F ′∗P ′) =

⋃
C′′∈E(C,F ′) C

′′?(P ∩ F ′∗P ′), which is valid if
E(C,F ′) is non-empty. If E(C,F ′) is empty, then C ∩F ′ is empty, and then (C ∩F ′)?

is not equal to
⋃
C′′∈E(C,F ′) C

′′?, rather to {ε}; so (C∩F ′)?(P ∩F ′∗P ′) = P ∩F ′∗P ′
in that (sub)case. In the final case, we use the fact that F ∩ F ′ =

⋃
C′′∈E(F,F ′) C

′′.
Finally, the definition of MeetE(P, P ′) is well-founded, by induction on the num-

ber of atomic expressions in P and P ′. 2

Proposition 6.14 Let X be a Noetherian space. The closed subsets of X∗ are the
(languages of) word-SREs, and the irreducible closed subsets ofX∗ are the (languages
of) word-products.

Proof. Lemma 6.7 states that every word-product is irreducible closed.
Conversely, we observe that, in a Noetherian space Y with a base B of opens, every

open is a finite union of elements of B. This is an easy consequence of the fact that
every open, which is a union of elements of B, is also compact.
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Consider Y = X∗, B consisting of the subsets of the formX∗U1X
∗U2X

∗ · · ·X∗UnX∗,
where each Ui is open in X (Lemma 6.1). Taking the complements of finite unions of
such basic opens, and using Lemma 6.2, one obtains that every closed subset of X∗ is
a finite intersection of finite unions of word-products. Distributing unions over inter-
sections, and using Lemma 6.12, we conclude that every closed subset F is expressible
as a word-SRE, i.e., as a finite union of word-products.

If F is also irreducible, it follows immediately that F is one of these word-products.
2

We now state the final S-representation we obtain, in a way that we hope will be
readable. The pedantic, formal statement is given in the Appendix (Proposition B.2).

Theorem 6.15 (S-Representation, Words) Let X be a Noetherian space, X ′ = X∗,
and (S, J_K ,�, τ,∧) be an S-representation of X . Then (S′, J_K′ ,�′, τ ′,∧′) is an
S-representation of X ′, where:

(A) S′ is the collection of all word-products over the alphabet S, and J_K′ is defined
in the obvious way.

(B) �′ is defined using the procedure of Lemma 6.9, where inclusion of finite sets of
elements of S is tested by: u is included in u′ iff for every a ∈ u, there is an
a′ ∈ u′ such that a� a′ (Lemma 4.2).

(C) τ ′ is {τ∗}.

(D) ∧′ is implemented by the procedure MeetE of Lemma 6.13, where the oracle E is
defined by E(u, u′) =

⋃
a∈u,a′∈u′(a ∧ a′).

Note that J_K′ is surjective, as required: the irreducible closed subsets of X ′ are the
word-products by Proposition 6.14.

7 Completing Multisets
If X is a wqo, then the space of finite multisets X~ of elements of X , with a quasi-
ordering ≤~ to be defined below, is a wqo again. This is again typically used when X
is a finite alphabet Σ: the multiset language generators of [Abdulla et al., 2004b] are
the ideals of such a wqo Σ~.

Beyond finite alphabets, branching vector addition systems with states (BVASS)
are a generalization of Petri nets with a form of branching, with applications in security
[Verma and Goubault-Larrecq, 2005], in linear logic [de Groote et al., 2004], in struc-
tured databases [Bojańczyk et al., 2009, Jacquemard et al., 2016], and are a rediscov-
ery of Rambow’s multiset-valued linear indexed grammars [Rambow, 1994] in compu-
tational linguistics, see [Schmitz, 2010]. BVASS, and some of their extensions, can be
conveniently represented as transition systems on the space (Nk)

~ of finite multisets
of k-tuples of natural numbers [Jacobé de Naurois, 2014]. Note that the alphabet (Nk)
is infinite in this case.

As a final example, the synchronous polyadic π-calculus processes investigated in
[Acciai and Boreale, 2012] are encoded as trees, which can be seen as nested multisets,
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with bounded nesting depth. Encoding processes by trees of this form was pioneered
by Meyer [Meyer, 2008]. Precisely, for a finite set Σ, which consists of channel names
and so-called unit processes in that case, let T ~

0 (Σ) be defined recursively as the set
of finite trees f(m) where f ∈ Σ and m is a finite multiset of elements of T ~

0 (Σ),
quasi-ordered by the universal relation (s ≤0 t is always true). Define T ~

k+1(Σ), for
every k ∈ N, as the set of finite trees f(m) where f ∈ Σ and m is a finite multiset
of elements of T ~

k (Σ), quasi-ordered by ≤k+1, defined by f(m) ≤k+1 f
′(m′) if and

only if f = f ′ and m(≤k)~m′. All processes are encoded as elements of T ~
k (Σ) for

some k ∈ N. Equivalently, T ~
k (Σ) is Σ× (Σ× (Σ× · · · × (Σ× Y ~)~ · · · )~, where

there are k nested uses of _~, and Y = T ~
0 (Σ).

We again turn to a more general topological setting. Given any topological space,
let X~ be the set of all finite multisets on X . We shall write {|x1, · · · , xn|} for the
multiset containing exactly the elements x1, . . . , xn. We write ∅∅∅ for the empty multiset,
and m ]m′ for the multiset union of m and m′.

On the order-theoretic side, we quasi-order X~, not with the multiset extension
≤mul of the specialization quasi-ordering ≤ of X , rather with the following quasi-
ordering.

Definition 7.1 (Sub-multiset) The sub-multiset quasi-ordering≤~ is defined by: {|x1,
x2, · · · , xm|} ≤~ {|y1, y2, · · · , yn|} if and only if there is an injective map r : {1,
2, · · · ,m} → {1, 2, · · · , n} such that xi ≤ yr(i) for every i, 1 ≤ i ≤ m.

When ≤ is just equality, this quasi-ordering makes m ≤~ m′ if and only if every
element of m occurs at least as many times in m′ as it occurs in m: this is the ≤m
quasi-ordering considered, on finite sets X , by Abdulla et al. [Abdulla et al., 2004b,
Section 2].

The multiset extension ≤mul of ≤ is more mainstream than ≤~. One usually
defines m ≤mul m′ if and only if one can obtain m from m′ in finitely many steps,
repeatedly replacing one element by finitely many strictly smaller ones.

Clearly, m ≤~ m′ implies m ≤mul m′. It turns out that ≤~ is wqo for every wqo
≤. This implies that ≤mul is wqo, too: any infinite sequence of multisets mn, n ∈ N,
is such that there are indices i < j such that mi ≤~ mj , and therefore mi ≤mul mj .

On the topological side, we simply observe that multisets are equivalence classes
of finite words up to permutation. Accordingly, we topologize X~ with the quotient
topology [Goubault-Larrecq, 2013, Exercise 9.7.35]. The quotient map Ψ: X∗ → X~

sends every word x1x2 · · ·xn to the multiset {|x1, x2, · · · , xn|} and is sometimes called
the Parikh mapping [Parikh, 1966]. We have the following results.

Proposition 7.2 For every Noetherian space X , X~ is Noetherian.
A base of the topology on X~ is given by the sets 〈U1, U2, · · · , Un〉 with U1, U2,

. . . , Un open in X . The set 〈U1, U2, · · · , Un〉 is defined as containing all multisets that
contain one element from U1, another one from U2, . . . , another one from Un, or more
precisely all multisets of the form {|x1, x2, · · · , xn|} ]m with x1 ∈ U1, x2 ∈ U2, . . . ,
xn ∈ Un.

The specialization quasi-ordering of X~ is ≤~, where ≤ is the specialization
quasi-ordering of X .
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If X has the Alexandroff topology of ≤, then X~ has the Alexandroff topology of
≤~.

If ≤ is wqo, then ≤~ is wqo.

Proof. IfX is Noetherian, thenX~ is, too, since every quotient of a Noetherian space
is Noetherian [Goubault-Larrecq, 2013, Proposition 9.7.18 (v)].

The inverse image Ψ−1(〈U1, U2, · · · , Un〉) is equal to the union over all permu-
tations π of {1, 2, · · · , n} of the opens X∗Uπ(1)X

∗ · · ·X∗Uπ(n)X
∗, hence is open in

X∗ (see Section 6). For every subset V of X~, V is open (in the quotient topology)
if and only if Ψ−1(V ) is open, so 〈U1, U2, · · · , Un〉 is open in X~. To show that
these sets form a base, take a multiset m and an open neighborhood V of m in X~.
Write m as Ψ(w) for some word w ∈ X∗. Since w ∈ Ψ−1(V ), and we know of a
base of the topology of X∗ (Lemma 6.1), we can find open subsets U1, U2, . . . , Un
of X such that w ∈ X∗U1X

∗U2X
∗ · · ·X∗UnX∗ ⊆ Ψ−1(V ). Then m = Ψ(w) is in

Ψ[X∗U1X
∗U2X

∗ · · ·X∗UnX∗] = 〈U1, U2, · · · , Un〉, which is included in V .
If m ≤~ m′, then every basic open subset 〈U1, U2, · · · , Un〉 that contains m also

contains m′, so m is below m′ in the specialization quasi-ordering. Conversely, we
shall show that the downward closure ↓~m′ of m′ with respect to ≤~ is closed: if m
is below m′ in the specialization quasi-ordering, then m will be in the closure of m′,
hence in ↓~m′, and this will imply that m ≤~ m′. To show that ↓~m′ is closed, it
is enough to show that Ψ−1(↓~m′) is closed in X∗, since Ψ is quotient. Write m′

as Ψ(w′), where w′ is the word x1x2 · · ·xn. Then Ψ−1(↓~m′) is the union over all
permutations π of {1, 2, · · · , n} of the sets (↓xπ(1))

?(↓xπ(2))
? · · · (↓xπ(n))

?, which
are closed by Lemma 6.7.

Assume now that X has the Alexandroff topology of ≤. The upward closure of a
multisetm = {|x1, x2, · · · , xn|} inX~ is equal to the open subset 〈↑x1, ↑x2, · · · ↑xn〉.
Every upwards-closed subset is the union of the upward closures of its points, hence is
open, too, so X~ has the Alexandroff topology of ≤~.

In particular, if≤ is wqo, thenX with the Alexandroff topology of≤ is Noetherian,
so X~ is Noetherian, too. Since X~ has the Alexandroff topology of ≤~, the latter is
wqo. 2

Our candidates for (irreducible) closed subsets of X~ are the Parikh images of
word-products and word-SREs. Write F | C1, C2, · · · , Cn for the family of all mul-
tisets that one can obtain by picking at most one element from C1 (possibly zero),
at most one from C2, . . . , at most one from Cn, and as many as we wish from F .
We think of the enumeration C1, C2, · · · , Cn as a multiset itself, hence invariant un-
der permutation. Formally, m ∈ F | C1, C2, · · · , Cn if and only if one can write m as
m0]{|xi | i ∈ I|}, where all the elements ofm0 are in F , I is a subset of {1, 2, · · · , n}
and for each i ∈ I , xi is in Ci (implicitly, up to permutation of the xi, or equivalently
of the Ci).

Definition 7.3 (M-Product, M-SRE) LetX be a topological space. Call an m-product
on X any subset of the form F | C1, C2, · · · , Cn, where n ∈ N, F is a closed subset
of X , and C1, C2, . . . , Cn range over irreducible closed subsets of X .

When F is empty, we shall also write this as simply | C1, C2, · · · , Cn. When n = 0,
we just write F |, and when n = 0 and F = ∅, we write this |.
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An m-SRE is any finite union of m-products.

The proof of the following Proposition, as well as for most other results of this
Section, are to be found in Appendix C.

Proposition 7.4 Let X be a topological space. Then the m-SREs are closed in X~,
and the m-products are irreducible closed.

If X is Noetherian, then every irreducible closed subset of X~ is an m-product,
and every closed subset of X~ is an m-SRE.

Again, it is instructive to see how X~ embeds in its completion S(X~).

Lemma 7.5 (Embedding) Let X be a topological space. The closure ηSX~{|x1, x2,
· · · , xn|} of the multiset {|x1, x2, · · · , xn|} in X~ is the m-product | ηSX(x1), ηSX(x2),
· · · , ηSX(xn).

Proof. By Proposition 7.4, | ηSX(x1), ηSX(x2), · · · , ηSX(xn) is (irreducible) closed,
and is clearly the downward closure of {|x1, x2, · · · , xn|} with respect to ≤~. 2

One can decide inclusion between m-products by using Ψ again. This leads to the
following algorithm.

Lemma 7.6 Let X be a topological space. Inclusion between m-products can be
checked in polynomial time, modulo an oracle testing inclusion of closed subsets of
X .

Explicitly, let P = F | C1, C2, · · · , Cm and P ′ = F ′ | C ′1, C ′2, · · · , C ′n be two
m-products. Let I = {i1, i2, · · · , ik} be the subset of those indices i, 1 ≤ i ≤ m, such
that Ci 6⊆ F ′.

Then P ⊆ P ′ if and only if F ⊆ F ′ and there is an injective map r : I →
{1, 2, · · · , n} such that Ci ⊆ C ′r(i) for every i ∈ I—in other words, {|Ci1 , Ci2 , · · · ,
Cik |} ⊆~ {|C ′1, C ′2, · · · , C ′n|}.

It may not be immediately obvious why this leads to a polynomial time algorithm.
The reason is the following observation, due to Simon Halfon [Halfon, 2018, Corol-
lary 7.14]. Let G be the bipartite graph whose vertex set is the disjoint union of I
and of {1, 2, · · · , n}, and such that there is an edge from i ∈ I to j ∈ {1, 2, · · · , n}
if and only if Ci ⊆ C ′j . Finding r means finding a matching of G that covers all
the vertices in I . Let N(G) be the number of edges in any maximum matching of
G. N(G) can be computed in polynomial time, say by the Ford-Fulkerson algorithm
[Cormen et al., 2001, Section 26.2], and r exists if and only if N(G) ≥ k, where k is
the cardinality of I .

We now turn to S-representations.

Theorem 7.7 (S-Representation, Multisets) Let X be a Noetherian space, X ′ =
X~, and (S, J_K ,�, τ,∧) be an S-representation of X . Then (S′, J_K′ ,�′, τ ′,∧′) is
an S-representation of X ′, where:

(A) S′ is the collection of all m-product notations, i.e., of all expressions of the form
A | u, where A is a finite subset of S, and u is a multiset of elements of S. When
u = {|b1, · · · , bn|}, we also write A | b1, · · · , bn for A | u.
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(B) JA | b1, · · · , bnK′ = (
⋃
a∈A JaK) | Jb1K , · · · , JbnK.

(C) A | u �′ A′ | u′ if and only if A �[ A′ and u1 �~ u′ where u1 is the subset of
those elements a ∈ u such that a� a′ for no a′ ∈ A′.

(D) τ ′ is {τ | ∅∅∅}.

(E) ∧′ is defined as follows. A matching f : {1, · · · ,m} → {1, · · · , n} is any bi-
jection from some subset of {1, · · · ,m} (the domain dom f ) to some subset of
{1, · · · , n} (the codomain cod f ). Then (A | a1, · · · , am) ∧′ (A′ | a′1, · · · , a′n)
is the collection of all m-product notations of the form A′′ | m1f ]m2f ]m3f ,
where:

• A′′ =
⋃

a∈A
a′∈A′

(a ∧ a′);

• f ranges over all matchings from {1, · · · ,m} to {1, · · · , n};
• m1f ranges over all multisets of the form {|ci | i ∈ dom f |} where ci ∈ ai ∧
a′f(i) for every i ∈ dom f ;

• m2f ranges over all multisets of the form {|ci | 1 ≤ i ≤ m, i 6∈ dom f |},
where ci ∈

⋃
a′∈A′(ai ∧ a′) for each i, 1 ≤ i ≤ m, i 6∈ dom f ;

• m3f ranges over all multisets of the form {|c′j | 1 ≤ j ≤ n, j 6∈ cod f |},
where c′j ∈

⋃
a∈A(a ∧ a′j) for each j, 1 ≤ j ≤ n, j 6∈ cod f .

As a final note to this section, Abdulla et al. [Abdulla et al., 2004b] required a
completion of (A~)∗, for some finite set A. We note that the elements of S((A~)∗a)
are exactly their word language generators, which we retrieve here in a principled way.

8 Completing Words, Prefix Topology
The word topology is not the only interesting topology on X∗ that makes it Noethe-
rian, assumingX Noetherian. The prefix topology is another [Goubault-Larrecq, 2013,
Exercise 9.7.36], and its specialization quasi-ordering is a form of the prefix order-
ing. We mention that topology because its specialization quasi-ordering is never a
wqo, unless X is trivial. Also, this is the topology needed to decide reachability of
sets defined by forbidden patterns in the so-called oblivious k-stack system model of
[Goubault-Larrecq, 2010, Section 5].

The prefix topology is defined not just on X∗, but more generally on sets of het-
erogeneous words, that is, words whose letters are taken from possibly distinct spaces,
depending on their position. This of course includes the case of words in X∗, but
heterogeneous words are a natural generalization to consider, and incur no additional
difficulty.

Let X1, X2, . . . , Xn, . . . be countably many topological spaces. A heterogeneous
word over these spaces is any tuple (x1, x2, · · · , xm) in X1×X2×· · ·×Xm, m ∈ N.
We write it as x1x2 · · ·xm, and call m = |w| the length of the form w = x1x2 · · ·xm.

A telescope on (Xn)n≥1 is a sequence U = U0, U1, · · · , Un, · · · of opens, where
Un is open in

∏n
i=1Xi for each n ∈ N, and such that UnXn+1 ⊆ Un+1 for every
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n ∈ N. (We write UnXn+1 instead of Un × Xn+1. When n = 0,
∏n
i=1Xi just

contains the empty word ε, so that
∏n
i=1Xi is just {ε} in that case, with the only

possible topology. U0 must be open in that, and that means that U0 must be empty or
equal to {ε} itself.)

A telescope is a wide telescope iff Un =
∏n
i=1Xi for some n ∈ N—equivalently,

for all sufficiently large n ∈ N. Given any telescope U = U0, U1, · · · , Un, · · · on
(Xn)n≥1, let bU〉 be the set of heterogeneous words w over X1, X2, . . . , Xk, . . . , such
that w ∈ U|w|.

We write .+∞
n=1Xn for the space of all heterogeneous words over (Xn)n≥1, i.e.,

the disjoint union of all spaces
∏n
i=1Xi, n ∈ N, with the prefix topology, which is

given by the trivial open ∅, plus all subsets of the form bU〉, U a wide telescope on
(Xn)n≥1. One checks easily that those form a topology, and we shall say so explicitly
in Proposition 8.1 below.

The point of the definition of the prefix topology is that its specialization quasi-
ordering is the prefix quasi-ordering, defined by a1a2 · · · am ≤. b1b2 · · · bn, where
ai, bi ∈ Xi for all i, iff m ≤ n, a1 ≤ b1, a2 ≤ b2, . . . , and am ≤ bm. (Here
ai ≤ bi means that ai is less than or equal to bi in the specialization quasi-ordering of
Xi.) This is part of the following result, which appears as [Goubault-Larrecq, 2013,
Exercise 9.7.36].

Proposition 8.1 Let X1, X2, . . . , Xn, . . . be countably many topological spaces. The
prefix topology on .+∞

n=1Xn is indeed a topology. Its specialization quasi-ordering is
the prefix quasi-ordering ≤..

If X1, X2, . . . , Xn, . . . are all Noetherian, then.+∞
n=1Xn is Noetherian.

Proof. Let us abbreviate X1X2 · · ·Xn as Alln, for each n ∈ N. When n = 0,
All0 = {ε}.

It is easy to see that given wide telescopes Ui = Ui0, Ui1, · · · , Uin, · · · , i ∈
I , the sequence

⋃
i∈I Ui defined as

⋃
i∈I Ui0,

⋃
i∈I Ui1, · · · ,

⋃
i∈I Uin, · · · is an in-

finite sequence of empty sets (if I is empty), or a wide telescope (if I 6= ∅) and
b
⋃
i∈I Ui〉 =

⋃
i∈IbUi〉; moreover, if I is finite, then the sequence

⋂
i∈I Ui defined

as
⋂
i∈I Ui0,

⋂
i∈I Ui1, · · · ,

⋂
i∈I Uin, · · · is also a wide telescope (when I = ∅, this

is the wide telescope All0, All1, · · · , Alln, , · · · ), and b
⋂
i∈I Ui〉 =

⋂
i∈IbUi〉. There-

fore, the prefix topology, as we have defined it, is indeed a topology.
Write v temporarily for the specialization quasi-ordering of .+∞

n=1Xn. For ev-
ery telescope U = U0, U1, · · · , Un, · · · , if a1a2 · · · am ∈ bU〉, and a1a2 · · · am ≤.
b1b2 · · · bn, then b1b2 · · · bm is in Um, since Um is open hence upwards-closed in ≤m.
Since UmX ⊆ Um+1 by the definition of telescopes, b1b2 · · · bmbm+1 is in Um+1, and
by an easy induction, b1b2 · · · bmbm+1 · · · bn is in Un. So U is upwards-closed in ≤.:
w ≤. w′ implies w v w′.

Conversely, assume w v w′, where w = a1a2 · · · am, and w′ = b1b2 · · · bn. We
shall examine various wide telescopes U such that w ∈ bU〉, and draw consequences
from the fact that w′ ∈ bU〉. Considering the telescope ∅, · · · , ∅, Allm, Allm+1, · · · ,
one sees that m ≤ n. Considering the telescopes ∅, · · · , ∅, Um, Allm+1, Allm+2, · · · ,
where Um is an arbitrary open set of Xm of which w is a member, one sees that
b1b2 · · · bm is in Um, so a1a2 · · · am is less than or equal to b1b2 · · · bm in the special-
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ization quasi-ordering ≤1 × ≤2 × · · ·× ≤m of X1X2 · · ·Xm. As a consequence,
w ≤. w′.

Let us show that X = .+∞
n=1Xn is Noetherian, assuming that X1, X2, . . . , Xn,

. . . , all are. For every non-empty wide telescope U = U0, U1, · · · , Un, · · · , there is
a least number m such that Um is non-empty, and a least number n such that Un =
Alln. Moreover, m ≤ n. Call m the small end m(U) of U , n its big end n(U). If
bU〉 ⊆ bV〉, then m(U) ≥ m(V) (consider any word of length m(U) in bU〉), and
n(U) ≥ n(V) (otherwise, consider any word of length n(U) that is not in bV〉). It
follows that, in any infinite ascending chain bU1〉 ⊆ bU2〉 ⊆ · · · ⊆ bUk〉 ⊆ · · · , all
small ends coincide, and all big ends coincide, for all k large enough, say k ≥ p. Let
m be this common small end, n be the common big end. Then, for each k ≥ p, Uk
is a telescope of the form ∅, · · · , ∅, Ukm, Uk(m+1), · · · , Uk(n−1), Alln, Alln+1, · · · In
addition, for each j with m ≤ j < n, Upj ⊆ U(p+1)j ⊆ · · · ⊆ · · ·Ukj ⊆ · · · is an
infinite ascending chain of opens inX1X2 · · ·Xj . The latter is Noetherian, so the chain
stabilizes, say at kj ≥ p. Therefore bU1〉 ⊆ bU2〉 ⊆ · · · ⊆ bUk〉 ⊆ · · · stabilizes at
max(p, km, km+1, · · · , kn−1). This holds for ascending chains of opens that exclude
the empty open subset; the general case is easy. It follows that.+∞

n=1Xn is Noetherian.
2

When X1 = X2 = · · · = Xn = · · · are the same space X , we write X. for the
space .+∞

n=1Xn. Although it has the same elements as X∗, it has a definitely distinct
topology. E.g., while ≤∗ is wqo when the specialization ordering ≤ of X is, ≤. is
well-founded but not well, as soon as X contains two incomparable elements a and b.
Indeed, in this case a, ba, bba, bbba, · · · is an infinite antichain.

In order to characterize the completion S(.+∞
n=1Xn), we define the subset dF1F2 · · ·

Fk〉 of .+∞
n=1Xn, where k ∈ N and each Fi is closed in Xi, as the set of all hetero-

geneous words a1a2 · · · am of
∏m
i=1Xi such that m ≤ k, a1 ∈ F1, a2 ∈ F2, . . . ,

am ∈ Fm. (When k = 0, dF1F2 · · ·Fk〉 is just {ε}.) The following, as well as other
results of this Section, are proved in Appendix D.

Proposition 8.2 Let X1, X2, . . . , Xn, . . . be countably many topological spaces. The
sets of the form dF1F2 · · ·Fn〉, where each Fi is closed inXi, form a subbase of closed
sets for .+∞

n=1Xn: these sets are closed, and every closed subset is an intersection of
finite unions of such sets.

Lemma 8.3 Let X1, X2, . . . , Xn, . . . , be countably many topological spaces. The
subsets of the form dC1C2 · · ·Cn〉, where Ci is irreducible closed in Xi for each i,
1 ≤ i ≤ n, are irreducible closed in.+∞

n=1Xn.

This is enough to state how.+∞
n=1Xn embeds in its completion.

Lemma 8.4 (Embedding) Let X1, X2, . . . , Xn, . . . , be countably many topological
spaces, and Y = .+∞

n=1Xn. The closure ηSY (x1x2 · · ·xn) of the word x1x2 · · ·xn in
X = .+∞

n=1Xn is dηSX(x1)ηSX(x2) · · · ηSX(xn)〉.

Proof. By Lemma 8.3, dηSX(x1)ηSX(x2) · · · ηSX(xn)〉 is irreducible closed, and con-
tains x1x2 · · ·xn, so must contain ηSY (x1x2 · · ·xn). Conversely, every element of
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dηSX(x1)ηSX(x2) · · · ηSX(xn)〉 is a (≤.-)prefix of x1x2 · · ·xn, and must therefore be
in ηSY (x1x2 · · ·xn). 2

There is just one extra irreducible closed subset in .+∞
n=1Xn, unless some Xn is

empty:

Lemma 8.5 Let X1, X2, . . . , Xn, . . . , be countably many non-empty topological
spaces. The whole space.+∞

n=1Xn is irreducible closed in itself.

So we obtain the following description of all irreducible closed subsets.

Lemma 8.6 Let X1, X2, . . . , Xn, . . . , be countably many non-empty topological
spaces. The only irreducible closed subsets of .+∞

n=1Xn are .+∞
n=1Xn itself, and the

subsets of the form dC1C2 · · ·Cn〉, where Ci is irreducible closed in Xi for each i,
1 ≤ i ≤ n.

This suggests that S(.+∞
n=1Xn) coincides with .+∞

n=1 S(Xn), with a new top el-
ement > added, at least up to isomorphism. For any space Y , let Y > be the space
obtained by adding a fresh element > to Y , and whose closed subsets are those of
Y , plus Y > itself. The specialization quasi-ordering of Y > is given by: y �> y′ iff
y, y′ ∈ Y and y � y′, or y′ = >, where � is the specialization quasi-ordering of Y .

Proposition 8.7 Let X1, X2, . . . , Xn, . . . , be countably many non-empty topological

spaces. The map i : (.+∞
n=1 S(Xn))

>
→ S(.+∞

n=1Xn) that sends > to .+∞
n=1Xn and

the word C1C2 · · ·Cn (where Ci ∈ S(Xi) for each i) to dC1C2 · · ·Cn〉 is an order-
isomorphism and a homeomorphism.

To complete the picture, we examine the case where some of the spaces Xn are
empty. Taking n to be the largest index such that X1, . . . , Xn are non-empty (and 0 if
everyXi is empty), we then writeX1.X2.· · ·.Xn, or.nk=1Xk, instead of.+∞

k=1Xk.
Since there cannot be any (n+ 1)st letter, this is a space of words of length at most n.
Clearly as well.nk=1Xk then does not depend on the actual spaces Xn+1, Xn+2, . . . ,
provided Xn+1 is empty, which justifies the notation.

Lemma 8.8 Let X1, X2, . . . , Xn be non-empty topological spaces. The only irre-
ducible closed subsets of .nk=1Xk are the subsets of the form dC1C2 · · ·Cm〉, where
Ci is irreducible closed in Xi for each i, 1 ≤ i ≤ m, and m ≤ n.

We then obtain an isomorphism as in Proposition 8.7, without the need to add a top
element >.

Proposition 8.9 Let X1, X2, . . . , Xn be non-empty topological spaces. The map
i : .nk=1 S(Xk) → S(.nk=1Xk) that sends the word C1C2 · · ·Ck (where k ≤ n
and Ci ∈ S(Xi) for each i) to dC1C2 · · ·Ck〉 is an order-isomorphism and a homeo-
morphism.

We therefore obtain:
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Theorem 8.10 (S-Representation, Prefix) Let X1, X2, . . . , Xn, . . . be countably
many Noetherian spaces,X ′ = .+∞

n=1Xn, and (Si, J_Ki ,�i, τi,∧i) be an S-representation
of Xi for each i ≥ 1. Assume that the disjoint sum

∐+∞
i=1 Si is recursively enumerable,

that a �i b is decidable in a, b, i, that τi is computable in i, that a ∧i b is computable
in a, b, i.

Then (S′, J_K′ ,�′, τ ′,∧′) is an S-representation of X ′, where:

(A) S′ is the set of all heterogeneous words over S1, S2, . . . , Sn, . . . , plus a fresh
element ω in case no Sn is empty (i.e., no Xn is empty).

(B) Ja1a2 · · · anK′ = dJa1K1 Ja2K2 · · · JanKn〉 where a1 ∈ S1, a2 ∈ S2, . . . , an ∈ Sn,
and JωK = .+∞

n=1Xn (if no Xn is empty).

(C) �′ is defined by: u�′ω for all u ∈ S′ and ω�′u for no word u 6= ω in S′ (in case
no Xn is empty), and a1a2 · · · am �′ a′1a

′
2 · · · a′n iff m ≤ n, a1 �1 a

′
1, a2 �2 a

′
2,

. . . , and am �m a′m.

(D) τ ′ is {ω} if no Xn is empty, {a1a2 · · · an | a1 ∈ τ1, a2 ∈ τ2, . . . , an ∈ τn}
otherwise, where n is the largest index such that Xn is non-empty.

(E) ∧′ is defined by: ω ∧′ u′ = {u′}, u ∧′ ω = {u} (if no Xn is empty), and
a1a2 · · · am ∧′ a′1a′2 · · · a′n = {c1c2 · · · cmin(m,n) | c1 ∈ a1 ∧1 a

′
1, c2 ∈ a2 ∧2

a′2, . . . , cmin(m,n) ∈ amin(m,n) ∧min(m,n) a
′
min(m,n)}.

Proof. Follows easily from Proposition 8.7 in case no Xn is empty, or from Proposi-
tion 8.9 otherwise. 2

When X1 = X2 = . . . = Xn = . . . are all the same space, one can drop the
subscripts to S, �, τ , ∧. Then u �′ u′ is decidable in polynomial time modulo an
oracle for �.

Remark 8.11 We have already seen an example of spaces that are Noetherian, but not
wqo in their specialization preordering, for example P(X) whereX is Noetherian. The
construction X. is another example: while X. is Noetherian for X Noetherian, the
prefix ordering ≤. is not wqo, even if ≤ is wqo.

9 Completing Finite Trees in a Simple Case
The case of finite trees is by far the most complex one. We start with a simple case: that
of ranked trees, whose vertices are decorated by function symbols from a finite set, with
equality as ordering. The ordering on trees is the so-called homeomorphic embedding
�, a wqo by Kruskal’s Tree Theorem [Kruskal, 1960]. In that case, the topology will be
the Alexandroff topology, and irreducible closed subsets will be ideals. We shall also
take advantage of the assumptions to give short, automata-theoretic proofs of some of
our results.

The completions of sets of trees over a finite set of function symbols were already
considered in [Wies et al., 2010], where it was used to decide coverability for depth-
bounded processes without requiring one to know the depth bound in advance, and in
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[Goubault-Larrecq and Schmitz, 2016], where it was used to decide piecewise testable
separability of regular tree languages.

The more general case of unranked trees with function symbols taken from a Noethe-
rian space, will be dealt with in Section 10. This will definitely be more complicated,
but will share many similarities with the present case—apart from the fact that we will
not be able to use automata-theoretic methods.

Let Σ be a finite signature, namely a finite set of so-called function symbols f , g,
. . . , each coming with a natural number called its arity. Let Σr be the subset of those
elements of Σ that have arity exactly r.

The set T (Σ) of terms over Σ [Baader and Nipkow, 1998] is the smallest such
that, for every f ∈ Σr, for all t1, . . . , tr ∈ T (Σ), f(t1, · · · , tr) is in T (Σ). By
f(t1, · · · , tn), we mean the tree whose root is labeled f , and has a list of r subtrees t1,
. . . , tr, from left to right.

Our terms are ground: there is no variable involved here, although one may code
variables as specific constants, i.e., as specific function symbols of arity 0.

The embedding ordering � is defined by s � t if and only if:

• either t = g(t1, · · · , tn) and s � tj for some j, 1 ≤ j ≤ n;

• or s = f(s1, · · · , sm), t = g(t1, · · · , tn), f = g (hence m = n) and s1 � t1,
. . . , sn � tn.

Since the canonical S-representation for finite words under the word topology (or
the≤∗ quasi-ordering) consists in certain regular expressions, we shall similarly define
an S-representation for T (Σ) as certain tree regular expressions [Comon et al., 2004,
Section 2.2].

We define simple tree regular expressions (over Σ), a.k.a. STREs, by the following
abstract syntax:

S ::= 0 | P | S + S P ::= f?(S, · · · , S) | C∗.S
C ::= 0 | A | C + C A ::= f(S2, · · · , S2) S2 ::= S | 2

where f ∈ Σr in f?(P1, · · · , Pr) and in f(S21, · · · , S2r), the sum operation + is
associative and commutative (we shall sometimes write

∑m
i=1 Pi for P1 + · · · + Pm)

with 0 denoting the empty sum, and 2 6∈ Σ is a placeholder called the hole. Note that
2 is not meant to denote a family of placeholders, rather a single one. The extended
trees over the signature Σ ∪ {2}, where 2 has arity 0, are called contexts.

The standard notations for ? and ∗ are ? and ∗. We want to distinguish ? visually
from ?, since we will need both in Section 10; and similarly for ∗ and ∗.

The STREs of the form P are called tree pre-products. Among them, the tree-
products will be our notations for ideals. They will satisfy additional constraints, which
we shall define later (Definition 9.5).

To define the semantics of STREs, we write t ∈ S as an abbreviation for ‘t is in the
language of S,’ and define this language by structural induction on S.

Accordingly, t ∈ f?(S1, · · · , Sn) if and only if either t is of the form f(t1, · · · , tn)
with ti ∈ Si for every i, 1 ≤ i ≤ n, or if t ∈

⋃n
i=1 Si. The latter is necessary for S to

denote a downwards-closed language.
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As the notation suggests, for S = P1 + · · · + Pm, t ∈ S iff t ∈ Pj for some j,
1 ≤ j ≤ m, and the language of 0 is empty.

The productions of C,A, and S2 serve to form iterators C∗.S. The language ofA =
f(S21, · · · , S2n) consists of those contexts in T (Σ ∪ {2}) of the form f(c1, · · · , cn)
where ci ∈ S2i for every i. In turn, c ∈ S2 if and only if either S2 = 2 and c is the
trivial context 2, or S2 is an STRE S, c is a tree t in T (Σ), and t ∈ S. The language
of C = A1 + · · ·+Am is the union of the languages of Aj , 1 ≤ j ≤ m.

Intuitively, the language of C∗.S should consist of all trees obtained by applying
contexts in C, repeatedly, until one reaches a tree in S. For example, (f(2))∗.a? will
recognize all trees of the form fn(a), n ∈ N. There are however two catches.

1) The first one has to do with patterns A where 2 occurs more than once: as usual
with tree regular expressions, in replacing 2 by a tree from S, several occurrences
of 2 can be replaced by different trees from S. Hence (f(2,2))∗.(a? +b?) consists
of all binary-branching trees with inner nodes labelled f and leaves labelled a or
b, including f(f(a, a), a) and f(f(b, b), b) but also f(f(a, b), a)) or f(f(b, b), a)
among others. (We assume f binary, and a and b of arity 0.) For a context c, and a
set of trees S, accordingly, we shall write c[S] for the set of trees obtained from c
by replacing each occurrence of 2 by a (possibly different) tree in S.

2) The second catch has to do with downward closure. It is tempting to define the trees
of C∗.S as those in c1[· · · [ck[S]] · · · ], for some k ∈ N and some c1, · · · , ck ∈ C.
However, there are cases where that language would fail to be downwards-closed,
e.g., (f(a?,2))∗.b? would contain f(a, b) but not a, according to that semantics.

We repair that as follows. For A = f(S21, · · · , S2n), define argsA, the argument
support ofA, as the set of trees t ∈ T (Σ) such that some context f(· · · , t, · · · ) (i.e.,
with one of its arguments equal to t) is in the language of A. Alternatively: if those
S2i, 1 ≤ i ≤ n, that are different from 2 define non-empty languages, then argsA
is the union of those languages; if some S2i 6= 2 has an empty language, then
argsA = ∅. Hence, for example, args f(2,2) = ∅, args f(a?,2) = a? = {a}, and
args f ′(a?,2, 0) = ∅. For C = A1 + · · ·+Am, let argsC =

⋃m
j=1 argsAj .

For every c ∈ C, let us write c?[S] for c[S]∪S. We are now ready to define the language
of C∗.S, as the language of trees in c?1[· · · [c?k[S ∪ argsC]] · · · ], for some k ∈ N and
some c1, · · · , ck ∈ C—in writing S ∪ argsC, we equate the STRE S with the language
it defines.

Proposition 9.1 Every STRE defines a downwards-closed language of T (Σ) with re-
spect to �. Conversely, every downwards-closed language of T (Σ) with respect to �
is the language of some STRE.

Proof. For the first part, we use induction on the size of the STRE, and the main
point consists in checking that if t ∈ C∗.S then any smaller tree s (w.r.t. �) is also in
C∗.S. By induction hypothesis, S is downwards-closed. We use a secondary induction
on the k used in the definition of the language of C∗.S as c?1[· · · [c?k[S ∪ argsC]] · · · ].
If k = 0, then t ∈ S ∪ argsC, hence s ∈ S ∪ argsC as well since both S and argsC
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Figure 1 Converting tree automata to STREs.

This implies that every tree recognised at s is also recognised at sÕ. For each transition, say
f(s1, s2, · · · , sn) æ s, of A, we add n Á-transitions s1 æ s, s2 æ s, . . . , sn æ s. Call the
resulting automaton ¿A. It is an easy exercise to show that L(¿A) = ¿L(A).

There is a graph underlying ¿A, whose vertices are the states of ¿A, and whose edges
are the Á-transitions. Build its strongly connected components: on Figure 1b, they are shown
against a grey background. By construction, any two states in the same strongly connected
component C recognise exactly the same trees, so it makes sense to talk of the language
LC(¿A) of those trees recognised at any state of C. Let C æ C Õ if and only if s æ sÕ for
some s œ C, sÕ œ C Õ. The strict ordering ª def= æ+ is well-founded, and we shall build an
STRE SC whose language is LC(¿A), by induction along ª.

If C is a trivial strongly connected component (one state s, no self-edge), then enumerate
its incoming non-Á transitions fi(si1, si2, · · · , sini

) æ s, 1 Æ i Æ m. Let Sij be an STRE
whose language is the set of trees recognised at sij , which is given by induction hypothesis.
Then SC

def=
qm

i=1 f
?
i (Si1, Si2, · · · , Sini

) is the desired STRE. For instance, the set of trees
recognised at the leftmost state q1 is the language of a?.

If C is a non-trivial strongly connected component, then enumerate the non-Á transitions
fi(si1, si2, · · · , sini

) æ si, 1 Æ i Æ m, whose end state si is in C. For each pair i, j, if sij is
in C, then let S⇤ij

def= ⇤; otherwise, let S⇤ij be an STRE whose language is the set of trees
recognised at sij , which we obtain by induction hypothesis. It is not too hard to see that
SC

def= (
qm

i=1 fi(S⇤i1, S⇤i2, · · · , S⇤ini
))ú.0 is an STRE that suits our needs. For example, the

rightmost strongly connected component {q4} yields the STRE S4 = (b + g(⇤))ú.0. One
might have expected an STRE of the more intuitive form (g(⇤))ú.b?, however note that they
define exactly the same language.

Finally, ¿L(A) is the union of the languages of the strongly connected components
containing a final state; in our example the strongly connected component in the middle
yields the final STRE (d + f(a?,⇤) + h(⇤, S4))ú.0. J

5.2 Tree Products
We characterise the STREs that define ideals of (T (F),ıT ). Define a rewrite relation æ1
on STREs that moves all + signs to the outside: for a æ1-normal STRE S = P1 + · · ·+ Pm,
each Pi will be irreducible, hence S will be an ideal if and only if m = 1 by Fact 9.

The rewrite relation æ1 is defined in Figure 2. Recall that + is understood modulo
associativity and commutativity. Letters matter, too: S, SÕ, S1, . . . , Sn are STREs, while P ,
P Õ are those special STREs of the form f?(S1, · · · , Sn) or Cú.S, etc. In particular, the third
rule of the second column applies provided the pattern f(S1, · · · , Sn) does not contain ⇤ at
all. In the first rules, note that inclusion of STREs is decidable.
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f(s1, s2, · · · , sn) æ s, of A, we add n Á-transitions s1 æ s, s2 æ s, . . . , sn æ s. Call the
resulting automaton ¿A. It is an easy exercise to show that L(¿A) = ¿L(A).

There is a graph underlying ¿A, whose vertices are the states of ¿A, and whose edges
are the Á-transitions. Build its strongly connected components: on Figure 1b, they are shown
against a grey background. By construction, any two states in the same strongly connected
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If C is a trivial strongly connected component (one state s, no self-edge), then enumerate
its incoming non-Á transitions fi(si1, si2, · · · , sini

) æ s, 1 Æ i Æ m. Let Sij be an STRE
whose language is the set of trees recognised at sij , which is given by induction hypothesis.
Then SC
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i (Si1, Si2, · · · , Sini

) is the desired STRE. For instance, the set of trees
recognised at the leftmost state q1 is the language of a?.
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i=1 fi(S⇤i1, S⇤i2, · · · , S⇤ini
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rightmost strongly connected component {q4} yields the STRE S4 = (b + g(⇤))ú.0. One
might have expected an STRE of the more intuitive form (g(⇤))ú.b?, however note that they
define exactly the same language.

Finally, ¿L(A) is the union of the languages of the strongly connected components
containing a final state; in our example the strongly connected component in the middle
yields the final STRE (d + f(a?,⇤) + h(⇤, S4))ú.0. J
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We characterise the STREs that define ideals of (T (F),ıT ). Define a rewrite relation æ1
on STREs that moves all + signs to the outside: for a æ1-normal STRE S = P1 + · · ·+ Pm,
each Pi will be irreducible, hence S will be an ideal if and only if m = 1 by Fact 9.

The rewrite relation æ1 is defined in Figure 2. Recall that + is understood modulo
associativity and commutativity. Letters matter, too: S, SÕ, S1, . . . , Sn are STREs, while P ,
P Õ are those special STREs of the form f?(S1, · · · , Sn) or Cú.S, etc. In particular, the third
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(b) ε-strongly connected components.

Figure 3: Converting tree automata to STREs.

are downwards-closed—argsC is downwards-closed by the outer induction hypothesis.
Otherwise k ≥ 1. If t is in c?2[· · · [c?k[S ∪ argsC]] · · · ], then we conclude by the inner
induction hypothesis directly. Otherwise, one of the summands in c1 is of the form
f(S21, · · · , S2n), and t = f(t1, · · · , tn). If s is smaller than some ti, then either
S2i = 2 and ti ∈ c?2[· · · [c?k[S ∪ argsC]] · · · ], which allows us to conclude by the inner
induction hypothesis; or S2i is of the form P , and is downwards-closed by the outer
induction hypothesis. If instead s = f(s1, · · · , sn) where si is smaller than ti for each
i, we conclude similarly that si ∈ C∗.S for each position i such that S2i = 2. For all
other positions i, S2i is an STRE, which is downwards-closed by the outer induction
hypothesis, so si ∈ S2i. Hence s is in c1[C∗.S], and therefore in C∗.S.

For the converse direction, letL be a downwards-closed language. The complement
T (Σ) r L of L is upwards-closed, and since � is a wqo, T (Σ) r L can be written as
the upward closure ↑{t1, t2, · · · , tn} of finitely many trees. For each i, ↑ ti is easily
seen to be recognizable by a finite (bottom-up) tree automaton. Since finite unions and
complements of recognizable languages are recognizable, L is recognized by some
finite tree automaton A.

We now convert A to an STRE. In general, we describe a procedure that converts
any (ε-free) finite tree automaton A to an STRE whose language is the downward
closure ↓L(A) of the language recognized byA. This is best explained on an example:
see Figure 3a, where there is one transition a of arity 0 (from no state) to state q1, one
binary transition f from the pair of states q1, q2 to q3, and so on. In textual form, we
write these transitions as rewrite rules [Comon et al., 2004]: a → q1, f(q1, q2) → q3,
h(q3, q4)→ q2, d→ q3, g(q4)→ q4, b→ q4. A tree t is recognized at a state s if and
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only if t →∗ s, using the rewrite rules of A. There is a set of final states, marked with
an outgoing arrow with dangling end: in our example, just q3. The language L(A) of
A is the set of trees recognized at some final state.

We first extend our automaton with ε-transitions. An ε-transition from s to s′ will
be drawn as a dashed arrow, see Figure 3b, and is just a rewrite rule of the new form
s → s′. This implies that every tree recognized at s is also recognized at s′. For each
transition, say f(s1, s2, · · · , sn) → s, of A, we add n ε-transitions s1 → s, s2 → s,
. . . , sn → s. (To make things clear, we are assuming thatA does not originally contain
any ε-transition.) Call the resulting automaton ↓A. It is an easy exercise to show that
L(↓A) = ↓L(A).

There is a graph underlying ↓A, whose vertices are the states of ↓A, and whose
edges are the ε-transitions. Build its strongly connected components: on Figure 3b,
they are shown against a grey background. By construction, any two states in the same
strongly connected component C recognize exactly the same trees, so it makes sense to
talk of the language LC(↓A) of those trees recognized at any state of C. Let C → C ′

if and only if s→ s′ for some s ∈ C, s′ ∈ C ′, C 6= C ′. The strict ordering < defined
as the transitive closure→+ is well-founded, and we shall build an STRE SC whose
language is LC(↓A), by induction along <.

If C is a trivial strongly connected component (one state s, no self-edge), then
enumerate its incoming non-ε transitions fi(si1, si2, · · · , sini

) → s, 1 ≤ i ≤ m. Let
Sij be an STRE whose language is the set of trees recognized at sij , which is given by
induction hypothesis. Then SC =

∑m
i=1 f

?
i (Si1, Si2, · · · , Sini) is the desired STRE.

For instance, the set of trees recognized at the leftmost state q1 is the language of a?.
If C is a non-trivial strongly connected component, then enumerate the non-ε tran-

sitions fi(si1, si2, · · · , sini) → si, 1 ≤ i ≤ m, whose end state si is in C. For each
pair i, j, if sij is in C, then let S2ij = 2; otherwise, let S2ij be an STRE whose
language is the set of trees recognized at sij , which we obtain by induction hypothesis.
It is not too hard to see that SC = (

∑m
i=1 fi(S2i1, S2i2, · · · , S2ini

))∗.0 is an STRE
that suits our needs. For example, the rightmost strongly connected component {q4}
yields the STRE S4 = (b+ g(2))∗.0. One might have expected an STRE of the more
intuitive form (g(2))∗.b?, however note that they define exactly the same language.

Finally, ↓L(A) is the union of the languages of the strongly connected components
containing a final state; in our example the strongly connected component in the middle
yields the final STRE (d+ f(a?,2) + h(2, S4))∗.0. 2

We characterize the STREs that define ideals of T (Σ) with respect to �. Let us
define a rewrite relation→1 on STREs that moves all + signs to the outside: for a→1-
normal STRE S = P1 + · · ·+Pm, each Pi will be irreducible, hence S will be an ideal,
i.e., an irreducible closed subset, if and only if m = 1. (Recall that S(Pa) = I(P ) for
every poset P .)

The rewrite relation→1 is defined in Figure 4. Recall that + is understood modulo
associativity and commutativity. Letters matter, too: S, S′, S1, . . . , Sn are STREs,
while P , P ′ are those special STREs of the form f?(S1, · · · , Sn) or C∗.S, etc. In
particular, rule (R6) applies provided the pattern f(S1, · · · , Sn) does not contain 2 at
all. Similarly, in rule (R10), S and S′ cannot contain 2.

For rule (R12), we need some auxiliary definitions.
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(R1) P + P ′ →1 P ′ if P ⊆ P ′
(R2) A+A′ →1 A′ if A ⊆ A′
(R3) 0 + P →1 P
(R4) 0 +A →1 A
(R5) 0∗.S →1 S

(R6) (C + f(S1, · · · , Sn))
∗
.S →1 C∗.(S + f?(S1, · · · , Sn))

(R7) f?(~S1, 0, ~S2) →1 0

(R8) f?(~S1, S + S′, ~S2) →1 f?(~S1, S, ~S2) + f?(~S1, S
′, ~S2)

(R9) f(~S21, 0, ~S22) →1 0

(R10) f(~S21, S + S′, ~S22) →1 f(~S21, S, ~S22) + f(~S21, S
′, ~S22)

(R11) C∗.0 →1 0 if C =
∑m
i=1 fi(2, · · · ,2) and no fi has arity 0

(R12) C∗.(S + S′) →1 C∗.S + C∗.S′ if C is 2-linear

Figure 4: The rewrite relation→1.

Definition 9.2 A pattern A = f(S21, · · · , S2n) is 2-linear if and only if at most one
S2i is the hole 2.

Writing C asA1+· · ·+Am, we say that C is 2-linear if and only if every non-empty
Ai is 2-linear.

The 2-linearity restriction imposed on the last rule is needed for the following to hold.

Lemma 9.3 If S →∗1 S′ then S and S′ define the same language. 2

Lemma 9.4 Every STRE S has a normal form with respect to→1.

Proof. Using Bachmair and Plaisted’s associative path ordering>apo [Bachmair and Plaisted, 1985]
on a precedence where + is minimal, f > f? for each symbol f , and the (_)∗._ op-
erator has lexicographic status, we see that →1 is even a terminating relation: every
sequence of rewrite steps terminates. (Bachmair and Plaisted’s ordering has been im-
proved upon many times, but is sufficient in the case of just one associative commuta-
tive symbol +.) 2

Definition 9.5 A tree-product is any→1-normal tree pre-product P .

Lemma 9.6 Every ideal, i.e., every irreducible closed subset of T (Σ) is the language
of some tree-product.

Proof. By Proposition 9.1, an ideal I is the language of some STRE S. S has a
→1-normal form by Lemma 9.4, write it P1 + · · ·+Pm. Since I is non-empty, m ≥ 1,
and since I is irreducible closed, it is included in, hence equal to, the language of some
Pi. 2

Conversely, we check that the language of every tree-product is irreducible closed.
In the special case that we are in, it is easier to show that they are directed sets.

Let us introduce some additional notation.

46



Definition 9.7 A pattern A = f(S21, . . . , S2n) is 2-generated if and only if at least
one S2i is the hole 2; it is empty if and only if some S2i is different from 2 and has
an empty language.

Writing C as A1 + · · · + Am, we say that C is 2-generated if and only if every
non-empty Ai is 2-generated, and is empty if and only if every Ai is empty.

By inspection of the rules defining→1, we see:

Lemma 9.8 The tree-products are exactly the STREs of the form:

• f?(P1, · · · , Pn) where P1, . . . , Pn are tree-products;

• or C∗.(P1 + · · · + Pn) where n ∈ N, P1, . . . , Pn are pairwise incompara-
ble tree-products, C =

∑m
i=1 fi(P2i1, · · · , P2ini

), m ≥ 1, each summand
fi(P2i1, · · · , P2ini

) is incomparable with any other, each pattern P2ij is ei-
ther a tree-product or the hole 2, C is 2-generated, and one of the following
conditions is satisfied: (a) C is not 2-linear and n ≥ 1, or (b) C is not 2-linear,
n = 0, and P2ij 6= 2 for some i, j, or (c) C is 2-linear and n ≤ 1.

Proof. A tree pre-product of the form f?(S1, · · · , Sn) is→1-normal if and only if S1,
. . . , Sn are→1-normal and neither (R7) nor (R8) applies. The latter means that each
Si is a tree-product Pi.

Next, consider a tree pre-product of the form C∗.S. Write C as
∑m
i=1Ai where

Ai = fi(S2i1, · · · , S2ini
), and S as a sum of tree pre-products P1 + · · ·+ Pn.

If C∗.S is →1-normal, then (R5) does not apply, so m ≥ 1. Since (R1) and
(R3) do not apply (and + is understood modulo associativity and commutativity), P1,
. . . , Pn are pairwise incomparable (and different from 0, but that is implied). Similarly,
since (R2) and (R4) do not apply, each summand fi(P2i1, · · · , P2ini) is incomparable
with any other. Additionally, (R9) and (R10) do not apply, so each S2ij is either equal
to 2 or equal to some tree-product. Henceforth write S2ij as P2ij . If C were not 2-
generated, then for some non-empty Ai, P2ij would be different from 2 for every j:
then rule (R6) would apply. We now prove that (a), (b), or (c) holds depending on the
shape of C. If C is not 2-linear but (a) does not hold, then n = 0. Since (R11) does
not apply, some P2ij is different from 2, or some fi has arity 0. However, if some fi
has arity 0, then Ai would just be fi(), and (R6) would apply: so (b) holds. It remains
to consider the case where C is 2-linear. Since (R12) does not apply, it must be that
n ≤ 1, so (c) holds.

Conversely, it is easy to check that if the conditions listed in the statement of the
lemma for C∗.(P1 + · · ·+Pn) are satisfied, then C∗.(P1 + · · ·+Pn) is→1-normal. 2

Lemma 9.9 If S1, . . . , Sn are directed STREs, then so is f?(S1, · · · , Sn).

Proof. Non-emptiness is clear, since S1, . . . , Sn are non-empty. Let t, t′ be any two
trees in f?(S1, · · · , Sn). If t = f(t1, · · · , tn) and t′ = f(t′1, · · · , t′n) with ti, t′i ∈ Si
for every i, then we can find t′′i ≥ ti, t

′
i in Si, and then f(t′′1 , · · · , t′′n) ≥ t, t′ is in

f?(S1, · · · , Sn).
If t is in some Sj and t′ = f(t′1, · · · , t′n) with t′i ∈ Si for every i, then build the tree

s = f(s1, · · · , sj−1, t, sj+1, · · · , sn), where si is an arbitrary tree from the non-empty

47



set Si, i 6= j. Clearly, s is in f?(S1, · · · , Sn), so, by reduction to the previous case,
there is a tree t′′ ∈ f?(S1, · · · , Sn) such that s, t′ � t′′. Since t � s, we obtain that
t, t′ � t′′.

Similarly if t′ is in some Sk, we build a new tree s′ = f(s′1, · · · , s′k−1, t
′, s′k+1, · · · , s′n)

and conclude by a similar argument that there is a tree t′′ ∈ f?(S1, · · · , Sn) such that
t′ � s′ � t′′ and t � t′′. 2

The case of STREs of the form C∗.S is more complex. The three cases (a), (b) and
(c) in the lemma below match those of Lemma 9.8, second item.

Lemma 9.10 Let C = A1 + · · ·+Am be a sum of patternsAi = fi(S2i1, · · · , S2ini
),

where each S2ij that is different from 2 has a non-empty language. If any of the
following conditions is satisfied, then C∗.S is directed:

(a) C is not 2-linear, and S has a non-empty language, or

(b) C is not 2-linear, and some S2ij is different from 2, or

(c) C is 2-linear and 2-generated, and S is irreducible.

Proof. The fact that C∗.S is non-empty is an easy exercise: in case (a), C∗.S contains
S; in case (b), it contains S2ij ; in case (c), it contains S, which, as an irreducible
subset, is necessarily non-empty. Let t, t′ be any two trees in C∗.S.

In case (a), some non-empty Ai is of the form f(S21, · · · , S2n), where 2 occurs
at least twice, say at positions j and j′, j 6= j′. For every k, 1 ≤ k ≤ n, define a
tree tk as follows: if S2k = 2 and k 6= j′ (including the case k = j), let tk = t, if
k = j′ then let tk = t′, and if S2k 6= 2 then pick any tree for tk from the language of
S2k, which is non-empty by assumption. We check that f(t1, · · · , tn) is in C∗.S, and
t = tj , t′ = tj′ both embed into f(t1, · · · , tn).

Case (b) reduces to (a), since if S2ij 6= 2, then C∗.S defines the same language as
C∗.(S + S2ij).

In case (c), every non-empty Ai is of the form f(· · · ,2, · · · ) with a unique oc-
currence of 2. In that case, the language of C∗.S can be described more simply: it
consists of those trees of the form c1[c2[· · · ck[s] · · · ]], where k ∈ N, each ck is a
context in the language of C, with just one occurrence of 2 each, and s is a tree in
S ∪ argsC. For short, say that a context c is in C∗ if and only if it is of the form
c1[c2[· · · ck[2] · · · ]], where k ∈ N and each ck is in C. Such contexts have exactly one
occurrence of 2. Hence the language of C∗.S consists of those trees c[s] where c is in
C∗ and s ∈ S ∪ argsC. Given any two such trees t = c[s] and t′ = c′[s′], we find a tree
t′′ ∈ C∗.S in which both t and t′ embed, as follows.

If both s and s′ are in S, then by directedness there is an s′′ ∈ S such that s, s′ �
s′′: we define t′′ as c[c′[s′′]].

If s ∈ S and s′ ∈ argsC, then there is an Ai = fi(S2i1, · · · , S2ini) and a position
j′, 1 ≤ j′ ≤ ni, such that S2ij′ 6= 2 and the language of S2ij′ contains s′. The unique
position j at which S2ij = 2 is different from j′. Let u = fi(u1, · · · , un) where:
uj = s, uj′ = s′, for every position k 6= j, j′ uk is an arbitrary tree from S2ik. By
construction, u ∈ C∗.S, hence so is t′′ = c[c′[u]]. Additionally, since s and s′ both
embed in u, t and t′ both embed in t′′.
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The same argument applies when s ∈ argsC and s′ ∈ S. Finally, we con-
sider the case where s, s′ are both in argsC. Then s ∈ argsAi for some i, say
Ai = fi(S2i1, · · · , S2ini

), S2ij′ 6= 2 and s in in the language of S2ij′ . Since S
is irreducible, it is non-empty, hence we can pick a tree s0 from it. Let uj′ = s,
uj = s0 where j is the unique position where S2ij = 2, and pick uk from the non-
empty language S2ik for every k 6= j, j′; define u = fi(u1, · · · , uni), a tree from C∗.S
in which s embeds. Similarly, since s′ ∈ argsC, s′ is in the support of some Ai′ , say
Ai′ = fi′(S2i′1, · · · , S2i′ni′ ), S2i′j′′′ 6= 2 and s′ is in the language of S2i′j′′′ . Let
vj′′′ = s′ (instead of s in our previous step), vj′′ = u (instead of s0) where j′′ is the
unique position where S2i′j′′ = 2, and pick vk from the non-empty language S2i′k

for every k 6= j′′, j′′′. The tree v = fi′(v1, · · · , vni′ ) is again in C∗.S, and now both s
and s′ embed into it. Finally, we define t′′ as c[c′[v]]. 2

Theorem 9.11 The ideals, i.e., the irreducible closed subsets of T (Σ) are exactly the
languages of tree-products.

Proof. One direction is Lemma 9.6. In the other direction, we show that the language
of every tree-product P is directed by structural induction on P , using Lemma 9.9 or
Lemma 9.10, depending on its shape, as given by Lemma 9.8. In doing the proof, one
needs to observe that any→1-normal STRE S = P1 + · · ·+ Pm (where the language
of each Pi is an ideal by induction hypothesis) has an empty language if and only if
m = 0—because ideals are never empty. 2

Exceptionally, let us dispense with the traditional shape of our S-representation
theorem, and let us just state the following.

Theorem 9.12 (S-Representation, Finite Ranked Trees) Let Σ be a finite signature.
There is an S-representation (S, J_K ,�, τ,∧) of T (Σ), where S is the collection of all
tree-products over Σ.

Proof. Tree-products are regular tree languages. Hence inclusion (�) is decidable
[Thatcher and Wright, 1968, Section 2], see also [Comon et al., 2004]. Since T (Σ)

is equal to the language of (
∑
f∈Σ f(2, · · · ,2))

∗
.0 (where each f ∈ Σr is applied

to a list of r boxes), we obtain τ by normalizing with respect to →1. To compute
finite intersections (∧) of two tree-products, we first convert those tree-products to
tree automata, compute their intersection, convert the result back to an STRE by the
construction of Proposition 9.1, and normalize it by →1 to obtain its expression as a
sum of tree-products. 2

The above procedures are not optimal, and notably the inclusion procedure takes ex-
ponential time. As in the word case (see Lemma 6.9), there is a polynomial time
inclusion test, but it is complex, and its correctness proof is difficult. We shall study
it—by necessity—in the general case of unranked trees over a Noetherian signature.
(See Corollary 10.33.) We let the interested reader do the required modifications to
adapt it to the finite, ranked case.

Anticipating on that general case, the ranked trees in T (Σ) embed into the set of
all (unranked) trees over the finite set Σ (seen as a Noetherian space, with the discrete
topology). Proposition 5.4 tells us that the sobrification of the former can be be seen,
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up to isomorphism, as a subspace of the sobrification of the latter. We leave it as an
exercise to check that this embedding S 7→ S◦ is defined by:

• if S = P1 + · · ·+ Pm, then S◦ = P ◦1 + · · ·+ P ◦m;

• (f?(P1, · · · , Pn))◦ = f?(P ◦?1 · · ·P ◦?n );

• ((
∑m
i=1 fi(P2i1, · · · , P2ini

))∗.S)◦ = (
∑m
i=1 fi(P

◦?
2i1 · · ·P ◦?2ini

))∗.S◦

• 2◦ = 2.

Combining this with the polynomial time inclusion test we shall see in Definition 10.31,
this provides us with a polynomial time inclusion test for the tree-products and STREs
over Σ.

10 Completing Finite Trees: the General Case
For every set X , let T (X) denote the set of all (ground, first-order) terms built using
function symbols from X . Function symbols are now unranked, and may be applied
to arbitrarily long lists of arguments. Since lists can be seen as finite words, T (X) =
X × T (X)∗. The leaves of such terms are the constants f(), formed from a function
symbol f ∈ X and an empty list of arguments; we shall also simply write f instead of
f(). In general, a term t will be written as f(t1, t2, · · · , tn). When we wish to stress
that the list t1, t2, · · · , tn is a word, we shall also write f(t1t2 · · · tn) or f(~t) for a word
~t ∈ T (X)∗.

Again, our terms are ground. We shall later use the notation T (X, {2}) to refer
to the set of terms with exactly one variable 2. These are the terms of T (X ∪ {2})
where 2 is always applied to the empty list of arguments.

The subterms of a term t are defined inductively as usual: writing t as f(t1, · · · , tn),
they are t itself plus all subterms of ti, 1 ≤ i ≤ n.

Given any quasi-ordering ≤ on X , the embedding quasi-ordering �≤ on T (X,V)
is defined by induction on the sum of the sizes of the terms s, t, by s �≤ t iff:

• either t = g(t1, · · · , tn) and s �≤ tj for some j, 1 ≤ j ≤ n;

• or s = f(~s), t = g(~t), f ≤ g and ~s �∗≤ ~t;

where we recall that �∗≤ is the embedding quasi-ordering on words, understanding
that the letters (which are terms themselves here) are quasi-ordered by �≤ (this is a
recursive definition). As with several other notions here, we reuse freely some notations
and some notions that we had introduced in the special case considered in Section 9.

Kruskal’s Tree Theorem—in a more complete form than stated earlier—states that
�≤ is wqo on T (X) iff ≤ is wqo on X .

The latter extends to a topological setting: for a topological space X , T (X) is
Noetherian iff X is Noetherian [Goubault-Larrecq, 2013, Theorem 9.7.46]. For this
to make sense, we need to put a topology on T (X), and this is the tree topology
[Goubault-Larrecq, 2013, Definition 9.7.39], defined as follows. For short, let Y =
T (X). The simple tree expressions on X are given by the grammar π ::= 3U(π1 |
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· · · | πn) where U is open in X , and n ∈ N. (The base case is obtained when n = 0.)
Such a simple tree expression denotes the set of terms t that have a subterm of the form
f(~t) with f ∈ U and ~t ∈ Y ∗π1Y

∗ · · ·Y ∗πnY ∗. The simple tree expressions generate
a topology, called the tree topology.

Here are a few basic facts about the tree topology. These can be found in [Goubault-Larrecq, 2013,
Exercise 9.7.40, Exercise 9.7.43]. The proof of the following proposition, and of most
subsequent results, can be found in Appendix E.

Proposition 10.1 LetX be a topological space. Every finite intersection of simple tree
expressions can be rewritten as a finite union of simple tree expressions. In particular,
the simple tree expressions form a base of the tree topology.

Letting≤ be the specialization quasi-ordering ofX , the specialization quasi-ordering
of T (X) is the embedding quasi-ordering �≤.

The reader might be under the impression that the tree topology is far removed
from the embedding quasi-ordering �≤. Not so: the situation is exactly as for words
(Proposition 7.2), and when X is a poset, then the tree topology is the Alexandroff
topology of �≤:

Proposition 10.2 Let X be a set quasi-ordered by ≤. The tree topology on T (Xa) is
exactly the Alexandroff topology of �≤ on T (X).

Proof. This is the first part of Exercise 9.7.48 of [Goubault-Larrecq, 2013]. We give a
proof just before Section E.1 in Appendix E. 2

This means, as for most other cases studied in this paper (except the case of rings, of
words under the prefix ordering, and of powersets), that in the familiar case whereX is
a poset, the completion T̂ (X) is both the sobrification of T (X) with the tree topology,
and the ideal completion of T (X) with the �≤ quasi-ordering. (Recall Hoffmann’s
Theorem that for a poset Y , S(Ya) = I(Y ) [Hoffmann, 1979b].) The present section
is therefore merely an extension of Section 9 to a more general format of trees, and
more general spaces of function symbols.

10.1 Tree Steps
To characterize S(X), we rely again on specific forms of regular tree expressions, this
time for terms. We start with regular expressions based on the ? operator, which we
call tree steps.

Definition 10.3 (Tree Step) Let X be a topological space.
For every word-product ~P on T (X), the support supp ~P of ~P is defined as the set

of terms t such that the one-element sequence t is in the language of ~P . Equivalently,
when ~P = e1e2 · · · en, supp ~P =

⋃n
i=1 supp ei, where suppS∗ = S and suppP ? = P .

For every closed subset F of X , let F ?(~P ) denote the union of supp ~P with the set
of all terms of the form f(~t), f ∈ F , ~t ∈ ~P .

The tree steps are the expressions of the form C?(~P ) where C is irreducible closed
in X and ~P is a word-product on T (X).
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E.g., when C = {f}, ~P = {a}?{b}?, then C?(~P ) is the set of all terms f(a, b),
f(a), f(b), f(), but also the terms a and b from supp ~P .

Lemma 10.4 LetX be a topological space. For every closed subset F ofX , and every
word-product ~P on T (X), supp ~P and F ?(~P ) are closed in T (X). If moreover F = C

is irreducible, then so is the tree step C?(~P ).

Proof. See Appendix E, as for most other results of this section. 2

10.2 Tree Iterators
We turn to the needed generalization of tree regular expressions of the form C∗.S.
Recall that T (X, {2}) is the set of terms of T (X ∪ {2}) where 2 is always applied
to the empty list of arguments—2 acts as a hole, meant to be replaced by terms.

Definition 10.5 (Context) Let X be a topological space, and 2 be an element called
the hole, and assumed not to be in X . A context is a term of T (X, {2}).

Given any context C, and any subset S of T (X), C[S] denotes the set of all terms
in T (X) obtained by replacing each occurrence of 2 in C by (possibly different) terms
from S.

The hole 2 can be replaced by different terms. E.g., when S = {a, b}, f(2,2)[S]
denotes {f(a, a), f(a, b), f(b, a), f(b, b)}. Notice that terms without the hole are also
considered as contexts: take C = f(c) for example, then C[S] contains just f(c), for
any subset S.

By extension, where t is a single term, C[t] denotes the unique term obtained by
replacing every hole 2 in C by t. One should beware that C[S] is not in general equal to
the set of all terms C[t], t ∈ S, as the example S = {a, b}, C = f(2,2) demonstrates.

Given two contexts C and C′, the notation C[C′[S]] makes sense: this is C[S′], where
S′ = C′[S]. One can also read this as C[C′][S], where C[C′] is the context obtained by
replacing each occurrence of 2 in C by the (same) context C′.

Given a single hole 2, we equip {2} with the only possible topology, and write
T (X) + {2} for the topological coproduct. Its open subsets are the sets of the form U
or U ∪{2}, where U is open in T (X), and similarly for closed subsets. Its irreducible
closed subsets are the irreducible closed subsets of T (X), and {2}.

Definition 10.6 (Tree Iterators) Let X be a topological space, and 2 be a distin-
guished element outside X , called the hole.

The tree iterators are formal expressions of the form C∗.S, where C is a closed
subset of X × (T (X) + {2})∗, and S is a closed subset of T (X). We equate pairs
(f, ~u) in C with the contexts c = f(~u)—such contexts are elementary contexts, in that
2 can only occur directly under f .

Call argument support argsC of C the set of all terms t ∈ T (X) such that f(t) ∈ C
for some f ∈ X . (Equivalently, such that some term of the form f(· · · , t, · · · ) belongs
to C.) Then C∗.S denotes the smallest set of terms in T (X) such that:

1) every term in S is in C∗.S;
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2) every term in argsC is in C∗.S;

3) for every elementary context c ∈ C, c[C∗.S] is included in C∗.S.

For example, let C = {f}×{2}∗. Its argument support is the set of all terms t ∈ T (X)
such that t ∈ {2}∗, i.e., t = 2: this is impossible since 2 is not a term of T (X). So
argsC is empty. Let S = {a, b}. C∗.S is the following set of terms. First, there are
the terms from S, namely a and b. Then, there are the terms obtained from the latter
by applying the elementary contexts c ∈ C to the above terms. These contexts are
f(), f(2), f(22), etc. So we obtain the terms f , f(a), f(b), f(a, a), f(a, b), f(b, a),
f(b, b), etc. In a third step, we find the terms obtained by applying the contexts f(),
f(2), f(22), etc., to the latter terms: we obtain f(f), f(f(a)), f(f(b)), f(f(a, a)),
. . . , f(a, f(a)), etc. Continuing this way, we realize that C∗.S is the set of terms whose
non-leaf nodes are labeled with f , and whose leaves are labeled by a or b . . . or f .

For a more complex example, take C = {f} × {c}?{2}∗. Now argsC = {c}—c
is the only part of {c}?{2}∗ that does not contain the hole 2. Take S = {a, b} again.
Then C∗.S is the following set of terms. First, we find the terms from S, namely a
and b. Second, we find the terms from argsC, that is, c. Third, we find the results of
applying contexts of the form f(), f(c), f(2), f(c2), f(22), f(c22), f(222), etc.,
to the above terms: these are the terms of the form f(t1, t2, · · · , tn) where each ti is in
{a, b, c}. Continuing this way, we obtain that C∗.S is the set of all terms built using f ,
a, b, c, where a, b, c are applied to no argument. In particular, C∗.S is the same set as
C′
∗
.S′, where C′ = {f} × {2}∗, and S′ = {a, b, c}.

Remark 10.7 One should beware that C∗.S can be non-empty even when S is empty,
and even when argsC is empty. For example, for C = {f} × {2}∗, C∗.∅ is the set of
terms whose only function symbol is f , at all positions: f(), f(f()), f(f(), f()), . . .
This unexpected kind of non-empty STRE will be used in case 3 of Lemma 10.11, and
in the definition of τ ′ in Theorem 10.36, notably.

The argument support argsC mimics the eponymous notion of Section 9. While we do
not commit yet to a specific syntax for closed subsets C of X × (T (X) + {2})∗, the
case that will be of most interest to us—and which will be the general case when X is
Noetherian—is when C is of the form

⋃m
i=1 Ci ×Qi, where Ci is irreducible closed in

X and each Qi is a word-product over T (X) + {2} for each i, 1 ≤ i ≤ m. In that
case, argsC simplifies:

Lemma 10.8 Let C =
⋃m
i=1 Ci × Qi, where Ci is a closed non-empty subset of X

and each Qi is a word-product over T (X) + {2} for each i, 1 ≤ i ≤ m. Then
argsC =

⋃m
i=1 suppQi ∩ T (X).

Each Qi is closed in T (X) + {2}. In particular, argsC is closed in T (X).

Proof. Let t ∈ argsC. For some i, 1 ≤ i ≤ m, there is a term f(t) with f ∈ Ci
and such that the one-element word t is in Qi. The latter means that t ∈ suppQi.
Also, t ∈ T (X) by definition. Conversely, any element of suppQi ∩ T (X) is a term
(not the hole) t in suppQi, i.e., such that the one-element word t is in Qi. Since Ci is
non-empty, pick f from Ci. Then f(t) is in C, so t is in argsC.
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For any space Y , the function i : Y → Y ∗ that maps any y ∈ Y to the one-letter
word y is continuous (Lemma B.1 in the Appendix). Since suppQi = i−1(Qi), it is
closed in Y = T (X) + {2}. It follows that suppQi ∩T (X) is closed in T (X), hence
also argsC. 2

Lemma 10.9 LetX be a topological space, and 2 be a hole outside T (X). Every tree
iterator C∗.S such that argsC is closed in T (X) denotes a closed subset of T (X).

The cases where tree iterators are irreducible require an analysis of the number of
holes that can occur in each context, which parallels the analysis we ran in Lemma 9.8,
leading to three cases (a), (b) and (c).

Definition 10.10 Let X be a topological space, and 2 be a hole outside T (X). Let
C be a subset of X × (T (X) + {2})∗. C is 2-linear iff its elements have at most one
occurrence of 2 each, i.e., for every elementary context f(~t) ∈ C, at most one element
of ~t equals 2. C is 2-generated iff for every f(~u) ∈ C such that 2 does not occur in ~u,
one can split ~u as a concatenation ~u1~u2 so that f(~u12~u2) is in C.

The 2-generated closed sets C are those such that every element in C contains the hole
2, or has a larger element in C that contains the hole. So, for example, C = {f}×{2}∗
is 2-generated. Indeed, its elements are the pairs (f,2n), n ∈ N; when n ≥ 1, this
contains 2, and when n = 0, (f, ε) is below (f,2), which is inside C and contains 2:
i.e., we apply the above definition, picking ~u1 = ~u2 = ε. C is not 2-linear, since, say,
(f,22) is in it, and contains two holes.

On the other hand, {f} × {2}? is both 2-linear and 2-generated.
The tree iterators C∗.S are easier to understand when C is 2-linear, just as in Sec-

tion 9. Let C2∗ be the set of all contexts of the form c1[c2[· · · [ck] · · · ]], where k ∈ N,
and c1, c2, . . . , ck ∈ C. (When k = 0, this denotes 2.) Whenever C is 2-linear, all
these contexts have at most occurrence of 2. Then C∗.S is the set of all terms obtained
from a context c in C2∗ by replacing the unique occurrence of the hole 2 (if any) by a
term from S ∪ argsC.

Lemma 10.11 Let X be a topological space, and 2 be a hole outside T (X), C be a
closed subset of X × (T (X) + {2})∗, S be a closed subset of T (X), and assume that
argsC is closed. Then the tree iterator C∗.S is irreducible in the following cases:

1) if C is non-2-linear, and S is non-empty;

2) or if C is 2-generated and 2-linear and S is irreducible;

3) or if C is non-empty, 2-generated, and S is empty.

In case 3, C∗.∅ is in particular non-empty. That should not be a surprise, considering
Remark 10.7.

Using these two forms of closed subsets—tree steps and tree iterators—one can
express the complements of all simple tree expressions.

Lemma 10.12 Let X be a topological space. The complement {π of the open subset
denoted by the simple tree expression π = 3U(π1 | π2 | · · · | πn) is given by structural
induction on π by:
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• {π = ((F × {2}∗) ∪ (X × ({π∗1{2}?{π∗2{2}? · · · {2}?{π∗n)))∗.∅ if n ≥ 1,
where F is the complement of U in X;

• if n = 0, then {π = (F × {2}∗)∗.∅.

Lemma 10.12 can be made explicit, especially when U = X and n = 1:

Lemma 10.13 Let X be a topological space. The complement {π of the open subset
denoted by the simple tree expression π = 3U(π1 | π2 | · · · | πn), is given by
structural induction on π by:

• if U = X and n = 0, then {π is empty;

• if U = X and n = 1, then {π is X?({π∗1);

• if U = X and n ≥ 2, then {π is (X × ({π∗1{2}?{π∗2{2}? · · · {2}?{π∗n))∗.∅;

• if U 6= X and n = 0, then {π is (F × {2}∗)∗.∅, where F is the complement of
U ;

• if U 6= X and n = 1, then {π is ((F × {2}∗))∗.X?({π∗1), where F is the
complement of U ;

• ifU 6= X and n ≥ 2, then {π is ((F×{2}∗)∪(X×({π∗1{2}?{π∗2{2}? · · · {2}?{π∗n)))∗.
∅, where F is the complement of U .

Proof. The case U = X , n = 0 is clear. When U = X and n = 1, Lemma 10.12 tells
us that {π = (X×{π∗1)∗.∅. This is by definition the smallest setA of terms containing
{π1 = supp(X × {π∗1) and such that for every elementary context f(~u) ∈ X × {π∗1 ,
f(~u) (which is a term, i.e., 2 does not occur in it) is in A. Thus A = X?({π∗1). When
U 6= X and n = 1, by Lemma 10.12 {π = ((F × {2}∗) ∪ (X × ({π∗1)))∗.∅. The
argument support of C = (F × {2}∗) ∪ (X × ({π∗1)) is {π1, so the elements of {π
are those of {π1, those of the form f(~t) where f is arbitrary and ~t ∈ {π∗1 (hence all
the terms of X?({π∗1)), and those obtained from the latter by applying any number of
function symbols from F . The other cases follow directly from Lemma 10.12. 2

10.3 Checking Inclusion
We start with tree step inclusion.

Lemma 10.14 Let X be a topological space, C and C ′ be two irreducible closed
subsets of X , ~P and ~P ′ be two word-products over T (X). Then C?(~P ) ⊆ C ′?(~P ′) iff
C ⊆ C ′ and ~P ⊆ ~P ′, or C?(~P ) ⊆ supp ~P ′.

We turn to the cases where one of the closed set to compare is of the form C∗.S. For
every closed subset C of X × (T (X) + {2})∗ and every closed subset S of T (X), we
write C[S] for the set of pairs (f,~t), where (f, ~u) ranges over C and where ~t is obtained
from ~u by replacing each occurrence of 2 by possible different terms from S.
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Lemma 10.15 Let X be a topological space, C be an irreducible closed subset of X ,
~P be a word-product over T (X), C be a closed subset of X × (T (X) + {2})∗ such
that argsC is closed in T (X), where 2 is a hole outside T (X), and S be a closed
subset of T (X).

Then C?(~P ) ⊆ C∗.S iff C × ~P ⊆ C[C∗.S] and supp ~P ⊆ C∗.S, or C?(~P ) ⊆
argsC ∪ S.

The expression C[C∗.S] in Lemma 10.15 is arguably not syntactically smaller than
C∗.S, and this would cause some problems in designing an algorithm for inclusion
testing.

We shall show below that we can replace C[C∗.S] by C[C] for any irreducible closed
set C containing C∗.S. The one that will suit us best is a set T 2(X), which we now
define. While T 2(X) is semantically very large—larger than the set of all terms!—,
one can think of it denoted by some specific piece of syntax that one would naturally
call the wildcard.

Definition 10.16 (Wildcard T 2(X)) Let T 2(X) be the disjoint union of T (X) with
a fresh element 2. Its topology is described by letting the closed subsets of T 2(X) be
those of T (X), plus T 2(X) itself.

That is, T 2(X) is obtained from T (X) by adding a new top element to it. Notice that
the whole of T 2(X) is then irreducible closed in T 2(X).
T 2(X) is different from T (X)+{2}. While both spaces have the same elements,

the topology of T 2(X) is strictly coarser than that of T (X) + {2}: the only closed
subset of T 2(X) that contains 2 is T 2(X) itself, while any set F ∪ {2}, F closed
in T (X), is closed in T (X) + {2}. In terms of opens, every non-empty open subset
of T 2(X) contains 2, while any set U ∪ {2}, with U open in T (X), is also open in
T (X) + {2}.

In the following, C[T 2(X)] is just what it looks like it should be: the set of contexts
obtained by instantiating a context from C by replacing some (but not necessarily all)
of its holes by terms.

Lemma 10.17 Let X be a topological space, C be an irreducible closed subset of X ,
~P be a word-product over T (X), C be a closed subset of X × (T (X) + {2})∗ such
that argsC is closed in T (X), where 2 is a hole outside T (X), and S be a closed
subset of T (X).

Then C?(~P ) ⊆ C∗.S iff C × ~P ⊆ C[T 2(X)] and supp ~P ⊆ C∗.S, or C?(~P ) ⊆
argsC ∪ S.

Proof. Using Lemma 10.15, it is enough to show that if C × ~P ⊆ C[T 2(X)] and
supp ~P ⊆ C∗.S, then C × ~P ⊆ C[C∗.S]. Indeed, let (f,~t) be any element of C × ~P .
By assumption, f(~t) is in C[T 2(X)]. So there is an elementary context f(~u) in C such
that ~t is obtained from ~u by replacing those uj that are equal to 2 by some terms tj ,
1 ≤ j ≤ m. Since tj ∈ supp ~P , tj ∈ C∗.S. So (f,~t) is in C[C∗.S]. 2

One may wonder above why we used T 2(X) instead of, e.g., T (X). This would work,
too. But using T 2(X) will be what we shall need, in particular in the case where we
need to compare two tree iterators.
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Let us refine our understanding of the construction C[S].

Lemma 10.18 Let X be a Noetherian space, and S be a closed subset of T 2(X). Let
C be a closed subset of X × (T (X) + {2})∗ of the form

⋃m
i=1 Ci × Qi, where each

Ci is irreducible closed in X and each Qi is a word-product over T (X) + {2}.
Then C[S] equals

⋃m
i=1 Ci×Qi[S], where for each word-product Q = e1e2 · · · en,

Q[S] = e1[S]e2[S] · · · en[S], and for each atomic expression e, e[S] equals S? if e =
{2}?, I? if e = I? for some irreducible closed subset I of T (X), ((F r {2}) ∪ S)

∗

if e = F∗ and 2 ∈ F , F∗ if e = F∗ and 2 6∈ F . 2

That is, C[S] is obtained from C by literally replacing 2 by S throughout. In particular,
when S = T 2(X): {2}?[T 2(X)] = T 2(X)?, I?[T 2(X)] = I? when I is irreducible
closed in T (X), F∗[T 2(X)] = F∗ when F is closed in T (X), and F∗[T 2(X)] =
T 2(X)∗ when 2 ∈ F .

This allows us to give our final characterization of inclusion between tree steps and
tree iterators, in a way that will lend itself more directly to a recursive algorithm.

Lemma 10.19 Let X be a topological space, C be an irreducible closed subset of X ,
~P be a word-product over T (X), C be a closed subset of X × (T (X) + {2})∗ of the
form

⋃m
i=1 Ci ×Qi, where each Ci is irreducible closed in X and each Qi is a word-

product over T (X) + {2}, where 2 is a hole outside T (X), and S be a closed subset
of T (X).

Then C?(~P ) ⊆ C∗.S iff either: supp ~P ⊆ C∗.S, C ⊆ Ci and ~P ⊆ Qi[T 2(X)] for
some i, 1 ≤ i ≤ m; or C?(~P ) ⊆ argsC ∪ S.

Proof. Lemma 10.17 applies since argsC =
⋃n
i=1 suppQi ∩ T (X) is closed. Then

~P is irreducible closed (in T 2(X)∗, not just in T (X)∗) by Lemma 6.7. So C × ~P

is irreducible closed in X × T 2(X)∗, whence C × ~P ⊆ C[T 2(X)] =
⋃n
i=1 Ci ×

Qi[T 2(X)] iff C × ~P ⊆ Ci × Qi[T 2(X)] for some i, 1 ≤ i ≤ n, iff C ⊆ Ci and
~P ⊆ Qi[T 2(X)] for some i, 1 ≤ i ≤ n. 2

Let us now turn to the third case, where we compare tree iterators and tree steps in
the other order.

Lemma 10.20 Let X be a topological space, C be an irreducible closed subset of X ,
~P be a word-product over T (X), C be a closed subset of X × (T (X) + {2})∗ such
that argsC is closed in T (X), where 2 is a hole outside T (X), and S be a closed
subset of T (X). Assume also that there is an elementary context f(~u) in C such that
2 occurs as some element of ~u.

Then C∗.S ⊆ C?(~P ) iff C∗.S ⊆ supp ~P .

Proof. Assume C∗.S ⊆ C?(~P ). By assumption, there is an elementary context f(~u)
in C such that 2 occurs as some element of ~u. To make things simpler, observe that
this implies that f(2) is in C. For every t ∈ C∗.S, f(t) is then again in C∗.S. So f(t)

is in C?(~P ). It follows that either f ∈ C and t ∈ supp ~P , or f(t) ∈ supp ~P . Since
supp ~P is closed, it is downwards-closed in �≤, so if f(t) ∈ supp ~P , then t ∈ supp ~P .
In any case, t ∈ supp ~P . Since t is arbitrary, C∗.S ⊆ supp ~P . The converse inclusion
is obvious. 2
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Note that the condition that there is an elementary context f(~u) in C such that 2 occurs
as some element of ~u is satisfied in all of the cases 1–3 where we proved C∗.S to be
irreducible (Lemma 10.11), since C is not 2-linear in the first case, and 2-generated in
the remaining cases.

Finally, we deal with the case where we try to compare two tree iterators. We
do this in several steps, and start, as above, with a lemma with no obvious algo-
rithmic content, but which gives the basic characterization we need. The proof of
this heavily depends on irreducibility, as usual. Let @ be the application map from
X ×T (X)∗ to T (X). This sends (f,~t) to f(~t), and is continuous (see Exercise 9.7.47
of [Goubault-Larrecq, 2013], or Lemma E.6 in Appendix E).

Lemma 10.21 Let X be a topological space, C and C′ be two closed subsets of X ×
(T (X) + {2})∗ such that argsC and argsC′ are closed in T (X), where 2 is a hole
outside T (X), and let S, S′ be two closed subsets of T (X).

Then C∗.S ⊆ C′
∗
.S′ iff C[C∗.S] ⊆ @−1(argsC′∪S′)∪C′[T 2(X)] and argsC∪S ⊆

C′
∗
.S′.

Again, we need to make the above lemma clearer, in the case that is of primary
interest to us.

Lemma 10.22 Let X be a topological space, C and C′ be two closed subsets of X ×
(T (X) + {2})∗, where 2 is a hole outside T (X), and let S, S′ be two closed subsets
of T (X). Assume also that C is of the form

⋃m
i=1 Ci × Qi, and that C′ is of the form⋃n

j=1 C
′
j ×Q′j , where each Ci and each C ′j is irreducible closed in X , and Qi and Q′j

are word-products over T (X) + {2} for each i, 1 ≤ i ≤ m, and each j, 1 ≤ j ≤ n.
Assume finally that C∗.S is irreducible, and that 2 ∈ Qi for every i, 1 ≤ i ≤ m.

Then C∗.S ⊆ C′
∗
.S′ iff:

• either C∗.S ⊆ argsC′ ∪ S′,

• or argsC ∪ S ⊆ C′
∗
.S′, and for every i, 1 ≤ i ≤ m, there is a j, 1 ≤ j ≤ n,

such that Ci ⊆ C ′j and Qi[T 2(X)] ⊆ Q′j [T 2(X)].

Note that the assumptions that C∗.S is irreducible, and that 2 ∈ Qi for every i, 1 ≤
i ≤ m, are satisfied as soon as any of the cases 1–3 of Lemma 10.11 hold.

10.4 Intersections of Tree Steps and Tree Iterators
We now compute intersections, and we start with tree steps. All missing proofs are in
Appendix E.6.

In the following lemma, recall that, by Lemma 6.13, the intersection of any two
word-products ~P and ~P ′ (here, on T (X)) can be expressed as a finite union of word-
products ~P ′′j .

Lemma 10.23 Let X be a topological space. The intersection of two tree steps P =

C?(~P ) and P ′ = C ′
?
(~P ′) is equal to

⋃n
j=1 (C ∩ C ′)?

(~P ′′j ) ∪ (supp ~P ∩ P ′) ∪ (P ∩
supp ~P ′), where ~P ∩ ~P ′ is expressed as a finite union

⋃n
j=1

~P ′′j of word-products on
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T (X). If C ∩C ′ can be written as the union of finitely many irreducible closed subsets
Ci, 1 ≤ i ≤ m, then P ∩ P ′ is also equal to the union of the tree steps C?

i (~P ′′j )

(1 ≤ i ≤ n, 1 ≤ j ≤ m), of supp ~P ∩ P ′, and of P ∩ supp ~P ′.

Lemma 10.24 Let X be a Noetherian space, and S be a closed subset of T (X).
Let C?(~P ) be a tree step, C be a closed subset of X × (T (X) + {2})∗ of the form⋃n
j=1 Cj × Qj , where each Cj is irreducible closed in X and each Qj is a word-

product over T (X) + {2}.
The intersection of the tree step P = C?(~P ) and of the tree iterator P ′ = C∗.S

is the union of supp ~P ∩ P ′, of P ∩ (S ∪ argsC), and of (C ∩ Cj)?
(~P ∩ Qj [P ′]),

1 ≤ j ≤ n.
If, for each j, one can write C∩Cj as the union of finitely many irreducible subsets

Cij , 1 ≤ i ≤ mj , and if ~P ∩ Qj [P ′] can be expressed as the union of finitely many
word-products ~P`j , 1 ≤ ` ≤ qj , then P ∩ P ′ is also equal to the union of supp ~P ∩ P ′,
of P ∩ (S ∪ argsC), and of C?

ij(
~P`j), 1 ≤ j ≤ n, 1 ≤ i ≤ mj , 1 ≤ ` ≤ qj .

Lemma 10.26 below, which deals with intersections of tree iterators, is only valid
if the word-products Qi and Q′j on T (X) + {2} are normalized. A normalized word-
product on T (X) + {2} is of the form e1e2 · · · en, where each atomic expression ei
is of the form P ? (with P irreducible closed in T (X)), {2}?, F ∗ (with F closed in
T (X)), or {2}∗. In other words, we forbid atomic expressions of the form (F ∪ {2})∗
where F is a non-empty closed subset of T (X). Note that the components of a nor-
malized product are either closed subsets of T (X) (not containing 2) or just {2}.

Lemma 10.25 Let X be a Noetherian space, Q and Q′ be two normalized word-
products on T (X) + {2}, and P and P ′ be two closed subsets of T (X). The intersec-
tion Q[P ]∩Q′[P ′] can be written as a finite union

⋃n
i=1Qi[P ∩P ′], where each Qi is

a normalized word-product over T (X) + {2}. Explicitly, the set {Qi | 1 ≤ i ≤ n} is
obtained as MeetE(Q,Q′), where, for all components F of Q and F ′ of Q′, E(F, F ′)
is a finite set of irreducible closed subsets whose union is:

• F ∩ F ′ if F, F ′ 6= {2};

• {2} if F = F ′ = {2};

• P ∩ F ′ if F = {2} and F ′ 6= {2};

• F ∩ P ′ if F 6= {2} and F ′ = {2}.

Moreover, for every i, suppQi is included in (suppQ ∩ suppQ′) ∪ (suppQ ∩ P ′) ∪
(P ∩ suppQ′) ∪ {2}.

Proof. Since X is Noetherian, T (X) is, too. By Lemma 6.13, Q[P ]∩Q′[P ′] is equal
to the union of the finitely many elements of Meet∩(Q[P ], Q′[P ′]).

For every set F that is either closed in T (X) or equal to {2}, and every closed
subset S of T (X), we write F [S] for F if F 6= {2}, for S otherwise. We observe that
for all components F of Q and F ′ of Q′, F [P ] ∩ F ′[P ′] is the union of the elements
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S ::= 0 | P | S + S P ::= C?(~P ) | C∗.S
~P ::= e1e2 · · · en e ::= P ? | S∗

C ::= 0 | A | C + C A ::= C(Q)

Q ::= 2∗ | ~P12
? ~P22

? · · ·2? ~Pm

Figure 5: STREs, tree products (C ∈ S(X), n ≥ 0, m ≥ 1)

C[P ∩ P ′], where C ranges over the elements of E(F, F ′): indeed both are equal to
F ∩ F ′ in the first case defining E , to P ∩ P ′ in the second case, to P ∩ F ′ in the
third case and to F ∩P ′ in the fourth case. It follows, by induction on the definition of
Meet, that Meet∩(Q[P ], Q′[P ′]) is equal to (the union of the finitely many elements
of) MeetE(Q,Q′)[P ∩ P ′]. It is also easy to check that MeetE(Q,Q′) consists of
normalized word-products only, because E only returns (sets of irreducible) closed
subsets of T (X), or {2}.

For the final part of the Lemma, suppQi consists of unions of closed sets as re-
turned by E(F, F ′) on components F of Q and F ′ of Q′, as inspection of the MeetE

procedure reveals. If F, F ′ 6= {2}, then E(F, F ′) = F ∩ F ′ is included in suppQ ∩
suppQ′. If F = F ′ = {2}, then E(F, F ′) = {2}. If F = {2} and F ′ 6= {2}, then
E(F, F ′) = P ∩ F ′ is included in P ∩ suppQ′. Finally, if F 6= {2} and F ′ = {2},
then E(F, F ′) = F ∩ P ′ is included in suppQ ∩ P ′. 2

Lemma 10.26 Let X be a Noetherian space, S and S′ be closed subsets of T (X). Let
also C (resp., C′) be a closed subset of X × (T (X) + {2})∗ of the form

⋃m
i=1 Ci×Qi

(resp.,
⋃n
j=1 C

′
j × Q′j), where each Ci and each C ′j is irreducible closed in X and

each Qi and each Q′j is a normalized word-product over T (X) + {2}. For all i, j,
write Ci ∩ Cj as

⋃pij
k=1 C

′′
ijk where each C ′′ijk is irreducible closed in X , and let Q′′ij`,

1 ≤ ` ≤ qij enumerate the elements of MeetE(Qi, Q
′
j), where the oracle E is defined

in Lemma 10.25.
Then the intersection of the tree iterators P = C∗.S and P ′ = C′

∗
.S′ is the tree

iterator C′′∗.S′′, where C′′ =
⋃
i,j,k,` C

′′
ijk × Q′′ij` and where S′′ is the union of P ∩

(argsC′ ∪ S′) and of (argsC ∪ S) ∩ P ′.

10.5 STREs, Tree-Products
AssumeX Noetherian. We now claim that the closed subsets of T (X) are exactly those
denoted by simple tree regular expressions (STREs), and those that are irreducible are
exactly those denoted by tree-products, which we now define.

The STREs S and the tree-products P are defined in Figure 5, with additional
constraints that we describe in Requirement 10.28 below. We understand those up to
associativity and commutativity for +, and the fact that 0 is neutral for +. Hence, for
example, every STRE S can be written as a sum of finitely many tree products P1, . . . ,
Pn, and those are unique up to permutation; in particular S = 0 if and only if n = 0.
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Those expressions have the obvious semantics, once we understand 0 as the empty
set, + as union, and in productions such as Q, 2 as the set {2}. The semantics of
A = C(Q) is the product of the semantics of C and of Q. We have:

Lemma 10.27 The languages of S, P are closed subsets of T (X), the languages of ~P
are closed subsets of T (X)∗, the languages of C,A are closed subsets ofX×(T (X)+
{2})∗, the languages of Q are closed subsets of (T (X) + {2})∗.

Proof. By induction on syntax. If P = C?(~P ), then P is closed by Lemma 10.4. If
P = C∗.S, then P is closed by Lemma 10.9, which applies since argsC is closed, due
to Lemma 10.8. The case of S follows from the fact that finite unions of closed sets are
closed. The case of ~P follows from Corollary 6.6, and similarly for Q, noticing that
{2} is closed in T (X) + {2}. The case of A is because products of closed sets are
closed, and the case of C follows, again, from the fact that finite unions of closed sets
are closed. 2

Requirement 10.28 We say that A = C(Q) is syntactically 2-linear if and only if Q
is of the form ~P12

? ~P22
? · · ·2? ~Pm with m ≤ 2, and is syntactically 2-generated if

and only if it is of this form with m ≥ 2, or Q = 2∗.
C =

∑m
i=1 Ci(Qi) is syntactically 2-linear (resp., generated) if and only if every

Ci(Qi) is syntactically 2-linear (resp., generated).
We require every subexpression C∗.S to be such that C is syntactically 2-generated,

C 6= 0, and one of the following conditions hold:

1) C is not syntactically 2-linear, and S 6= 0, or

2) C is syntactically 2-linear and S is a tree-product P ;

3) or S = 0.

Lemma 10.29 The language of every tree-product is an irreducible closed subset of
T (X).

Proof. We first show that the language of every tree-product P is non-empty. If P
is of the form C?(~P ), then its language contains f(), for any f in C. If P is of the
form C∗.S, where C = C1(Q1) + · · · + Cn(Qn), then since C 6= 0, n is non-zero.
(Remember that we reason up to the fact that + is associative and commutative, and 0
is neutral for +.) In that case, pick f from C1, and we note that f() is in the language
of C∗.S.

It follows that: (∗) for every STRE S such that S 6= 0, the language of S is non-
empty.

We now prove the claim by induction on expressions. We need to show both that
the language of every tree-product is irreducible closed, and that every expression of
the form Q is an irreducible closed subset of (T (X) + {2})∗. The latter follows from
Lemma 6.7 (every word-product is irreducible closed). The fact that every expression
of the form C∗.S is irreducible closed follows from Lemma 10.11, once we observe
that every non-syntactically 2-linear context C has a non-2-linear language, and using
(∗) in case 1; and for the remaining cases, that every syntactically 2-linear context C
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has a 2-linear language, and similarly for 2-generatedness. Every expression of the
form C?(~P ) is irreducible closed by Lemma 10.4. 2

We shall see below that the converse holds.
An example of tree-products is given in the following result, which also serves to

state how T (X) embeds into its completion T̂ (X) = S(T (X)).

Lemma 10.30 (Embedding) Let X be a topological space. The closure ηST (X)(t) of
the term t in T (X) is defined by structural induction on t by: if t = f(t1, t2, · · · , tm),
then ηST (X)(t) = (ηSXf)?(ηST (X)(t1)?ηST (X)(t2)? · · · ηST (X)(tn)?).

Proof. By Lemma 10.4, (ηSXf)?(ηST (X)(t1)?ηST (X)(t2)? · · · ηST (X)(tn)?) is closed,
since ηST (X)(t1) , ηST (X)(t2), . . . , ηST (X)(tn) are closed by induction hypothesis. It also
contains t, so it contains the closure of t. Conversely, it is easy to see that whenever s ∈
(ηSX(f))?(ηST (X)(t1)?ηST (X)(t2)? · · · ηST (X)(tn)?), then s �≤ t, so s is in ηST (X)(t).

2

We can define a syntactic inclusion test ≤ as follows, following Lemma 10.14,
Lemma 10.19, Lemma 10.20, and Lemma 10.22. We write semantic inclusion as ⊆.
The following notion of syntactic support is meant to mimic the semantical notion
of support of Definition 10.3 in the syntax, while the notion of syntactic argument
support mimics the argument support of Definition 10.6; accordingly, we use the same
notations supp ~P and argsC.

Definition 10.31 Let the syntactic support of ~P = e1e2 · · · en be supp ~P =
∑n
i=1 supp ei,

where suppP ? = P , suppS∗ = S.
Let supp′Q be 0 if Q = 2∗,

∑m
i=1 supp ~Pi if Q = ~P12

? ~P22
? · · ·2? ~Pm. (This de-

notes the intersection of the support of Q with T (X).) The syntactic argument support
argsC of the context C =

∑n
i=1 Ci(Qi) is

∑n
i=1 supp′Qi.

We define S ≤ S′, P ≤ P ′, etc., by induction on the sum of the sizes of the two
expressions involved, by:

1) for S =
∑m
i=1 Pi and S′ =

∑n
j=1 P

′
j , S ≤ S′ if and only if for every i, there is a j

such that Pi ≤ P ′j;

2) for P = C?(~P ) and P ′ = C ′
?
(~P ′), P ≤ P ′ if and only if C ⊆ C ′ and ~P ≤ ~P ′, or

P ≤ supp ~P ′;

3) for P = C?(~P ) and P ′ = C∗.S with C =
∑m
i=1 Ci(Qi), P ≤ P ′ if and only if

supp ~P ≤ P ′ and C ⊆ Ci, ~P ≤ Qi for some i, 1 ≤ i ≤ m, or P ≤ argsC + S;

4) for P = C∗.S and P ′ = C?(~P ), P ≤ P ′ if and only if P ≤ supp ~P ;

5) for P = C∗.S and P ′ = C′
∗
.S′ with C =

∑m
i=1 Ci(Qi) and C′ =

∑n
j=1 C

′
j(Q

′
j),

P ≤ P ′ if and only if P ≤ argsC′ + S′, or argsC + S ≤ P ′ and for every i there
is a j such that Ci ⊆ C ′j and Qi ≤ Qj;
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6) Q ≤ Q′ if and only if Q is less than Q′ as a word-product (see Lemma 6.10),
comparing letters by ≤, recursively, and considering 2 as a letter above all others.
(This case subsumes tests of the form ~P ≤ Q as well, for instance, since any ~P is a
Q.)

One easily sees that S ≤ S′ if and only if (the language of) S is included in S′,
P ≤ P ′ if and only if P is included in P ′, etc., by induction. One should pay attention
to the fact that Q ≤ Q′ is equivalent to the inclusion of Q[T 2(X)] into Q′[T 2(X)],
as needed in cases 3 and 5 above. This is why the comparison of expressions of the
form Q assumes that 2 is a letter outside T (X), and above all elements of T (X) (see
Item 6): indeed, 2 denotes the whole set T 2(X) there.

In case Item 6 of the definition is not clear enough, here is a complete explanation.
This will also help understand how the conditions ~P ≤ Qi of Item 3 and Qi ≤ Qj of
Item 5 are checked. We let ε ≤ Q′ for every Q′, Q ≤ ε iff Q = ε, and, if Q = e1Q1

and Q′ = e′1Q
′
1, then Q ≤ Q′ if and only if:

1) e1 6v e′1 and Q ≤ Q′1,

2) or e1 is of the form E?, e′1 is of the form E′
?, e1 v e′1 and Q1 ≤ Q′1,

3) or e′1 is of the form E′
∗, e1 v e′1 and Q1 ≤ Q′,

4) or e1 = ∅∗ and Q1 ≤ Q′.

Additionally, v is defined by: P ? v P ′
? iff P ≤ P ′, P ? v 2? and 2? v 2? are

always true, 2? v P ′
? is always false; S∗ v S′

∗ iff S ≤ S′, S∗ v 2∗ and 2∗ v 2∗

are always true, 2∗ v S′∗ is always false; P ? v S∗ iff P ≤ S, P ? v 2∗ and 2? v 2∗

are always true, 2? ⊆ S∗ is always false; S∗ v P ? if and only if S = ∅; similarly
S∗ v 2? if and only if S = ∅; and 2∗ v P ?, S∗ v 2? (with S non-empty), 2∗ v 2?

are always false. One should be conscious that, for instance, P ? v 2? is always true
(and the converse inequality is false unless P = 2), even when P contains further

subexpressions with occurrences of 2, e.g., (({f} × {2}∗)∗.S)
?
v 2?.

Lemma 10.32 Let X be a Noetherian space. Then the language of P is included in
that of P ′ if and only if P ≤ P ′. Similarly for S ≤ S′. 2

Corollary 10.33 Let X be a Noetherian space. Inclusion of word-products, resp. of
STREs, on X , can be checked in polynomial time modulo an oracle testing inclusion of
closed subsets of X .

Proof. Here memoization [Michie, 1968] is easier to implement and analyze than dy-
namic programming. We write a recursive program incl that takes two word-products
P and P ′ and returns true if P ≤ P ′, false otherwise. This program maintains a table
A, initially empty, that maps pairs of word-products to Booleans. The program incl,
applied to P and P ′, first checks whether (P, P ′) is in A, and if so returns immediately
the Boolean associated with it in A; otherwise, it tests whether P ≤ P ′, depending
on the shape of P and P ′, using the corresponding case (1 through 6), as given in
Definition 10.31; once this is done, it adds (P, P ′) to A, associated with the Boolean
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value true if P was found to be below P ′, false otherwise. Each case, 1 through 6,
involves further inclusion tests between word-products, which are evaluated by calling
incl recursively.

Instead of describing all cases, we will focus on case 3 below. It will be prac-
tical to consider another program Incl, defined in mutual recursion with incl by:
Incl(S, S′) is true, where S = P1 + · · · + Pm and S′ = P ′1 + · · · + P ′n, if and only
if for every i ∈ {1, · · · ,m}, there is a j ∈ {1, · · · , n} such that incl(Pi, P

′
j) returns

true; Incl returns true on every pair whose second component is 2, and false on every
pair (2, S′) where S′ is an STRE.

In case 3, then P is of the form C?(~P ) and P ′ is of the form C∗.S with C =∑m
i=1 Ci(Qi). Following the definition of case 3, incl does the following.

1) First, it tests whether supp ~P ≤ P ′. We refer to Definition 10.3 for the definition
of supp ~P . Accordingly, writing ~P as e1e2 · · · en, testing whether supp ~P ≤ P ′

means testing whether, for every i ∈ {1, · · · , n}:

• P ′′ ≤ P ′, in case ei is of the form P ′′
?;

• or P ′′j ≤ P ′ for every j ∈ {1, · · · ,m}, in case ei is of the form S∗, where
S = P ′′1 + · · ·+ P ′′m.

All the tests P ′′ ≤ P ′ (in the first case), and P ′′j ≤ P ′ (in the second case) are done
by calling incl recursively.

2) If item 1 succeeded, incl then tests whether C ⊆ Ci and ~P ≤ Qi for some i,
1 ≤ i ≤ m. This is done by enumerating the indices i ∈ {1, · · · ,m}, testing
whether C ⊆ Ci for each one (using the given oracle that tests inclusion of closed
subsets ofX) and whether ~P ≤ Qi. For the latter, we use Item 6 of Definition 10.3:
we need to compare ~P and Qi as word-products; this allows us to use the dynamic
programming procedure given after Lemma 6.9, fed with Incl as an oracle. (You
may wish to return to the explanation before Lemma 10.32 in order to better under-
stand where recursive calls to Incl are involved; namely in the ≤ tests involved in
the definition of v.)

3) If item 1 failed, incl instead tests whether P ≤ argsC + S. In other words, using
the fact that P is irreducible, it tests whether P ≤ S (using Incl), or whether
P ≤ argsC. For the latter, we use Lemma 10.8, and therefore we test whether
P ≤ suppQi ∩ T (X) for some i, 1 ≤ i ≤ m. Writing Qi as e1e2 · · · en, this
means testing whether P ≤ supp ej for some j, 1 ≤ j ≤ n, such that ej 6= 2?,2∗.
Finally, if ej is of the form P ′

?, we test whether P ≤ supp ej = P ′ by calling incl
recursively on (P, P ′), and if it is of the form S′

∗, we test whether P ≤ supp ej =
S′ by calling Incl on (P, S′).

All other cases are dealt with similarly. Up to a multiplicative constant, the time com-
plexity a memoized procedure such as incl on input (P, P ′) is bounded by the product
of two values: the first one is the number of pairs on which incl can be called recur-
sively, and this is bounded by the product of the sizes of P and P ′; the second one
is the time complexity of each case (such as case 3, explained above), including table
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lookups and table updates on A, but counting the complexity of each recursive call to
incl (including those obtained through an intermediate call to Incl) as one. Analyz-
ing each case shows that the second value is also polynomial in the sizes of P and P ′,
whence the conclusion. 2

Lemma 10.34 Let X be a Noetherian space. Given two tree-products P , P ′, one can
express their intersection as a finite sum of tree-products. If (S, J_K ,�, τ,∧) is an S-
representation of X , then this intersection can be implemented as a map ∧′ modulo an
oracle that implements ∧.

Proof. Let |E| denote the number of subexpressions of E that are tree-products, for
every kind of expression in Figure 5. Explicitly: |0| = 0, |S1 + S2| = |S1| + |S2|,
|C?(~P )| = 1 + |~P |, |C∗.S| = 1 + |C| + |S|, |e1e2 · · · en| =

∑n
i=1 |ei|, |P ?| = |P |,

|S∗| = |S|, |C1+C2| = |C1|+|C2|, |C(Q)| = |Q|, |2∗| = 0, |~P12
? ~P22

? · · ·2? ~Pm| =∑m
j=1 |~Pj |.
The fact that P∩P ′ can be expressed as a finite sum of tree-products is by induction

on |P | + |P ′|. When both are tree steps, say P = C?(~P ) and P ′ = C ′
?
(~P ′), we

use Lemma 10.23, using the subprocedure MeetE of Lemma 6.13 to compute the
intersection of the word-products ~P and ~P ′ as a finite union

⋃n
j=1

~P ′′j , where E merely
computes the intersection of a component of ~P and of a component of ~P ′, by induction.

When P is a tree step C?(~P ) and P ′ is a tree iterator P ′ = C∗.S (or conversely),
we use Lemma 10.24 instead. Again, we use MeetE in order to compute ~P ∩Qj [P ′],
where E is intersection again. Note that the components of Qj [P ′] are either compo-
nents of Qj , which are finite sums of tree-products that are strictly smaller than P ′, or
equal to P ′ (at the positions where Qj holds a 2? or a 2∗). In any case, E is only ever
applied to pairs of word-products (P0, P

′
0) such that |P0| < |P | and |P ′0| ≤ |P ′|, so the

induction hypothesis applies and E(P0, P
′
0) therefore computes P0∩P ′0, as desired. The

fact that the induction hypothesis really applies is probably clearer with an example.
Imagine that ~P = P ?

1S
∗
1 , and Qj = P ?

22
?S∗22

∗P ?
3 . Following Lemma 6.13, we com-

pute MeetE(~P ,Qj [P
′]) as follows. We use the first clause that defines it, and we are

led (among other things) to compute E(P1, P2)—since |P1| < |P | and |P2| < |P ′|,
the induction hypothesis applies—and MeetE(S∗1 , (2

?S∗22
∗P ?

3 )[P ′]). For the lat-
ter, we use the third clause, and we are led to compute E(S1, P

′)—here |S1| < |P |
and the size of the second argument is equal to |P ′|, so the induction hypothesis ap-
plies again—and then MeetE(S∗1 , (S

∗
22
∗P ?

3 )[P ′]) and MeetE(ε, (2?S∗22
∗P ?

3 )[P ′]).
The latter is trivial. For the former, we are led to compute E(S1, S2) (by induction
hypothesis, since |S1| < |P | and |S2| < |P ′|) and then MeetE(S∗1 , (2

∗P ?
3 )[P ′])

and MeetE(ε, (S∗22
∗P ?

3 )[P ′]). The latter is again trivial, so we look at the former.
This requires us to compute E(S1, P

′)—and the induction hypothesis applies again
since |S1| < |P | and the size of the second argument is equal to |P ′|—and then
MeetE(S∗1 , (P

?
3 )[P ′]) and MeetE(ε, (2∗P ?

3 )[P ′]). The last call to E that we need
has arguments S1 and P3, with |S1| < |P | and |P3| < |P ′|.

Finally, when P is a tree iterator C∗.S and P ′ is a tree iterator C′
∗
.S′, we use

Lemma 10.26. (Note that the syntax of Figure 5 forces all word-products Q to be
normalized, so that Lemma 10.26 indeed applies.) This involves calling MeetE again,
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where E is now the oracle of Lemma 10.25. The latter is only ever applied to pairs of
word-products (P0, P

′
0) such that |P0| < |P | and |P ′0| ≤ |P ′|, or such that |P0| ≤ |P |

and |P ′0| < |P ′|, so that the induction hypothesis applies again.
However, the result C′′∗.S′′ given by Lemma 10.26 may fail to be satisfy Require-

ment 10.28. We repair this by using a rewriting process akin to the relation →1 of
Figure 4. (This is very similar, except that (R11) does not have an equivalent here,
since there is no such thing as a function of arity 0.) First, we split C′′ into a sum
C′′0 + C′′1 , where 2 does not occur at all in C′′0 (hence C′′0 is of the form

∑
a C
′′
a (~Pa))

and 2 occurs in each summand of C′′1 (so C′′1 is syntactically 2-generated). We can

then rewrite C′′
∗
.S′′ as C′′1

∗
.(S′′ +

∑
a C
′′
a

?
(~Pa)) (mimicking rule (R6)). Modulo this

rewrite, we can assume that we have expressed P ∩ P ′ as C′′
∗
.S′′, where C′′ is syn-

tactically 2-generated. If C′′ = 0, then we simplify that to S′′. Otherwise, if C′′ is
syntactically 2-linear, then C′′

∗
._ distributes over + (as with rule (R12)): writing S′′

as
∑
b P
′′
b , we return

∑
b C
′′∗.P ′′b . In all other cases, we return C′′

∗
.S′′. Whatever the

situation, the expression we return satisfies requirement 10.28. 2

Proposition 10.35 Let X be a Noetherian space. The closed subsets of T (X) are
exactly the languages of STREs, and the irreducible closed subsets of T (X) are exactly
the languages of tree-products.

Proof. One direction follows from Lemma 10.29. Conversely, we show that every
closed subset of terms is expressible as some STRE.

For every simple tree expression π, the complement of π can be expressed as an
STRE, by induction on (the syntax of) π and following Lemma 10.13. We deal with
the second and sixth items of that lemma; the other cases are similar. In the sec-
ond case, the complement of π is X?({π∗1). Since X is Noetherian, we can express
X itself as a finite union of irreducible closed subsets Ci, 1 ≤ i ≤ m. By in-
duction hypothesis, {π1 is expressible as some STRE S. Then π is expressible as∑m
i=1 C

?
i (S∗). In the sixth case, the complement of π is equal to ((F ×{2}∗)∪ (X ×

({π∗1{2}?{π∗2{2}? · · · {2}?{π∗n)))∗.∅, where F is closed in X and n ≥ 2. Write F
as a finite union of irreducible closed subsets C ′k of X , 1 ≤ k ≤ p, and each {πj ,
1 ≤ j ≤ n, as some STRE Sj . Recall that X =

⋃m
i=1 Ci. Then π is expressible as

the expression C′′
∗
.S′′, where C′′ =

∑p
k=1 C

′
k(2∗) +

∑n
i=1 Ci(S

∗
12

?S∗22
? · · ·2?S∗n)

and S′′ = 0. Observe that this satisfies Requirement 10.28.
SinceX is Noetherian, and simple tree expressions form a base of the tree topology

(Proposition 10.1), every open subset of T (X) is a finite union of tree expressions.
Therefore every closed subset is a finite intersection of STREs, hence itself an STRE
by Lemma 10.34.

Finally, given an irreducible closed subset of T (X), expressed as an STRE S =∑n
i=1 Pi, that irreducible closed subset must be the language of some Pi—by irre-

ducibility. 2

We can now conclude.

Theorem 10.36 (S-Representation, Trees) LetX be a Noetherian space,X ′ = T (X),
and (S, J_K ,�, τ,∧) be an S-representation of X . Then (S′, J_K′ ,�′, τ ′,∧′) is an S-
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representation of X ′, where J_K′ is defined in terms of auxiliary maps that we write
J_K◦:

(A) S′ is the collection of all tree-products over the signature S;

(B) �′ is implemented by using the procedure outlined in Definition 10.31, where the
inclusions between closed subsets of X are decided using � (and Lemma 4.2);

(C) τ ′ is (
∑n
i=1 Ci(2

∗))∗.∅, where τ = {C1, · · · , Cn};

(D) ∧′ is defined by the procedure of Lemma 10.34.

One should not be surprised of the shape of τ ′, which is non-empty despite the mention
of the empty set: see Remark 10.7.

11 Conclusion
We have developed the first comprehensive theory of (downwards-)closed subsets, as
required for a general understanding of forward analysis techniques of WSTS. This
generalizes previous domain proposals on tuples of natural numbers, on words, on
multisets, allowing for nested datatypes, and infinite alphabets.

We have also done this on new domains such as trees, words under prefix, infinite
powersets, and Noetherian rings or Qk.

Each of these domains is effective, in the sense that each has finite presentations
with a decidable ordering.

We have also shown how the notion of sobrification S(X) was in a sense inevitable
(Section 3). In the special case of wqos, the latter coincides with the ideal completion
of X , and it is important to stress that we have, in particular, characterized the shapes
of ideals in several wqos of interest in verification (Nk, X∗, X~, T (X)). Ideals in
wqos are growingly appearing to be a central concept in verification.

The natural generalization from wqos to Noetherian spaces was also naturally in
order, not only because it allows us to deal with extra constructions (words under prefix,
rings, infinite powersets), but also because the proofs, as well as the computations
(witness Lemma 4.2) intimately rely on irreducibility, a concept that occurs naturally
from the study of sobrification.
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A Auxiliary Proofs on Irreducible Closed Sets
The results of this section are well-known. We include their proofs for convenience.

Lemma A.1 For every continuous map f : Y → Z between topological spaces Y and
Z, for every irreducible closed subset C of Y , cl(f [C]) is irreducible closed in Z.
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Proof. This is a direct consequence of the fact that S is a functor, in particular that
S(f) maps every C ∈ S(Y ) to an element of S(Z), and of the fact that S(f)(C) =
cl(f [C]). Here is a direct argument. Assume that cl(f([C])) is included in the union
of two closed subsets F1 and F2 of Z. Then f [C] ⊆ F1 ∪F2, so C ⊆ f−1(F1 ∪F2) =
f−1(F1) ∪ f−1(F2). Since C is irreducible, C is included in f−1(F1) or in f−1(F2).
Assume without loss of generality that C ⊆ f−1(F1). Then f [C] is included in F1,
and since cl(f [C]) is the smallest closed set containing f [C], and F1 is a closed set
containing f [C], cl(f [C]) is included in F1. 2

Lemma A.2 Let (Xi)i∈I be any family of topological spaces. The irreducible closed
subsets of

∏
i∈I Xi are exactly the products

∏
i∈I Ci where each Ci is irreducible

closed in Xi.

Proof. This is Proposition 8.4.7 of [Goubault-Larrecq, 2013], and leads to Hoffmann’s
theorem [Hoffmann, 1979a, Theorem 1.4] that the sobrification functor preserves prod-
ucts. We give a direct proof. Let X =

∏
i∈I Xi. This has a base of open sets of the

form
⋂
i∈J π

−1
i (Ui), where J is a finite subset of I and each Ui is open in Xi.

We first note that a closed set C is irreducible if and only if it is non-empty, and
whenever it intersects two opens U1 and U2, then it also intersects their intersection
U1 ∩ U2. (Just take the contrapositive of the definition of irreducibility, with the com-
plement of U1 for F1 and the complement of U2 for F2.)

If eachCi is closed inXi, then
∏
i∈I Ci is closed, being the intersection

⋂
i∈I π

−1
i (Ci).

If additionally each Ci is irreducible, we claim that C =
∏
i∈I Ci is also irreducible.

It is certainly non-empty.
Assume that C intersects two open subsets W and W ′ of X . Write W as a union

of basic open subsets
⋂
j∈Jk π

−1
j (Ujk), k ∈ K, where each Jk is a finite subset of I ,

and each Ujk is open in Xj . Then C intersects
⋂
j∈Jk π

−1
j (Ujk) for some k ∈ K, say

at (xi)i∈I . Similarly, write W ′ as a union of basic open subsets
⋂
j∈J′

k′
π−1
j (Ujk′),

k′ ∈ K ′, where each J ′k′ is a finite subset of I , and each Ujk′ is open in Xj . Then
C intersects

⋂
j∈J′

k′
π−1
j (Ujk′) for some k′ ∈ K ′, say at (x′i)i∈I . Without loss of

generality, we may assume that Jk = J ′k′ : otherwise replace Jk, resp. J ′k′ , by Jk ∪J ′k′ ,
and define the missing sets Ujk, resp. Ujk′ , as Xj . For every j ∈ Jk, Cj intersects Ujk
(at xj) and also Ujk′ (at x′j). Since Cj is irreducible, it therefore also intersects their
intersection Ujk ∩ Ujk′ , say at yj . For every j ∈ I r Jk, define yj as some arbitrary
point from Cj . Then (yj)j∈I is in C, and in

⋂
j∈Jk π

−1
j (Ujk∩Ujk′), hence inW ∩W ′.

Conversely, we claim that every irreducible closed subset C of X must be a prod-
uct
∏
i∈I Ci of irreducible closed subsets Ci of Xi. We define Ci as cl(πi[C]): by

Lemma A.1, Ci is irreducible closed inXi. Clearly, C is included in
∏
i∈I Ci. Assume

for the sake of contradiction that the inclusion were strict: there is a point ~x = (xi)i∈I
in
∏
i∈I Ci and not in C. Then ~x is in the open complement W of C. By definition

of the product topology, W contains a basic open subset
⋂
j∈J π

−1
j (Uj) containing ~x,

where J is a finite subset of I , and each Uj is open in Xj . Since it contains ~x, xj is
in Uj for every j ∈ J . Since it is included in W ,

⋂
j∈J π

−1
j (Uj) is disjoint from C.

Since C is irreducible, if C intersected π−1
j (Uj) for every j ∈ J , it would also inter-

sect
⋂
j∈J π

−1
j (Uj), which is impossible, as we have just seen. Hence C is disjoint
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from π−1
j (Uj) for some j ∈ J . This implies that πj [C] is disjoint from Uj , hence

that Cj = cl(πj [C]) is also disjoint from Uj . (A set intersects an open set if and only
if its closure does.) However, since ~x ∈

∏
i∈I Ci, xj is in Cj , and xj is also in Uj ,

contradiction. 2

B Proofs of Results on Words (Section 6)
Lemma 6.2 (recap). Let X be a topological space. The complement of X∗U1X

∗

U2X
∗ · · ·X∗UnX∗ (n ∈ N, U1, U2, . . . , Un open in X) in X∗ is ∅ when n = 0, and

F ∗1X
?F ∗2X

? · · ·X?F ∗n−1X
?F ∗n otherwise, where F1 = X r U1, . . . , Fn = X r Un.

If X is Noetherian, then this complement can be expressed as a finite union of sets
of the form F ∗1C

?
1F
∗
2C

?
2 · · ·C?

n−1F
∗
n , where C1, C2, . . . , Cn−1 range over irreducible

closed subsets of X .
Proof. When n = 0, this is clear: the complement ofX∗U1X

∗U2X
∗ · · ·X∗UnX∗

is the empty set. So let n ≥ 1.
We first claim that the complement ofX∗U1X

∗U2X
∗ · · ·X∗UnX∗ is F ∗1X

?F ∗2X
?

· · ·X?F ∗n−1X
?F ∗n . We show this by induction on n. If n = 1, then the complement of

X∗U1X
∗ is the set of words that contain no letter from U1, i.e., F ∗1 . If n ≥ 1, let w be

an arbitrary element of the complement ofX∗U1X
∗U2X

∗ · · ·X∗UnX∗. Letw1 be the
longest prefix of w comprised of letters not in U1. Note that w1 is in F ∗1 . If w1 = w,
then certainly w is in F ∗1 ⊆ F ∗1X

?F ∗2X
? · · ·X?F ∗n−1X

?F ∗n . Otherwise, w is of the
form w1xw

′, where x ∈ U1 and w′ is not in X∗U2X
∗ · · ·X∗UnX∗. By induction hy-

pothesisw′ is inF ∗2X
? · · ·X?F ∗n−1X

?F ∗n , hence againw is inF ∗1X
?F ∗2X

? · · ·X?F ∗n−1X
?F ∗n .

Conversely, let w be any word in F ∗1X
?F ∗2X

? · · ·X?F ∗n−1X
?F ∗n . Let w1 be the

longest prefix of w that lies in F ∗1 . Then either w = w1, then w ∈ F ∗1 cannot be
in X∗U1X

∗U2X
∗ · · ·X∗UnX∗, since all the words in the latter set must contain at

least one letter in U1; or w = w1xw
′ for some x 6∈ F1, i.e. x ∈ U1, and w′ ∈

F ∗2X
? · · ·X?F ∗n−1X

?F ∗n . By induction hypothesis,w′ cannot be inX∗U2X
∗ · · ·X∗UnX∗.

By construction, x would be the first occurrence of an element of U1 in w. If w =
w1xw

′ were in X∗U1X
∗U2X

∗ · · ·X∗UnX∗, then, some suffix w′′ of w′ would be in
X∗U2X

∗ · · ·X∗UnX∗. Thenw′′ ≤∗ w′, hencew′ would be inX∗U2X
∗ · · ·X∗UnX∗,

which is open hence upwards-closed: contradiction.
By Lemma 3.6, X , as a closed subset of itself, is a finite union of irreducible

closed subsets. I.e., there is a finite subset E of S(X) such that X =
⋃
C∈E C. Dis-

tributing across the _? operator and concatenation in the expression F ∗1X
?F ∗2X

? · · ·
X?F ∗n−1X

?F ∗n yields that the complement of X∗U1X
∗U2X

∗ · · ·X∗UnX∗ equals:⋃
C1,··· ,Cn−1∈E

F ∗1C
?
1F
∗
2C

?
2 · · ·C?

n−2F
∗
n−1C

?
n−1

from which the desired conclusion follows. 2

Lemma 6.4 (recap). Let X be a topological space. For every closed subset F of X ,
for every closed subset F of X∗, F ?F is closed in X∗.

This is part of Exercise 9.7.29 of [Goubault-Larrecq, 2013], but the argument is
non-trivial. Here is a complete proof. This requires the following construction, which
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we shall also require in the next Lemma. For any open U of X∗, and any open
U of X , define U/U as follows. If U = X∗, then U/U = ∅; otherwise, U is
a union of basic opens of the form X∗Ui1X

∗Ui2X
∗ · · ·X∗Uini

X∗, i ∈ I , where
ni ≥ 1 for every i ∈ I , then we let U/U be the union of all basic opens X∗(Ui1 ∩
U)X∗Ui2X

∗ · · ·X∗Uini
X∗. In all formality, U/U depends on a presentation of U as

a union of basic opens, not on U itself, but this will cause no problem in the sequel.
Note that this definition is made possible by the fact that X∗U1X

∗U2X
∗ · · ·X∗UnX∗

form a base, not just a subbase, of the topology (Lemma 6.1).
Proof. IfF is empty, then F ?F is empty hence closed. Henceforth we assume that

F is non-empty, so that the complement U is different from X∗. Then U/U is open.
Also, X∗UU is open. We claim that the complement of F ?F in X∗ is X∗XU ∪U/U ,
which will show the claim. We first make the following remark. Let L1 and L2 be two
subsets of X∗ that are downwards-closed with respect to ≤∗. For any word w not in
L1L2, we can write w as w1w

′w2, where w1 is the longest prefix of w in L1, w2 is the
longest suffix of w in L2, and w′ is not empty. Indeed, any prefix of a word in L1 is
again in L1, and any suffix of a word in L2 is in L2, since both are downwards-closed
with respect to ≤∗. That remark applies, notably, to L1 = F ? and L2 = F fit, in the
second case because ≤∗ is the specialization quasi-ordering of X∗ and every closed
subset is downwards-closed.

If F = X∗, then the complement of F ?F = X∗ is empty, so the claim is proved.
Otherwise, write U as the union of basic opensX∗Ui1X∗Ui2X∗ · · ·X∗Uini

X∗, i ∈ I ,
ni ≥ 1.

Assume w is in the complement of F ?F , and write w as w1w
′w2, as above.

Since w′ is not empty, it starts with some letter x ∈ X . Then by the maximal-
ity property of w1, w1 is in F ?, but w1x is not. Again, by the maximality prop-
erty of w2, w′w2 is not in F , hence in U . If w1 6= ε, then w1 is a single let-
ter, so w is in XU ⊆ X∗XU . If w1 = ε, then x is not in F (otherwise w1x
would be in F ?), hence is in U . So w′w2 starts with a letter in U ; since w′w2

is in U , w′w2 is in X∗Ui1X∗Ui2X∗ · · ·X∗UiniX
∗ for some i ∈ I . If w′w2 is in

Ui1X
∗Ui2X

∗ · · ·X∗UiniX
∗, then w′w2 is in (U ∩ Ui1)X∗Ui2X

∗ · · ·X∗UiniX
∗, so

w = w1w
′w2 is in X∗(U ∩Ui1)X∗Ui2X

∗ · · ·X∗Uini
X∗ ⊆ U/U ; otherwise, w′w2 is

in UX∗Ui1X∗Ui2X∗ · · ·X∗Uini
X∗, so w = w1w

′w2 is in X∗UX∗Ui1X∗Ui2X∗ · · ·
X∗Uini

X∗ ⊆ X∗UU ⊆ X∗XU .
Conversely, assume w is in X∗XU ∪ U/U . If w ∈ X∗XU , then w contains a sub-

sequence of the form a0a1a2 · · · ani , for some i ∈ I , where a0 is arbitrary, a1 ∈ Ui1,
a2 ∈ Ui2, . . . , ani

∈ Uini
. Note that a1a2 · · · ani

is in Ui1Ui2 · · ·Uini
⊆ X∗Ui1X

∗

Ui2X
∗ · · ·X∗Uini

X∗ ⊆ U . If w were in F ?F , then since F ?F is downwards-closed
with respect to≤∗, a0a1a2 · · · ani

would be in F ?F , hence a1a2 · · · ani
would be inF :

contradiction. (More slowly: from a0a1a2 · · · ani ∈ F ?F we deduce that a0 ∈ F and
a1a2 · · · ani ∈ F , or a0a1a2 · · · ani ∈ F ; but the latter also implies a1a2 · · · ani ∈ F ,
since F is downwards-closed.) So w is in the complement of F ?F . If, on the other
hand, w ∈ U/U , then w contains a subsequence of the form a1a2 · · · ani

, for some
i ∈ I , where a1 ∈ U ∩ Ui1, a2 ∈ Ui2, . . . , ani

∈ Uini
. In particular, a1a2 · · · ani

is
in Ui1Ui2 · · ·Uini ⊆ X∗Ui1X

∗Ui2X
∗ · · ·X∗UiniX

∗ ⊆ U . If w were in F ?F , then
since F ?F is downwards-closed with respect to ≤∗, a1a2 · · · ani would be in F ?F .
However, a1 is in U , so is not in F , and this implies that a1a2 · · · ani

would be in F :
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contradiction. So, again, w is in the complement of F ?F . 2

2

Lemma 6.5 (recap). Let X be a topological space. For every closed subset F of X ,
for every closed subset F of X∗, F ∗F is closed in X∗.

More specifically, in the case where F is non-empty, let U be the open complement
of F in X , U be the open complement of F in X∗. Then the complement of F ∗F is
X∗UU ∪ U/U , and is therefore open.

Proof. Write U is a union of basic opens of the formX∗Ui1X
∗Ui2X

∗ · · ·X∗UiniX
∗,

i ∈ I , as above.
Assume w is in the complement of F ∗F , and write w as w1w

′w2, where w1 is the
longest prefix of w in F ∗, w2 is the longest suffix of w in F , and w′ is not empty. Let
x be the first letter of w′, and note that w1 ∈ F ∗ but w1x is not in F ∗: so x is in U ; and
that w′w2 is in U , so w′w2 is in some basic open set X∗Ui1X∗Ui2X∗ · · ·X∗UiniX

∗,
i ∈ I . Depending on whether the first letter x of w′w2 is in Ui1 or not, w′w2 is in
(U ∩Ui1)X∗Ui2X

∗ · · ·X∗Uini
X∗ or in UX∗Ui1X∗Ui2X∗ · · ·X∗Uini

X∗, so that w
is in X∗UU or in U/U .

Conversely, if w ∈ X∗UU , then w contains a subword a0a1a2 · · · ani
for some

i ∈ I , a0 ∈ U , a1 ∈ Ui1, a2 ∈ Ui2, . . . , ani ∈ Uini . If w were in F ∗F , then
a0a1a2 · · · ani would be, too: it is indeed clear that F ∗F is downwards-closed, since
F ∗ is and F is closed. Since a0 ∈ U , a0 is not in F , so a0a1a2 · · · ani

is in F . Again
by downward closure, a1a2 · · · ani

is in F : contradiction. So w is in the complement
of F ∗F . And if w ∈ U/U , then w contains a subword of the form a1a2 · · · ani

, for
some i ∈ I , where a1 ∈ U ∩Ui1, a2 ∈ Ui2, . . . , ani ∈ Uini . In particular, a1a2 · · · ani

is in Ui1Ui2 · · ·Uini ⊆ X∗Ui1X∗Ui2X∗ · · ·X∗UiniX
∗ ⊆ U . If w were in F ∗F , then

so would be this subword, and as a1 ∈ U is not in F , a1a2 · · · ani
would be in F :

contradiction. So w is in the complement of F ∗F . 2

Lemma B.1 The concatenation function cat : X∗ × X∗ → X∗ is continuous. The
function i : X → X∗ that maps the letter x to x as a word, is also continuous.

Proof. This is Exercise 9.7.27 of [Goubault-Larrecq, 2013]. To show that i is con-
tinuous, observe that i−1(X∗U1X

∗U2X
∗ · · ·X∗UnX∗) = U1 if n = 1, X if n = 0,

and ∅ otherwise. As far as cat is concerned, cat−1(X∗U1X
∗U2X

∗ · · ·X∗UnX∗) =⋃n
i=0(X∗U1X

∗U2X
∗ · · ·X∗UiX∗)× (X∗Ui+1X

∗U2X
∗ · · ·X∗UnX∗). 2

Lemma 6.7 (recap). Let X be a topological space. Every word-product is irreducible
closed in X∗.

Proof. By induction on syntax, starting with the fact that the base case ε denotes
a one-element downwards-closed set, hence is trivially irreducible closed. It suffices
to show that sets of the form F ∗ and C? are irreducible closed, where F is closed and
C is irreducible closed, and that if C1 and C2 are irreducible closed and C1C2 is closed,
then C1C2 is irreducible closed.

1. Let us show that F ∗ is irreducible closed in X∗, for any closed subset F of X .
Assume F ∗ ⊆ F1∪F2, where F1 and F2 are closed inX∗. If F ∗ was not contained in
F1 or inF2, then there would be a wordw1 ∈ F ∗rF1 and a wordw2 ∈ F ∗rF2. Then
w1w2 would again be in F ∗, hence either in F1 or in F2. Assume by symmetry that
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w1w2 is in F1. Since w1 ≤∗ w1w2, and closed sets such as F1 are downwards-closed,
we would have w1 ∈ F1: contradiction. So F ∗ is irreducible.

2. We claim that C? is irreducible closed in X∗ whenever C is irreducible closed
in X . It is enough to observe that C? = cl(i[C])—recall that i is continuous by
Lemma B.1—and to use Lemma A.1. The inclusion cl(i[C]) ⊆ C? stems for the fact
that C? is closed, and i[C] ⊆ C?, which is clear. The converse inclusion is obvious.

3. Finally, we show that whenever C1 and C2 are irreducible closed inX∗, and C1C2
is closed, it is irreducible. Indeed, C1 × C2 is irreducible closed by Lemma A.2, and
since cat is continuous by Lemma B.1, cl(cat[C1 × C2]) is irreducible by Lemma A.1.
Then cat[C1 × C2] = C1C2, and since the latter is closed by assumption, it is equal to
cl(cat[C1 × C2]), hence irreducible closed. 2

Lemma 6.9 (recap). Let X be a topological space. Inclusion between word-products
can be checked in polynomial time (precisely in time proportional to the product of the
lengths of the two word-products), modulo an oracle testing inclusion of closed subsets
of X .

Explicitly, we have: ε ⊆ P for any word-product P , P 6⊆ ε unless all the atomic
expressions in P are syntactically equal to ∅∗, and for allC,C ′ ∈ S(X), for all F, F ′ ∈
HV(X), for all word-products P , P ′:

• C?P ⊆ C ′?P ′ if and only if C ⊆ C ′ and P ⊆ P ′, or C 6⊆ C ′ and C?P ⊆ P ′.

• C?P ⊆ F ′
∗
P ′ if and only if C ⊆ F ′ and P ⊆ F ′

∗
P ′, or C 6⊆ F ′ and C?P ⊆

P ′.

• F ∗P ⊆ C ′?P ′ if and only if F is empty and P ⊆ C ′?P ′, or F is non-empty and
F ∗P ⊆ P ′.

• F ∗P ⊆ F ′
∗
P ′ if and only if F ⊆ F ′ and P ⊆ F ′

∗
P ′, or F 6⊆ F ′ and F ∗P ⊆

P ′.

Proof. The cases ε ⊆ P and P 6⊆ ε are obvious.
We first examine when C?P ⊆ C ′

?
P ′ holds. The if direction is easy. Conversely,

assume C?P ⊆ C ′
?
P ′. For every x ∈ C, either x ∈ C ′ or xw is in P ′ for every

w ∈ P : indeed, when w ∈ P , then xw ∈ C?P ⊆ C ′
?
P ′, and if x 6∈ C ′ this

can only happen if xw ∈ P ′. This means that C is contained in C ′ ∪ F , where
F = {x ∈ X | ∀w ∈ P · xw ∈ P ′} =

⋂
w∈P f

−1
w (P ′), and fw is the map x 7→ xw.

Note that fw(x) = cat(i(x), w), hence fw is continuous. Using the fact that P ′ is
closed (Corollary 6.6), F is closed. Since C ⊆ C ′ ∪ F and C is irreducible, we have
proved: (∗) either C ⊆ C ′ or C ⊆ F . We also note that: (∗∗) P ⊆ P ′, in any case:
fixing some element x ∈ C (recall that C is non-empty), for every w ∈ P , xw is in
C?P , hence in C ′?P ′; so w or xw is in P ′; since P ′ is closed and w ≤∗ xw, w must
be in P ′ in any case. Using (∗) and (∗∗), we now have two cases: either C ⊆ C ′ and
P ⊆ P ′, or C 6⊆ C ′, C ⊆ F , and P ⊆ P ′. In the latter case, C ⊆ F entails CP ⊆ P ′
by definition of F , so C?P = P ∪ CP ⊆ P ′.

We now examine when C?P ⊆ F ′
∗
P ′ holds. This is similar. The if direction

is obvious. Conversely, if C?P ⊆ F ′
∗
P ′, then for every x ∈ C, either x ∈ F ′ or

xw ∈ P ′ for every w ∈ P . So C ⊆ F ′ ∪ F , where F is the closed set {x ∈ X |
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∀w ∈ P · xw ∈ P ′}. Since C is irreducible, (∗) either C ⊆ F ′ or C ⊆ F . Also,
(∗∗) P ⊆ F ′

∗
P ′, because P ⊆ C?P ⊆ F ′

∗
P ′. If C 6⊆ F ′, then C ⊆ F , hence

CP ⊆ P ′ by the definition of F ; since P ′ is downwards-closed, P is also included in
P ′, so C?P = P ∪ CP ⊆ P ′.

Let us proceed to the case F ∗P ⊆ C ′
?
P ′. When F is empty, since F ∗P = P , the

equivalence between F ∗P ⊆ C ′?P ′ and P ⊆ C ′?P ′ is obvious. Otherwise, since F is
non-empty, let x be some element in F . For any w ∈ F ∗P , xw is also in F ∗P , so is in
C ′

?
P ′. This implies that xw or w is in P ′. But, as P ′ is downwards-closed, w ∈ P ′ in

any case. So F ∗P ⊆ P ′. The converse is again easy.
Finally, assume F ∗P ⊆ F ′

∗
P ′. If F ⊆ F ′, then P ⊆ F ′

∗
P ′, since P ⊆ F ∗P .

Otherwise, let x be in F but not in F ′. For any word w ∈ F ∗P , xw is again in F ∗P ,
hence in F ′∗P ′. Since x 6∈ F ′, xw must be in P ′, hence also w ∈ P ′. So F ∗P ⊆ P ′.

We obtain the desired algorithm (up to an oracle) by dynamic programming. 2

Lemma 6.12 (recap). Let X be a topological space. Any finite intersection of word-
products is expressible as a finite union of word-products. Specifically, the intersection
of two word-products is given by: ε ∩ P = ε for every word-product P , and by the
recursive formulae:

• C?P ∩ C ′?P ′ = (C?P ∩ P ′) ∪ (P ∩ C ′?P ′) ∪ (C ∩ C ′)?(P ∩ P ′);

• C?P ∩ F ′∗P ′ = (C ∩ F ′)?(P ∩ F ′∗P ′) ∪ (C?P ∩ P ′);

• F ∗P ∩ F ′∗P ′ = (F ∩ F ′)∗(P ∩ F ′∗P ′) ∪ (F ∩ F ′)∗(F ∗P ∩ P ′).

Proof. Let us deal with the first case. Any word w in C?P ∩ C ′?P ′ is either
in P ∩ P ′, or is in CP and in P ′, or in P and in C ′P ′, or is of the form xw′, with
x ∈ C ∩ C ′ and w′ ∈ P ∩ P ′. So C?P ∩ C ′?P ′ ⊆ (P ∩ P ′) ∪ (C?P ∩ P ′) ∪ (P ∩
C ′

?
P ′) ∪ (C ∩ C ′)?(P ∩ P ′) = (C?P ∩ P ′) ∪ (P ∩ C ′?P ′) ∪ (C ∩ C ′)?(P ∩ P ′).

It is easy to see that conversely, (C?P ∩ P ′) ∪ (P ∩ C ′?P ′) ∪ (C ∩ C ′)?(P ∩ P ′) is
included in C?P ∩ C ′?P ′.

Next, any word w in C?P ∩ F ′∗P ′ is either in P ∩ F ′∗P ′, or is of the form xw′

with x ∈ C, w′ ∈ P , and xw′ ∈ F ′
∗
P ′. In the latter case, either x ∈ C ∩ F ′ and

w′ ∈ P ∩F ′∗P ′, so w ∈ (C ∩F ′)?(P ∩F ′∗P ′); or x ∈ C, x is not in F ′ so w = xw′

is in P ′, hence w is in C?P ∩ P ′. In any case, C?P ∩ F ′∗P ′ ⊆ (P ∩ F ′∗P ′) ∪ (C ∩
F ′)(P ∩F ′∗P ′)∪ (C?P ∩P ′) = (C ∩F ′)?(P ∩F ′∗P ′)∪ (C?P ∩P ′). The converse
inclusion is clear.

Finally, for every word w in F ∗P ∩ F ′∗P ′, write w as w1w2 where w1 is the
longest prefix of w in F ∗, and w2 ∈ P ; also, as w′1w

′
2 where w′1 is the longest prefix

of w in F ′∗, and w′2 ∈ P ′. If w1 is shorter than w′1, then w2 is also in F ′∗P ′, so
w ∈ (F ∩F ′)∗(P ∩F ′∗P ′), otherwise w ∈ (F ∩F ′)∗(F ∗P ∩P ′). So F ∗P ∩F ′∗P ′ ⊆
(F ∩ F ′)∗(P ∩ F ′∗P ′) ∪ (F ∩ F ′)∗(F ∗P ∩ P ′). The converse inclusion is obvious.

These formulae define the intersection of two word-products, by induction on the
sum of the number of atomic formulae in each of them. So the intersection of two
word-products is a finite union of word-products. The empty intersection, the space
X∗ itself, is clearly a word-product. By induction on the number of word-products,
any finite intersection of word-products can then be rewritten as a finite union of word-
products. 2
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Proposition B.2 Let X be a Noetherian space, X ′ = X∗, and (S, J_K ,�, τ,∧) be an
S-representation of X . Then (S′, J_K′ ,�′, τ ′,∧′) is an S-representation of X ′, where:

• S′ is the collection of all word-product notations, i.e., of all expressions of the
form e1e2 · · · en where each ei is either of the form u∗ where u is a finite subset
of S, or of the form a? where a ∈ S. We write ε for the empty word-product
notation.

• Je1e2 · · · enK′ = Je1K
′ Je2K

′ · · · JenK′ = {x1x2 · · ·xn | x1 ∈ Je1K
′
, x2 ∈ Je2K

′
,

. . . , xn ∈ JenK
′}, where Ju∗K′ is the set of all finite words whose letters are in⋃

a∈u JaK, and
q
a?

y′
is the set of words containing at most one letter, and this

letter is in JaK;

• �′ is the relation star[�], defined recursively from � by: ε�′ w for every word-
product notation w, w �′ ε iff w = ε, and for all a, a′ ∈ S, for all non-empty
finite subsets u, u′ of S:

– a?w �′ a′
?
w′ iff a� a′ and w �′ w′, or a 6 �a′ and a?w �′ w′;

– a?w �′ u′
∗
w′ iff a� a′ for some a′ ∈ u′ and w �′ u′

∗
w′, or a� a′ for no

a′ ∈ u′ and a?w �′ w′;

– u∗w�′a′
?
w′ iff u is empty andw�′a′?w′, or u is non-empty and u∗w�′w′;

– u∗w�′ u′
∗
w′ iff either for every a ∈ u, there is an a′ ∈ u′ such that a� a′

and w �′ u′
∗
w′, or there is an a ∈ u such that a � a′ for no a′ ∈ u′, and

u∗w �′ w′.

• τ ′ is {τ∗}.

• ∧′ is the map meet[∧], parametrized by �, and defined recursively by: ε ∧′ w′ =
{ε}, w ∧′ ε = {ε}, and for all a, a′ ∈ S, for all non-empty finite subsets u, u′ of
S:

– a?w ∧′ a′?w′ = {a′′?w′′ | a′′ ∈ a ∧ a′, w′′ ∈ w ∧′ w′} ∪ (a?w ∧′
w′) ∪ (w ∧′ a′?w′);

– a?w ∧′ u′∗w′ = {a′′?w′′ | a′ ∈ u′, a′′ ∈ a ∧ a′, w′′ ∈ w ∧′ u′∗w′} ∪
(a?w ∧′ w′) if there is an a′ ∈ u′ such that a ∧ a′ 6= ∅, a?w ∧′ u′∗w′ =

(w ∧′ u′∗w′) ∪ (a?w ∧′ w′) otherwise; and similarly for u∗w ∧′ a′?w′;

– u∗w ∧′ u′∗w′ =

{(⋃
a∈u
a′∈u′

a ∧ a′
)∗

w′′ | w′′ ∈ (u∗w ∧′ w′) ∪ (w ∧′ u′∗w′)
}

.

Proof. J_K′ is surjective: the irreducible closed subsets of X ′ are the word-products
by Proposition 6.14, i.e., of the form JwK for some word-product notation w ∈ X ′.

The formulae defining star[�] are obtained from Lemma 6.9. The formula defining
τ ′ is justified by the fact that

⋃
w∈τ ′ JwK′ = Jτ∗K′ is the set of all words whose letters

are all in
⋃
a∈τ JaK = X , i.e., this is the whole set X∗. The formulae defining ∧′ are

obtained from Lemma 6.13. 2
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C Proofs of Results on Multisets (Section 7)
Proposition 7.4 (recap). Let X be a topological space. Then the m-SREs are closed
in X~, and the m-products are irreducible closed.

If X is Noetherian, then every irreducible closed subset of X~ is an m-product,
and every closed subset of X~ is an m-SRE.

Proof. Consider any m-product P = F | C1, C2, · · · , Cn. We observe that
Ψ−1(P ) is the union over all permutations π of {1, 2, · · · , n} of the word-products
F ∗C?

π(1)F
∗C?

π(2)F
∗ · · ·F ∗C?

π(n)F
∗. This means that the words whose multiset of

letters can be split as at most one letter from each of C1, C2, . . . , Cn, plus remaining
letters from F , are just the words that are comprised of letters from F , except for zero
or one letter from Ci, i ∈ {1, 2, · · · , n}, sprinkled here and there in some order. So
Ψ−1(P ) is closed in X∗. Because Ψ is quotient, P is closed in X~.

It also follows that any m-SRE is closed in X~.
Next we show that the m-products F | C1, C2, · · · , Cn are indeed irreducible. By

Lemma 6.7, F ∗C?
1C

?
2 · · ·C?

n is irreducible closed in X∗. So the closure of its image
by Ψ is irreducible closed by Lemma A.1. However, the image of F ∗C?

1C
?
2 · · ·C?

n by
Ψ is F | C1, C2, · · · , Cn. We have seen that it is closed, hence equal to its closure.
Therefore it is irreducible closed.

Now assume X Noetherian. Let F be any closed subset of X~. Since Ψ is con-
tinuous, Ψ−1(F) is closed in X∗, hence a finite union of word-products, by Proposi-
tion 6.14. Since Ψ is surjective, F is equal to the image Ψ[Ψ−1(F)] of Ψ−1(F) by
Ψ. So F is a finite union of subsets Ψ[Pi], i ∈ I , where each Pi is a word-product.
We calculate Ψ[Pi] as follows. Write Pi as e1e2 · · · en, and since it will not change its
image by Ψ, reorder the atomic expressions ei in e1e2 · · · en so that the starred ones
come first. Doing so allows us to write our word-product as F ∗1 F

∗
2 · · ·F ∗mC?

1C
?
2 · · ·C?

p ,
up to permutation of factors. Its image by Ψ is the set of multisets obtained by picking
at most one element from C1, at most one from C2, . . . , at most one Cp, then arbitrarily
many from F1, arbitrarily many from F2, . . . , arbitrarily many from Fm. It follows that
Ψ[e1e2 · · · en] = (F1 ∪ F2 ∪ · · · ∪ Fm) | C1, C2, · · · , Cp. In particular, Ψ[Pi] is an
m-product. Therefore F is a finite union of m-products, hence an m-SRE.

If F is also irreducible, then this finite union must be the union of a single m-
product, hence is an m-product. 2

Lemma 7.6 (recap). Let X be a topological space. Inclusion between m-products can
be checked in polynomial time, modulo an oracle testing inclusion of closed subsets of
X .

Explicitly, let P = F | C1, C2, · · · , Cm and P ′ = F ′ | C ′1, C ′2, · · · , C ′n be two
m-products. Let I = {i1, i2, · · · , ik} be the subset of those indices i, 1 ≤ i ≤ m, such
that Ci 6⊆ F ′.

Then P ⊆ P ′ if and only if F ⊆ F ′ and there is an injective map r : I →
{1, 2, · · · , n} such that Ci ⊆ C ′r(i) for every i ∈ I—in other words, {|Ci1 , Ci2 , · · · ,
Cik |} ⊆~ {|C ′1, C ′2, · · · , C ′n|}.

Proof. Assume P ⊆ P ′. If F 6⊆ F ′, then pick x ∈ F rF ′: the multiset consisting
of n+ 1 copies of x is in P but not in P ′: contradiction. So F ⊆ F ′.

Let now I = {i1, i2, · · · , ik} be as above. Let D1 = Ci1 , D2 = Ci2 , . . . , Dk =
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Cik . Let alsoE1, E2, . . . , Em−k be an enumeration of thoseCi, 1 ≤ i ≤ n, with i 6∈ I .
Consider the word-product P1 defined as E?

1E
?
2 · · ·E?

m−kF
∗D?

1D
?
2 · · ·D?

k. Note that
P1 ⊆ Ψ−1(P ), so P1 ⊆ Ψ−1(P ′). On the other hand, Ψ−1(P ′) is the union over all
permutations π of {1, 2, · · · , n} of F ′∗C ′π(1)

?
F ′
∗
C ′π(2)

?
F ′
∗ · · ·F ′∗C ′π(n)

?
F ′
∗. Since

P1 is irreducible (Lemma 6.7), there a permutation π of {1, 2, · · · , n} such that P1 ⊆
F ′
∗
C ′π(1)

?
F ′
∗
C ′π(2)

?
F ′
∗ · · ·F ′∗C ′π(n)

?
F ′
∗. Using Lemma 6.9, and the fact that E1,

E2, . . . , Em−k are contained in F ′, and F ⊆ F ′, and recalling the definition of P1, we
obtain that D?

1D
?
2 · · ·D?

k is included in F ′∗C ′π(1)
?
F ′
∗
C ′π(2)

?
F ′
∗ · · ·F ′∗C ′π(n)

?
F ′
∗.

We show that there is an injective map r : I → {π(1), π(2), · · · , π(n)} such that
Ci ⊆ C ′r(i) for every i ∈ I , by induction on k + n. If k = 0, the empty map
fits. Otherwise, since D1 6⊆ F ′, using Lemma 6.9, we must have D?

1D
?
2 · · ·D?

k ⊆
C ′π(1)

?
F ′
∗
C ′π(2)

?
F ′
∗ · · ·F ′∗C ′π(n)

?
F ′
∗. Now we have two cases, again following Lemma 6.9.

In the first case D1 = Ci1 ⊆ C ′π(1) and D?
2 · · ·D?

k ⊆ F ′
∗
C ′π(2)

?
F ′
∗ · · ·F ′∗C ′π(n)

?

F ′
∗, so there is an injective map r′ : {i2, · · · , ik} → {π(2), · · · , π(n)} such that Ci ⊆

C ′r′(i) for every i ∈ {i2, · · · , ik}, by induction hypothesis. Then taking r(i1) = π(1)

and r(i) = r′(i) for every i ∈ {i2, · · · , ik} fits. In the second case, D?
1D

?
2 · · ·D?

k ⊆
F ′
∗
C ′π(2)

?
F ′
∗ · · ·F ′∗C ′π(n)

?
F ′
∗, and we conclude directly by the induction hypothe-

sis.
Conversely, if there is an injective map r : I → {1, 2, · · · , n} such that Ci ⊆ C ′r(i)

for every i ∈ I , it is clear that P ⊆ P ′. 2

Theorem 7.7 (recap). Let X be a Noetherian space, X ′ = X~, and (S, J_K ,�, τ,∧)
be an S-representation of X . Then (S′, J_K′ ,�′, τ ′,∧′) is an S-representation of X ′,
where:

(A) S′ is the collection of all m-product notations, i.e., of all expressions of the form
A | u, where A is a finite subset of S, and u is a multiset of elements of S. When
u = {|b1, · · · , bn|}, we also write A | b1, · · · , bn for A | u.

(B) JA | b1, · · · , bnK′ = (
⋃
a∈A JaK) | Jb1K , · · · , JbnK.

(C) A | u �′ A′ | u′ if and only if A �[ A′ and u1 �~ u′ where u1 is the subset of
those elements a ∈ u such that a� a′ for no a′ ∈ A′.

(D) τ ′ is {τ | ∅∅∅}.

(E) ∧′ is defined as follows. A matching f : {1, · · · ,m} → {1, · · · , n} is any bi-
jection from some subset of {1, · · · ,m} (the domain dom f ) to some subset of
{1, · · · , n} (the codomain cod f ). Then (A | a1, · · · , am) ∧′ (A′ | a′1, · · · , a′n)
is the collection of all m-product notations of the form A′′ | m1f ]m2f ]m3f ,
where:

• A′′ =
⋃

a∈A
a′∈A′

(a ∧ a′);

• f ranges over all matchings from {1, · · · ,m} to {1, · · · , n};
• m1f ranges over all multisets of the form {|ci | i ∈ dom f |} where ci ∈ ai ∧
a′f(i) for every i ∈ dom f ;
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• m2f ranges over all multisets of the form {|ci | 1 ≤ i ≤ m, i 6∈ dom f |},
where ci ∈

⋃
a′∈A′(ai ∧ a′) for each i, 1 ≤ i ≤ m, i 6∈ dom f ;

• m3f ranges over all multisets of the form {|c′j | 1 ≤ j ≤ n, j 6∈ cod f |},
where c′j ∈

⋃
a∈A(a ∧ a′j) for each j, 1 ≤ j ≤ n, j 6∈ cod f .

Proof. First, J_K′ is surjective by Proposition 7.4. The formula for �′ is justified
by Lemma 7.6. The fact that X~ =

⋃
A|u∈τ ′ JA | uK

′ is clear: the union on the right-
hand side is Jτ | ∅∅∅K′, which is by definition the set of multisets whose elements are all
in
⋃
a∈τ JaK = X .

To justify the formula for∧′, finally, compute the intersection of JA | a1, · · · , amK′ =
F | Ja1K , · · · , JamK (whereF =

⋃
a∈A JaK) and of JA′ | a′1, · · · , a′nK

′
= F ′ | Ja′1K , · · · ,

Ja′nK (where F ′ =
⋃
a′∈A′ Ja

′K). Any multiset m in the intersection can be split in
four parts: first, the multiset m0 of those elements that are in F ∩ F ′; then, among
the remaining elements, the multiset m1 of those elements that are both in some JaiK
and in some

q
a′j

y
: reasoning on indices, there must be a matching f : {1, · · · ,m} →

{1, · · · , n} such that m1 is a multiset of elements xi, i ∈ dom f , where xi is in
JaiK ∩

r
a′f(i)

z
; then, the remaining elements are obtained by taking at most one ele-

ment from each JaiK, i 6∈ dom f , provided they are in F ′, and at most one element
from each

q
a′j

y
, j 6∈ cod f , provided they are in F . Let Ef be the set (F ∩ F ′) |

JaiK ∩
r
a′f(i)

z

︸ ︷︷ ︸
i∈dom f

, JaiK ∩ F ′︸ ︷︷ ︸
1≤i≤m
i6∈dom f

, F ∩
q
a′j

y︸ ︷︷ ︸
1≤j≤n
j 6∈cod f

. We have just shown that JA | a1, · · · , amK′ ∩

JA′ | a′1, · · · , a′nK
′ was contained in the union of allEf , when f ranges over the match-

ings from {1, · · · ,m} to {1, · · · , n}. The converse inclusion is obvious.
We then observe that:

• F ∩ F ′ =
⋃

a∈A
a′∈A′

(JaK ∩ Ja′K) =
⋃

a∈A
a′∈A′
c∈a∧a′

JcK =
⋃
c∈A′′ JcK;

• for each i ∈ dom f , JaiK ∩
r
a′f(i)

z
=
⋃
ci∈ai∧a′f(i)

JciK;

• for each i, 1 ≤ i ≤ m, i 6∈ dom f , JaiK ∩ F ′ = JaiK ∩
⋃
a′∈A′ Ja

′K =⋃
a′∈A′(JaiK ∩ Ja′K) =

⋃
a′∈A′

ci∈ai∧a′
JciK;

• and similarly, for each j, 1 ≤ j ≤ n, j 6∈ cod f , F ∩
q
a′j

y
=
⋃

a∈A
c′j∈a∧a

′
j

q
c′j

y
.

Finally, we notice that unions distribute over the | construction, meaning that F | A ∪
B,C2, · · · , Cn is equal to the union of F | A,C2, · · · , Cn and F | B,C2, · · · , Cn.
By distributing all unions across the | construction, we obtain the indicated formula for
∧′. 2
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D Proofs of Results on Words with the Prefix Topology
(Section 8)

Proposition 8.2 (recap). Let X1, X2, . . . , Xn, . . . be countably many topological
spaces. The sets of the form dF1F2 · · ·Fn〉, where each Fi is closed in Xi, form a
subbase of closed sets for .+∞

n=1Xn: these sets are closed, and every closed subset is
an intersection of finite unions of such sets.

Proof. We first observe that the complement of dF1F2 · · ·Fn〉 is the open set
b∅, X1 r F1, X1X2 r F1F2, · · · , X1X2 · · ·Xm r F1F2 · · ·Fm, · · · , X1X2 · · ·Xn r
F1F2 · · ·Fn, X1X2 · · ·XnXn+1, · · · , X1X2 · · ·Xk, · · · 〉 = b∅, U1, U1X2 ∪ X1U2,
· · · ,

⋃m
i=1X1 · · ·Xi−1UiXi+1 · · ·Xm, · · · ,

⋃n
i=1X1 · · ·Xi−1UiXi+1 · · ·Xn, X1X2 · · ·

XnXn+1, · · · , X1X2 · · ·Xk, · · · 〉, where Ui is the complement of Fi, 1 ≤ i ≤ n.
Conversely, we claim that every open in the prefix topology is a union of subsets

of the form mbV1V2 · · ·Vm〉n (0 ≤ m ≤ n, Vi open in Xi for every i), where the
latter denotes the set of all words w of length at least m such that either |w| ≥ n
or the m-letter prefix of w is in V1V2 · · ·Vm. Indeed, consider any wide telescope
U = U0, U1, · · · , Un, · · · , where Uk =

∏k
i=1Xi for all k ≥ n. U certainly contains

mbV1V2 · · ·Vm〉n for any open rectangle V1V2 · · ·Vm contained in Um: for any w ∈
mbV1V2 · · ·Vm〉n, either |w| ≥ n, then w ∈

∏|w|
i=1Xi = U|w|, or m ≤ |w| < n,

in which case w is in V1V2 · · ·VmXm+1 · · ·X|w|, hence in UmXm+1 · · ·X|w|, and
therefore in U|w| by the definition of telescopes. We claim that U is equal to the union
of all mbV1V2 · · ·Vm〉n, where 0 ≤ m ≤ n, and V1V2 · · ·Vm ranges over the open
rectangles contained in Um. Indeed, given any word w ∈ bU〉, either |w| ≥ n and we
can take m = n, V1 = X1, . . . , Vm = Xm; or |w| = m < n, then w is in some
open rectangle V1V2 · · ·Vm contained in Um, by definition of the product topology on∏m
i=1 Ui, whence w ∈ mbV1V2 · · ·Vm〉n.

Finally, we observe that the complement of mbV1V2 · · ·Vm〉n is the set of words w
such that either |w| < m, or m ≤ |w| < n and for some i, 1 ≤ i ≤ m, the ith letter of
w is not in Vi. When m = 0, this is empty. When m = n, the condition m ≤ |w| < n
is always false, so the complement of mbV1V2 · · ·Vm〉n is equal to dXm−1〉. Finally,
when m 6= 0 and m < n, write Fi for the complement of Vi, then the complement of
mbV1V2 · · ·Vm〉n is equal to dXm−1〉 ∪

⋃m
i=1dXi−1FiX

n−i−1〉 if m ≥ 1.
So the complement of any open of the prefix topology is an intersection of finite

unions of the claimed subbasic closed sets, and we conclude. 2

We need the following, which also appears in [Goubault-Larrecq, 2013, Exercise 9.7.36].

Lemma D.1 Let X1, X2, . . . , Xn, . . . be countably many topological spaces. The
map in : X1 × · · · × Xn → .+∞

n=1Xn that sends each n-tuple (a1, a2, · · · , an) to
the word a1a2 · · · an, and the map cons : X1 × .+∞

n=2Xn → .+∞
n=1Xn that sends

a1, a2a3 · · · an to a1a2a3 · · · an are both continuous.

Proof. To show that in is continuous, we note that the inverse image of the open
subset bU〉, where U is any telescope U0, U1, · · · , Un, · · · , is the open subset Un. To
show that cons is continuous, it is easier to show that the inverse image of a subbasic
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closed set dF1F2 · · ·Fn〉 (see Proposition 8.2) is closed. Indeed, this inverse image is
empty if n = 0, and equal to F1 × dF2 · · ·Fn〉 otherwise. 2

Lemma 8.3 (recap). Let X1, X2, . . . , Xn, . . . , be countably many topological spaces.
The subsets of the form dC1C2 · · ·Cn〉, where Ci is irreducible closed in Xi for each
i, 1 ≤ i ≤ n, are irreducible closed in.+∞

n=1Xn.
Proof. C1×C2×· · ·×Cn is irreducible closed in X1×· · ·×Xn by Lemma A.2.

The map in is continuous, so cl(in[C1 × C2 × · · · × Cn]) is irreducible closed by
Lemma A.1. We claim that the latter is exactly dC1C2 · · ·Cn〉, and this will prove the
lemma. Indeed, in[C1 ×C2 × · · · ×Cn] is contained in dC1C2 · · ·Cn〉, hence so does
its closure. Conversely, any word in dC1C2 · · ·Cn〉 is also in the downward closure of
in[C1×C2×· · ·×Cn] (with respect to≤.), hence in the set cl(in[C1×C2×· · ·×Cn]),
since the latter is closed hence downwards-closed. 2

Lemma 8.5 (recap). Let X1, X2, . . . , Xn, . . . , be countably many non-empty topo-
logical spaces. The whole space.+∞

n=1Xn is irreducible closed in itself.
Proof. Passing to complements, it is equivalent to show that the intersection

of two non-empty opens is again non-empty. Any two non-empty open subsets of
.+∞
n=1Xn are of the form bU〉 and bU ′〉 for two wide telescopes U = (Un)n∈N and
U ′ = (U ′n)n∈N. For n large enough, Un = U ′n =

∏n
i=1Xi, so any length n heteroge-

neous word is in bU〉 ∩ bU ′〉. 2

To show that there is no other irreducible closed subset, we rest on the following
general-purpose lemma.

Lemma D.2 Let Y be a topological space, and B be a subbase of closed sets of Y .
Assume that any (possibly infinite) non-empty intersection of elements of B can be
written as a finite union of elements of B. Then every irreducible closed subset of Y is
a member of B, or equals Y itself.

Proof. Let C be an arbitrary irreducible closed subset of Y . As a closed set, C
can be written as

⋂
i∈I
⋃
j∈Ji Fij , where I is some index set, Ji is finite for every

i ∈ I , and Fij ∈ B for all i, j. If I is empty, then C = Y . Otherwise, for each
i ∈ I , C is contained in

⋃
j∈Ji Fij , so C is contained in Fiji for some ji ∈ Ji, since

C is irreducible. Since Fiji is clearly contained in
⋃
j∈Ji Fij , C =

⋂
i∈I Fiji . By

assumption, C can be written as a finite union
⋃n
k=1Bk of elements of B. Since C is

irreducible, again, C must equal some Bk, 1 ≤ k ≤ n, whence C ∈ B. 2

Lemma 8.6 (recap). LetX1, X2, . . . , Xn, . . . , be countably many non-empty topolog-
ical spaces. The only irreducible closed subsets of .+∞

n=1Xn are .+∞
n=1Xn itself, and

the subsets of the form dC1C2 · · ·Cn〉, where Ci is irreducible closed in Xi for each i,
1 ≤ i ≤ n.

Proof. Let B be the subbase of closed sets of the form dF1F2 · · ·Fn〉. Any non-
empty intersection of such sets is again of this form. In fact, whenever I is non-empty,
the intersection

⋂
i∈IdFi1Fi2 · · ·Fini〉 equals d

⋂
i∈I Fi1

⋂
i∈I Fi2 · · ·

⋂
i∈I Fiminj∈I nj 〉.

So Lemma D.2 applies: the only irreducible closed subsets of .+∞
n=1Xn other than

.+∞
n=1Xn itself are in B.

Now assume dF1F2 · · ·Fn〉 is irreducible. Without loss of generality, no Fi is
empty: otherwise, letting k be the smallest index such that Fk is empty, one can rewrite
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dF1F2 · · ·Fn〉 as dF1F2 · · ·Fk−1〉.
For each i, 1 ≤ i ≤ n, since Fi is non-empty, fix an element xi of Fi. We claim

that Fi must be irreducible for each i, 1 ≤ i ≤ n. Otherwise, there would be two
closed subsets F ′ and F ′′ such that Fi ⊆ F ′ ∪ F ′′, but Fi is contained neither in
F ′ nor in F ′′. In this case, let x′ be an element of Fi outside F ′, and x′′ an ele-
ment of Fi outside F ′′. Then x1x2 · · ·xi−1x

′ is in dF1F2 · · ·Fi · · ·Fn〉 but not in
dF1F2 · · ·F ′ · · ·Fn〉 (where F ′ replaces Fi at position i), and x1x2 · · ·xi−1x

′′ is in
dF1F2 · · ·Fi · · ·Fn〉 but not in dF1F2 · · ·F ′′ · · ·Fn〉 (where F ′′ replaces Fi at posi-
tion i), although dF1F2 · · ·Fi · · ·Fn〉 is contained in the union dF1F2 · · ·F ′ · · ·Fn〉 ∪
dF1F2 · · ·F ′′ · · ·Fn〉. This would contradict the fact that dF1F2 · · ·Fi · · ·Fn〉 is irre-
ducible. So each Fi is irreducible. 2

Proposition 8.7 (recap). Let X1, X2, . . . , Xn, . . . , be countably many non-empty

topological spaces. The map i : (.+∞
n=1 S(Xn))

>
→ S(.+∞

n=1Xn) that sends > to
.+∞
n=1Xn and the word C1C2 · · ·Cn (where Ci ∈ S(Xi) for each i) to dC1C2 · · ·Cn〉

is an order-isomorphism and a homeomorphism.
Proof. First, i is well-defined, by Lemma 8.5 and Lemma 8.3. It is surjective by

Lemma 8.6.
The specialization quasi-ordering on (.+∞

n=1 S(Xn))
>

is ⊆. >.
Notice that C1 · · ·Cm ⊆. > C ′1 · · ·C ′n iff C1 · · ·Cm ⊆. C ′1 · · ·C ′n iff m ≤ n

and C1 ⊆ C ′1, . . . , Cm ⊆ C ′m. We claim that this is equivalent to dC1 · · ·Cm〉 ⊆
dC ′1 · · ·C ′n〉. The only if direction is clear. In the if direction, pick x1 ∈ C1, . . . ,
xm ∈ Cm: the word x1 · · ·xm is in dC1 · · ·Cm〉 ⊆ dC ′1 · · ·C ′n〉, so x1 ∈ C ′1, . . . ,
xm ∈ C ′m. In particular, m ≤ n; also, letting x1, . . . , xi−1, xi+1, . . . , xm remain
fixed, but varying xi in Ci, we obtain that Ci ⊆ C ′i.

Notice also that > ⊆. > C ′1 · · ·C ′n never holds, and that .+∞
n=1Xn ⊆ dC ′1 · · ·C ′n〉

never holds either, since.+∞
n=1Xn contains words of arbitrary lengths.

Notice finally thatC1 · · ·Cm ⊆. > > always holds, and correspondingly dC1 · · ·Cm〉 ⊆
.+∞
n=1Xn always holds.

It follows that for every w,w′ ∈ (.+∞
n=1 S(Xn))

>
, w ⊆. > w′ iff i(w) ⊆ i(w′).

In particular, i(w) = i(w′) entails w = w′, so that i is injective. Since i is surjective,
it is bijective. This also shows that i and its inverse are monotonic, so that i is an
order-isomorphism.

For each closed subset F of a space X , write 2F for the family of all irreducible
closed subsets C of X such that C ⊆ F . Alternatively, 2F is the complement
of the open subset �U of S(X), for U the complement of F in X . In particular,
2F is closed in S(X), and all closed subsets of S(X) are of this form. Since �
commutes with arbitrary unions and finite intersections, 2 commutes with arbitrary
intersections and finite unions, so given a subbase B of closed subsets of X , the
sets 2F with F ∈ B form a subbase of the closed subsets of S(X). In particu-
lar, the sets 2dF1, F2, · · · , Fn〉 with each Fi closed in Xi form a subbase of closed
sets of S(.+∞

n=1Xn). Their inverse image by i is the set of words C1C2 · · ·Cm in
.+∞
n=1 S(Xn) such that dC1, C2, · · · , Cm〉 ⊆ dF1, F2, · · · , Fn〉. This is equivalent to

C1 · · ·Cm ⊆. > F1F2 · · ·Fn, by an argument similar to one we have already seen
at the beginning of the present proof. (The difference is that F1, F2, . . . , Fn are no
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longer irreducible, contrarily to C ′1, . . . , C ′n—but we never used irreducibility there.)
Therefore i−1(2dF1, F2, · · · , Fn〉) = d2F1,2F2, · · · ,2Fn〉. This shows that i is
continuous.

Since i is bijective, let j be its inverse. We have just shown that j−1(d2F1,2F2,
· · · ,2Fn〉) = 2dF1, F2, · · · , Fn〉. The sets 2Fi, for Fi closed in Xi, span all the
closed subsets of S(Xi), since their complements �U for U open span all the open
subsets of S(Xi). Using Proposition 8.2, the sets d2F1,2F2, · · · ,2Fn〉 with all Fi
closed form a subbase of closed subsets of .+∞

n=1 S(Xn). Together with the whole set

(.+∞
n=1 S(Xn))

>
, they form a subbase of closed subsets of (.+∞

n=1 S(Xn))
>

, whose
inverse images by j are closed: either the closed set 2dF1, F2, · · · , Fn〉, or the whole
space S(.+∞

n=1Xn). Therefore j = i−1 is also continuous, hence i is a homeomor-
phism. 2

Lemma 8.8 (recap). Let X1, X2, . . . , Xn be non-empty topological spaces. The only
irreducible closed subsets of .nk=1Xk are the subsets of the form dC1C2 · · ·Cm〉,
where Ci is irreducible closed in Xi for each i, 1 ≤ i ≤ m, and m ≤ n.

Proof. The proof of Lemma 8.6, with minor changes, shows that all irreducible
closed subsets are of this form, except possibly for the whole space .nk=1Xk. We
show that the latter cannot be irreducible, unless it is itself of one of the above form.

Assume that.nk=1Xk is irreducible, that is, any two non-empty opens have a non-
empty intersection. In particular, given any two non-empty open subsets Uk and Vk of
Xk, the open subset b∅, · · · , ∅, X1 · · ·Xk−1Uk, X1 · · ·Xk−1UkXk+1, · · · , X1 · · ·Xk−1

UkXk+1 · · ·Xn, · · · 〉 and the open subset b∅, · · · , ∅, X1 · · ·Xk−1Vk, X1 · · ·Xk−1Vk
Xk+1, · · · , X1 · · ·Xk−1VkXk+1 · · ·Xn, · · · 〉 are both non-empty, and must have non-
empty intersection. Any word in this intersection must be of length at least k, and its
kth letter must be both in Uk and in Vk. So any two non-empty open subsets Uk and
Vk of Xk must have non-empty intersection: Xk is irreducible. Then .nk=1Xk =
dX1X2 · · ·Xn〉 is irreducible closed by Lemma 8.3, and we are done. 2

Proposition 8.9 (recap). Let X1, X2, . . . , Xn be non-empty topological spaces. The
map i : .nk=1 S(Xk)→ S(.nk=1Xk) that sends the word C1C2 · · ·Ck (where k ≤ n
and Ci ∈ S(Xi) for each i) to dC1C2 · · ·Ck〉 is an order-isomorphism and a homeo-
morphism.

Proof. The proof is as for Proposition 8.7, using now Lemma 8.8 instead of
Lemma 8.6. 2

E Proofs of Results on Trees (Section 10)
It is sometimes convenient to be able to talk about subterms and positions p, together
with the subterm t|p of t at position p. A position is a finite word over N. The empty
word ε is always a position in any term t, and t|ε = t. Whenever t|p is defined, and,
t|p is of the form f(t1, · · · , tn), then p i is a position in t for every i, 1 ≤ i ≤ n, and
t|pi = ti. The size of a term is the number of its positions. We write t[s]p for the term
t, except that the subterm at position p has been replaced by s.

The following generalizes the notion of simple tree expression: for U open in X
and U open in T (X)∗, let 3U ·U be the set of all terms that have a subterm of the form
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f(~t) with f ∈ U and ~t ∈ U . We use them in proving the first part of Proposition 10.1:

Lemma E.1 Let X be a topological space. Every finite intersection of simple tree
expressions can be rewritten as a finite union of simple tree expressions. In particular,
the simple tree expressions form a base of the tree topology.

Proof. Let Y = T (X). The empty intersection is 3X(), and it remains to compute
binary intersections. We do this in two steps. First, for all opens U and U ′ of X , for
all opens U and U ′ of Y ∗, we show that the intersection of 3U · U and 3U ′ · U ′ can
be expressed as the union of simpler expressions of the form 3U ′′ · U ′′. Next, in the
special case where 3U ·U is a simple tree expression 3U(π1 | · · · | πn), namely when
U is of the form Y ∗π1Y

∗ · · ·Y ∗πnY ∗, and similarly for 3U ′ · U ′, we show that each
of the simpler expressions 3U ′′ · U ′′ obtained in step 1 can themselves be expressed as
finite unions of simple tree expressions.

Step 1. The intersection of 3U · U and 3U ′ · U ′ is the union of:

1. 3U · (U ∩ (Y ∗(3U ′ · U ′)Y ∗),

2. 3U ′ · (U ′ ∩ (Y ∗(3U · U)Y ∗),

3. 3(U ∩ U ′) · (U ∩ U ′),

4. 3X · (3U · U | 3U ′ · U ′)

5. 3X · (3U ′ · U ′ | 3U · U).

Indeed, the terms t of 3U · U ∩3U ′ · U ′ are those that have a subterm t|p = f(~t) with
f ∈ U and ~t ∈ U and that have a subterm t|p′ = f ′(~t′) with f ′ ∈ U ′ and ~t′ ∈ U ′, for
some positions p and p′. If p is a proper prefix of p′ (we say that f(~t) is above f ′(~t′)),
then t is in 3U · (U ∩ (Y ∗(3U ′ · U ′)Y ∗) (case 1 above); if p′ instead is a proper prefix
of p, then t is in case 2; if p = p′, then t is in case 3; if p and p′ are incomparable, then
t is in case 4 if f(~t) is to the left of f ′(~t′) (i.e., the first element that differs in p and p′

is less in p than in p′), and in case 5 if f(~t) is to the right of f ′(~t′). Conversely, each of
the opens 1–5 are clearly contained both in 3U · U and in 3U ′ · U ′.

Note. The operator 3V · commutes with finite unions, i.e., 3V ·
⋃m
i=1 Vi =⋃m

i=1 3V · Vi. This is easy: both sides are the set of terms such that there is a subterm
f(~t) with f ∈ V and there is an i, 1 ≤ i ≤ m, such that ~t ∈ Vi. We will use that freely
below.

Step 2. Call an elementary open any open subset of Y ∗ of the form Y ∗π1Y
∗ · · ·

Y ∗πnY
∗, where π1, . . . , πn are simple tree expressions. We claim that, for all open

subsets U and U ′ ofX , for all elementary opens U and U ′, 3U ·U ∩3U ′ ·U ′ is a finite
union of (denotations of) simple tree expressions. We show this by induction over the
size of the expressions 3U · U and 3U ′ · U ′. Write U as Y ∗π1Y

∗ · · ·Y ∗πmY ∗, and
U ′ as Y ∗π′1Y

∗ · · ·Y ∗π′nY ∗. Then U ∩ (Y ∗(3U ′ · U ′)Y ∗) (case 1) is the union of all
elementary opens of the form Y ∗π1Y

∗ · · ·Y ∗πi−1Y
∗(3U ′ ·U ′)Y ∗πiY ∗ · · ·Y ∗πmY ∗,

1 ≤ i ≤ m+1, plus all opens of the form Y ∗π1Y
∗ · · ·Y ∗(πi∩3U ′·U ′)Y ∗ · · ·Y ∗πmY ∗,

1 ≤ i ≤ m. For each i, the latter is the (finite) union of the elementary opens
Y ∗π1Y

∗ · · ·Y ∗π′′Y ∗ · · ·Y ∗πmY ∗, where π′′ ranges over the (finitely many) simple
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tree expressions given by the induction hypothesis, and whose union equals πi ∩3U ′ ·
U ′. So U ∩ (Y ∗(3U ′ · U ′)Y ∗) is a (finite) union of elementary opens, say U1, . . . , Uk:
then the open 3U · (U ∩ (Y ∗(3U ′ ·U ′)Y ∗) of case 1 is the (finite) union

⋃k
i=1 3U ·Ui.

Case 2 is symmetric.
Cases 4 and 5 are already in the form of simple tree expressions.
For case 3, we show that U ∩U ′ is a finite union of elementary opens, by induction

on m + n, using the formulae that we have already used in the proof of Lemma 6.1.
When m = 0 or n = 0, this is clear. Otherwise, write U = Y ∗π1V , U ′ = Y ∗π′1V ′, so
U ∩ U ′ is the union of Y ∗π1(V ∩ Y ∗π′1V ′), of Y ∗π′1(Y ∗π1V ∩ V ′), and of Y ∗(π1 ∩
π′1)(V∩V ′). By induction hypothesis, V∩Y ∗π′1V ′ is a finite union of elementary opens,
so Y ∗π1(V ∩ Y ∗π′1V ′) is, too, since unions distribute over concatenations. Similarly
for Y ∗π′1(Y ∗π1V ∩ V ′). For Y ∗(π1 ∩ π′1)(V ∩ V ′), π1 ∩ π′1 is a finite union of simple
tree expressions by induction hypothesis (the first one, on π and π′), and V ∩ V ′ is a
finite union of elementary opens by induction hypothesis (the second one, on U and
U ′). We then distribute unions over concatenations again to conclude. 2

Lemma E.2 For every open subset U ofX , for every open subset U of T (X)∗, 3U ·U
is open in T (X).

Proof. Let Y = T (X). Notice that U can be written as a union of opens of the form
Y ∗U1Y

∗ · · ·Y ∗UnY ∗, where each Ui is open in Y , because those form a base of the
word topology on Y ∗ (Lemma 6.1). By Lemma E.1, U1, . . . , Un can all be written as
unions of simple tree expressions. Distributing unions over concatenations, U is then a
union of elementary opens Ui of Y ∗, i ∈ I (in the sense already used in Lemma E.1).
Then 3U · U =

⋃
i∈I 3U · Ui is a union of simple tree expressions, hence is open. 2

Lemma E.3 Letting≤ be the specialization quasi-ordering ofX , every open subset of
T (X) is upwards-closed with respect to �≤.

Proof. This is Exercise 9.7.43 of [Goubault-Larrecq, 2013]. For short, let Y denote
T (X). We show that whenever s �≤ t and s ∈ π, then t ∈ π. This is by induction
on the structure of π. Write π as 3U(π1 | . . . | πn). There must be a subterm, say at
position p, of s, of the form f ′(~s′), with f ′ ∈ U and ~s′ ∈ Y ∗π1Y

∗ . . . Y ∗πnY
∗. Let

(∗) be our induction hypothesis: whenever u �≤ v and u ∈ πi for some i, 1 ≤ i ≤ n,
then v ∈ πi.

We show that t ∈ π for any term t such that s �≤ t, whenever s contains a subterm
at some position p of the form f ′(~s′), with f ′ ∈ U and ~s′ ∈ Y ∗π1Y

∗ . . . Y ∗πnY
∗, by

a secondary induction on the size of t. If s �≤ t by the first case of the definition, i.e.,
if t = g(t1, . . . , tp) and s �≤ tj for some j, 1 ≤ j ≤ p, then by induction hypothesis
tj ∈ π, from which t ∈ π follows immediately, by definition of (the denotation of) π.

So assume that s �≤ t by the second case of the definition, i.e., s = f(~s), t = g(~t),
f ≤ g, and ~s �∗≤ ~t. Write ~s as s1s2 . . . sm, ~t as t1t2 . . . tn, so that there is an (injective)
increasing map h : {1, 2, . . . ,m} → {1, 2, . . . , n} with s1 �≤ th(1), s2 �≤ th(2), . . . ,
sm �≤ th(m).

If p = ε, then f ′ = f and ~s′ = ~s, so ~s ∈ Y ∗π1Y
∗ . . . Y ∗πnY

∗. Let si1 . . . sin be
a subword of ~s satisfying si1 ∈ π1, . . . , sin ∈ πn. Then th(i1) ∈ π1, . . . , th(in) ∈ πn

88



by (∗), and th(i1) . . . th(in) forms a subword of ~t. So ~t ∈ Y ∗π1Y
∗ . . . Y ∗πnY

∗; since
U is upwards-closed, g ∈ U ; so t ∈ π.

Finally, if p 6= ε, then f ′(~s′) must be a subterm of some si, 1 ≤ i ≤ m. Since
si �≤ th(i), by induction hypothesis, th(i) is in π, from which t ∈ π follows immedi-
ately. 2

Lemma E.4 For every open subset U of X , every open subset U of T (X)∗, and every
open subset V of T (X), let 3U · U // V be the set of all terms containing a subterm
f(~t) ∈ V with f ∈ U and ~t ∈ U . Then 3U · U // V is open in T (X).

Proof. This is the first part of Exercise 9.7.44 of [Goubault-Larrecq, 2013]. Let
Y = T (X). We first note that 3U · U // V is open if V is (the denotation of) a simple
tree expression π = 3U ′(π′1 | . . . | π′n): in that case 3U · U // π = 3(U ∩ U ′) ·
(U ∩ Y ∗π′1Y ∗ . . . Y ∗π′nY ∗)∪3U · (U ∩ Y ∗πY ∗). This is open by Lemma E.2. In the
general case, by Lemma E.1, we can write V as a union of simple tree expressions πi,
i ∈ I . We conclude that 3U · U // V =

⋃
i∈I 3U · U // πi is indeed open. 2

Lemma E.5 For every closed subset F of X , and all closed subsets F1, F2, . . . , Fn
of Y = T (X), let F ?(F?

1F?
2 · · · F?

n) denote the union of F1, F2, . . . , Fn with the set
of those terms f(~t) such that f ∈ F and ~t ∈ F?

1F?
2 · · · F?

n. (Recall the word products
of Section 6.) Then F ?(F?

1F?
2 · · · F?

n) is closed in Y : let U = X r F , V be the
complement of F1 ∪ F2 ∪ · · · ∪ Fn in Y , U be the complement of F?

1F?
2 . . .F?

n in Y ∗,
then F ?(F?

1F?
2 · · · F?

n) is the complement of (3X · U // V ) ∪ (3U · Y ∗ // V ).

Proof. This is the second part of Exercise 9.7.44 of [Goubault-Larrecq, 2013]. Let
us characterize the complement of F ?(F?

1F?
2 . . .F?

n). Note that U and V are open by
definition, while U is open by Corollary 6.6. Then 3X · U // V and 3U · Y ∗ // V are
open, as we have seen in Lemma E.4.

Let t be a term outside F ?(F?
1F?

2 . . .F?
n). Since t is not in F ?(F?

1F?
2 . . .F?

n), we
first observe that t is in V , otherwise it would be in F1 ∪ F2 ∪ . . . ∪ Fn. Write t as
f(~t). If f ∈ F , then ~t cannot be in F?

1F?
2 . . .F?

n. Recall that U is the complement of
F?

1F?
2 . . .F?

n. So, if f ∈ F , then t is in 3X · U // V . If on the other hand f 6∈ F , then
t is in 3U · Y ∗ // V .

Conversely, consider any element t of (3X · U // V ) ∪ (3U · Y ∗ // V ). We
claim that t cannot be in F ?(F?

1F?
2 . . .F?

n). Notice first that any subterm of a term
in F ?(F?

1F?
2 . . .F?

n) is again in F ?(F?
1F?

2 . . .F?
n): this follows easily from the defi-

nition, and the fact that F1 ∪ F2 ∪ . . . ∪ Fn, being closed, is downwards-closed with
respect to �≤ (as a consequence of Lemma E.3), hence is closed under taking sub-
terms. Now let t be both in (3X · U // V )∪ (3U · Y ∗ // V ) and in F ?(F?

1F?
2 . . .F?

n).
If t is in 3X · U // V , then t has a subterm f(~t) ∈ V with ~t ∈ U . Since t is in
F ?(F?

1F?
2 . . .F?

n), its subterm f(~t) is in F ?(F?
1F?

2 . . .F?
n), too. But since ~t ∈ U ,

~t 6∈ F?
1F?

2 . . .F?
n, so f(~t) must be in F1 ∪F2 ∪ . . .∪Fn; but this would contradict the

fact that f(~t) ∈ V . If t is instead in 3U · Y ∗ // V , then t has a subterm f(~t) ∈ V with
f ∈ U , i.e., f 6∈ F . Again f(~t) is in F ?(F?

1F?
2 . . .F?

n), and f 6∈ F entails that f(~t)
must be in F1 ∪ F2 ∪ . . . ∪ Fn, again contradicting f(~t) ∈ V .
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So F ?(F?
1F?

2 . . .F?
n) is the complement of (3X · U // V )∪ (3U ·Y ∗ // V ). Since

the latter is open, the former is closed. 2

Proposition 10.1 (recap). Let X be a topological space. Every finite intersection of
simple tree expressions can be rewritten as a finite union of simple tree expressions. In
particular, the simple tree expressions form a base of the tree topology.

Letting≤ be the specialization quasi-ordering ofX , the specialization quasi-ordering
of T (X) is the embedding quasi-ordering �≤.

Proof. The first part is Lemma E.1. For the second part, let � denote temporarily
the specialization quasi-ordering of T (X). Using Lemma E.3, t �≤ t′ implies t � t′.
Conversely, we show by structural induction on t′ that its downward closure ↓�≤ t

′ in

�≤ is closed: write t′ as f(t′1, t
′
2, . . . , t

′
n), then ↓�≤ t

′ is equal to (↓X f)
?
((↓�≤ t

′
1)?

(↓�≤ t
′
2)? . . . (↓�≤ t

′
n)?), which is closed by Lemma E.5 and the induction hypothesis.

So, if t � t′ then t is in the closure of {t′}, hence in the closed set ↓�≤ t
′, whence

t �≤ t′. 2

Proposition 10.2 (recap). Let X be a set quasi-ordered by ≤. The tree topology on
T (Xa) is exactly the Alexandroff topology of �≤ on T (X).

Proof. Any upwards-closed subset A of Y = T (X) is the union of ↑Y s, s ∈ A,
where upward closure is taken relative to �≤. We claim that ↑Y s is obtained recur-
sively by ↑Y s = 3(↑X f)(↑Y s1 | . . . | ↑Y sm), where s = f(s1, . . . , sm). Indeed,
let t = g(t1, . . . , tn) be any term. We first show that if t ∈ ↑Y s, i.e., if s �≤ t, then
t ∈ 3(↑X f)(↑Y s1 | . . . | ↑Y sm): s clearly belongs to 3(↑X f)(↑Y s1 | . . . | ↑Y sm),
and since open sets are upwards-closed in the specialization quasi-ordering, which is
�≤ by Proposition 10.1, t is also in 3(↑X f)(↑Y s1 | . . . | ↑Y sm). Conversely, if
t ∈ 3(↑X f)(↑Y s1 | . . . | ↑Y sm), then either t = g(~t) is itself the subterm such that
g ∈ ↑X f and ~t ∈ Y ∗(↑Y s1)Y ∗ . . . Y ∗(↑Y sm)Y ∗, so f ≤ g and ~s �∗≤ ~t, in particular
s �≤ t; or tj is in 3(↑X f)(↑Y s1 | . . . | ↑Y sm) for some j, 1 ≤ j ≤ n, so s �≤ tj
by induction hypothesis, therefore s �≤ t.

It follows that ↑Y s is open in the tree topology for every s ∈ A, so ↑Y A is also
open in the tree topology. Conversely, every open subset if upwards-closed in �≤ by
Proposition 10.1. So the tree topology is the Alexandroff topology of �≤. 2

E.1 Tree Steps
Lemma E.6 The application map @: X × T (X)∗ → T (X), which sends (f,~t) to
f(~t), is continuous.

Proof. This is the first part of Exercise 9.7.47 of [Goubault-Larrecq, 2013]. Let
Y = T (X), and π = 3U(π1, . . . , πn) be a simple tree expression. We show that
@−1(π) is open: @−1(π) is the union of the open U × (Y ∗π1Y

∗ . . . Y ∗πnY
∗) with

X × (Y ∗πY ∗); indeed, f(~t) ∈ π iff either f ∈ U and ~t ∈ Y ∗π1Y
∗ . . . Y ∗πnY

∗ (case
where the needed subterm of f(~t) that witnesses the fact that f(~t) is in π is f(~t) itself),
or some element of the sequence ~t is in π. So @−1(π) is open, and therefore @ is
continuous. 2

Lemma 10.4 (recap). Let X be a topological space. For every closed subset F of
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X , and every word-product ~P on T (X), supp ~P and F ?(~P ) are closed in T (X). If
moreover F = C is irreducible, then so is the tree step C?(~P ).

Proof. Let Y = T (X). The first part of the Lemma is a slight extension of
Lemma E.5.

First, supp ~P is just i−1(~P ), where i : Y → Y ∗ is the continuous map such that i(t)
is the word with just one letter, t. By Corollary 6.6, ~P is closed, so supp ~P is closed
too.

Let t be a term outside F ?(~P ). Let V be the complement of supp ~P . We have just
seen that V is open. Moreover, since t is not in F ?(~P ), t is not in supp ~P , so t is in
V . Write t as f(~t). If f ∈ F , then ~t cannot be in ~P . Let U be the complement of ~P
in T (X)∗. This is open. So, if f ∈ F , then t is in 3X · U // V , which is open by
Lemma E.4. If on the other hand f 6∈ F , then t is in 3U · Y ∗ // V , where U is the
complement of F in X; therefore t ∈ (3X · U // V ) ∪ (3U · Y ∗ // V ).

Conversely, consider any element t of (3X · U // V ) ∪ (3U · Y ∗ // V ). We claim
that t cannot be in F ?(~P ). Notice that any subterm of a term in F ?(~P ) is again in
F ?(~P ): this follows easily from the definition, and the fact that supp ~P , being closed,
is downwards-closed with respect to �≤, hence is closed under taking subterms. So
let t be both in (3X · U // V ) ∪ (3U · Y ∗ // V ) and in F ?(~P ). If t is in 3X · U // V ,
then t has a subterm f(~t) ∈ V with ~t ∈ U . Since t is in F ?(~P ), its subterm f(~t) is in
F ?(~P ), too. But since ~t ∈ U , ~t 6∈ ~P , so f(~t) must be in supp ~P ; this contradicts the
fact that f(~t) ∈ V . If t is instead in 3U · Y ∗ // V , then t has a subterm f(~t) ∈ V with
f ∈ U , i.e., f 6∈ F . Again f(~t) is in F ?(~P ), and f 6∈ F entails that f(~t) must be in
supp ~P , again contradicting f(~t) ∈ V .

So F ?(~P ) is the complement of (3X · U // V ) ∪ (3U · Y ∗ // V ). Since the latter
is open, the former is closed.

Let us now assume that F = C is irreducible.
By Lemma 6.7, the word-product ~P over T (X) is irreducible closed in T (X)∗.

So C × ~P is irreducible closed in X × T (X)∗, since the product of two irreducible
closed subsets is irreducible closed (Lemma A.2). Since @ is continuous (Lemma E.6),
one concludes that cl(@[C × ~P ]) is irreducible closed in T (X) (Lemma A.1). Since
C?(~P ) is closed, and clearly contains @[C× ~P ], it contains cl(@[C× ~P ]). Conversely,
the latter contains {f(~t) | f ∈ C,~t ∈ ~P}, and is downwards-closed in�≤, so is closed
under taking subterms, whence cl(@[C × ~P ]) contains C?(~P ). Therefore the latter is
the closure cl(@[C × ~P ]), and must then be irreducible. 2

E.2 Tree Iterators
We need the following lemma to show that tree iterators define closed sets. A relation
R from a space X to a space Y is a subset of X × Y . It is lower semi-continuous
iff Pre∃R(V ) = {x ∈ X | ∃y ∈ V · x R y} is open for every open subset V of
Y . It is upper semi-continuous iff Pre∀R(V ) = {x ∈ X | ∀y · x R y ⇒ y ∈ V }
is open for every open subset V of Y . It is continuous if and only if it is both lower
semi-continuous and upper semi-continuous.
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Lemma E.7 Let Z be a topological space, 2 be a hole outside Z, and inst-of be the
relation from Z∗ to (Z + {2})∗ defined by w inst-of w′ iff w is obtained from w′ by
replacing each occurrence of 2 by (possibly distinct) elements from Z. Formally, iff w
and w′ have the same length and for every index i, the ith letter of w′ is either 2 or
equal to the ith letter of w.

Then inst-of is continuous.

Proof. For short, let Y be Z + {2}.
Lower semi-continuity. Consider any basic open V = Y ∗V1Y

∗ · · ·Y ∗VnY ∗ of
Y . Let Ui = Vi ⊆ Z if 2 6∈ Vi, Ui = Z otherwise. Then Pre∃ inst-of(V ) =
Z∗U1Z

∗ · · ·Z∗UnZ∗ is open. Since every open subset of Y is a union of basic open
sets, and since Pre∃ inst-of commutes with unions, Pre∃ inst-of(V ) is open for every
open subset V of Y ∗.

Upper semi-continuity. We first observe that, for every word-productP = e1e2 · · · en
on Y , Pre∃ inst-of(P ) is a word-product on Z. Indeed, Pre∃ inst-of(P ) is equal to
Pre∃ inst-of(e1)Pre∃ inst-of(e2) · · ·Pre∃ inst-of(en), while Pre∃ inst-of(F ?) equals
Z? if 2 ∈ F and F ? otherwise, and Pre∃ inst-of(F ∗) equals Z∗ if 2 ∈ F and F ∗

otherwise. Call a monotone Boolean combination of word-products any finite union
of finite intersections of word-products. Lemma 6.12 shows that any finite intersection
of word-products can be rewritten as a finite union of word-products. So the mono-
tone Boolean combinations of word-products are the finite unions of word-products⋃m
i=1 Pi. Now Pre∃ inst-of commutes with unions, so Pre∃ inst-of(F ) is a finite union

of word-products on Z (hence closed in Z∗ by Corollary 6.6) for every monotone
Boolean combination F of word-products on Y .

Using Lemma 6.2, the complement of any monotone Boolean combinationU of ba-
sic opens of Y ∗ is a monotone Boolean combination of word-products. So Pre∀ inst-of(U),
which is the complement of Pre∃ inst-of(F ), assuming that F is the complement of U ,
is open in Z∗.

Consider now any open subset U of Y ∗. U is a union of basic opens, hence a
directed union

⋃
i∈I Ui, where each Ui is a finite union (in particular, a monotone

Boolean combination) of basic opens. We observe that Pre∀ inst-of commutes with
directed unions. This is because each word w (say of length m) in Z∗ only has finitely
many images w1, w2, . . . , w2m , namely the 2m words obtained from w by replacing
each letter by 2, or not: if w ∈ Pre∀ inst-of(

⋃
i∈I Ui), then for every j, 1 ≤ j ≤ 2m,

there is an i ∈ I such thatwj ∈ Ui; we may take the same i for every j, by directedness,
whence w ∈ Pre∀ inst-of(Ui); the converse direction is obvious. So Pre∀ inst-of(U)
is the directed union

⋃
i∈I Pre∀ inst-of(Ui), and is therefore open: inst-of is upper

semi-continuous. 2

Lemma E.8 Let X , Z be topological spaces. The relation idX × inst-of that relates
(f,~t) ∈ X ×Z∗ with (f, ~u) ∈ X × (Z + {2})∗ if and only if ~t inst-of ~u is continuous.

Proof. Let Y = Z + {2}, and fix an arbitrary open subset V of X × (Z + {2})∗.
Write V as a union of open rectangles

⋃
i∈I Ui ×Wi (where every Ui and every Wi is

open; this is the definition of the product topology).
Lower semi-continuity. Pre∃(idX×inst-of)(V) is equal to

⋃
i∈I Ui×Pre∃ inst-of(Wi),

hence is open.
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Upper semi-continuity. We must show that U = Pre∀(idX × inst-of)(V) is open.
For that, fix (f,~t): it is enough to find an open rectangle containing (f,~t) and included
in U . As in Lemma E.7, note that there are only finitely many elements ~u such that
~t inst-of ~u. List them as ~u1, . . . , ~um. For each one, (f, ~uj) is in some Ui ×Wi: pick
one such i and call it ij . Our desired open rectangle is U × V where U =

⋂m
j=1 Uij

and V = Pre∀ inst-of(
⋃m
j=1Wij ). By construction, (f,~t) is in U × V . For every

element (g,~s) of U × V , by definition every element (g, ~u) that is related to (g,~s) by
idX × inst-of is such that g ∈ U and ~u ∈

⋃m
j=1Wij . Let j be such ~u ∈ Wij . Since

g ∈ U , g is in Uij , so (g, ~u) is in Uij ×Wij ⊆ U . 2

Lemma E.9 Let C∗.S be a tree iterator such that argsC is closed. Any subterm s of a
term t in C∗.S is again in C∗.S.

Proof. This is proved by structural induction on t. If t is in S, then any subterm s of
t is such that s �≤ t, hence s ∈ S. If t ∈ argsC, we argue similarly, since C is closed
(this is the first place where we need this assumption). Otherwise, either s = t and the
claim is obvious, or s is a proper subterm of t. In the latter case, there is an elementary
context c = f(u1u2 · · ·um) ∈ C such that t is obtained from c by replacing those uj ,
1 ≤ j ≤ m, that equal 2 by terms from C∗.S. I.e., t can be written f(t1, t2, · · · , tm),
where tj = uj if uj 6= 2, tj ∈ C∗.S otherwise. For some j, s is a subterm of tj . If
uj = 2, then tj ∈ C∗.S, so that s ∈ C∗.S by induction hypothesis. Otherwise, we
claim that tj is in argsC. Indeed, c = f(u1u2 · · ·um) ∈ C, so the smaller f(uj) is
in C, too, since C is closed in X × (T (X) + {2})∗, hence downwards-closed. Since
uj = tj , f(tj) is in C, so tj ∈ argsC. It follows that tj ∈ C∗.S. Since s is a subterm
of tj , by induction hypothesis s ∈ C∗.S. 2

Lemma 10.9 (recap). Let X be a topological space, and 2 be a hole outside T (X).
Every tree iterator C∗.S such that argsC is closed in T (X) denotes a closed subset of
T (X).

Proof. Let V be the complement of S ∪ argsC in T (X); this is open, since both S
and argsC are closed. Let also V be the open complement of C∩(X×(argsC + {2})∗)
in X × Y ∗, where we let Y abbreviate T (X) + {2}. Using Lemma E.8, the binary
relation idX × inst-of, between X × T (X)∗ and X × Y ∗ is continuous, hence upper
semi-continuous. Therefore U = Pre∀(idX × inst-of)(V) = {(f,~t) | ∀~u.~t inst-of ~u⇒
(f, ~u) ∈ V} is open.

Write U as a union of open rectangles
⋃
i∈I Ui×Wi. We claim that the complement

of C∗.S is
⋃
i∈I 3Ui ·Wi // V . It will follow that C∗.S is closed.

Let t be any term not in C∗.S. Consider a minimal subterm f(~t) of t that is not in
C∗.S. By minimal, we mean that all its proper subterms are in C∗.S. Since f(~t) is not
in C∗.S, it is in particular not in S ∪ argsC, hence it is in V . For any tuple ~u ∈ Y ∗
of which ~t is an instance, i.e., such that ~t inst-of ~u, and such that the components of ~u
that are different from 2 are in argsC (i.e., ~u ∈ (argsC + {2})∗), (f, ~u) cannot be in
C: otherwise f(~t) would be obtained from f(~u) by replacing each occurrence of 2 by
some components of the tuple ~t, which are all in C∗.S; so f(~t) would again be in C∗.S,
which is impossible. Another way of stating this is that whenever (f,~t) (idX × inst-of)
(f, ~u), then either ~u is not in (argsC + {2})∗ or (f, ~u) is not in C. That is, (f,~t) is in
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U . It follows that, for some i ∈ I , f ∈ Ui and ~t ∈Wi. Recall that f(~t) ∈ V . So t is in
3Ui ·Wi // V .

Conversely, assume that t ∈ 3Ui ·Wi // V , for some i ∈ I . That is, t has a subterm
f(~t) in V , with f ∈ Ui and ~t ∈ Wi. Assume, for the sake of contradiction, that t is
in C∗.S. By Lemma E.9, f(~t) is also in C∗.S. Since f(~t) ∈ V , f(~t) is neither in S
nor in argsC, so there is an elementary context f(~u) in C such that ~t is obtained from
~u by replacing the 2 elements in ~u by some terms in C∗.S. Since f(~u) is in C, the
components of ~u that are different from 2 are in argsC, by definition of the argument
support. So ~u is in (argsC + {2})∗, hence (f, ~u) ∈ C ∩ (X × (argsC + {2})∗),
the complement of V . However, (f,~t) (idX × inst-of)(f, ~u), so (f,~t) cannot be in
U = Pre∀(idX × inst-of)(V). This contradicts the fact that (f,~t) is in Ui ×Wi.

This concludes our proof that the complement of C∗.S is
⋃
i∈I′ 3Ui ·Wi // V , so

that C∗.S is closed. 2

Lemma 10.11 (recap). LetX be a topological space, and 2 be a hole outside T (X), C
be a closed subset of X × (T (X) + {2})∗, S be a closed subset of T (X), and assume
that argsC is closed. Then the tree iterator C∗.S is irreducible in the following cases:

1) if C is non-2-linear, and S is non-empty;

2) or if C is 2-generated and 2-linear and S is irreducible;

3) or if C is non-empty, 2-generated, and S is empty.

Proof. (1) C is non-2-linear, and S is non-empty. Since S ⊆ C∗.S, C∗.S is non-
empty. Since C is non-2-linear, in particular there is an elementary context f(~u) ∈ C
such that ~u has at least two occurrences of 2. More precisely, there is an element of the
form f(~u12~u22~u3) in C, i.e., one where 2 occurs at least twice. If C∗.S is included
in the union of two closed subsets S′ and S′′, but not in S′ and not in S′′, then pick t′

in C∗.S outside S′, and t′′ in C∗.S outside S′′. Pick some term t in C∗.S (for example,
t′ or t′′), and let ~t1, ~t2, ~t3 be obtained from ~u1, ~u2, ~u3 respectively by replacing all
occurrences of 2 by t. Clearly f(~t1t

′~t2t
′′~t3) is in C∗.S, hence in S′ or in S′′. Assume

without loss of generality that it is in S′. Then its subterm t′ is in S′, contradiction. So
C∗.S is irreducible.

(2) C is 2-generated and 2-linear, and S is irreducible. Assume that C∗.S is in-
cluded in the union of two closed subsets S′ and S′′, but not in S′ or in S′′. We
claim that there is a context c′ ∈ C2∗, with exactly one occurrence of 2, and a term
t′ ∈ S ∪ argsC, such that c′[t′] is not in S′. Indeed, since C is 2-linear, there is
a context c = c1[c2[· · · [ck] · · · ]], k ∈ N, where each ci is in C, and such that one
obtains a term outside S′ by replacing the unique occurrence of 2 (if any) in c by
a term from S ∪ argsC. If 2 actually occurs (once) in c, let c′ = c, and the term
outside S′ obtained above can be written c′[t′] for some t′ ∈ S ∪ argsC. Otherwise,
some ci does not contain an occurrence of 2. Pick i minimal: so 2 occurs (once) in
c1, c2, . . . , ci−1, but not in ci; moreover, c = c1[c2[· · · [ci−1[ci]] · · · ]] is a term (i.e.,
where 2 does not occur) outside S′. Write ci as f(~u). Since C is 2-generated, one
can split ~u as ~u1~u2 so that f(~u12~u2) ∈ C. Pick any term t′ from S: this is easy
since irreducible sets are non-empty. Let c′ = c1[c2[· · · [ci−1[f(~u12~u2)]] · · · ]]. Then
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ci = f(~u1~u2) �≤ f(~u12~u2)[t′] = f(~u1t
′~u2), so c �≤ c′[t′]. Since c is not in S′,

c′[t′] is not in S′ either.
In any case, there is a context c′ ∈ C2∗, with exactly one occurrence of 2, and a

term t′ ∈ S ∪ argsC, such that c′[t′] is not in S′. Similarly, there is a context c′′ ∈ C2∗,
with exactly one occurrence of 2, and a term t′′ ∈ S ∪ argsC, such that c′′[t′′] is not in
S′′. Note that both c′[t′] and c′′[t′′] are in C∗.S.

Examine the case where t′ or t′′ is in argsC, say t′ by symmetry. So f(t′) ∈ C and
2 does not occur in t′, for some f ∈ X . Since C is 2-generated, f(t′2) or f(2t′)
is in C, too, say f(t′2). The term c′[f(t′2)[c′′[t′′]]] is then in C∗.S, hence in S′ or
in S′′, say S′. However, the terms c′[t′] and c′′[t′′] are below the latter term in the
�≤ ordering, since 2 occurs in c′. So they are both in S′, since S′ is closed hence
downwards-closed. But precisely, c′[t′] is not in S′, contradiction.

Then examine the case where t′ and t′′ are both in S. We recall from Lemma E.6
that @ is continuous, and from Lemma B.1 that i : Y → Y ∗ and cat : Y ∗ × Y ∗ → Y ∗

are continuous. By a simple induction on c′, the function that maps each term t to c′[t]
is then continuous. Similarly, the function that maps t to c′′[t] is continuous. Consider
the map f that sends each term t ∈ T (X) to c′[c′′[t]] = c′[c′′][t]: f is continuous.
Since c′[c′′] is in C2∗, every t ∈ S is such that c′[c′′][t] is in C∗.S, hence in S′ ∪ S′′.
So S is included in f−1(S′ ∪ S′′) = f−1(S′) ∪ f−1(S′′). The latter is a union of two
closed sets, since f is continuous. Since S is irreducible, S is included in f−1(S′) or
in f−1(S′′). If S ⊆ f−1(S′), then in particular t′ ∈ f−1(S′), that is, c′[c′′[t′]] ∈ S′.
However, c′[t′] �≤ c′[c′′[t′]], since 2 occurs in c′′. So c′[t′] is in S′, a contradiction.
Similarly, S ⊆ f−1(S′′) also leads to a contradiction.

So C∗.S is in fact included in S′ or in S′′. We conclude that C∗.S is irreducible.
(3) C is non-empty, 2-generated, and S is empty. Since C is non-empty, it contains

an elementary context f(~u). Since C is closed, hence downwards-closed in ≤ × �≤,
f() is also in C, so f is in C∗.S. Let S′ be the closure of f in T (X). Since C∗.S is
closed, it contains S′. So C∗.S ⊇ C∗.S′. The converse inclusion follows since S = ∅,
whence C∗.S = C∗.S′. By construction, S′ is irreducible closed. If C is 2-linear, then
C∗.S = C∗.S′ is irreducible by case (2). If C is not 2-linear, then C∗.S = C∗.S′ is
irreducible by case (1). 2

Lemma 10.12 (recap). Let X be a topological space. The complement {π of the open
subset denoted by the simple tree expression π = 3U(π1 | π2 | · · · | πn) is given by
structural induction on π by:

• {π = ((F × {2}∗) ∪ (X × ({π∗1{2}?{π∗2{2}? · · · {2}?{π∗n)))∗.∅ if n ≥ 1,
where F is the complement of U in X;

• if n = 0, then {π = (F × {2}∗)∗.∅.

Proof. We first deal with the case n = 0. The terms t that are not in 3U() are
those such that no function symbol occurring in t is in U . So they are the terms whose
function symbols are all in F , i.e., the terms in (F × {2}∗)∗.∅.

Next, we deal with the case n ≥ 1. Let π = 3U(π1 | π2 | · · · | πn). Let
us explain the notation first. Notice that {2} is irreducible closed in T (X) + {2}.
So {2}∗ and {π∗1{2}?{π∗2{2}? · · · {2}?{π∗n are word-products on T (X) + {2},
hence are closed in (T (X) + {2})∗, by Corollary 6.6. Write C = (F × {2}∗) ∪
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(X × ({π∗1{2}?{π∗2{2}? · · · {2}?{π∗n)). We must show that {π = C∗.∅. Notice that
argsC = {π1 ∪ {π2 ∪ · · · ∪ {πn, so argsC is closed.

For every term t ∈ T (X), we show, in one direction, that if t is not in π, then t is in
C∗.∅, by structural induction on t. Write t as f(~t), where ~t = t1t2 · · · tm. Necessarily,
t1, t2, . . . , tm are outside π as well. So t1, t2, . . . , tm are in C∗.∅. Moreover, f 6∈ U
or ~t 6∈ Y ∗π1Y

∗ · · ·Y ∗πnY ∗, where Y = T (X). If f 6∈ U , then f ∈ F , so t = f(~t)
is obtained from the context f(2m), in F × {2}∗, by replacing the holes by terms
from C∗.∅. Therefore t is itself in C∗.∅. Otherwise, ~t is in {π∗1Y ?{π∗2Y ? · · ·Y ?{π∗n, by
Lemma 6.2. (Recall that n ≥ 1.) So one can write ~t as a sequence ~t1 ∈ {π∗1 , followed
by zero or one term s1, followed by a sequence ~t2 ∈ {π∗2 , followed by zero or one term
s2, . . . , followed by zero or one term sn−1, followed by a sequence ~tn ∈ {π∗n. When
there is indeed a term si between ~ti and ~ti+1, say that si exists. Note that those terms
among s1, s2, . . . , sn−1 that do exist are in C∗.∅, since they form a subsequence of ~t
(use the induction hypothesis). Let ~u be the sequence obtained by concatenating ~t1, 2
if s1 exists (and nothing otherwise), ~t2, 2 if s2 exists, ~t3, . . . , 2 if sn−1 exists, and ~tn.
One obtains t by replacing the occurrences of 2 in f(~u) by terms in C∗.∅, and f(~u) is
in X × ({π∗1{2}?{π∗2{2}? · · · {2}?{π∗n) by construction, so t ∈ C∗.∅ again.

Conversely, we claim that no term in C∗.∅ can be in (the language of) π. We start
by proving the following claim (a): for every j, 1 ≤ j ≤ n, no term in {πj can be in
π. Indeed, if t ∈ {πj is in π = 3U(π1 | π2 | · · · | πn), then t has a subterm s ∈ πj .
Then s �≤ t, to t ∈ πj since opens are upwards-closed: contradiction.

We then show that whenever t ∈ C∗.∅, then t cannot be in π = 3U(π1 | π2 |
· · · | πn), by structural induction on t, following the definition of C∗.∅. Assume that
t ∈ π: there is a subterm s = g(~s) of t such that g ∈ U and ~s is in Y ∗π1Y

∗ · · ·Y ∗
πnY

∗. (Again, Y = T (X).) Note that s itself is in π. By Claim (a), t cannot be
in {π1 ∪ {π2 ∪ · · · ∪ {πn = argsC. It follows that t = f(~t) must be obtained from
some elementary context f(~u) in C by replacing the occurrences of the hole 2 by
terms, themselves from C∗.∅. Write ~t as t1t2 · · · tm, ~u as u1u2 · · ·um. There are two
cases, corresponding to the definition of C. If (f, ~u) ∈ F × {2}∗, then f 6∈ U , so
s = g(~s) must be different from t (since g ∈ U ), hence s must be a subterm of some
tj , 1 ≤ j ≤ m. Moreover, uj is a hole, so tj is in C∗.∅. By induction hypothesis tj
cannot be in π, hence its subterm s �≤ tj is not in π either. This is impossible since s
is in π. The other case is when (f, ~u) is inX×({π∗1{2}?{π∗2{2}? · · · {2}?{π∗n). Then
~t is in {π∗1Y ?{π∗2Y ? · · ·Y ?{π∗n, i.e., not in T (X)∗π1T (X)∗ · · · T (X)∗πnT (X)∗, by
Lemma 6.2 (recall that n ≥ 1). So again smust be different from t, hence be a subterm
of some tj , 1 ≤ j ≤ m. Either tj is in some {πi, 1 ≤ i ≤ n (when uj 6= 2), or uj = 2

and tj is in C∗.∅. However, {πi is included in argsC, hence in C∗.∅. So in any case tj
is in C∗.∅. Since tj contains s = g(~s) as a subterm, s �≤ tj and therefore tj is also
in π = 3U(π1 | π2 | · · · | πn). This is impossible by induction hypothesis. Having
reached a contradiction in each case, we conclude. 2

E.3 Checking Inclusion between Tree Steps
Lemma 10.14 (recap). Let X be a topological space, C and C ′ be two irreducible
closed subsets of X , ~P and ~P ′ be two word-products over T (X). Then C?(~P ) ⊆
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C ′
?
(~P ′) iff C ⊆ C ′ and ~P ⊆ ~P ′, or C?(~P ) ⊆ supp ~P ′.

Proof. The if direction is obvious, noting that supp ~P ′ ⊆ C ′
?
(~P ′). Conversely,

assume C?(~P ) ⊆ C ′?(~P ′).

For every pair (f,~t) ∈ C × ~P , since f(~t) ∈ C?(~P ) ⊆ C ′
?
(~P ′), either (f,~t) ∈

C ′ × ~P ′, or (f,~t) is in S = {(f,~t) ∈ X × T (X)∗ | f(~t) ∈ supp ~P ′}. So C × ~P is
included in (C ′ × ~P ′) ∪ S. Since @ is continuous (Lemma E.6) and supp ~P ′ is closed
(Lemma 10.4), S is closed. By Lemma 6.7, ~P is irreducible, so C × ~P is irreducible.
Also, C ′ × ~P ′ is closed, since ~P ′ is closed by Corollary 6.6. So C × ~P is included in
C ′ × ~P ′ or in S.

If C × ~P ⊆ S, then C?(~P ) ⊆ supp ~P ′. Indeed, all the terms f(~t) with f ∈ C and
~t ∈ ~P are in supp ~P ′, by the definition of S. And for every t ∈ supp ~P , fix an arbitrary
f ∈ C (since C, being irreducible, is non-empty) to obtain that f(t) ∈ C?(~P ) hence
f(t) ∈ supp ~P ′; since supp ~P ′ is closed, hence downwards-closed in �≤, t ∈ supp ~P ′.

If C × ~P ⊆ C ′ × ~P ′ on the other hand, then clearly C ⊆ C ′ and ~P ⊆ ~P ′, since
neither C nor ~P is empty. 2

E.4 Checking Inclusion between Tree Steps and Tree Iterators
Lemma E.10 Let Z be a topological space, 2 a hole outside Z, F a closed subset of
Z. Let inst-ofF be the relation from Z∗ to (Z + {2})∗ defined by w inst-ofF w′ iff w
is obtained from w′ by replacing each occurrence of 2 by (possibly distinct) elements
from F .

Then inst-ofF is upper semi-continuous.

Proof. For short, let Y be Z + {2}. For every word-product P = e1e2 · · · en on Y ,
Pre∃inst-ofF (P ) is equal to Pre∃inst-ofF (e1)Pre∃inst-ofF (e2) · · ·Pre∃inst-ofF (en),
and for each atomic expression ej , Pre∃inst-ofF (ej) is computed as follows: Pre∃inst-ofF (F ′

?
)

is ((F ′ r {2}) ∪ F )
? if 2 ∈ F ′ andF ′? otherwise, Pre∃inst-ofF (F ′

∗
) is ((F ′ r {2}) ∪ F )

∗

if 2 ∈ F ′ and F ′∗ otherwise. (Notice that F ′ r {2} = F ′ ∩ Z is closed in Z.) The
rest of the proof is as in Lemma E.7. 2

Lemma E.11 Let X , Z be topological spaces, F be a closed subset of Z. The relation
idX × inst-ofF that relates (f,~t) ∈ X×Z∗ with (f, ~u) ∈ X× (Z+{2})∗ if and only
if ~t inst-ofF ~u is upper semi-continuous.

Proof. As for Lemma E.8, using Lemma E.10 instead of Lemma E.7. 2

Lemma E.12 X be a topological space, 2 a hole outside T (X), C be a closed subset
of X × (T (X) + {2})∗, and S be a closed subset of T (X). The set C[S], defined
as the set of all pairs (f,~t) where ~t is obtained from ~u by replacing each occurrence
of 2 by possibly different terms from S, for some ~u such that (f, ~u) ∈ C, is closed in
X × T (X)∗.

Proof. C[S] is just Pre∃(idX × inst-ofS)(C); then use Lemma E.11. 2
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Lemma 10.15 (recap). LetX be a topological space, C be an irreducible closed subset
of X , ~P be a word-product over T (X), C be a closed subset of X × (T (X) + {2})∗
such that argsC is closed in T (X), where 2 is a hole outside T (X), and S be a closed
subset of T (X).

Then C?(~P ) ⊆ C∗.S iff C × ~P ⊆ C[C∗.S] and supp ~P ⊆ C∗.S, or C?(~P ) ⊆
argsC ∪ S.

Proof. If C × ~P ⊆ C[C∗.S] and supp ~P ⊆ C∗.S, then we claim that every term
t = f(~t) in C?(~P ) is in C∗.S. Indeed, either f ∈ C and ~t ∈ ~P , or t ∈ supp ~P . In the
first case, (f,~t) is obtained from some (f, ~u) ∈ C by replacing each occurrence of 2 in
~u by terms from C∗.S, so f(~t) is again in C∗.S. In the second case, where t ∈ supp ~P ,
then t ∈ C∗.S by assumption.

If C?(~P ) ⊆ argsC ∪ S, then C?(~P ) is trivially included in C∗.S.
Conversely, assume C?(~P ) ⊆ C∗.S. For every f ∈ C and ~t ∈ ~P , f(~t) is in C?(~P ),

hence in C∗.S. So either f(~t) ∈ argsC∪S, or there is an elementary context f(~u) in C
such that ~t is obtained from ~u by replacing the occurrences of 2 by terms from C∗.S.
That is, f(~t) is in argsC ∪ S or in C[C∗.S]. So C × ~P is contained in the union of the
set @−1(argsC∪S), which is closed since @ is continuous, and the set C[C∗.S], which
is closed by Lemma E.12 and Lemma 10.9. On the other hand, by Lemma 6.7, ~P is
irreducible, so C × ~P is irreducible. So C × ~P is included in @−1(argsC ∪ S) or in
C[C∗.S]. If C × ~P ⊆ @−1(argsC ∪ S), then every term f(~t) with f ∈ C and ~t ∈ ~P is
in args∪S; since argsC∪S is closed hence downwards-closed, supp ~P is also included
in argsC ∪ S, and therefore C?(~P ) as well. Otherwise, C × ~P ⊆ C[C∗.S]. Moreover,
supp ~P ⊆ C?(~P ) ⊆ C∗.S. 2

E.5 Checking Inclusion between Tree Iterators
Lemma 10.21 (recap). Let X be a topological space, C and C′ be two closed subsets
of X × (T (X) + {2})∗ such that argsC and argsC′ are closed in T (X), where 2 is a
hole outside T (X), and let S, S′ be two closed subsets of T (X).

Then C∗.S ⊆ C′
∗
.S′ iff C[C∗.S] ⊆ @−1(argsC′∪S′)∪C′[T 2(X)] and argsC∪S ⊆

C′
∗
.S′.
Proof. A warning, first. Although we have used the notation f(~u) for elementary

contexts, we must recall that this is an abbreviation for a pair (f, ~u). One obtains the
term (or context) f(~u) from (f, ~u) by applying @, hence the use of @ in the statement
of the lemma.

If C∗.S ⊆ C′
∗
.S′, then in particular argsC ∪ S ⊆ C∗.S ⊆ C′

∗
.S′. Moreover,

for every (f,~t) ∈ C[C∗.S], f(~t) is in C∗.S. If f(~t) is not in argsC′ ∪ S′, then
(f,~t) is obtained from some elementary context f(~u) = (f, ~u) in C′ by replacing
all occurrences of the hole 2 by terms (in C∗.S, but this is irrelevant). In any case
(f,~t) ∈ @−1(argsC′ ∪ S′) ∪ C′[T (X)], hence in @−1(argsC′ ∪ S′) ∪ C′[T 2(X)]. It
follows that C[C∗.S] ⊆ @−1(argsC′ ∪ S′) ∪ C′[T 2(X)].

Conversely, assume that C[C∗.S] ⊆ @−1(argsC′ ∪ S′) ∪ C′[T 2(X)] and argsC ∪
S ⊆ C′

∗
.S′. Consider any term t = f(~t) in C∗.S. We show by induction on the

definition of C∗.S that t is in C′
∗
.S′. If t ∈ argsC ∪ S (base case), then t ∈ C′

∗
.S′
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by assumption. Otherwise, (f,~t) is obtained from some (f, ~u) ∈ C by replacing each
occurrence of 2 in ~u by elements of C∗.S. Let us make this clear. Write ~t as t1t2 · · · tn,
~u as u1u2 · · ·un. For each j, 1 ≤ j ≤ n, either tj = uj or uj = 2 and tj ∈ C∗.S.
When uj 6= 2, observe that tj = uj is in argsC ⊆ C∗.S. Therefore, in any case,
tj ∈ C∗.S for every j, 1 ≤ j ≤ n. By induction hypothesis, tj ∈ C′

∗
.S′ for every j,

1 ≤ j ≤ n. On the other hand, the existence of (f, ~u), as specified, means that (f,~t) is
in C[C∗.S]. By assumption, (f,~t) is then in @−1(argsC′∪S′), or in C′[T 2(X)]. In the
first case, f(~t) ∈ argsC′ ∪ S′ ⊆ C′

∗
.S′. In the second case, there is a pair (f,~v) ∈ C′

such that ~t is obtained from ~v = v1v2 · · · vn by replacing each vj that equals 2 by the
element tj from ~t. We have noticed that all such elements were in C′

∗
.S′. So f(~t) is in

C′
∗
.S′. 2

Lemma 10.22 (recap). Let X be a topological space, C and C′ be two closed subsets
of X × (T (X) + {2})∗, where 2 is a hole outside T (X), and let S, S′ be two closed
subsets of T (X). Assume also that C is of the form

⋃m
i=1 Ci×Qi, and that C′ is of the

form
⋃n
j=1 C

′
j×Q′j , where each Ci and each C ′j is irreducible closed inX , andQi and

Q′j are word-products over T (X)+{2} for each i, 1 ≤ i ≤ m, and each j, 1 ≤ j ≤ n.
Assume finally that C∗.S is irreducible, and that 2 ∈ Qi for every i, 1 ≤ i ≤ m.

Then C∗.S ⊆ C′
∗
.S′ iff:

• either C∗.S ⊆ argsC′ ∪ S′,

• or argsC∪S ⊆ C′
∗
.S′, and for every i, 1 ≤ i ≤ m, there is a j, 1 ≤ j ≤ n, such

that Ci ⊆ C ′j and Qi[T 2(X)] ⊆ Q′j [T 2(X)].

Proof. Consider the following statements:

(i) C∗.S ⊆ C′
∗
.S′;

(ii) argsC∪S ⊆ C′
∗
.S′, and for every i, 1 ≤ i ≤ m, either C?

i (Qi[C
∗.S]) ⊆ argsC′∪

S′ or for some j, 1 ≤ j ≤ n, Ci ⊆ C ′j and Qi[C∗.S] ⊆ Q′j [T 2(X)].

(iii) either C∗.S ⊆ argsC′ ∪ S′, or argsC ∪ S ⊆ C′
∗
.S′ and for every i, 1 ≤ i ≤ m,

there is a j, 1 ≤ j ≤ n, such that Ci ⊆ C ′j and Qi[T 2(X)] ⊆ Q′j [T 2(X)].

The Lemma claims that (i) is equivalent to (iii). We shall show this by proving that
(i) implies (ii) implies (iii) implies (i).

The differences between (ii) and (iii) are: first, there is an additional disjunct
C∗.S ⊆ argsC′∪S′ in (iii); second, (iii) dispenses with the disjunct C?

i (Qi[C
∗.S]) ⊆

argsC′ ∪ S′ that occurs in (ii); finally, we use Qi[C∗.S] versus Qi[T 2(X)] in the last
inclusion.

Before we start, note that, using Lemma 10.8, argsC =
⋃m
i=1 suppQi ∩ T (X) is

closed, and similarly, argsC′ =
⋃n
j=1 suppQ′j ∩ T (X) is closed: so Lemma 10.21

applies.
(i) ⇒ (ii). By Lemma 10.21, argsC ∪ S ⊆ C′

∗
.S′ and C[C∗.S] =

⋃m
i=1 Ci ×

Qi[C
∗.S] ⊆ @−1(argsC′ ∪ S′) ∪ C′[T 2(X)] = @−1(argsC′ ∪ S′) ∪

⋃n
j=1(C ′j ×

Q′j [T 2(X)]). Therefore, for every i, 1 ≤ i ≤ m, Ci×Qi[C∗.S] ⊆ @−1(argsC′∪S′)∪
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⋃n
j=1(C ′j ×Q′j [T 2(X)]). Since C∗.S is irreducible, and because Qi[C∗.S] is obtained

by syntactically replacing occurrences of 2 by C∗.S (Lemma 10.18), Qi[C∗.S] is a
word-product. So Qi[C∗.S] is irreducible by Lemma 6.7. It follows that Ci×Qi[C∗.S]
is irreducible. So Ci × Qi[C

∗.S] ⊆ @−1(argsC′ ∪ S′) or, for some 1 ≤ j ≤ n,
Ci × Qi[C∗.S] ⊆ C ′j × Q′j [T 2(X)]. In the first case, C?

i (Qi[C
∗.S]) ⊆ argsC′ ∪ S′,

and we conclude.
(iii) ⇒ (i). If C∗.S ⊆ argsC′ ∪ S′, then (i) holds trivially. Otherwise, since

Qi[C
∗.S] ⊆ Qi[T 2(X)], we obtain that for every i, there is a j such that Ci ×

Qi[C
∗.S] ⊆ C ′j×Q′j [T 2(X)]. Therefore C[C∗.S] =

⋃m
i=1 Ci×Qi[C∗.S] ⊆

⋃n
j=1(C ′j×

Q′j [T 2(X)]) = C′[T 2(X)]. Also, argsC∪S ⊆ C′
∗
.S′ by assumption, so by Lemma 10.21

C∗.S ⊆ C′
∗
.S′.

(ii) ⇒ (iii). If C∗.S ⊆ argsC′ ∪ S′, then (iii) is clear. So let us also assume
C∗.S 6⊆ argsC′ ∪ S′.

To show (iii) under these assumptions, and in the view of what (ii) states, it is
enough to show thatC?

i (Qi[C
∗.S]) ⊆ argsC′∪S′ is impossible, and that for every i and

j, if Qi[C∗.S] ⊆ Q′j [T 2(X)], then the stronger inclusion Qi[T 2(X)] ⊆ Q′j [T 2(X)]
holds.

We start with the former. Since 2 ∈ Qi, C∗.S is included in C?
i (Qi[C

∗.S]):
indeed, for every t ∈ C∗.S, f(t) ∈ C?

i (Qi[C
∗.S]) for some (arbitrary) f ∈ Ci,

so t �≤ f(t) is also in C?
i (Qi[C

∗.S]), which is closed hence downwards-closed.
Therefore C?

i (Qi[C
∗.S]) cannot be included in argsC′ ∪ S′, since we assumed that

C∗.S 6⊆ argsC′ ∪ S′.
We proceed with the other claim. Write Qi as the product of atomic expressions

e1e2 · · · em over T (X) +{2}, and similarly Q′j as e′1e
′
2 · · · e′n. Let ei be written as F ∗i

or F ?
i , 1 ≤ i ≤ m, where Fi is closed in T (X) + {2}, and also irreducible in case ei

is written F ?
i . Similarly, write e′j as F ′j

∗ or F ′j
?.

The core of the argument is that: (∗) when 2 ∈ ei, i.e., when ei is of the form {2}?
or F ∗i with 2 ∈ Fi, then ei[C∗.S] is not included in any e′j [T 2(X)], 1 ≤ j ≤ n, unless
2 ∈ e′j as well. Indeed, assume that 2 is not in e′j . So e′j [T 2(X)] = e′j is included
in argsC′. If ei[C∗.S] were included in e′j [T 2(X)], then C∗.S, which is included in
ei[C

∗.S] since 2 ∈ ei, would be included in e′j , hence in argsC′. This would contradict
the fact that C∗.S 6⊆ argsC′ ∪ S′.

It follows that: (∗∗) ei[C∗.S] ⊆ e′j [T 2(X)] iff ei[T 2(X)] ⊆ e′j [T 2(X)]. The if
direction is obvious. In the only if direction, we distinguish four cases. If 2 6∈ ei,
then ei[C∗.S] = ei = ei[T 2(X)], and the claim is clear. If e′j = {2}?, then the
assumption that ei[C∗.S] is included in e′j [T 2(X)] means that ei[C∗.S] is a collection
of sequences of terms of length at most 1; this is then certainly also the case for ei,
hence of ei[T 2(X)], so ei[T 2(X)] ⊆ e′j [T 2(X)]. If e′j = F ′j

∗ where 2 ∈ F ′j , then
e′j [T 2(X)] is just T 2(X)∗ (see Lemma 10.18), and the claim is obvious. Otherwise,
2 is in ei, and not in e′j , so the claim follows from (∗).

The algorithmic characterization of inclusion of word-products given in Lemma 6.10
now allows us to conclude that Qi[C∗.S] ⊆ Q′j [T 2(X)] if and only if Qi[T 2(X)] ⊆
Q′j [T 2(X)]. Concretely, this algorithmic characterization only depends on the answers
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to queries of the form ei[C
∗.S] ⊆ e′j [T 2(X)] in the first case, and on answers to the

corresponding queries ei[T 2(X)] ⊆ e′j [T 2(X)] in the second case. By (∗∗) these
answers must be the same. 2

E.6 Intersections of Tree-Products
Lemma 10.23 (recap). LetX be a topological space. The intersection of two tree steps
P = C?(~P ) and P ′ = C ′

?
(~P ′) is equal to

⋃n
j=1 (C ∩ C ′)?

(~P ′′j ) ∪ (supp ~P ∩ P ′) ∪
(P ∩ supp ~P ′), where ~P ∩ ~P ′ is expressed as a finite union

⋃n
j=1

~P ′′j of word-products
on T (X). If C ∩ C ′ can be written as the union of finitely many irreducible closed
subsets Ci, 1 ≤ i ≤ m, then P ∩P ′ is also equal to the union of the tree steps C?

i (~P ′′j )

(1 ≤ i ≤ n, 1 ≤ j ≤ m), of supp ~P ∩ P ′, and of P ∩ supp ~P ′.
Proof. Let t = f(~t) be any term in P ∩ P ′. Since t ∈ P , t is in supp ~P , or f ∈ C

and ~t ∈ ~P . In the first case, t is in supp ~P ∩ P ′. Similarly, the claim that t′ is in P ′

splits in two cases. The first one gives t′ ∈ P ∩ supp ~P ′. There remains the case where
f ∈ C, ~t ∈ ~P , and f ∈ C ′, ~t ∈ ~P ′. Then f is in C ∩ C ′ (resp., in some Ci, if C ∩ C ′
can be written as a finite union of irreducible closed subsets Ci), and ~t is in some ~P ′′j ,

so t is in (C ∩ C ′)?
(~P ′′j ) (resp., in C?

i (~P ′′j )).
Conversely, supp ~P ∩ P ′ and P ∩ supp ~P ′ are included in P ∩ P ′. It remains to

show that (C ∩ C ′)?
(~P ′′j ) (resp., C?

i (~P ′′j )) is included in P ∩ P ′, namely in both P

and P ′. We only deal with the first case. For every term t in (C ∩ C ′)?
(~P ′′j ) (resp.,

C?
i (~P ′′j )), either t is in supp ~P ′′j or t = f(~t) with f ∈ C ∩ C ′ (resp., f ∈ Ci) and

~t ∈ ~P ′′j . In the first case, the one-element word t is in ~P ′′j , hence in ~P , so t is in supp ~P

and therefore in P = C?(~P ). In the second case, f is in C, ~P is in ~P , so t = f(~t) is in
P = C?(~P ). 2

Let us write suppQ[S] for supp(Q[S]).

Lemma E.13 Let X be a Noetherian space, Q be a word-product over T (X) + {2},
and S be a closed subset of T (X). Then suppQ[S] ⊆ suppQ ∪ S. (See Lemma 10.18
for Q[S].)

Proof. We first claim that for every atomic expression e, supp e[S] ⊆ supp e ∪ S. If
e = {2}?, then supp e[S] = suppS? = S. If e = I? where I is irreducible closed
in T (X), then supp e[S] = supp I? = I = supp e. If e = F∗ and 2 ∈ F , then
supp e[S] = supp ((F r {2}) ∪ S)

∗
= (F r {2}) ∪ S ⊆ F ∪ S = supp e ∪ S. If

e = F∗ and 2 6∈ F , then supp e[S] = suppF∗ = F = supp e.
Write Q as e1e2 · · · en, where each ei is an atomic expression. Then suppQ[S] =⋃n

i=1 supp ei[S] ⊆
⋃n
i=1(supp ei ∪ S) ⊆

⋃n
i=1 supp ei ∪ S = suppQ ∪ S. 2

Lemma 10.24 (recap). Let X be a Noetherian space, and S be a closed subset of
T (X). Let C?(~P ) be a tree step, C be a closed subset of X × (T (X) + {2})∗ of
the form

⋃n
j=1 Cj × Qj , where each Cj is irreducible closed in X and each Qj is a

word-product over T (X) + {2}.
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The intersection of the tree step P = C?(~P ) and of the tree iterator P ′ = C∗.S

is the union of supp ~P ∩ P ′, of P ∩ (S ∪ argsC), and of (C ∩ Cj)?
(~P ∩ Qj [P ′]),

1 ≤ j ≤ n.
If, for each j, one can write C∩Cj as the union of finitely many irreducible subsets

Cij , 1 ≤ i ≤ mj , and if ~P ∩ Qj [P ′] can be expressed as the union of finitely many
word-products ~P`j , 1 ≤ ` ≤ qj , then P ∩ P ′ is also equal to the union of supp ~P ∩ P ′,
of P ∩ (S ∪ argsC), and of C?

ij(
~P`j), 1 ≤ j ≤ n, 1 ≤ i ≤ mj , 1 ≤ ` ≤ qj .

Proof. Let t = f(~t) be any term in P ∩ P ′. Since t ∈ P , t is in supp ~P , or
f ∈ C and ~t ∈ ~P . In the first case, t is in supp ~P ∩ P ′. Similarly, since t ∈ P ′, t is in
S ∪ argsC, or there is an elementary context c ∈ C such that t is in c[P ′]. In the first of
these cases, t is in P ∩ (S ∪ argsC). There remains the case where f ∈ C, ~t ∈ ~P , and
t is in c[P ′] for some elementary context c—necessarily of the form f(~u)—in C. In
that case, ~t is obtained from ~u by replacing each occurrence of 2 by possibly different
terms from P ′, in other words, (f,~t) is in C[P ′]. By Lemma 10.18, f is in Cj and ~t is
in Qj [P ′] for some j. It follows that f is in C ∩Cj and ~t is in ~P ∩Qj [P ′], so t = f(~t)

is in (C ∩ Cj)?
(~P ∩Qj [P ′]). (Additionally, if C ∩Cj can be written as

⋃mj

i=1 Cij and
~P ∩Qj [P ′] can be written as

⋃qj
`=1

~P`j , then t is in C?
ij(
~P`j) for some j, i, and `, too. )

For the converse inclusions, we check that:

• supp ~P ∩ P ′ ⊆ P ∩ P ′: every term in supp ~P ∩ P ′ is in supp ~P hence in P =

C?(~P ), and is also in P ′;

• P ∩ (S ∪ argsC) ⊆ P ∩ P ′: every term in P ∩ (S ∪ argsC) is in S ∪ argsC,
hence in P ′ = C∗.S, and also in P ;

• (C ∩ Cj)?
(~P ∩Qj [P ′]) (resp., C?

ij(
~P`j)) is included in P ∩ P ′.

Every term t in supp(~P ∩Qj [P ′]) (resp., supp ~P`j) is such that the one-element
word t is in ~P ∩ Qj [P ′] (resp., ~P`j , hence also in ~P ∩ Qj [P ′]). Since that one-
element word is in ~P , t is in supp ~P hence in P = C?(~P ), and since it is also
in Qj [P ′], t is in suppQj [P ′], hence in suppQj ∪ P ′ by Lemma E.13, hence in
argsC′ ∪ P ′ ⊆ P ′.
Next, let t be any term of the form f(~t) with f ∈ C ∩ Cj and ~t ∈ ~P ∩ Qj [P ′].
(If instead f ∈ Cij and ~t ∈ ~P`j , then f is in C ∩ Cj and ~t is in P ∩ Qj [P ′].)
Since f is in C and ~t is in ~P , t = f(~t) is in P = C?(~P ). Since f is in Cj and ~t
is in Qj [P ′], by Lemma 10.18 (f,~t) is in C[P ′], so t = f(~t) is in P ′ = C∗.S.

2

Lemma 10.26 (recap). Let X be a Noetherian space, S and S′ be closed subsets of
T (X). Let also C (resp., C′) be a closed subset of X × (T (X) + {2})∗ of the form⋃m
i=1 Ci×Qi (resp.,

⋃n
j=1 C

′
j ×Q′j), where each Ci and each C ′j is irreducible closed

in X and each Qi and each Q′j is a normalized word-product over T (X) + {2}. For
all i, j, write Ci ∩ Cj as

⋃pij
k=1 C

′′
ijk where each C ′′ijk is irreducible closed in X , and

let Q′′ij`, 1 ≤ ` ≤ qij enumerate the elements of MeetE(Qi, Q
′
j), where the oracle E is

defined in Lemma 10.25.
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Then the intersection of the tree iterators P = C∗.S and P ′ = C′
∗
.S′ is the tree

iterator C′′∗.S′′, where C′′ =
⋃
i,j,k,` C

′′
ijk × Q′′ij` and where S′′ is the union of P ∩

(argsC′ ∪ S′) and of (argsC ∪ S) ∩ P ′.
Proof. Let t = f(~t) be in P ∩ P ′, where ~t = t1 · · · tN . We show that t is in

C′′
∗
.S′′ by induction on the size of t. If t is in argsC∪S, then t is in (argsC∪S)∩P ′,

hence in S′′, hence in C′′
∗
.S′′. Similarly if t is in argsC′ ∪ S′. In the remaining

case, there is an elementary context (f, ~u) in C such that ~t is obtained by replacing the
occurrences of 2 in ~u by possibly different terms from P . Hence there is an index i,
1 ≤ i ≤ m, such that f is in Ci and ~u is in Qi, so ~t is in Qi[P ]. Similarly, there is
an index j, 1 ≤ j ≤ n, such that f ∈ C ′j and ~t is in Q′j [P

′]. Since f is in Ci ∩ C ′j ,
f is in C ′′ijk for some k, 1 ≤ k ≤ pij . By Lemma 10.25, ~t is in some element of
MeetE(Qi, Q

′
j)[P ∩ P ′], hence in Q′′ij`[P ∩ P ′] for some `, 1 ≤ ` ≤ qij . Since

every term tk in the list ~t is strictly smaller than t, every tk that is in P ∩ P ′ is also
in C′′

∗
.S′′, by induction hypothesis. It follows that ~t is in Q′′ij`[C

′′∗.S′′]. Therefore

(f,~t) ∈ C ′′ijk ×Q′′ij`[C′′
∗
.S′′] ⊆ C′′[C′′

∗
.S′′] ⊆ C′′

∗
.S′′.

This shows that P ∩P ′ ⊆ C′′
∗
.S′′. Conversely, let t = f(~t) be any term in C′′

∗
.S′′.

We show that t is in P ∩ P ′ by induction on the size of t.
If t is in P ∩ (argsC′ ∪ S′), then t is in P , and in argsC′ ∪ S′ ⊆ C′

∗
.S′ = P ′. If t

is in (argsC ∪ S) ∩ P ′, then t is in P ∩ P ′ by a symmetric argument. This shows that
if t is in S′′, then t is in P ∩ P ′.

If t is in argsC′′, then by Lemma 10.8, argsC′′ =
⋃
i,j,k,` suppQ′′ij` ∩ T (X),

so t is in suppQ′′ij` for some i, j and `. By the last part of Lemma 10.25, t is in
suppQi ∩ suppQ′j , or in suppQi ∩ P ′, or in P ∩ suppQ′j (or in {2}, but that is
impossible since t ∈ T (X)). Hence, using Lemma 10.8 again, t is in argsC ∩ argsC′,
or in argsC ∩ P ′, or in P ∩ argsC′. In any case, t is in P ∩ P ′.

We have proved that if t is in argsC′′∪S′′, then t is in P ∩P ′. The other possibility
for t to be in C′′

∗
.S′′ is for f to be in C ′′ijk and ~t to be obtained from some elementary

context ~u in Q′′ij` (for some i, j, k, `) by replacing the occurrences of 2 by possibly

different terms from C′′
∗
.S′′—hence from P ∩ P ′, by induction hypothesis. Then f is

in bothCi andC ′j , while~t is inQ′′ij`[P∩P ′], hence inQi[P ]∩Q′j [P ′] by Lemma 10.25.
This shows that t = f(~t) is both in C[P ] = C[C∗.S] ⊆ C∗.S = P and in C′[P ′] ⊆ P ′.

2
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