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ABSTRACT

At lower bit-rate encoding video in real-time with a reason-
able viewing quality is challenging. Content adaptive per-title
encoding is usually leveraged for OTT/VOD delivery by se-
lecting the optimal resolutions and qualities of a given video
using multiple encodings. Built on such powerful resolution
selection principles, this paper introduces an on the fly res-
olution prediction without requiring multiple encoding with
the help of machine learning which is suitable for real-time
video delivery. Two machine learning networks are defined
based on the resolution of the previous decision period. Three
types of machine learning classifiers: weighted SVM, Ran-
dom Forests (RF), and custom-designed Multi-Layer Percep-
tron (MLP) are tested. Suitability of classifiers for real-time
resolution prediction is discussed based on the accuracy, BD-
rate performances, and impact of misclassification on encod-
ing performance and hardware implementability. The pro-
posed solution offers a promising average bit-rate savings up-
to 12.6%.

Index Terms— Machine learning, Real-time delivery,
Resolution prediction, Random Forest(RF), MLP

1. INTRODUCTION

Video delivery optimization is thriving in this day and age to
address rapid expansion in video consumption. There are sev-
eral types of video consumption in different scenarios. Appli-
cations such as On-demand service, point-to-point communi-
cation has been an integral part of modern-day Internet usage.
Depending on usage scenarios, real-time (live) video delivery
is challenging, considering many network conditions and user
consumption methods [1].

Point-to-point video streaming methods deliver video to
its members at a given bit-rate in real-time. In this scenario,
Constant Bit-Rate (CBR) video encoding methods are ap-
plied. Depending on bit-rate, Quantization Parameter (QP)
is derived using pre-analysis. Delivery of a video below a
specific bit-rate for a particular resolution introduces signifi-
cant distortion resulting from high QP. One option to achieve
acceptable encoding at such resolution is to send a lower num-
ber of pixels through resolution or frame-rate down-sampling

[2]. The bit-rate below which switching to a lower resolu-
tion is better depends on the temporal and spatial features of
video content. The newest video standard in progress Versa-
tile Video Coding (VVC) [3] incorporates an option to select
a resolution in a normative way through Reference Picture
Resampling (RPR)[4] considering these factors.

Content adaptive encoding techniques have been widely
adapted to account for network conditions and video char-
acteristics. Typically, adaptive streaming techniques such as
DASH [5] and HLS [6] provide a multi-representation deliv-
ery framework for video depending on network conditions. In
[7], recommendations are provided on ranges of bit-rates for
different resolutions for the OTT scenario. While these appli-
cations focus on general thumb rule, it is asserted that some
contents can have a different complexity of scenes that might
behave differently.

Professional solutions such as [8] are already leveraging
such principle, based on the creation of a bit-rate/resolution
ladder for various video profiles maximizing quality for VOD
applications. Netflix, a popular OTT content provider, pro-
posed dynamic optimizer in video coding [9]: each scene is
encoded at multiple down-scaled resolutions and a range of
bit-rates. The convex hull of bit-rate/qualities is produced
to select the best operating resolution at a given scene us-
ing metrics such as PSNR and VMAF [10] after up-scaling
all encoded videos to the full resolution. In [11], deep video
pre-coding is performed with a design of CNN based multi-
ple downscaling filter network operating before video trans-
mission. Resolution selection is carried out based on the pre-
coding network-based single RD point of different scales. It
has reduced complexity compared to Netflix based optimizer,
which needs several rate-distortion points per scale factor.

The above methods encode the source video at many dif-
ferent resolutions and bit-rates before transmission. Then
RD-based selection of the best quality video at a given net-
work condition is selected. These techniques are designed
for on-demand delivery. In the case of a point-to-point live
delivery system, it would be computationally expensive and
introduce unmanageable latency to encode the video at dif-
ferent bit-rates and then select the best resolution based on
the convex hull.

There are solutions [12][13] based on scalable video cod-



ing (SVC) [14] by encoding multiple layers of resolution to
deliver video at suitable resolution for different network con-
ditions. In these methods, instead of optimizing the encoding
resolution, the SVC framework is used for the selection of
suitable resolution based on general thumb rule for delivery.

To practically find better-performing resolution for a real-
time video delivery system, particularly at a given lower bit-
rate scenario, a potential solution would be to have a pri-
ory decision based on pre-analysis to predict the best encod-
ing resolution for the decision period. Considering potential
VVC’s support of switching to a lower resolution, it is more
relevant than ever to have a simple but effective method guid-
ing switching to lower resolution with pre-analysis of initial
frames in the live point-to-point video coding scenario.

This paper proposes a novel on the fly adaptive resolution
prediction for a decision period before encoding process with-
out the RD-score requirement for each resolution allowing the
saving of multiple resolution encodings. Then, computation-
ally less expensive real-time and hardware friendly machine
learning, weighted SVM, RF’s, and custom-designed MLP,
are studied. Features from the first few frames are used to
predict better performing resolution for a decision period. In
this paper, we consider two resolutions, the original resolu-
tion, and down-scaled resolution by a factor of 4 in terms of
area. This prediction is interpreted as a binary classification
problem in the context of machine learning. Depending on the
resolution of the previous decision period, two separate clas-
sifiers Network-HR and Network-LR, are employed. During
training, a weight-based label is proposed to avoid misclassifi-
cation resulting in quality loss. A professional HEVC encoder
is employed for testing in this paper. Labeling can be formu-
lated for any codec, including VVC in the future. Accuracy
of classifiers on these algorithms is discussed, and respective
BD-rate comparison to reference without adaptive resolution
selection is carried out. Finally, the impact of misclassifica-
tion is analyzed.

The paper is organized as follows. Section 2 details the
Real-time resolution selection algorithm. Section 3 explains
the learning algorithms and optimization process. The results
are discussed in Section 4. Section 5 details the conclusion
drawn.

2. REAL-TIME RESOLUTION SELECTION

This section introduces the proposed adaptive real-time reso-
lution selection as a binary classification problem. Two ma-
chine learning networks are employed, depending on the reso-
lution of the previous decision period. One of these networks
predicts a suitable resolution for the current decision period.

2.1. Resolution selection as a classification problem

Prediction of better resolution on the fly for a decision period
in a video is challenging. The difficulty arises mainly due
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Fig. 1. Two machine learning networks are used based on the
resolution of previous decision period

to the unavailability of every frame of a decision period of a
video for pre-analysis. A general thumb-rule in terms of bit-
rate, QP, or any other parameter for resolution selection would
miss content-based adaptation. Hence, alternative solutions
such as machine learning algorithms are better to approach to
predict operating resolution for the current scene in real-time
scenarios.

Key questions addressed in this paper are when to change
the resolution, how often to check for resolution change,
and how to change resolution. Real-time implementations
in HEVC, CBR encoding mode, employs a speedy real-time
compatible pre-analysis step to guide the encoding process.
Features derived from pre-analysis before the main encoder
begins for the current decision period is utilized for predicting
better resolution. On how often to change resolution, a caveat
needs to be addressed for codecs that do not support norma-
tive Reference Picture Resampling. Codecs other than VVC
consider resolution change as starting of new bit-streams. The
decision period is set as the Intra period or scene change in
this paper to avoid potential playback issues. The downsam-
pling filter applied in this paper is a professional three tap-
linear filter. Since the upscaling happens at decoder end and
the majority would do linear filtering, the same is assumed for
ground truth formation for the dataset.

2.2. Machine learning Networks for classification

In this paper, two machine learning networks are proposed.
One of the networks is used depending on the resolution of
the previous decision period. Fig. 1 describes these networks.
Two machine learning networks are used mainly to address
potential adaptive rate-control interference. This interference
would potentially happen if we assume original resolution at
the starting of each decision period and then decide to switch
to a lower resolution or not. Consider lower resolution is
selected multiple times in a row, utilization of encoder pre-
analysis data used for resolution selection from original reso-
lution has to be re-scaled or re-calculated. Two learning net-
works are used so that the re-calculation of rate control pre-
analysis is required only during resolution change.
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2.2.1. Resolution selection mechanism

If the previous decision period resolution was original (HR)
resolution, learning Network-HR is employed. Network-HR
works as a classifier, which could predict to retain resolu-
tion (RHR) or downscale the resolution (DHR). Learning
Network-LR is employed if the previous decision period res-
olution was the downscaled resolution. Network-LR would
work as a classifier that would predict to retain lower resolu-
tion (RLR) or upscale to a higher resolution (ULR).

2.2.2. Classification labels

The selection of best resolution for the training process, i.e.,
label formation required for supervised classification meth-
ods, could be made in many ways. One way is to measure
the quality (Q) of upscaled LR and HR against the source and
select a better one for the label (Li) formation in-terms of
PSNR. Label Li, for a sample, is given as,

Li =

{
0, if QHRi −QLRi ≤ 0

1, if QHRi
−QLRi

> 0
(1)

3. LEARNING ALGORITHM DESIGN

In this section, dataset creation and training processes for
learning algorithms are detailed.

3.1. Training and testing samples

Data selection for training samples for a machine learning al-
gorithm needs to be plentiful and diverse. In the case of res-
olution prediction, only one sample is available for each Intra
period. Compared to other machine learning proposals for
video compression, which mostly operate at CTU level, the
amount of samples available for resolution selection is sparse
by orders of magnitudes. With the consideration of data spar-
sity, videos are collected from Xiph [15] for CIF, and Full HD
and open-source Vimeo videos listed in [16] are selected for
both full HD and 4K.

CIF Full-HD 4K
Bit-rates 2-20 kbps 0.2-1 Mbps 1-5Mbps

Table 1. Bit-rate ranges for CIF, Full-HD and 4K

For a specific operating resolution, bit-rates are selected
in such a way that there is a benefit in resolution selection.
Fig. 2 shows the probability of retaining original resolution of
video pHR for bit-rates given in Table 1. It shows selected bit-
rates are most useful for each operating resolution in-terms of
having the ability to choose LR or HR.

Dataset creation, training, and testing are performed sep-
arately for each resolution. The selected Intra period is 2 sec-
onds. Labels are formed at each Intra period. A total of 8
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Fig. 2. Probability of retaining higher resolution at tested bit-
rates.Point 2-9 in x-axis are in the range of selected bit rates
in Table 1. Point 10 and 1 are 10% higher and lower bit-rates
than point 2 and 9 respectively

different bit-rates are encoded for each video in the specified
bit-rate range. Training samples are pre-processed to make
the dataset at each resolution balanced for each class. In total,
9832 samples for CIF, 4464 samples for Full-HD, and 3624
samples for 4K are trained.

In addition, testing samples are created for measuring the
performance of machine learning algorithms. The following
sequences are tested for each resolution. For CIF, SVT videos
[17] combined to form 2000 frames with 5 different scenes
is tested. For full-HD SVT video combined to form 1000
frames with five different scenes, three full-HD videos from
JCT-VC common conditions [18] are tested. For 4K videos,
five videos from JCT-VC common conditions are tested.

3.2. Feature selection

Features selected for a learning algorithm needs to be repre-
sentative of the purpose. In this paper, it is an adaptive resolu-
tion prediction for a decision period. It is important to select
minimal features that successfully select a better resolution to
avoid an increase in complexity leading to an implementation
difficulty in the real-time encoding scenario. The objective
is to use features from the first few frames to decide a reso-
lution for the whole decision period. Available features are
evaluated as follows.

3.2.1. Evaluation of available features

Evaluation of useful features can be availed through methods
such as a wrapper method [19] based on F-score of the net-
work for each and combinations of features, filter models [20]
such as mutual information [21] and correlation and regular-
ization of model during training process [22].
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In this paper, mutual information is used at first to min-
imize massive data such as motion vector, the histogram of
pixels, and variance since its much faster than the wrapper
method to select features. Then F-score for SVM is calcu-
lated for reduced features to verify the usefulness of features.
After this analysis, the final selected features are listed below.
They are divided into four categories Rate control based, Spa-
tial features, Temporal features, Encoder pre-analysis based
features. In total, 43 features are selected.

Rate-Control Based features: This section of features
is relevant to the rate control algorithm to keep the encoded
bit-stream under targeted bit-rate.
• XRate−control−features: Three features Initial QP, Frame

rate and targeted bit-rate
Spatial features: Spatial features such as histogram of pixel
values and variance of CTU’s of Intra frame are taken into
account with mutual information in consideration.
• XvarandXhist: Maximum, minimum and average of

Variance of all CTU’s and histogram of all pixels of the
Intra frame respectively

Temporal features: Temporal features are needed to deter-
mine the temporal complexity of the scene. Motion vectors
which can be made available from pre-analysis are extracted.
Besides, the scene change index of each frame of the first
GOP in the decision period is taken into account. The scene
change index is derived from fast motion estimation of low-
ered resolution of the source video.
• XMvx and XMvy: Motion vectors in Horizontal and ver-

tical direction of middle picture in first GOP for 16x16
block size. Ten maximum and the average motion vector
in both horizontal and vertical directions are selected.

• Xscene−change−score: Scene change score of each frame.
Encoder pre-analysis based features: For the CBR mode
of encoding, HEVC encoders have a very fast pre-analysis
where QP estimation for all pictures in a GOP and overall
probability of Intra is predicted.
• XQP−est: Estimated QP of all frames in the initial GOP

• Xp−intra : Estimated Intra probability

3.3. Training process

A training process aims to maximize the accuracy of the clas-
sification rate on the test set of a training dataset. The train-
ing process for best resolution prediction for the decision pe-
riod/scene is tested with three techniques: linear SVM, RF,
and Multi-layer Perceptron (MLP) classifier. These three
learning techniques are computationally less expensive and
require no additional hardware requirement. Section 6 shows
the performance of these classifiers with an angle to hardware
implementation. The impact of misclassification on PSNR is
considered as the sample weight to improve accuracy.

3.3.1. Sample weight generation for mis-classification

The impact on PSNR arising from misclassification is as-
sessed using the difference in PSNR. Let R/C be the mis-
classification when the classifier chooses to retain resolution
R instead of changing resolution C compared. In such case
weight for that sample Wsi is defined as,

Wsi =
RPSNR − CPSNR

RPSNR
∗ Crate

Rrate
(2)

This weight account for the varying effect of misclassifi-
cation and successfully avoids misclassification with very
high PSNR differences. The ratio of bit-rate is to account
for bit-rate difference induced by encoder control compared
to the target rate. In case of Network-HR misclassifica-
tion is retaining resolution instead of downscaling or vice
versa (RHR/DHR), (DHR/RHR) and for Network-LR it
is retaining resolution instead of upscaling and vice versa
(RLR/ULR), (ULR/RLR) . In the next subsections design
of learning algorithms is given in detail.

3.3.2. SVM and Random Forests

SVM tries to find a unique separating hyper-plane that max-
imizes the margin between two classes. In this paper, a non-
linear SVM is utilized with a polynomial kernel with a degree
of 2, and a kernel coefficient of 1/n features is applied.

RF classifiers employ many single correlated decision
trees, and the final decision is made by gathering results from
all single decision trees and de-correlating them. In this paper,
RF classifiers are used since they are lightweight and have a
better trade-off with accuracy and over-fitting training data.
The configuration adopted in the context of resolution predic-
tion is: tree depth of 12, and the number of estimators is 25.

3.3.3. Multi-layer Perceptron (MLP) classifier design

The proposed MLP is designed in such a way that it is hard-
ware friendly. For hardware, it is desirable to have similar
mathematical operations for decisions coming from differ-
ent networks. Hence, the target is to use the identical net-
work topology for all resolution and both Network HR and
LR. With this in mind and considering design guidelines are
given in [23], an MLP network with four fully connected hid-
den layers with neuron sizes (15,11,7,5) was selected for both
Network-HR and Network-LR. The activation function used
was the Rectified Linear Unit (RELU). The applied loss func-
tion was the mean squared error with sample weights derived
in the last section. L1 regularization for the first layer was
added to avoid over-fitting. Adam (Adaptive Moment Estima-
tion) optimizer was adopted for weight update as it requires
less memory and its easiness in handling hyper-parameter op-
timization. For hardware implementations MLP are better
than RF as the same architecture for hardware computation
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remains for all resolutions. On the other hand, an RF classi-
fier might have a different architecture for each update of a
dataset and each resolution.

4. RESULTS

In this section, the performance of learning algorithms ex-
plained in the previous section is discussed in two contexts.
At first, the accuracy of networks is analyzed. Then the BD-
rate performance of each network and the impact of misclas-
sification on the performance of encoding is studied.

4.1. Accuracy of Networks

One can measure the accuracy of machine learning networks
by calculating precision (P), Recall (R), and F1-score (F1)
[24]. Results for SVM, Random-forest, and MLP networks
for each resolution are reported in Table 2. Each selected
network achieved excellent overall accuracy. RF classifier
outperforms both SVM and MLP in terms of its accuracy
mainly due to similar topology constraint put-forward for
MLP across all conditions.

Precision(%) Recall(%) F1-score(%)
Conditions CIF FHD 4K CIF FHD 4K CIF FHD 4K

SVM
Network-HR 79 75 75 81 75 75 80 75 75
Network-LR 79 76 72 80 76 75 79 76 74

RF
Network-HR 89 89 87 82 89 87 85 89 87
Network-LR 85 86 87 82 86 85 83 86 86

MLP
Network-HR 86 85 87 84 87 87 86 86 87
Network-LR 80 82 87 80 89 87 80 85 87

Table 2. Accuracy of the network for both learning network-
HR and LR based on resolution of previous period

4.2. BD-Rate performance

In this section, the BD-rate performance of each machine
learning algorithm is tested against the reference encoding of
high resolution. A comparison to ground truth resolution is
reported in Table 3. Test sequences mentioned in the Section
3 are tested for BD-rate performance. Bit-rates tested were
four bit-rates in the range of 5-20kbps for CIF, 0.1-1Mbps for
Full-HD, and 1-5Mbps for 4K videos. Table 3 shows that dy-
namic resolution selection introduces bit-rate gain at the same
quality. The potential to gain bit-rate at the same quality in-
creases with the resolution. Overall BD-rate performance of
MLP algorithm and RF are close, but SVM has lower BD-rate
savings because of its lower accuracy. In some sequences, the
BD-rate savings of learning algorithms are higher than ground
truth. This is because, in some cases, even-though wrong de-
cisions are made bit-rate of LR is much smaller than HR, and
the difference in quality is small.

Bit-rate Ground MLP SVM RF
saving /Sequence truth

CIF
SVT -3.61% -3.11% -3.12% -3.15%

Park joy -6.62% -5.57% -4.79% -5.9%
Crowdrun1 -0.62% -0.61% -0.6% -0.61%
Crowdrun2 -1.03% -1.02% -0.89% -1.02%

Flags -1.01% -1.01% -1.01% -1.01%
Overall -2.58% -2.27% -2.08% -2.33%

Full-HD
SVT -2.52% -2.46% -1.02% -2.46%

ParkJoy -3.8% -3.8% -0.42% -3.8%
Basket Ball -3.2% -1.38% -1.38% -1.38%
Crowdrun -3.74% -4.08% -2.71% -3.87%
Overall -3.31% -2.93% -1.38% -2.88%

4K-sequences
Catrobot -3.25% -3.25% -1.54% -3.06%

Tango -13.26% -13.26% -13.26% -13.26%
Campfire -8.73% -6.69% -6.01% -7.01%

Foodmarket -14.16% -14.16% -9.5% -14.16%
Rollercoster -25.61% -25.61% -8.09% -21.28%

Overall -13% -12.59% -7.52% -11.75%

Table 3. BD-rate at same quality compared to single higher
resolution at CIF, FUll-HD and 4K

4.3. Impact of misclassifications

Misclassification of the trained network in resolution switch
incurs a loss of quality compared to the ground truth. In the
context of this paper, the main quality loss that is to be stud-
ied is when the lower resolution was falsely selected instead
of the original resolution. This sub-section aims at analyz-
ing maximum loss against a reference with only high reso-
lution. The condition for this occurrence would be the false
positive in Network-HR and false negative in Network-LR.
In this analysis, maximum PSNR loss (dPSNR(C/R)max)
and BD-rate loss (BD loss(C/R)max) due to misclassifica-
tion in tested sequences are reported in Table 4.

Misclassification losses MLP SVM RF
CIF

dPSNR(C/R)max(dB) 0.24 0.24 0.17
BD loss(C/R)max 8.52% 8.52% 8.01%

Full-HD
dPSNR(C/R)max(dB) 0.6 0.63 0.59
BD loss(C/R)max 8.45% 9.91% 8.14%

4K-sequences
dPSNR(C/R)max(dB) 0.26 1.12 0.26
BD loss(C/R)max 3.11% 24.51% 3.11%

Table 4. Maximum PSNR loss and Bit-rate loss during mis-
classification

Overall performance analysis shows that MLP and RF
classifiers perform better than SVM in resolution prediction at
the starting of an intra-period. RF classifier sometimes edges
MLP mainly due to similar architecture constraints put for-
ward in designing MLP for its hardware friendliness. The
same topology would have the same template of a code port
for efficient weight multiplication for prediction. As men-
tioned earlier, RF classifier could pose challenges in hardware
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implementation by changing its tree architecture in case of
updating algorithm with more data, which would require a
change of the code suitable for hardware implementation.

5. CONCLUSION

In the context of real-time content-adaptive video encoding,
this paper introduces an on the fly resolution prediction suit-
able for lower bit-rate scenarios where multiple encoding for
selecting better resolution is not desirable. In the proposed
framework, machine learning classifiers SVM, RF, and de-
signed MLP are studied for different video resolutions. De-
pending on the resolution of the previous Intra-period, two
machine learning networks are defined. Original resolution
and downscaled resolution by a factor of 4 in terms of the
area are tested in this paper. The performance of Learning
algorithms has been evaluated in terms of accuracy, BD-rate,
and misclassification impact for CIF, Full-HD, and 4K res-
olution. MLP and RF classifiers are better than SVM with
MLP more suitable for hardware implementations. Adaptive
resolution prediction using MLP introduces an average bit-
rate gain of 2.3% - 12.6% depending on the resolution of the
video.
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