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Abstract

We show that the space of subprobability measures, equivalently of subprob-
ability continuous valuations, on an algebraic (resp., continuous) complete
quasi-metric space is again algebraic (resp., continuous) and complete, when
equipped with the Kantorovich-Rubinstein quasi-metrics dKR (unbounded) or
daKR (bounded), themselves asymmetric forms of the well-known Kantorovich-
Rubinstein metric. We also show that the dKR-Scott and the daKR-Scott
topologies then coincide with the weak topology. We obtain similar results
for spaces of probability measures, equivalently of probability continuous val-
uations, with the daKR quasi-metrics, or with the dKR quasi-metric under an
additional rootedness assumption.

Keywords: Quasi-metric, continuous valuation, Kantorovich-Rubinstein
quasi-metric, weak topology
2020 MSC: 54H30, 28A33, 46E27

1. Introduction

Kantorovich-Rubinstein metrics are L1-like metrics on spaces of proba-
bility measures, and have a number of pleasing properties. Notably, they
are complete separable if the underlying metric space of points is complete
separable, and in that case they metrize the weak topology.

We adapt this to the case of quasi-metrics, which are asymmetric vari-
ants on the notion of metrics. Specifically, we are interested in Kantorovich-
Rubinstein-like quasi -metrics. In the first of two kinds, we will define the
distance from the measure µ on the quasi-metric space X, d to ν as a supre-
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mum over all 1-Lipschitz continuous maps f : X → R+ of max(
∫
x∈X f(x)dµ−∫

x∈X f(x)dν, 0). The usual definition in metric spaces would use absolute
value instead of max( , 0); the two definitions are equivalent when d is a
metric, but the former definition is more suited to the asymmetric case of
quasi-metric spaces.

As we will see, the results about completeness and the weak topology
mentioned earlier generalize neatly to the quasi-metric case. However, this
comes at a price. First, there will be a number of subtle points about quasi-
metric spaces that one needs to be aware of, and which do not crop up with
metric spaces (see Section 2.2). Second, the reader should be warned that
the technical developments are rather different than in the classical, metric
case, and more demanding.

We also work with continuous valuations instead of measures: those are
close cousins, which tend to interact more naturally with topology. In the
case that will interest us most, namely on continuous complete quasi-metric
spaces, bounded continuous valuations and τ -smooth measures can safely
be equated; we will give the precise statement in Section 2.3. Hence, and
although the title of this paper mentions measures, we will work with con-
tinuous valuations, almost exclusively, throughout; almost, because we will
need to cross back the bridge leading to measures in a crucial step (see Sec-
tion 4.5).

This work is part one of a study of quasi-metrics on spaces of so-called pre-
visions [14], of which this is the linear case. The non-linear cases, which model
not just probabilistic choice, but also various forms of non-deterministic
choice and mixed, probabilistic and non-deterministic choice, will be explored
in subsequent parts1.

Outline. We recapitulate some preliminary definitions and notions in Sec-
tion 2. This is probably most needed for the theory of quasi-metric spaces and
their d-Scott topology, which is relatively new and not entirely well-known.
For example, a Lipschitz map may fail to be continuous with respect to these
topologies. As another illustration, among the quasi-metric spaces, we have
the complete spaces (called Yoneda-complete in [3]), the strictly smaller class
of continuous complete spaces, the even smaller class of algebraic complete
spaces, and the even smaller class of Smyth-complete spaces—and all those

1An unpublished version of that work is available on arXiv [17]. The present paper
roughly covers Sections 10, 6.3, and 11—except for 11.9 and 11.10—in that order.
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notions would coincide on metric spaces.
We introduce the unbounded and bounded versions, dKR and daKR, of our

so-called Kantorovich-Rubinstein quasi-metrics on continuous valuations in
Section 3. In Section 4, we show that the spaces of (continuous, resp. sub-
probability, resp. probability) valuations on a Lipschitz regular space X, d
are complete, when equipped with the dKR or the daKR quasi-metric. Using
formal balls and measure extension theorems, we obtain similar completeness
theorems for spaces of (sub)probability valuations if X, d is continuous com-
plete instead. Note that this does not say (yet) that our spaces of valuations
are continuous complete in that case.

Before we deal with continuity, we look at the more constrained case of
algebraic complete quasi-metric spaces. In Section 5, we show that the space
of subprobability valuations on an algebraic complete quasi-metric space is
again algebraic complete, both with dKR and with daKR. The case of proba-
bility valuations is more intricate, and we show that the space of probability
valuations on an algebraic complete space X, d is again algebraic complete,
either for the daKR quasi-metric with no additional assumption, or for the dKR

quasi-metric under the extra assumption that X, d has a root, a situation that
encompasses the case where the quasi-metric d is bounded.

An additional case where we obtain algebraic completeness is when X, d
is complete metric. In that case, as we show in Section 7, our dKR and
daKR quasi-metrics are metrics already. In that, they coincide with the usual
Kantorovich-Rubinstein metrics, and algebraicity is for free—all complete
metric spaces are algebraic complete.

In Section 8, we show that the space of subprobability valuations on a
continuous complete quasi-metric space X, d is again continuous complete,
both in dKR and in daKR, and that the same happens to the space of probability
valuations under the usual assumptions: using the daKR quasi-metric, or the
dKR quasi-metric in case X, d is rooted (or the dKR metric in case d is a
metric).

In Section 9, we show that the daKR-Scott topologies on spaces of (sub)prob-
ability valuations on algebraic complete spaces, and more generally on con-
tinuous complete spaces, coincide with the weak topology. The dKR-Scott
topology differs, even on complete metric spaces, and we recall a counterex-
ample due to Kravchenko [26]. We conclude by listing a few open problems
in Section 10.

We sum up our main results in the following tables; “cc” abbreviates
“continuous complete”, and “ac” abbreviates “algebraic complete”.
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Y = V≤1X X ac X cc d-Scott=weak?

dKR Y ac Y cc no
daKR Y ac Y cc yes

Y = V1X X ac X cc d-Scott=weak?

dKR Y complete, Y complete, no
not known to be ac∗ not known to be cc∗

daKR Y ac Y cc yes
(∗ unless X, d has a root, e.g. d is bounded, or X, d is metric.)

Related work. Prokhorov was the first who showed that the space of proba-
bility measures on a Polish space is itself Polish [28]. In other words, given
a complete separable metric space X, d, there is a metric on the space of
probability measures on X that makes it complete and separable, and whose
open ball topology is the weak topology [28, Lemma 1.4]. Instead of the
Prokhorov (also called Lévy-Prokhorov) metric, one can use the Vaserštĕın

metric W p, defined when p ≥ 1 by W p(µ, ν) =
(

inf$
∫
(x,y)∈X2 d

p(x, y)d$
)1/p

,

where $ ranges over the probability measures on X2 whose first and second
marginals are µ and ν respectively. If X, d is complete separable, then W p is
complete separable. A nice proof of this completeness result is due to Bolley
[2]. The topology of W p is also the weak topology—if d is bounded.

The Kantorovich-Rubinstein duality theorem states thatW 1(µ, ν) is equal
to dKR(µ, ν) = suph |

∫
hdµ −

∫
hdν|, where h ranges over the 1-Lipschitz

maps from X to R+, provided that X is Polish. This was originally proved
for compact Hausdorff spaces [23, 24], and later extended to Polish spaces
[8, 5, 12]. The latter sup formula is our model for our so-called Kantorovich-
Rubinstein quasi-metrics, to be introduced in Section 3. As a consequence,
dKR is also a complete separable metric on the space of probabilities on a
complete separable metric space.

The only Kantorovich-Rubinstein duality theorem that we know on quasi-
metric spaces is Theorem 5 of [15]2, and it only applies to so-called symcom-
pact spaces X, d, namely to quasi-metric spaces such that X is compact in
the symmetrized metric dsym(x, y) = max(d(x, y), d(y, x)). We have no such
duality theorem on the more general classes of quasi-metric spaces which we

2Another attempt is given in Section 11.10 of [17], but this is a very weak result.
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will consider here, and therefore we will provide direct proofs of complete-
ness. In the metric case, there is at least one direct proof of completeness of
dKR, namely without any detour through another metric, due to Kravchenko
[26], but our proof is necessarily very different.

Finally, we should mention Ph. Sünderhauf’s results [29]. He introduces a
so-called sup quasi-metric, which is somewhat similar to the usual total vari-
ation metric. He then shows that the spaces of continuous valuations (resp.,
probability, subprobability continuous valuations) on an algebraic dcpo X
are algebraic complete quasi-metric spaces under the sup quasi-metric [29,
Theorem 3.4]. Although the sup quasi-metric is very different from the dKR

and daKR metrics on metric spaces, we will see that it is exactly our quasi-
metric d1KR on posets: see Remark 3.6.

2. Preliminaries

2.1. General topology

We refer the reader to [16] for basic notions and theorems of topology,
domain theory, and in the theory of quasi-metric spaces. The book [13] is the
standard reference on domain theory, and I will assume known the notions of
directed complete posets (dcpo), Scott-continuous functions, the way-below
relation�, continuous posets and dcpos, and so on. Additionally, this paper
will heavily rely on [20] for additional results on quasi-metric spaces, on
[18] for formal ball monads, and on [19] for results on spaces of Lipschitz
continuous maps; we will recall the required results as needed.

We write ↑↑x for the set of points y such that x� y. The Scott topology
on a poset consists of the Scott-open subsets, namely the upwards-closed
subsets U such that every directed family that has a supremum in U must
intersect U . A Scott-continuous map between posets is one that is monotonic
and preserves existing directed suprema, and this is equivalent to requiring
that it is continuous for the underlying Scott topologies.

The focus of the present paper is on quasi-metric spaces. Chapters 6
and 7 of [16] are a recommended read on that subject. The paper [20] gives
additional information on quasi-metric spaces, which we will also rely on.

As far as topology is concerned, compactness does not imply separation.
In other words, we call a subset K of a topological space compact if and
only if every open cover of K contains a finite subcover. This property is
sometimes called quasicompactness.
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We shall always write ≤ for the specialization preordering of a topological
space: x ≤ y if and only if every open neighborhood of x is also an open
neighborhood of y, if and only if x is in the closure of y. As a result, the
closure of a single point y is also its downward closure ↓y. In general, we
write ↓A for the downward closure of any set A, ↑A for its upward closure,
and ↑x = ↑{x}. A saturated subset of a topological space is a set that is
the intersection of all its open neighborhoods; equivalently, it is an upwards-
closed subset in its specialization preordering.

In a topological space, ↑A is also equal to the saturation of A, namely
the intersection of all the open neighborhoods of A. If K is compact, then
so is its saturation ↑K, and we shall usually use the letter Q for compact
saturated subsets.

2.2. Quasi-metric spaces

Let R+ be the set of extended non-negative reals. A quasi-metric on a set
X is a map d : X×X → R+ satisfying: d(x, x) = 0; d(x, z) ≤ d(x, y)+d(y, z)
(triangular inequality); d(x, y) = d(y, x) = 0 implies x = y. The pair X, d is
then called a quasi-metric space. Given X, d, there is an ordering ≤d on X
given by x ≤d y if and only if d(x, y) = 0.

A trivial example is R+ itself, with the quasi-metric dR defined by dR(x, y) =
0 if x ≤ y, dR(+∞, y) = +∞ if y 6= +∞, dR(x, y) = x − y if x > y and
x 6= +∞. Then ≤dR is the ordinary ordering ≤.

Every metric is a quasi-metric. At the other end of the spectrum, every
partial ordering ≤ on a set X defines a quasi-metric d≤ by d≤(x, y) = 0 if and
only if x ≤ y, +∞ otherwise. Conversely, every quasi-metric d that takes its
values in {0,+∞} is equal to d≤ for some unique ordering ≤ (namely ≤d).

The space of formal balls B(X, d) of a quasi-metric space X, d is probably
the single most important artifact that has to be considered in the study of
quasi-metric spaces [31, 10]. This has a very simple definition: a formal ball
is syntax for an actual ball, namely a pair (x, r) where x ∈ X (the center)
and r ∈ R+ (the radius). B(X, d) comes with an ordering ≤d+ defined by
(x, r) ≤d+ (y, s) if and only if d(x, y) ≤ r − s.

Given a quasi-metric space X, d, the open ball Bd
x,<r with center x ∈ X

and radius r ∈ R+ is {y ∈ X | d(x, y) < r}. The open ball topology is the
coarsest containing all open balls, and is the standard topology on metric
spaces.

In the realm of quasi-metric spaces, the d-Scott topology is the topology
we shall always consider, unless specified otherwise. This is defined as follows.
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We equip B(X, d) with the Scott topology of ≤d+ . There is an injective map
ηX : x 7→ (x, 0) from X to B(X, d), and the d-Scott topology is the coarsest
that makes it continuous. This allows us to see X as a topological subspace
of B(X, d).

The specialization ordering of X, d, whether with the open ball topology
or with the d-Scott topology, is just ≤d. This does not cause any conflict with
the notation ≤d+ for the ordering on B(X, d), since ≤d+ is in fact the ordering
deduced from a quasi-metric d+ on B(X, d), defined by d+((x, r), (y, s)) =
max(d(x, y)− r + s, 0).

The d-Scott topology coincides with the familiar open ball topology when
d is a metric [16, Proposition 7.4.46], or when X, d is Smyth-complete [16,
Proposition 7.4.47]. It coincides with the generalized Scott topology of [3]
when X, d is an algebraic complete quasi-metric space [16, Exercise 7.4.69]
(see below for the definition of “algebraic complete”). On R+, the dR-Scott
topology coincides with the Scott topology of the usual ordering ≤: its
non-trivial opens are the open intervals ]r,+∞], r ∈ R+. The d+-Scott
topology also coincides with the familiar Scott topology on B(X, d), see [18,
Lemma 3.6] or [16, Exercise 7.4.53].

We say that X, d is complete (or Yoneda-complete) if and only if B(X, d)
is a dcpo. We take this as a definition, although this is really a theorem, due
to Kostanek and Waszkiewicz, see [25] and [16, Theorem 7.4.27].

Outside complete spaces, we would like to avoid certain pathologies and
we will therefore concentrate on standard quasi-metric spaces [20, Section 2].
X, d is standard if and only if for every s ∈ R+, a directed family of formal
balls (xi, ri)i∈I has a supremum in B(X, d) if and only if (xi, ri + s)i∈I has a
supremum in B(X, d). Writing the supremum of the former as (x, r), we then
have that r = infi∈I ri, and that the supremum of the latter is (x, r + s)—
this holds not only for s ∈ R+, but for every s ≥ −r. In particular, the
radius map (x, r) 7→ r is Scott-continuous from B(X, d) to Rop

+ (R+ with the
opposite ordering ≥), and for every s ∈ R+, the map +s : (x, r) 7→ (x, r+s)
is Scott-continuous from B(X, d) to itself [20, Proposition 2.4]. Moreover,
and we will use that fact several times, the set Vε = {(x, r) ∈ B(X, d) | r < ε}
is Scott-open for every ε > 0, whenever X, d is standard. This is because Vε
is the inverse image of the Scott-open subset [0, ε[ of Rop

+ by the radius map.
All complete quasi-metric spaces are standard. Also, all metric spaces

are standard. Even posets, which can all be seen as quasi-metric spaces, by
defining d as d≤, are all standard [20, Proposition 2.2]. Note that R+, dR is
standard, being complete.
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Directed complete posets (dcpos) come into further varieties: algebraic
dcpos, continuous dcpos, notably, and that extends to algebraic posets and
continuous posets. The same happens with quasi-metric spaces. We say that
X, d is a continuous quasi-metric space if any only if B(X, d) is a continuous
poset. Hence it is continuous complete if and only if B(X, d) is a continuous
dcpo. This is again originally a theorem, not a definition [25].

For the sake of completeness, let us recall what a continuous poset is.
The way-below relation� on a poset is defined by x� y if and only if every
directed family that has a supremum above y contains an element above x.
(We will often say “above” for “larger than or equal to”, and similarly for
“below”.) A basis of a poset is a subset B such that every point x of the
poset is the supremum of a directed family of elements of B. A continuous
poset is a poset with a basis. In that case, the poset itself is a basis, namely
the largest one.

A point x ∈ X is a center point if and only if Bd+

(x,0),ε is Scott-open in

B(X, d) for every ε > 0. The notion coincides with that of a d-finite point,
provided that X, d is standard, see Lemma 5.7 of [20]. A standard quasi-
metric space X, d is algebraic if and only if every point is a d-limit of a
Cauchy net of d-finite points, or equivalently of a Cauchy-weightable net of
d-finite points—see the comments after Example 5.3 of [20]—or equivalently,
that for every x ∈ X, there is a directed family (xi, ri)i∈I of formal balls
such that each xi is a center point and whose supremum is (x, 0). Another
equivalent definition is: a standard quasi-metric space X, d is algebraic if
and only if the open balls Bd+

(x,0),ε, where x ranges over the center points and

ε > 0, form a base of the Scott topology on B(X, d) [20, Definition 5.11,
Theorem 5.16]. Every (standard) algebraic quasi-metric space is continuous.
Moreover, for every center point z, we have (z, t) � (y, s) if and only if
d(z, y) < t− s; more generally, (y, s)� (x, r) if and only if there is a center
point z and some t ∈ R+ such that (y, s) ≤d+ (z, t) and d(z, x) < t − r [20,
Proposition 5.18].

In a metric space, those complications vanish, as every point is a center
point. Every point is a center point in a Smyth-complete space as well.
However, one has to be careful with R+, dR already, whose center points
are the elements of R+, but not +∞. And indeed, the dR-Scott topology
coincides with the Scott topology, in which BdR

+∞,<ε = {+∞} is not open.
Given a d-Scott open subset U of X, there is a largest Scott open subset

Û of B(X, d) such that U = Û ∩X. (We silently equate X with a subspace of
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B(X, d).) The assignment U 7→ Û is monotonic; being left-adjoint to the map
V 7→ V ∩X, it preserves arbitrary meets (namely, interiors of intersections),
but it satisfies no other remarkable property in general. A quasi-metric space
X, d is Lipschitz regular if and only if that assignment is Scott-continuous.
This is defined and studied in Section 4 of [18]. If that is the case, then X, d
is finitarily embedded in B(X, d); see [11] for more information on finitary
embeddings. For algebraic complete quasi-metric spaces, Lipschitz regular-
ity is equivalent to having relatively compact balls, a stronger requirement
than local compactness. This displays Lipschitz regularity as a rather strong
requirement. However, the space of formal balls B(X, d) of any quasi-metric
space X, d, with the d+ quasi-metric, is Lipschitz regular [18, Theorem 4.12].

Given a map f from a quasi-metric space X, d to a quasi-metric space
Y, ∂, f is α-Lipschitz if and only if ∂(f(x), f(y)) ≤ αd(x, y) for all x, y ∈ X.
(When α = 0 and d(x, y) = +∞, we take the convention that 0.+∞ = 0.)

For every α ∈ R+, and every map f : X, d→ Y, ∂, let Bα(f) map (x, r) ∈
B(X, d) to (f(x), αr) ∈ B(Y, ∂). Then f is α-Lipschitz if and only if Bα(f)
is monotonic.

Contrarily to the case of spaces with the open ball topology, a Lipschitz
map need not be continuous. For example, on posets seen as quasi-metric
spaces through d(x, y) = 0 if x ≤ y, +∞ otherwise, the Lipschitz maps
are the monotonic maps [20, Example 6.1], and the continuous maps, with
respect to the underlying d-Scott topologies, are the Scott-continuous maps.

We say that a map f : X, d → Y, ∂ between quasi-metric spaces is α-
Lipschitz continuous if and only if Bα(f) is Scott-continuous [18, Defini-
tion 2.3]. While “α-Lipschitz continuous” should be thought of as one ep-
ithet, not as the conjunction of “α-Lipschitz” and “continuous” in general,
we have the following. When both X, d and Y, ∂ are standard, f : X → Y
is α-Lipschitz continuous if and only if f is both α-Lipschitz, and contin-
uous from X with its d-Scott topology to Y with its ∂-Scott topology [18,
Proposition 2.5].

Given any topological space X, a map h : X → R+ is lower semicontinu-
ous if and only if it is continuous from X to R+ with its Scott topology. We
write LX for the space of all lower semicontinuous maps from X to R+, with
the Scott topology of the pointwise ordering.

Given any standard quasi-metric space X, d, every α-Lipschitz continu-
ous map from X, d to R+, dR is lower semicontinuous. We write Lα(X, d), or
simply LαX, for the subspace of LX consisting of all α-Lipschitz continuous
maps. We also write L∞(X, d), or L∞X, for the space of all Lipschitz con-
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tinuous maps, namely
⋃
α∈R+

Lα(X, d), still with the subspace topology from
LX.

Given a map h : X → R+, where X, d is standard, define h′ : B(X, d) →
R ∪ {+∞} by h′(x, r) = h(x) − αr. Then h is α-Lipschitz if and only if
h′ is monotonic, and h is α-Lipschitz continuous if and only if h′ is Scott-
continuous [18, Lemma 2.7].

The Lipschitz continuous maps from a standard quasi-metric space to
R+, dR enjoy the usual closure properties [20, Proposition 6.7]: if f is β-
Lipschitz continuous then αf is αβ-Lipschitz continuous; if f is α-Lipschitz
continuous and g is β-Lipschitz continuous then f + g is (α + β)-Lipschitz
continuous; if f , g are α-Lipschitz continuous, then so are min(f, g) and
max(f, g); if (fi)i∈I is any family of α-Lipschitz continuous maps, then the
pointwise supremum supi∈I fi is also α-Lipschitz continuous; if α ≤ β and f is
α-Lipschitz continuous then f is β-Lipschitz continuous; every constant map
is α-Lipschitz continuous. Moreover, if f : X → Y is α-Lipschitz continuous
and g : Y → Z is β-Lipschitz continuous, then g◦f is αβ-Lipschitz continuous
[18, Lemma 2.9].

2.3. Continuous valuations

A valuation on a topological space X is a map ν : OX → R+, where OX
is the lattice of open subsets of X, satisfying the following laws: ν(∅) = 0
(strictness), U ⊆ V implies ν(U) ≤ ν(V ) (monotonicity), ν(U) + ν(V ) =
ν(U ∪ V ) + ν(U ∩ V ) (modularity). A continuous valuation is additionally
Scott-continuous, namely: for every directed family (Ui)i∈I of open subsets
of X, ν(

⋃
i∈I Ui) = supi∈I ν(Ui) [21, 22].

A subprobability (resp., probability) valuation is a continuous valuation
ν such that ν(X) ≤ 1 (resp., ν(X) = 1). A valuation is bounded if and only
if ν(X) < +∞.

A τ -smooth measure on a topological space X is, by definition, a measure
whose restriction to OX is Scott-continuous. Hence every τ -smooth measure
on X yields a continuous valuation by restricting it to OX. Conversely, every
continuous valuation ν extends to a (necessarily τ -smooth) measure on all
Borel sets of any LCS-complete space X [7, Theorem 1.1]. An LCS-complete
space is a space homeomorphic to a Gδ subset of a locally compact sober
space. That extension is unique if ν is bounded, see [7, Lemma 18.1] for
example.

All continuous complete quasi-metric spaces are LCS-complete in their
d-Scott topology [7, Theorem 4.1]). The continuous complete quasi-metric
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spaces will be the most important class of quasi-metric spaces we consider in
this paper. In this setting, one should then remember that bounded contin-
uous valuations and bounded τ -smooth measures are in bijective correspon-
dence, and can be considered to be equivalent notions. This also applies to
the case of continuous dcpos, which are locally compact and sober, hence
also LCS-complete.

One should also note that every measure on a hereditarily Lindelöf space,
in particular on a second-countable space, is τ -smooth [1, Theorem 3.1]. It
follows that, for second-countable LCS-complete spaces (which happen to be
M. de Brecht’s quasi-Polish spaces [6], and which include all Polish spaces),
there is a bijection between bounded continuous valuations and bounded
measures. This shows how close the two notions are.

There is a notion of integral
∫
x∈X h(x)dν of any lower semicontinuous

map h with respect to any continuous valuation ν, which one may define by
using the Choquet formula

∫ +∞
0

ν(h−1(]t,+∞]))dt. That integral is linear in
both h and ν, meaning that it commutes with non-negatively weighted finite
sums, and it is Scott-continuous also both in h and ν. The Choquet formula
is of course due to Choquet [4, Chapter VII, Section 48.1], and its use in the
theory of continuous valuations is due to Tix [30].

Given a continuous valuation ν on a space X, and a continuous map
f : X → Y , the push-forward f [ν] is the continuous valuation defined by
f [ν](V ) = ν(f−1(V )). The following change of variable formula holds:∫

y∈Y
h(y)df [ν] =

∫
x∈X

h(f(x))dν.

This is a simple consequence of the Choquet formula.
A prevision is a Scott-continuous map G : LX → R+ that is positively

homogeneous, namely such that G(ah) = aG(h) for all a ∈ R+ and h ∈
LX. A prevision G is sublinear, resp. superlinear, resp. linear if and only
if it satisfies the law G(h + h′) ≤ G(h) + G(h′) (resp., ≥, resp. =). Given
a continuous valuation ν, the map h 7→

∫
x∈X h(x)dν is a linear prevision.

Conversely, given any linear prevision G, the map U 7→ G(χU), where χU
is the characteristic function of the open set U , is a continuous valuation.
Moreover, the two operations are inverse of each other.

A prevision G is subnormalized (resp., normalized) if and only if G(α.1+
h) ≤ α + G(h) holds (resp., =) for all α ∈ R+ and h ∈ LX, where 1 is the
constant 1 map. The above isomorphism cuts down to one between subprob-
ability continuous valuations and and subnormalized linear previsions, and

11



between probability continuous valuations and normalized linear previsions.
We note that, for a linear prevision G, G is subnormalized if and only if
G(1) ≤ 1, and normalized if and only if G(1) = 1.

We write VX for the set of all continuous valuations on X, V≤1X for the
subset of all subprobability valuations and V1X for the set of all probability
valuations. We will later use quasi-metrics dKR and daKR on those sets, and
we will therefore consider the dKR-Scott and daKR-Scott topologies. In the
meantime, a natural topology on those spaces is the so-called weak topology
(short for “Scott weak∗ topology”), with subbasic open sets [h > b] defined
as the set of those ν such that

∫
x∈X h(x)dν > b, h ∈ LX, b ∈ R+.

One should observe that those spaces are also dcpos under the stochastic
ordering (µ ≤ ν if and only if µ(U) ≤ ν(U) for every open subset U of X),
and that VX and V≤1X are even continuous dcpos if X is a continuous dcpo
[13, Theorem IV-9.16]. That result is an extension of a theorem by C. Jones
that shows a similar result for V≤1Y [21, Corollary 5.4].

3. The Kantorovich-Rubinstein quasi-metric on continuous valua-
tions

We define the Kantorovich-Rubinstein quasi-metric dKR, and its bounded
variant daKR, and we study some of their basic properties. We will also explore
alternative, equivalent definitions. Our basic quasi-metric is the following.

Definition 3.1 (dKR). Let X, d be a quasi-metric space. The Kantorovich-
Rubinstein quasi-metric (for short, the KRH quasi-metric) on VX is defined
by:

dKR(ν, ν ′) = sup
h∈L1X

dR

(∫
x∈X

h(x)dν,

∫
x∈X

h(x)dν ′
)
. (1)

In general, on any space of previsions on X, we define:

dKR(F, F ′) = sup
h∈L1X

dR (F (h), F ′(h)) . (2)

This is a quasi-metric on any standard quasi-metric space, as remarked at the
end of Section 6 of [20]. We give a slightly expanded argument in Lemma 3.7
below.
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Remark 3.2. The name of that quasi-metric stems from analogous defini-
tions of metrics on spaces of measures. The classical Kantorovich-Rubinstein
metric between two bounded measures µ and µ′ is given as:

sup
h

∣∣∣∣∫
x∈X

h(x)dµ−
∫
x∈X

h(x)dµ′
∣∣∣∣ ,

where h ranges over the set L1(X) of 1-Lipschitz maps from X to R+, and,
depending on authors, is sometimes also constrained to be below 1. (We in-
troduce the corresponding variant of dKR, where h has to be bounded from
above by some constant, in Definition 3.4 below.) This formula can be
rewritten as suph d

sym
R (F (h), F ′(h)). In the case of metric (as opposed to

quasi-metric) spaces, we shall see in Lemma 7.1 that the use of the sym-
metrized metric dsymR is irrelevant, and the distance between µ and µ′ is equal
to suph dR

(∫
x∈X h(x)dν,

∫
x∈X h(x)dν ′

)
. Additionally, on a metric space, all

1-Lipschitz maps h are automatically continuous.

Remark 3.3. Let X be a poset, with ordering ≤. We see it as a quasi-metric
space under the associated {0,+∞}-valued quasi-metric d≤. Then X, d≤ is
standard. For every map h : X → R+, h is α-Lipschitz (for any α > 0) if and
only if it is monotonic: indeed h(x) ≤ h(y) + αd≤(x, y) (for all x, y ∈ X)
is equivalent to h(x) ≤ h(y) (for all x ≤ y in X). The d≤-Scott topology
coincides with the Scott topology on X [20, Example 1.8], so the α-Lipschitz
continuous maps from X, d≤ to R+, dR are exactly the Scott-continuous maps
from X to R+.

In this case, we claim that dKR is also {0,+∞}-valued on VX. Indeed,
either ν ≤ ν ′ and dKR(ν, ν ′) = 0, as can be checked directly (or see Lemma 3.7
below), or there is an open set U such that ν(U) > ν ′(U). In that case, for
every r ∈ R+, rχU is Scott-continuous, hence 1-Lipschitz continuous, so that
dKR(ν, ν ′) ≥ dR(rν(U), rν ′(U)) = r(ν(U)− ν ′(U)). Since r is arbitrary large,
dKR(ν, ν ′) = +∞. We have in fact shown that dKR(ν, ν ′) is equal to 0 if
ν ≤ ν ′, to +∞ otherwise, so dKR is the quasi-metric associated with the
stochastic ordering on VX (provided that X is a poset).

Definition 3.4 (Laα(X, d), daKR). Let X, d be a quasi-metric space, and a ∈
R+, a > 0. Let Laα(X, d), or LaαX, be the subspace of those α-Lipschitz
continuous maps from X, d to R+ with values in [0, αa].
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The a-bounded Kantorovich-Rubinstein quasi-metric on VX is defined
by:

daKR(ν, ν ′) = sup
h∈La1X

dR

(∫
x∈X

h(x)dν,

∫
x∈X

h(x)dν ′
)
. (3)

In general, on any space of previsions on X, we define:

daKR(F, F ′) = sup
h∈La1X

dR (F (h), F ′(h)) . (4)

The dKR quasi-metric is interesting mostly on subspaces of subprobability,
resp. probability valuations, as we explain now.

Remark 3.5. For any two continuous valuations ν and ν ′ such that ν(X) >
ν ′(X), dKR(ν, ν ′) = +∞. Indeed, let h = a.1, a ∈ R+: the right-hand side
of (1) is larger than or equal to a(ν(X)− ν ′(X)) for every a, hence equal to
+∞, by taking suprema over a. This incongruity disappears on the subspace
V1X of probability valuations.

Remark 3.6. Following up on Remark 3.3, we evaluate daKR on VX when
X is a poset. The result is very different: daKR(ν, ν ′) is indeed equal to
a. supU∈OX dR(ν(U), ν ′(U)). When a = 1, this is the sup quasi-metric con-
sidered by Sünderhauf [29].

This is proved as follows. From the first part of Remark 3.3, the maps
h ∈ La1X are the Scott-continuous maps from X to R+ that are bounded by
a. We first verify that daKR(ν, ν ′) ≤ a. supU∈OX dR(ν(U), ν ′(U)). We use

the Choquet formula: daKR(ν, ν ′) = suph∈La1(X,d) dR(
∫ +∞
0

ν(h−1(]t,+∞]))dt,∫ +∞
0

ν ′(h−1(]t,+∞]))dt), and that is equal to suph∈La1(X,d) dR(
∫ a
0
ν(h−1(]t,+∞]))dt,∫ a

0
ν ′(h−1(]t,+∞]))dt) since h−1(]t,+∞]) is empty for every t ≥ a, for every

h ∈ La1(X, d). If there is an h ∈ La1(X, d) such that
∫ a
0
ν(h−1(]t,+∞]))dt =

+∞ but
∫ a
0
ν ′(h−1(]t,+∞]))dt < +∞, then it is easy to see that there is

an open set U of the form h−1(]t,+∞]) such that ν(U) = +∞, and nec-
essarily ν ′(U) < +∞, so a. supU∈OX dR(ν(U), ν ′(U)) = +∞, and there-
fore the inequality is trivial. Otherwise, for every h ∈ La1(X, d), either∫ a
0
ν(h−1(]t,+∞]))dt =

∫ a
0
ν ′(h−1(]t,+∞]))dt = +∞, in which case we have

dR(
∫ a
0
ν(h−1(]t,+∞]))dt,

∫ a
0
ν ′(h−1(]t,+∞]))dt) = 0, or

∫ a
0
ν(h−1(]t,+∞]))dt <

+∞, in which case dR(
∫ a
0
ν(h−1(]t,+∞]))dt,

∫ a
0
ν ′(h−1(]t,+∞]))dt) is equal

to max(
∫ a
0

(ν(h−1(]t,+∞]))−ν ′(h−1(]t,+∞])))dt, 0); since ν(h−1(]t,+∞]))−
ν ′(h−1(]t,+∞]) ≤ supU∈OX dR(ν(U), ν ′(U)), the inequality follows. In the

14



converse direction, the map aχU is Scott-continuous, hence in La1(X, d) for
every U ∈ OX, so a. supU∈OX dR(ν(U), ν ′(U)) ≤ daKR(ν, ν ′).

For the next lemma, we need to know that for every map f : X → R+

from a standard quasi-metric space X, d to R+, there is a largest α-Lipschitz
continuous map f (α) below f . When f is lower semicontinuous, the fam-
ily (f (α))α∈R+

is a chain, and supα∈R+
f (α) = f , where suprema are taken

pointwise [20, Theorem 6.17].

Lemma 3.7. Let X, d be a standard quasi-metric space, and a ∈ R+ r {0}.
For all previsions F , F ′ on X, the following are equivalent: (a) F ≤ F ′;
(b) dKR(F, F ′) = 0; (c) daKR(F, F ′) = 0. In particular, dKR and daKR are
quasi-metrics.

Proof. (a)⇒ (b). For every h ∈ L1(X, d), F (h) ≤ F ′(h), so dR(F (h), F ′(h)) =
0.

(b) ⇒ (c). If dKR(F, F ′) = 0, then F (h) ≤ F ′(h) for every h ∈ L1(X, d),
hence also for every h ∈ La1(X, d).

(c) ⇒ (a). Let f be an arbitrary element of LX. For every α > 0,
1/αmin(aα, f (α)) is in La1(X, d), so F (1/αmin(aα, f (α))) ≤ F ′(1/αmin(aα, f (α))).
Multiply by α: F (min(aα, f (α))) ≤ F ′(min(aα, f (α))). The family (f (α))α>0,
hence also the family (min(aα, f (α)))α>0, is a chain whose supremum is f .
Using the fact that F and F ′ are Scott-continuous, F (f) ≤ F ′(f), and as f
is arbitrary, (a) follows.

This allows us to show that if dKR(F, F ′) = dKR(F ′, F ) = 0 then F = F ′

(and similarly with daKR), which is the only non-trivial axiom of quasi-metrics
we have to verify. 2

The following shows that we can restrict to bounded maps h ∈ L1(X, d).
A map h is bounded if and only if there is a constant a ∈ R+ such that for
every x ∈ X, h(x) ≤ a.

Lemma 3.8. Let X, d be a quasi-metric space. For all previsions F , F ′ on
X,

dKR(F, F ′) = sup
h bounded ∈L1X

dR (F (h), F ′(h)) .

Proof. For every h ∈ L1(X, d), h is the pointwise supremum of the chain
(min(h, a))a∈R+

, where min(h, a) : x 7→ min(h(x), a). The right-hand side of
the claimed inequality is clearly less than or equal to dKR(F, F ′). In the
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converse direction, it suffices to show that for every r ∈ R+ such that r <
dKR(F, F ′), there is a bounded map h′ ∈ L1(X, d) such that r < dR(F (h′),
F ′(h′)). Since r < dKR(F, F ), there is an h ∈ L1(X, d) such that r < dR(F (h),
F ′(h)). This implies that F (h) > F ′(h) + r, a fact that one verifies easily by
going through the three cases of the definition of dR.

Since F is Scott-continuous, there is an a ∈ R+ such that F (min(h(x), a)) >
F ′(h) + r ≥ F ′(min(h(x), a)) + r, so we can take h′ = min(h, a). 2

We obtain the following relation between the dKR and daKR quasi-metrics.

Lemma 3.9. Let X, d be a quasi-metric space. Order quasi-metrics on any
space of previsions pointwise. Then (daKR)a∈R+,a>0 is a chain, and for all
previsions F , F ′, dKR(F, F ′) = supa∈R+,a>0 d

a
KR(F, F ′).

Proof. Clearly, for 0 < a ≤ a′, La1(X, d) is included in La′1 (X, d), so
daKR(F, F ′) ≤ da

′
KR(F, F ′). Therefore (daKR)a∈R+,a>0 is a chain. Similarly,

daKR(F, F ′) ≤ dKR(F, F ′). Finally, the supremum supa∈R+,a>0 d
a
KR(F, F ′) is

equal to supa∈R+,a>0,h∈La1(X,d) dR(F (h), F ′(h)) = suph bounded ∈L1(X,d) dR(F (h), F ′(h)),
and that is equal to dKR(F, F ′) by Lemma 3.8. 2

The following characterizes the ordering on B(VX, dKR) and on B(VX, daKR),
and more generally on B(Y, dKR) and on B(Y, daKR), where Y is any space of
previsions on X.

Lemma 3.10. Let X, d be a standard quasi-metric space, let F , F ′ be two
previsions on X, and let r, r′ be two elements of R+. The following are
equivalent:

1. (F, r) ≤d+KR (F ′, r′);

2. r ≥ r′ and, for every h ∈ L1(X, d), F (h)− r ≤ F ′(h)− r′;

3. r ≥ r′ and, for every h ∈ Lα(X, d), α > 0, F (h)− αr ≤ F ′(h)− αr′.

Given a ∈ R+ r {0}, the same equivalence holds with dKR replaced by daKR,
L1(X, d) by La1(X, d) and Lα(X, d) by Laα(X, d) throughout.

Proof. We only give the proof for dKR, as the case of daKR is identical.

1 ⇒ 2. If (F, r) ≤d+KR (F ′, r′), then for every h ∈ L1(X, d), dR(F (h),
F ′(h)) ≤ r− r′. This implies that r ≥ r′, on the one hand, and on the other
hand that either F (h) = F ′(h) = +∞ or F (h) 6= +∞ and F (h) − F ′(h) ≤
r − r′; in both cases, F (h)− r ≤ F ′(h)− r′.
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1 ⇒ 3. For every h ∈ Lα(X, d), α > 0, 1/αh is in L1(X, d), so item 2
implies F (1/αh)− r ≤ F ′(1/αh)− r′. Multiplying by α, and using positive
homogeneity, we obtain item 3.

3 ⇒ 1. For α = 1, we obtain that for every h ∈ L1(X, d), F (h) −
r ≤ F ′(h) − r′. If F ′(h) = +∞, then dR(F (h), F ′(h)) = 0 ≤ r − r′. If
F ′(h) 6= +∞, then F (h) cannot be equal to +∞, so dR(F (h), F ′(h)) =
max(F (h)− F ′(h), 0) ≤ max(r − r′, 0) = r − r′. 2

Because the definition of dKR only involves Lipschitz continuous maps,
we inquire whether continuous valuations, or rather the associated linear
prevision, can be recovered from its action on just L∞(X, d).

Definition 3.11 (L-prevision). Let X, d be a quasi-metric space. An L-
prevision on X is any continuous map G from L∞(X, d) to R+ such that
G(αh) = αG(h) for all α ∈ R+ and h ∈ L∞(X, d).

The notions of sublinearity, superlinearity, linearity, subnormalization, and
normalization, carry over to L-previsions, taking care to quantify over L∞(X, d)
instead of LX. For a linear L-prevision G, G is subnormalized (resp., nor-
malized) if and only if G(1) ≤ 1 (resp., =).

Every continuous valuation ν defines a linear prevision h ∈ LX 7→∫
x∈X h(x)dν, and by restricting it to L∞X, we obtain a linear L-prevision.

Conversely, for every L-prevision G, let G(h) = supα∈R+
G(h(α)). We will

show that restriction and G 7→ G are inverse of each other, and we first need
the following.

Lemma 3.12. Let X, d be a standard quasi-metric space. For every map
h : X → R+, for all a, α ∈ R+, ah(α) = (ah)(aα).

Proof. We have ah(α) ≤ (ah)(aα), because ah(α) is aα-Lipschitz continuous,

below ah, and because (ah)(aα) is the largest aα-Lipschitz continuous function

below ah. When a > 0, by the same argument, 1/a(ah)(aα) ≤ h(α), so

ah(α) = (ah)(aα). The same equality holds, trivially, when a = 0. 2

Proposition 3.13. Let X, d be a standard quasi-metric space.

1. For every G ∈ LPX, G is a prevision.

2. The maps G ∈ LPX 7→ G ∈ PX and F ∈ PX 7→ F|L∞X ∈ LPX are
inverse of each other.
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3. If G is sublinear, resp. superlinear, resp. linear, resp. subnormalized,
resp. normalized, then so is G.

4. Conversely, if G is sublinear, resp. superlinear, resp. linear, resp. sub-
normalized, resp. normalized, then so is G.

Proof. 1. We must first show that G is Scott-continuous, i.e., continuous
from LX to R+, both with their Scott topologies. Let h ∈ LX such that
G(h) > a. Since h is the supremum of the chain (h(α))α∈R+

, there is an α ∈
R+ such that G(h(α)) > a. Therefore h(α) is in the open subset G−1(]a,+∞])
of L∞X. By definition of a subspace topology, there is a (Scott-)open subset
W of LX such that G−1(]a,+∞]) = W ∩ L∞X. Then h(α) is in W , and
since h ≥ h(α), h is also in W . Moreover, for every g ∈ W , g(β) is in W
for some β ∈ R+, hence in G−1(]a,+∞]). It follows that G(g(β)) > a, and
therefore G(g) > a: hence W is an open neighborhood of h contained in

G
−1

(]a,+∞]). We conclude that the latter is open in LX, which implies
that G is continuous.

In order to show that G is positively homogeneous, if a > 0, then
G(ah) = supβ∈R+

G((ah)(β)) = supα∈R+
G((ah)(aα)) = supα∈R+

G(ah(α)) (by

Lemma 3.12) = aG(h). When a = 0, G(0) = 0. Therefore G is a prevision.
2. For every G ∈ LPX, the restriction of G to L∞X maps every Lips-

chitz (say, α-Lipschitz) continuous map g : X → R+ to supβ∈R+
G(g(β)). For

every β ≥ α, g is β-Lipschitz continuous, and g(β) is the largest β-Lipschitz
continuous map below g, so g(β) = g. It follows that supβ∈R+

G(g(β)) = G(g),

showing that G|L∞X = G.
Note that this says that G and G coincide on Lipschitz continuous maps,

a fact that we will use several times below.
In the converse direction, for every F ∈ PX, (F|L∞X) maps every func-

tion h ∈ LX to supα∈R+
F (h(α)) = F , because F is Scott-continuous and

supα∈R+
h(α) = h.

3. For all g, h ∈ LX, for all α, β ∈ R+, g(α) + h(β) ≤ (g + h)(α+β),
because the left-hand side is an (α + β)-Lipschitz continuous map below
g + h, and the right-hand side is the largest. If G is superlinear, it follows
that G(g) +G(h) = supα,β∈R+

G(g(α)) +G(h(β)) ≤ supα,β∈R+
G(g(α) +h(β)) ≤

supα,β∈R+
G((g + h)(α+β)) = G(g + h), hence that G is superlinear, too.

If G is sublinear, then we need another argument. We wish to show that
G(g + h) ≤ G(g) + G(h). To this end, let a be an arbitrary element of
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R+ such that a < G(g + h). Since G is Scott-continuous (item 1 above),

g + h is in the Scott-open set G
−1

(]a,+∞]). Now g + h = supα∈R+
g(α) +

supα∈R+
h(α) = supα∈R+

(g(α)+h(α)), since addition is Scott-continuous on R+,

so g(α) + h(α) is in G
−1

(]a,+∞]) for some α ∈ R+. The function g(α) + h(α)

is 2α-Lipschitz continuous. Item 2 above shows that G coincides with G on
Lipschitz continuous maps, so G(g(α) + h(α)) = G(g(α) + h(α)). Since G is
sublinear, the latter is less than or equal to G(g(α)) + G(h(α)), so G(g(α)) +
G(h(α)) > a. Since G(g) ≥ G(g(α)), and similarly with h, we obtain that
G(g) +G(h) > a. Since a is arbitrary, G(g) +G(h) ≥ G(g + h).

If G is subnormalized, then we show that G is subnormalized, too, by
a similar argument. Let α ∈ R+, h ∈ LX. Fix a ∈ R+ such that a <

G(α.1+h). Then α.1+h is in the Scott-open set G
−1

(]a,+∞]). We observe
that α.1 + h is the pointwise supremum of the chain of maps α.1 + h(β),
β ∈ R+, and that those maps are β-Lipschitz continuous. Therefore α.1+h(β)

is also in G
−1

(]a,+∞]), for some β ∈ R+. Since that function is β-Lipschitz
continuous, G maps it to G(α.1 + h(β)), which is less than or equal to α +
G(h(β)) sinceG is subnormalized. In particular, a < G(α.1+h(β)) ≤ α+G(h).
Taking suprema over a proves the claim.

If G is normalized, it remains to show that G(α.1 + h) ≥ α+G(h). This
is similar to the argument for the preservation of superlinearity. We use
the fact that α.1 + h(β) ≤ (α.1 + h)(β), which follows from the fact that the
left-hand side is β-Lipschitz continuous below α.1 + h. Then G(α.1 + h) =

supβ∈R+
G((α.1 + h)(β)) ≥ supβ∈R+

G(α.1 + h(β)) = supβ∈R+
(α + G(h(β))) =

α +G(h).
Item 4 is obvious, since by item 2 G is the restriction of G to L∞(X, d).

2

We can now deduce the following. In the classical situation involving
metric spaces, that could be deduced from a simple application of the Stone-
Weierstrass theorem, a tool that we do not have in the asymmetric situation.

Corollary 3.14. Let X, d be a standard quasi-metric space, and F , F ′ be
two previsions on X. Then F = F ′ if and only if F (h) = F ′(h) for every
h ∈ L1(X, d).

Proof. The only if direction is trivial. In the if direction, for every α > 0,
for every h ∈ Lα(X, d), 1/αh is in L1(X, d). We have F (1/αh) = F ′(1/αh) by
assumption. Multiplying by α and relying on positive homogeneity, F (h) =
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F (h′). This shows that F|L∞X = F ′|L∞X , whence F = F ′ by Proposition 3.13,
item 2. 2

Definition 3.15 (Lb
∞(X, d)). Let Lb

∞(X, d) be the subspace of all bounded
maps in L∞(X, d), and Lb

α(X, d) be the corresponding subspace of all bounded
maps in Lα(X, d), with the subspace topologies.

Lemma 3.16. Let X, d be a quasi-metric space. For every a > 0, Lb
∞(X, d) =⋃

α>0 Laα(X, d).

Proof. Consider any bounded map f from L∞(X, d). By definition, f ≤ b.1
for some b ∈ R+, and f ∈ Lα(X, d) for some α > 0. Since Lα(X, d) grows
as α increases, we may assume that α ≥ b/a. Then f is in Laα(X, d). The
reverse inclusion is obvious. 2

Definition 3.17 (Lb-prevision). Let X, d be a quasi-metric space. An Lb-
prevision on X is any continuous map H from Lb

∞X to R+ such that H(βh) =
βH(h) for all β ∈ R+ and h ∈ Lb

∞X.

We define linear, superlinear, sublinear, subnormalized, and normalized Lb-
previsions in the usual way.

Every L-prevision G defines a linear Lb-prevision G|Lb∞X . Conversely,

for every Lb-prevision H, let H(h) = supβ>0H(min(h, β)) for every h ∈
L∞(X, d).

Lemma 3.18. Let X, d be a standard quasi-metric space, and a > 0.

1. For every H ∈ LbPX, H is an L-prevision.

2. The maps G ∈ LPX 7→ G|Lb∞X ∈ L
bPX and H ∈ LbPX 7→ H ∈ LPX

are inverse of each other.

3. For every G ∈ LPX, G is linear, resp. superlinear, resp. sublinear,
resp. subnormalized, resp. normalized, if and only if G|Lb∞X is.

Proof. We first show that the map tβ : L∞(X, d) → Lb
∞(X, d) defined by

tβ(h) = min(h, β) is continuous for every β > 0. This follows from the
definition of subspace topologies, and the fact that tβ is the restriction of the
Scott-continuous map h ∈ LX 7→ min(h, β) ∈ LX.
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1. H is continuous, since (H)−1(]r,+∞]) = {h ∈ L∞(X, d) | ∃β >
0, H(min(h, β)) > r} =

⋃
β>0{h ∈ L∞(X, d) | min(h, β) ∈ H−1(]r,+∞])} =⋃

β>0 t
−1
β (H−1(]r,+∞])), which is open since H and tβ are continuous.

We must show that H(αh) = αH(h) for every α ∈ R+. When α > 0,

H(αh) = supβ>0H(min(αh, β)) = supβ′>0H(min(αh, αβ′)) = supβ′>0 αH(min(h, β′))

is equal to αH(h). When α = 0, H(0) = supβ>0H(0) = 0.

2. For every h ∈ Lb
∞(X, d), (H)|Lb∞X(h) = H(h) = supβ>0H(min(h, β)) =

H(h), since min(h, β) = h for β large enough. In the other direction, for every

h ∈ L∞(X, d), G|Lb∞X(h) = supβ>0G|Lb∞X(min(h, β)) = supβ>0G(min(h, β)).
Recall now from Proposition 3.13 that G is the restriction to L∞X of a previ-

sion F onX, which is Scott-continuous. SoG|Lb∞X(h) = supβ>0 F (min(h, β)) =
F (h) = G(h).

3. All the claims follow from the fact that min(g, β)+min(h, γ) ≤ min(g+
h, β + γ) and min(g+ h, β) ≤ min(g, β) + min(h, β) for all maps g, h and all
β, γ > 0. 2

Corollary 3.19. Let X, d be a standard quasi-metric space, and F , F ′ be
two previsions on X, and a > 0. Then F = F ′ if and only if F (h) = F ′(h)
for every h ∈ La1(X, d).

Proof. The only if direction is trivial. In the if direction, for every α > 0,
for every h ∈ Laα(X, d), 1/αh is in La1(X, d). We have F (1/αh) = F ′(1/αh)
by assumption. Multiplying by α and relying on positive homogeneity,
F (h) = F (h′). We have Lb

∞(X, d) =
⋃
α>0 Laα(X, d) [19, Lemma 3.5]. There-

fore F|Lb∞X = F ′|Lb∞X
, whence F = F ′ by Lemma 3.18, item 2, and Proposi-

tion 3.13, item 2. 2

4. Completeness

4.1. Basic results

In the sequel, let V∗X denote VX, V≤1X or V1X.
Given a standard quasi-metric space X, d, we wish to show that, under

certain assumptions, V∗X, dKR is complete. Equivalently, we wish to show
that B(V∗X, dKR) is a dcpo. To this end, we consider any directed family
(νi, ri)i∈I in B(V∗X, dKR), and we wish to find its least upper bound (ν, r).
If V∗X, dKR is indeed complete, it is in particular standard, so r must be
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equal to infi∈I ri. Finding ν can be done as follows. We form the linear L-
prevision Gi associated with νi for each i ∈ I, namely Gi(h) =

∫
x∈X h(x)dνi

for every h ∈ L∞(X, d). We look for the linear L-prevision G associated
with ν. Inspired by Lemma 3.10, item 2, we bet that G(h) will be equal
to supi∈I(Gi(h) + r − ri) for every h ∈ L1(X, d). We will see that this is a
directed supremum. In general, we use the following formula.

Definition 4.1. Let X, d be a standard quasi-metric space, and ∗ be nothing,
“≤ 1”, or “1”. For every directed family (νi, ri)i∈I in B(V∗X, dKR) (resp.,
B(V∗X, d

a
KR), a > 0), the pair (G, infi∈I ri), or just the map G : L∞(X, d)→

R+ (resp., G : Lb
∞(X, d)→ R+), defined as follows, is called the naive supre-

mum of (νi, ri)i∈I :

G(h) = sup
i∈I

(∫
x∈X

h(x)dνi + αr − αri
)
, (5)

for every h ∈ Lα(X, d) (resp., h ∈ Laα(X, d)).

If G is a linear L-prevision (resp., a linear Lb-prevision), then the continuous
valuation ν defined by ν(U) = G(χU) for every U ∈ OX, will also be called
the naive supremum of (νi, ri)i∈I .

That generalizes to the case of all previsions, not necessarily linear, as
needed in sequels to this work: given any directed family (Gi, ri)i∈I in B(LPX, dKR),
the naive supremum of the family is the pair (G, r) where r = infi∈I ri and,
for each h ∈ Lα(X, d), α > 0, G(h) = supi∈I(Gi(h) + αr − αri).

The following shows that the naive supremum is indeed the supremum. . .
provided that it is continuous.

Proposition 4.2. Let X, d be a standard quasi-metric space, and (Gi, ri)i∈I
be a directed family in B(LPX, dKR) (resp, daKR, a > 0). Let r = infi∈I ri
and, for each h ∈ Lα(X, d) (resp., Laα(X, d)), α > 0, define G(h) as the
directed supremum supi∈I(Gi(h) + αr − αri). Then:

1. G is a well-defined, positively homogeneous functional from LX to R+;

2. for any upper bound (G′, r′) of (Gi, ri)i∈I , r
′ ≤ r and, for every h ∈

Lα(X, d) (resp., Laα(X, d)) with α > 0, G(h) ≤ G′(h) + αr − αr′;

3. if G is continuous, then (G, r) is the supremum of (Gi, ri)i∈I ;
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4. if every Gi is sublinear, resp. superlinear, resp. linear, resp. subnormal-
ized, resp. normalized, then so is G.

Proof. We only deal with the dKR case, since the daKR case is similar.
We check that supi∈I(Gi(h) +αr−αri) is a directed supremum, for every

h ∈ Lα(X, d). Define v by i v j if and only if (Gi, ri) ≤d
+
KR (Gj, rj).

Then v turns I into a directed preordered set, and the family (Gi, ri)i∈I
into a monotone net (Gi, ri)i∈I,v. It remains to show that i v j implies

Gi(h) + αr− αri ≤ Gj(h) + αr− αrj. Since (Gi, ri) ≤d
+
KR (Gj, rj), and 1/αh

is in L1(X, d), Gi(1/αh) ≤ Gj(1/αh) + ri − rj. We obtain the result by
multiplying both sides by α and adding αr.

1. We must first show that G is well-defined, in the following sense. When
h ∈ LαX, h is also in LβX for every β ≥ α, and our tentative definition is not
unique, apparently: we have definedG(h) both as supi∈I(Gi(h)+αr−αri) and
as supi∈I(Gi(h)+βr−βri). This is not a problem: the two suprema coincide,
since Gi(h)+αr−αri and Gi(h)+βr−βri only differ by (β−α)(ri−r), which
can be made arbitrarily small as i varies in I. In fact, both “definitions”
are equal to limi∈I,vGi(h), where the limit is taken in R+ with its usual
Hausdorff topology, a basis of which is given by the intervals [0, b[, ]a, b[ and
]a,+∞], 0 < a < b < +∞. This remark will be helpful in the sequel. In
particular, taking the definition G(h) = limi∈I,vGi(h), it is easy to show
that G commutes with products with non-negative constants, which finishes
to prove item 1.

We proceed with item 4, and we will return to items 2 and 3 later.
4. Using again the formula G(h) = limi∈I,vGi(h), if every Gi is sublinear,

resp. superlinear, resp. linear, resp. subnormalized, resp. normalized, then so
is G, because because + and products by scalars are continuous on R+ with
its usual Hausdorff topology.

2. Let (G′, r′) be any upper bound of (Gi, ri)i∈I . For every i ∈ I, for every

h ∈ L1(X, d) the inequality (Gi, ri) ≤d
+
KR (G′, r′), equivalently dKR(Gi, G

′) ≤
ri − r′, implies that Gi(h) ≤ G′(h) + ri − r′ (and ri ≥ r′). Then Gi(h) −
ri ≤ G′(h) − r′. Taking suprema over i ∈ I, G(h) − r ≤ G′(h) − r′, hence
G(h) ≤ G′(h) + r − r′ (and, by taking infima, r = infi∈I ri ≥ r′). Now
take any h ∈ Lα(X, d), α > 0. Then 1/αh is in L1(X, d), and by positive
homogeneity G(h) ≤ G′(h) + αr − αr′.

3. Assume G continuous. The definition of G ensures that (G, r) is an
element of B(LPX, dKR), and is an upper bound of (Gi, ri)i∈I . For every
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upper bound (G′, r′) of (Gi, ri)i∈I , item 2 entails that r ≥ r′ and, for every
h ∈ L1(X, d), G(h) ≤ G′(h) + r − r′, whence dKR(G,G′) ≤ r − r′. It follows

that (G, r) ≤d+KR (G′, r′), showing that (G, r) is the least upper bound. 2

The following is not quite the completeness result we are after, because
of the awkward assumption that the topology of L∞(X, d) is determined by
those of Lα(X, d), α > 0, or equivalently that: any subset U of L∞(X, d) such
that U ∩ Lα(X, d) is open in Lα(X, d) for every α > 0 is open in L∞(X, d),
or also that: every map G : L∞(X, d) → Z, where Z is any topological
space, whose restriction to Lα(X, d) is continuous for every α > 0, is itself
continuous.

Theorem 4.3. Let X, d be a standard quasi-metric space, and assume that
the topology of L∞(X, d) is determined by those of Lα(X, d), α > 0 (resp.,
the topology of Lb

∞(X, d) is determined by those of Laα(X, d), α > 0, where
a > 0 is fixed).

Then VX, V≤1X and V1X with the dKR quasi-metric (resp., daKR, a > 0)
are complete, and all suprema of directed families of formal balls of continu-
ous valuations are naive suprema.

Proof. We only deal with the case of dKR, as the daKR case is similar. We
take the notations of Definition 4.1. Considering Proposition 4.2, item 3, it
suffices to show that the restriction G|LαX of G is continuous from Lα(X, d)

to R+, for any α > 0. Fix a ∈ R. We must show that U = {h ∈ Lα(X, d) |
G(h) > a} is open in Lα(X, d). Using the definition of G, we write U as the
set of maps h ∈ Lα(X, d) such that

∫
x∈X h(x)dνi + αr − αri > a for some

i ∈ I. Therefore U =
⋃
i∈I [h > a+ αri − αr,+∞]∩Lα(X, d), which is open.

2

Remark 4.4. Proposition 8.2 of [19] states that, if X, d is a Lipschitz regu-
lar, standard quasi-metric space, then the topology of L∞(X, d) is determined
by those of Lα(X, d), α > 0 (resp., Proposition 8.3 states the same thing for
Lb
∞(X, d) and Laα(X, d), α > 0). Hence Theorem 4.3 in particular applies to

all Lipschitz regular standard quasi-metric spaces. Those include all algebraic
complete quasi-metric with relatively compact balls, see [18, Corollary 4.7].
They also include spaces of formal balls B(Y, ∂), ∂+, for every quasi-metric
space Y, ∂ [18, Theorem 4.13].

The strategy we will use to obtain our next completeness result uses the latter
observation as follows. Recall that there is a map ηX : X → B(X, d) defined
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by ηX(x) = (x, 0). We start from a directed family (νi, ri)i∈I in B(V∗X, dKR)
again, and we consider the family (ηX [νi], ri)i∈I in B(V∗(B(X, d)), d+KR).
That will happen to be directed again. Since B(X, d) is Lipschitz regular,
(ηX [νi], ri)i∈I has a (naive) supremum (µ, r) by Remark 4.4. We will show
that µ is supported on X, so that µ = ηX [ν] for some ν ∈ VX, and we will
check that ν is then the (naive) supremum of the original family (νi, ri)i∈I .
This will work as soon as X, d is a continuous complete quasi-metric space.

We must have a look at supports first.

4.2. Supports

Definition 4.5 (Support). Let X be a topological space. A subset A of X
is called a support of a continuous valuation ν if and only if for all open
subsets U and V of X such that U ∩A = V ∩A, ν(U) = ν(V ). We also say
that ν is supported on A in that case.

Lemma 4.6. Let X be a topological space, A be a subset of X, and µ be a
continuous valuation on X. Then µ is supported on A if and only if there is
continuous valuation ν on A such that µ = i[ν], where i is the inclusion map
from A into X.

Proof. If µ = i[ν], then µ(U) = ν(i−1(U)) = ν(U ∩ A), so µ is clearly
supported on A. Conversely, let us assume that µ is supported on A, and let
us define ν(U), for every U ∈ OA, as µ(V ), where V is any open subset of
X such that V ∩ A = U . Which V it is is unimportant, by the definition of
supports. It is easy to see that ν is strict and modular. For monotonicity,
we must show that V1 ∩ A ⊆ V2 ∩ A implies µ(V1) ≤ µ(V2). This follows
from the fact that V2 ∩ A = (V1 ∪ V2) ∩ A: we have µ(V1) ≤ µ(V1 ∪ V2) =
µ(V2). For Scott-continuity, let (Vi ∩ A)i∈I be a directed family in OA, where
each Vi is open in X. The inequality supi∈I µ(Vi) ≤ µ(

⋃
i∈I Vi) follows from

monotonicity. In the converse direction, let V ′i =
⋃
{Vj | j ∈ I, Vj ∩ A ⊆

Vi ∩ A}. Then (V ′i )i∈I is directed, so supi∈I µ(V ′i ) = µ(
⋃
i∈I V

′
i ). However,

V ′i ∩A = Vi ∩A, so µ(V ′i ) = µ(Vi) for every i ∈ I. Similarly, (
⋃
i∈I V

′
i )∩A =⋃

i∈I(V
′
i ∩ A) =

⋃
i∈I(Vi ∩ A) = (

⋃
i∈I Vi) ∩ A, so µ(

⋃
i∈I V

′
i ) = µ(

⋃
i∈I Vi),

whence µ(
⋃
i∈I Vi) = supi∈I µ(Vi). 2

Remark 4.7. If A is open in X, then A is a support of ν if and only if, for
every open subset U of X, ν(U) = ν(U ∩ A). This definition should appear
more familiar.
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4.3. Push-forwards

Lemma 4.8. Let ∗ be nothing, “≤ 1”, or “1”. Let X, d and Y, ∂ be two
quasi-metric spaces, and f : X, d 7→ Y, ∂ be an α-Lipschitz continuous map,
where α > 0. Then Vf : V∗X, dKR → V∗Y, ∂KR, defined by:

Vf(ν) = f [ν] (6)

is an α-Lipschitz map. A similar result holds for Vf , seen as a map from
VX, daKR to VY, ∂aKR, for every a ∈ R+, a > 0.

Proof. Let ν, ν ′ be two continuous valuations onX. For every h ∈ L1(Y, ∂),∫
y∈Y h(y)df [ν] =

∫
x∈X h(f(x))dν by the change of variable formula, and sim-

ilarly with ν ′. Observing that h ◦ f ranges over a subset of the set of all
α-Lipschitz continuous maps, equivalently of maps of the form αk with k ∈
L1(X, d), ∂KR(f [ν], f [ν ′]) ≤ supk∈L1(X,d) dR(

∫
x∈X αk(x)dν,

∫
x∈X αk(x)dν ′) =

αdKR(ν, ν ′). The case of daKR and ∂aKR is similar, noting that if h takes its
values in [0, αa], then so does h ◦ f . 2

We cannot prove that Vf is α-Lipschitz continuous (yet), but we have
the following.

Lemma 4.9. Let X, d and Y, ∂ be two quasi-metric spaces, and f : X, d 7→
Y, ∂ be a 1-Lipschitz continuous map. Let also ∗ be nothing, “≤ 1”, or
“1”. For every directed family of formal balls (νi, ri), i ∈ I, in B(V∗X, dKR)
(resp., daKR), with naive supremum (ν, r), (Vf(ν), r) is the naive supremum
of (Vf(νi), ri)i∈I .

Proof. More generally, we show that ifG is the naive supremum of (νi, ri)i∈I ,
in the sense of Definition 4.1, then the map G′ defined by G′(k) = G(k ◦ f)
is the naive supremum of (Vf(νi), ri)i∈I . The claim will follow in case G is
a linear L-prevision, taking its associated continuous valuation ν, in which
case G′(k) =

∫
x∈X k(f(x))dν =

∫
y∈Y k(y)df [ν], so that f [ν] = Vf(ν) is the

continuous valuations associated with G′.
By definition, r = infi∈I ri, and G(h) = supi∈I(

∫
x∈X h(x)dνi + αr − αri)

for every h ∈ Lα(X, d) (resp., in Laα(X, d)), for every α ∈ R+, α > 0.
It follows that, for every k ∈ Lα(Y, ∂) (resp., in Laα(Y, ∂)), and using the
fact that k ◦ f is in Lα(X, d) (resp., in Laα(X, d), since k ◦ f is bounded by
αa, just like k), G′(k) = G(k ◦ f) = supi∈I(

∫
x∈X k(f(x)dνi) + αr − αri) =

supi∈I(
∫
y∈Y k(y)dVf(νi) + αr − αri). 2

26



4.4. Working on the space of formal balls

We now use the following results on formal balls. Theorem 3.14 of [18]
states that there is a monad (B, η, ν) on the category of standard quasi-
metric spaces and 1-Lipschitz continuous maps, where ηX : X → B(X, d) is
defined by ηX(x) = (x, 0), and µX : B(B(X, d), d+)→ B(X, d) is defined by
µX((x, r), r′) = (x, r + r′). Also, the action of B on morphisms is given by
B(f) = B1(f), namely B(f)(x, r) = (f(x), r). Note in particular that ηX
is 1-Lipschitz continuous (that is Lemma 3.8 of the same paper), and that
B(X, d), d+ is standard for every standard space X, d (Proposition 3.11).

For every continuous valuation ν on X, VηX(ν) is a continuous valuation
on B(X, d), which one can see as an extension of ν from X to its superspace
B(X, d). Moreover, by Lemma 4.8, VηX is 1-Lipschitz, so B(VηX) is mono-
tonic. This implies that for every directed family (νi, ri)i∈I in B(V∗X, dKR)
(resp, B(V∗X, d

a
KR), a > 0), (VηX(νi), ri)i∈I is also a directed family, this

time in B(V∗(B(X, d)), d+KR) (resp, d+
a
KR). By Remark 4.4, the latter space

is Lipschitz regular, so (VηX(νi), ri)i∈I has a supremum (µ, r), which coin-
cides with the naive supremum. In other words, r = infi∈I ri, and:∫

(x,r)∈B(X,d)

k(x, r)dµ = sup
i∈I

(∫
x∈X

k(ηX(x))dνi + αr − αri
)

(7)

for every k ∈ Lα(B(X, d), d+), α > 0 (resp., k ∈ Laα(B(X, d), d+)).
(7) seems to imply that µ is supported onX, because

∫
(x,r)∈B(X,d)

k(x, r)dµ

only depends on k through k ◦ ηX . This is deceiving: (7) is only about α-
Lipschitz continuous maps k, not about all lower semicontinuous maps, and
indeed (7) only characterizes the linear L-prevision associated with µ.

If we were able to assert that µ is supported on X, then Lemma 4.6
would tell us that µ = ηX [ν] for some continuous valuation ν on X, and then
we would be on a good track to show that (ν, r) is the naive supremum of
(νi, ri)i∈I . However, for now, the best we will be able to prove is that µ is
supported on the arbitrary small open neighborhoods Vε of X in B(X, d).
Recall that Vε is the set of formal balls of radius strictly less than ε. We
will do this with the help of the following lemma, which is a fundamental
property of the largest α-Lipschitz continuous map χ

(α)
V below χV .

Lemma 4.10. Let X, d be a standard quasi-metric space, V be an open
subset of B(X, d) and α ∈ R+, ε > 0. For every x ∈ X, χ

(α)
V (x, 0) =

min(1, α sup{r′ ∈ R+ | (x, r′) ∈ V }).
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Proof. We take some help from Proposition 6.14 of [20], which gives an

explicit form of χ
(α)
V , where V is an open subset of a standard quasi-metric

space. Specializing it to the standard quasi-metric space B(X, d), d+, we ob-

tain: χ
(α)
V (x, r) = min(1, αd+((x, r), V )), where d+((x, r), V ) = sup{r′ ∈ R+ |

((x, r), r′) ∈ V̂ }, and V̂ is the largest Scott-open subset of B(B(X, d), d+)

such that η−1B(X,d)(V̂ ) = V . Theorem 4.13 of [18] states that V̂ = µ−1X (V ),

where µX is the multiplication of the B monad. Hence d+((x, r), V ) =
sup{r′ ∈ R+ | µX((x, r), r′) ∈ V } = sup{r′ ∈ R+ | (x, r + r′) ∈ V }. In

particular, χ
(α)
V (x, 0) = min(1, α sup{r′ ∈ R+ | (x, r′) ∈ V }). 2

Corollary 4.11. Let X, d be a standard quasi-metric space, and α ∈ R+,

ε > 0. If αε ≥ 1, then χ
(α)
V ◦ ηX = χ

(α)
V ∩Vε ◦ ηX .

Proof. By Lemma 4.10, (χ
(α)
V ◦ηX)(x) = χ

(α)
V (x, 0) = min(1, α sup{r′ ∈ R+ |

(x, r′) ∈ V }). The latter sup is unchanged if we bound the allowed values of
r′ from above by ε (strictly), since all the other values will contribute at least

αε ≥ 1 to the min. Therefore (χ
(α)
V ◦ ηX)(x) is equal to min(1, α sup{r′ ∈

[0, ε[| (x, r′) ∈ V }) = min(1, α sup{r′ ∈ R+ | (x, r′) ∈ V ∩Vε}), which is equal

to (χ
(fα)
V ∩Vε ◦ ηX)(x). 2

Lemma 4.12. Let X, d be a standard quasi-metric space. Let G be a linear
L-prevision on B(X, d) such that, for every α > 0, for all f, g ∈ Lα(B(X, d), d+)
such that f ◦ηX = g◦ηX , G(f) = G(g). Then, for every ε > 0, the continuous
valuation µ associated with the linear prevision G is supported on Vε.

Similarly, let H be a linear Lb-prevision on B(X, d) such that, for every
α > 0, for all f, g ∈ Laα(B(X, d), d+) such that f ◦ηX = g◦ηX , H(f) = H(g).
Then, for every ε > 0, the continuous valuation µ associated with the linear

prevision G (where G = H) is supported on Vε.

Proof. By definition, for every open subset V of B(X, d), µ(V ) = G(χV ) =

supα∈R+
G(χ

(α)
V ). When α is large enough, χ

(α)
V ◦ ηX = χ

(α)
V ∩Vε ◦ ηX by Corol-

lary 4.11, so G(χ
(α)
V ) = G(χ

(α)
V ∩Vε). It follows that µ(V ) is also equal to

supα∈R+
G(χ

(α)
V ∩Vε) = G(χV ∩Vε) = µ(V ∩ Vε).

Given any two open subsets U and V of B(X, d) such that U∩Vε = V ∩Vε,
it follows that µ(U) = µ(U ∩ Vε) = µ(V ∩ Vε) = µ(V ).

The second part of the lemma is proved in exactly the same way, making
sure to take α large enough so that aα ≥ 1, hence that χ

(α)
V is in Laα(X, d).

2
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Lemma 4.13. Let ∗ be nothing, “≤ 1”, or “1”. Let X, d be a standard
quasi-metric space, (νi, ri)i∈I be a directed family in B(V∗X, dKR) (resp.,
B(V∗X, d

a
KR)), let r = infi∈I ri and let µ be the unique continuous valuation

on B(X, d) satisfying (7). For every ε > 0, µ is supported on Vε.

Proof. In the case of dKR, Equation (7) states that the linear L-prevision G
associated with µ (i.e., the left-hand side is just G(k)) satisfies the assump-
tions of Lemma 4.12, since the right-hand side only depends on k through
k ◦ ηX . Hence µ is supported on Vε. With daKR, G is a linear Lb-prevision
instead, and we use the second part of Lemma 4.12 instead of the first one.
2

It is rather frustrating to know that µ is supported on every Vε, but not on
X, which is their intersection. This is solved easily by switching to measures.

4.5. Extending to measures

Being supported on every Vε does not imply being supported on their
intersection, X, or at least I do not know a proof of that without any further
assumption on X. The implication holds if X, d is continuous complete: this
will allow us to use a measure extension theorem and conclude. The key is
the following lemma. Recall from Remark 4.7 that a continuous valuation µ
is supported on an open set W if and only if µ(U) = µ(U ∩W ) for every
open set U .

Lemma 4.14. Let Z be a space on which every bounded continuous valuation
extends to a measure on the Borel σ-algebra. Let W0 ⊇ W1 ⊇ · · · ⊇ Wn ⊇ · · ·
be a countable descending sequence of open subsets of Z, and X =

⋂
n∈NWn.

Every bounded continuous valuation µ on Z that is supported on every Wn

is supported on X.

Proof. Let us write µ again for an extension of µ as a (necessarily bounded)
measure on Z. For every open subset W of Z, we have:

µ(W ∩X) = µ(
⋂
n∈N

W ∩Wn)

= inf
n∈N

µ(W ∩Wn) valid for all bounded measures

= inf
n∈N

µ(W ) µ is supported on Wn

= µ(W ).

2
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Theorem 4.15. Let X, d be a continuous complete quasi-metric space. The
spaces V≤1X and V1X, equipped with the dKR, resp. the daKR quasi-metric
(a > 0), are complete.

Moreover, directed suprema (ν, r) of formal balls (νi, ri)i∈I are computed
as naive suprema: r = infi∈I ri and for every h ∈ Lα(X, d) (resp., in
Laα(X, d)), ∫

x∈X
h(x)dν = sup

i∈I

(∫
x∈X

h(x)dνi + αr − αri
)
. (8)

Proof. When X, d is continuous complete, B(X, d) is a continuous dcpo,
in particular it is LCS-complete, so every continuous valuation extends to a
measure on the Borel σ-algebra. Hence, given any directed family (νi, ri)i∈I
in B(V∗X, dKR) (resp., in B(V∗X, d

a
KR), a > 0), where each νi is a subprob-

ability valuation on X, let r = infi∈I ri and let µ be the unique continuous
valuation on B(X, d) satisfying (7). That µ is again a subprobability valua-
tion (take k = 1), and it is supported on every V1/2n , n ∈ N, by Lemma 4.13.
By Lemma 4.14, µ is supported on X =

⋂
n∈N V1/2n . Hence, by Lemma 4.6,

µ = ηX [ν] for some unique continuous valuation ν on X.
We use (7) on certain specific maps k ∈ Lα(B(X, d), d+) (resp., k ∈

Laα(B(X, d), d+)). In order to build them, we first note that the function
∂( , y′) : y 7→ ∂(y, y′) is a 1-Lipschitz continuous map from Y, ∂ to R+, dR, for
every standard quasi-metric space Y, ∂ [18, Lemma 2.6]. Taking B(R+, dR), d+R
for Y, ∂ (which is standard, since R+, dR is complete hence standard), and y′ =
(0, 0), we obtain that the map m : (x, r) 7→ d+R((x, r), (0, 0)) = max(x− r, 0)
is 1-Lipschitz continuous. For every h ∈ Lα(X, d) (resp., Laα(X, d)), 1/αh
is 1-Lipschitz continuous, so B1(1/αh) is also 1-Lipschitz continuous (recall
that B is the functor part of a monad, hence maps morphisms to morphisms),
and therefore k = α.(m ◦ B1(1/αh)) is α-Lipschitz continuous. Explicitly,
k(x, r) = αm(1/αh(x), r) = αmax(1/αh(x)− r, 0) = max(h(x)− αr, 0).

Note that k ◦ ηX = h. Plugging that k, and ηX [ν] for µ, in (7), we obtain
that

∫
(x,r)∈B(X,d)

max(h(x)−αr, 0)dηX [ν], which is also equal to
∫
x∈X h(x)dν

by the change of variable formula, is equal to supi∈I(
∫
x∈X h(x)dνi+αr−αri),

for every h ∈ Lα(X, d). This is (8), and this shows that ν is the naive
supremum of (νi, ri)i∈I .

The associated linear prevision G is then Scott-continuous, so we can
apply Proposition 4.2, item 3: (ν, r) is the supremum of (νi, ri)i∈I . 2

Theorem 4.15 does not say that V≤1X and V1X are continuous complete.
We will answer this question in Section 8.
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Remark 4.16. The proof of Theorem 4.15 would be valid in the more general
situation where X, d is a standard quasi-metric space such that every contin-
uous valuation on its space of formal balls extends to a measure. Hence this
would apply to all standard quasi-metric spaces whose spaces of formal balls
are LCS-complete in their Scott topology. For instance, this applies to all
quasi-continuous complete quasi-metric spaces [27], whose spaces of formal
balls are quasi-continuous dcpos, hence locally compact and sober.

5. Algebraicity for subprobability valuations

A simple valuation is a finite linear combination
∑n

i=1 aiδxi , where a1, . . . ,
an ∈ R+. It is a (simple) subprobability valuation if

∑n
i=1 ai ≤ 1, a (simple)

probability valuation if
∑n

i=1 ai = 1.
For the next lemma, we will need to use some stable compactness results.

For more information on stably compact spaces, see Chapter 9 of [16]. Given
any topological space Y , the coarsest topology that contains the complements
of compact saturated subsets of Y is the cocompact topology on Y , and the
resulting space is written as Y d. The patch topology is the join of the original
and the cocompact topology, and Y patch denotes Y with the patch topology.
When Y is stably compact (namely, sober, coherent, locally compact, and
compact), then Y patch is compact Hausdorff. For example, R+ (with the Scott
topology of ≤, or equivalent with the dR-Scott topology) is stably compact,

the open subsets of (R+)
d

are the half-open intervals [0, a[, a ∈ R+, plus the

whole space itself, and (R+)
patch

is R+ with its usual Hausdorff topology.
Lemma 7.3 (4) of [19] states that for every continuous complete quasi-

metric space X, d, Lα(X, d) and Laα(X, d) (a > 0) are stably compact. Corol-
lary 7.7 (1) of [19] states that, for every finite family of coefficients a1, · · · , an ∈
R+, for all center points x1, . . . , xn in the continuous complete quasi-metric
space X, d, the map h 7→

∑n
j=1 ajh(xj) is continuous from Lα(X, d)d (resp.,

Laα(X, d)d, for any a > 0) to (R+)
d
. We use that to show the following.

Lemma 5.1. Let X, d be a continuous complete quasi-metric space, α ∈ R+,
and a ∈ R+, a > 0. For every n ∈ N, for all a1, . . . , an ∈ R+ and every n-
tuple of center points x1, . . . , xn in X, d, for every continuous valuation
ν on X, the map h 7→ dR(

∑n
j=1 ajh(xj),

∫
x∈X h(x)dν) is continuous from

Lα(X, d)patch (resp., Laα(X, d)patch) to (R+)d.

Proof. We only deal with Lα(X, d), as the case of Laα(X, d) is similar.
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Since the patch topology is finer than the cocompact topology, the map
h 7→

∑n
j=1 ajh(xj) is continuous from Lα(X, d)patch to (R+)d. The map

h 7→
∫
x∈X h(x)dν is continuous from LX to R+ (every linear prevision is

Scott-continuous), hence also from Lα(X, d) to R+ (because Lα(X, d) has
the subspace topology from LX), hence also from Lα(X, d)patch to R+. The
claim will then follow from the fact that (s, t) 7→ dR(s, t) is continuous from
(R+)d × R+ to (R+)d, which we now prove. The non-trivial open subsets of
(R+)d are the open intervals [0, a[. The inverse image of the latter by dR is
{(s, t) ∈ R+ × R+ | s < t + a} = {(s, t) ∈ R+ × R+ | ∃b ∈ R+.s < b + a, b <
t} =

⋃
b∈R+

[0, b+ a[×]b,+∞]. 2

Lemma 5.2. Let X, d be a continuous complete quasi-metric space.
For all center points x1, . . . , xn and all non-negative reals a1, . . . , an with∑n
i=1 ai ≤ 1, the simple valuation

∑n
i=1 aiδxi is a center point of V≤1X, dKR

(resp., of V1, dKR if additionally
∑n

i=1 ai = 1).
The same result holds with daKR instead of dKR, for any a ∈ R+, a > 0.

Proof. We only deal with the case of V≤1X, and of dKR, the other cases

are similar. Let ν0 =
∑n

i=1 aiδxi , U be the open ball B
d+KR

(ν0,0),<ε
. U is upwards-

closed: if (ν, r) ≤d+KR (ν ′, r′) and (ν, r) ∈ U , then dKR(ν, ν ′) ≤ r − r′ and
dKR(ν0, ν) < ε − r, so dKR(ν0, ν

′) < ε − r′ by the triangular inequality, and
that means that (ν ′, r′) is in U .

Recall that V≤1, dKR is complete, and that directed suprema of formal
balls are computed as naive suprema, by Theorem 4.15. To show that U is
Scott-open, we consider a directed family (νi, ri)i∈I in B(V≤1X, dKR), with
supremum (ν, r), and we assume that (ν, r) is in U . That supremum is given
as in (8). Hence r = infi∈I ri and for every h ∈ L1(X, d),

∫
x∈X h(x)dν =

supi∈I(
∫
x∈X h(x)dνi + r − ri). (In the case of daKR, the same formula holds,

this time for every h ∈ La1(X, d).) Since (ν, r) ∈ U , dKR(ν0, ν) < ε−r. In par-
ticular, ε > r and

∫
x∈X h(x)dν0− ε+ r <

∫
x∈X h(x)dν for every h ∈ L1(X, d)

(resp., La1(X, d)). Therefore, for every h ∈ L1(X, d) (resp., La1(X, d)), there
is an index i ∈ I such that

∫
x∈X h(x)dν0 − ε + r <

∫
x∈X h(x)dνi + r − ri, or

equivalently,
n∑
j=1

ajh(xj) <

∫
x∈X

h(x)dνi + ε− ri. (9)

Moreover, since ε > r = infi∈I ri, we may take i so large that ε− ri > 0.
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Let Vi be the set of all h ∈ L1(X, d) (resp., La1(X, d)) satisfying (9). We
have just shown that L1(X, d) (resp., La1(X, d)) is included in

⋃
i∈I Vi. Vi is

also the inverse image of [0, ε−ri[ by the map h 7→ dR(
∑n

j=1 ajh(xj),
∫
x∈X h(x)dνi),

which is continuous from L1(X, d)patch (resp., La1(X, d)patch) to (R+)d by
Lemma 5.1. Therefore Vi is open in L1(X, d)patch (resp., La1(X, d)patch), itself
a compact space; remember indeed that L1(X, d) and La1(X, d) are stably
compact [19, Lemma 7.3 (4)], as we have said near the beginning of the
current section.

Hence there is a finite subset J of I such that (Vi)i∈J is also an open cover
of L1(X, d)patch (resp., La1(X, d)). That means that for every h ∈ L1(X, d)
(resp., La1(X, d)), there is an index i ∈ J (not just in I) such that (9) holds.
By directedness, there is a single index i ∈ I such that (9) holds for every
h ∈ L1(X, d) (resp., La1(X, d)). That implies that (νi, ri) is in U , proving the
claim. 2

Remark 5.3. Using the same proof, but relying on Remark 4.4 instead of
Theorem 4.15, we obtain that simple valuations supported on center points are
center points of VX, dKR (and similarly for subnormalized, resp. normalized
valuations, and for daKR instead of dKR), under the alternative assumption
that X, d is standard and Lipschitz regular.

We have almost everything we need for our proof of algebraicity for spaces
of valuations (Theorem 5.7). . . except for the following three lemmata. For
every continuous dcpo Y , we recall that VY and V≤1Y are continuous dcpos
again. Moreover, a basis is given by simple valuations [21] (see also [13,
Theorem IV-9.16]). The following lemma is an easy consequence of this fact,
and is implicit in [13, Exercise IV-9.29]; we can in fact even require every ai
to be rational.

Lemma 5.4. Let Y be a continuous dcpo, with a basis B. VY (resp., V≤1Y )
is a continuous dcpo, and a basis is given by simple valuations supported on
B, viz., of the form

∑n
i=1 aiδyi with yi ∈ B (resp., and with

∑n
i=1 ai ≤ 1). 2

For every h ∈ L1(X, d), and assuming again that X, d is standard, we
have said in the preliminaries that the map h′ : (x, r) 7→ h(x) − r is Scott-
continuous from B(X, d) to R∪{+∞}. It follows that h′′ : (x, r) 7→ max(h(x)−
r, 0) is Scott-continuous from B(X, d) to R+. Then we have:
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Lemma 5.5. Let X, d be a standard quasi-metric space, ν be a continuous
valuation on X, and h ∈ L1(X, d). Define h′′(x, r) = max(h(x)−r, 0). Then:∫

(x,r)∈B(X,d)

h′′(x, r)dηX [ν] =

∫
x∈X

h(x)dν.

Proof.
∫
(x,r)∈B(X,d)

h′′(x, r)dηX [ν] =
∫
x∈X h

′′(ηX(x))dν, by the change of

variable formula. We conclude since h′′(ηX(x)) = h′′(x, 0) = h(x) for every
x ∈ X. 2

A strong basis of a standard quasi-metric space X, d is any set B of center
points of X such that, for every x ∈ X, (x, 0) is the supremum of a directed
family of formal balls with center points in B (see Definition 7.4.66 of [16],
which is stated with d-finite points and Cauchy nets instead of center points
and directed families of formal balls). The standard space X, d is algebraic
if and only if it has a strong basis. The largest strong basis is simply the set
of all center points.

Lemma 5.6. Let X, d be a standard algebraic space, with a strong basis B.
Then B(X, d) is a continuous dcpo, with a basis consisting of the formal balls
(x, r) with x ∈ B. For x ∈ B, (x, r)� (y, s) if and only if d(x, y) < r − s.

Proof. Since X, d is standard algebraic hence continuous, B(X, d) is a con-
tinuous poset. We also recall that (x, r)� (y, s) if and only if d(x, y) < r−s,
whenever x is a center point. Now let (y, s) ∈ B(X, d). We write (y, s) as the
supremum of a directed family (yi, si)i∈I of formal balls way-below (y, s). By
assumption (yi, 0) is the supremum of a directed family (xij, rij)j∈Ji , where
xij ∈ B. Since X, d is standard, (yi, si) is the supremum of the directed family
(xij, si + rij)j∈Ji . The family (xij, si + rij + 1/2n)j∈Ji,n∈N is also directed, and
its supremum is also equal to (yi, si), as one easily checks by looking at the up-
per bounds of the family. Additionally, since (xij, si+rij) ≤d

+
(yi, si), we have

d(xij, yi) ≤ rij < rij + 1/2n, so each (xij, si + rij + 1/2n) is way-below (yi, si).
This is exactly what we need to conclude that (xij, si + rij + 1/2n)i∈I,j∈Ji,n∈N
is a directed family whose supremum is (y, s): if, in a poset, a is the supre-
mum of a directed family D and each element b of D is the supremum of
a directed family Db of elements way-below b, then

⋃
b∈DDb is a directed

family whose supremum is a (see Exercise 5.1.13 of [16] for example). 2

Theorem 5.7 (Algebraicity for spaces of subprobabilities). Let X, d
be an algebraic complete quasi-metric space, with a strong basis B.
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The spaces V≤1X, dKR and V≤1X, d
a
KR (for any a ∈ R+, a > 0) are alge-

braic complete, and a strong basis is given by the simple valuations
∑n

j=1 ajδxj
with xj ∈ B, and

∑n
j=1 aj ≤ 1.

Proof. By Lemma 5.2, all simple subprobability valuations
∑n

j=1 ajδxj such
that every xj is a center point in X are center points. Let ν ∈ V≤1X. We
wish to show that (ν, 0) is the supremum of a directed family of formal balls
(̊νi, R(νi)) below (ν, 0), and where each ν̊i is a simple valuation of the form∑n

j=1 ajδxj , with xj ∈ B, and
∑n

j=1 aj ≤ 1.
Finding ν̊i and R(νi) is obvious if ν is the zero valuation, so we assume

for the rest of the proof that ν(X) 6= 0.
Since X, d is algebraic complete, B(X, d) is a continuous dcpo and the

formal balls with centers in B are a basis, by Lemma 5.6.
We profit from the fact that, since B(X, d) is a continuous poset, V≤1(B(X, d))

is a continuous dcpo. Lemma 5.4 even allows us to say that a basis of the
latter consists in the simple valuations µ =

∑n
j=1 ajδ(xj ,rj), where each xj

is in B, and
∑ni

j=1 aj ≤ 1. In particular, for every ν ∈ V≤1X, ηX [ν] is the
supremum of a directed family of simple valuations νi =

∑ni
j=1 aijδ(xij ,rij),

i ∈ I, where each xij is a center point, and
∑ni

j=1 aij ≤ 1.
We can require that rij < 1 for all i, j, by the following argument. Define

ν ′i(U) = νi(U ∩ V1), where V1 = {(x, r) ∈ B(X, d) | r < 1}. V1 is open, since
X, d is standard. ν ′i is the restriction of νi to V1, and is again a subproba-
bility valuation. Explicitly, ν ′i =

∑
1≤j≤ni
rij<1

aijδ(xij ,rij). Note that all the radii

involved in the latter sum are strictly less than 1. If νi ≤ νi′ then ν ′i ≤ ν ′i′ ,
so the family (ν ′i)i∈I is directed as well. Since ν ′i ≤ νi � ηX [ν], this is a
family of (subprobability) simple valuations way-below ηX [ν]. Moreover, for
every open subset U of B(X, d), ηX [ν](U) = ν(U ∩ X) = ν(U ∩ V1 ∩ X) =
ηX [ν](U ∩V1) is equal to supi∈I νi(U ∩V1) = supi∈I ν

′
i(U), so ηX [ν] is also the

supremum of (ν ′i)i∈I . All this concurs to show that we may assume that νi
satisfies rij < 1 for all i, j, replacing νi by ν ′i if needed.

For every simple subprobability valuation µ =
∑n

j=1 ajδ(xj ,rj) on B(X, d)
such that µ ≤ ηX [ν] and with rj < 1 for every j, let:

µ̊ =
n∑
i=1

ajδxj (10)

R(µ) =
n∑
j=1

ajrj + ν(X)−
n∑
j=1

aj. (11)
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R(µ) is a non-negative number, owing to the fact that µ ≤ ηX [ν]: in-
deed

∑n
j=1 aj = µ(B(X, d)) ≤ ηX [ν](B(X, d)) = ν(X). Therefore β(µ) =

(µ̊, R(µ)) is a well-defined formal ball on V≤1X, dKR (resp., daKR).
For every h ∈ L1(X, d) (resp., La1(X, d)), recall the construction h′′ men-

tioned in Lemma 5.5. However, apply it to h + 1, not h. In other words,
(h + 1)′′ maps (x, r) to max(h(x) − r + 1, 0). We have

∫
(x,r)∈B(X,d)

(h +

1)′′(x, r)dµ =
∑n

j=1 aj(h(xj) − rj + 1), because rj < 1 for all i, j. Applying

this to µ = νi and µ = νi′ , we obtain that if νi ≤ νi′ , then
∫
(x,r)∈B(X,d)

(h +

1)′′(x, r)dνi =
∑ni

j=1 aijh(xij) −
∑ni

j=1 aijrj +
∑ni

j=1 aij is less than or equal

to
∫
(x,r)∈B(X,d)

(h + 1)′′(x, r)dνi′ =
∑ni′

j=1 ai′jh(xi′j) −
∑ni′

j=1 ai′jrj +
∑ni′

j=1 ai′j.

In other words,
∑ni

j=1 aijh(xij) ≤
∑ni′

j=1 ai′jh(xi′j) +R(νi)−R(νi′). This can

be rewritten as dR(
∫
x∈X h(x)dν̊i,

∫
x∈X h(x)dν̊i′) ≤ R(νi) − R(νi′). Since h is

arbitrary, β(νi) ≤d
+
KR β(νi′) (resp., ≤da+KR , by multiplying h′′ by 1/a first).

This shows that the family (β(νi))i∈I is directed.

We now claim that β(νi) ≤d
+
KR (ν, 0) for every i ∈ I (resp., ≤da+KR). Fix

h ∈ L1(X, d) (resp., in La1(X, d)). We wish to show that
∑ni

j=1 aijh(xij) ≤∫
x∈X h(x)dν + R(νi). To this end, recall that νi � ηX [ν], in particular
νi ≤ ηX [ν]. We integrate (h + 1)′′ with respect to each side of the inequal-
ity:

∫
(x,r)∈B(X,d)

(h + 1)′′(x, r)dνi =
∑ni

j=1 aijh(xij) −
∑ni

j=1 aijrij +
∑ni

j=1 aij,

and
∫
(x,r)∈B(X,d)

(h + 1)′′(x, r)dηX [ν] =
∫
x∈X h(x)dν + ν(X), by Lemma 5.5.

Therefore
∑ni

j=1 aijh(xij) ≤
∫
x∈X h(x)dν + ν(X) +

∑ni
j=1 aijrij −

∑ni
j=1 aij =∫

x∈X h(x)dν +R(νi).
We finally claim that supi∈I β(νi) = (ν, 0). Let R = infi∈I R(νi). Let h =

1, and let us compute
∫
(x,r)∈B(X,d)

h′′(x, r)dνi =
∑ni

j=1 aij(1 − rij) = ν(X) −
R(νi). Since supi∈I νi = ηX [ν] and integration is Scott-continuous in the val-
uation, supi∈I(ν(X) − R(νi)) =

∫
(x,r)∈B(X,d)

h′′(x, r)dηX [ν] =
∫
x∈X h(x)dν =

ν(X). Hence R = 0.
By Theorem 4.15, directed suprema are computed as naive suprema.

That is to say, supi∈I β(νi) is a formal ball (G,R), with R = 0 as we have
just seen, and where (equating G with a linear prevision) G maps every
h ∈ L1(X, d) (resp., La1(X, d)) to supi∈I(

∑ni
j=1 aijh(xij) − R(νi)). We have

already noticed that
∫
(x,r)∈B(X,d)

(h+ 1)′′(x, r)dνi is equal to
∑ni

j=1 aijh(xij)−∑ni
j=1 aijrij +

∑ni
j=1 aij, that is, to

∑ni
j=1 aijh(xij) + ν(X)−R(νi), so G(h) =

supi∈I
∫
(x,r)∈B(X,d)

(h+ 1)′′(x, r)dνi)− ν(X). This is equal to
∫
(x,r)∈B(X,d)

(h+

1)′′(x, r)dηX [ν] − ν(X), since supi∈I νi = ηX [ν] and integration is Scott-
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continuous in the valuation. In turn, this is equal to
∫
x∈X(h+1)(x)dν−ν(X)

by Lemma 5.5, namely to
∫
x∈X h(x)dν. It follows that G(h) =

∫
x∈X h(x)dν

for every h ∈ L1(X, d) (resp., La1(X, d)), and this suffices to show that G
coincides with h 7→

∫
x∈X h(x)dν, by Corollary 3.14 (resp., Corollary 3.19).

2

Remark 5.8. For a poset X, B(X, d≤) is order-isomorphic to X×]−∞, 0]
[20, Example 1.6]. Hence X, d≤ is a continuous complete quasi-metric space
if and only if X is a continuous dcpo, and in that case (x, r) � (y, s) in
B(X, d) if and only if x � y and r > s. For every x ∈ X and ε > 0,

B
d+≤
(x,0),ε = {(y, s) | d≤(x, y) + s < ε} = {(y, s) | x ≤ y, s < ε}: if x is finite

(namely, x � x), then this is equal to ↑↑(x, ε), which is Scott-open: so x is
a center point of X, d≤. If X is an algebraic dcpo, every point x ∈ X is a
supremum of a directed family (xi)i∈I of finite points of X, so (x, 0) is also
the supremum of the family (xi, 0)i∈I , where, as we have seen, each xi is a
center point. Therefore, for every algebraic dcpo X, the quasi-metric space
X, d≤ is an algebraic complete quasi-metric space.

In that case, V≤1X, d
a
KR is algebraic complete. When a = 1, and in

light of Remark 3.6, this states that V≤1X is an algebraic complete quasi-
metric space in Sünderhauf’s sup quasi-metric, allowing us to retrieve his
main result [29, Theorem 3.4]—in the case of subprobability valuations.

6. Algebraicity for probability valuations

The situation is less neat than with subprobability valuations (Theo-
rem 5.7) or with metric spaces, and we shall distinguish two settings where
we can conclude: for the bounded daKR quasi-metrics (Theorem 6.1), or for
dKR assuming the existence of a so-called root in X (Theorem 6.6).

Theorem 6.1 (Algebraicity for spaces of probabilities, daKR). Let X, d
be an algebraic complete quasi-metric space, with a strong basis B.

The space V1X, d
a
KR is algebraic complete, for every a ∈ R+, a > 0.

All the simple probability valuations
∑n

i=1 aiδxi with xi center points in
X, d,

∑n
i=1 ai = 1, are center points, and form a strong basis, even when each

xi is taken from B.

Proof. Let ν ∈ V1X. We wish to exhibit a directed family of formal balls
(ν ′i, r

′
i), i ∈ I, below (ν, 0), whose supremum is (ν, 0), where each ν ′i is a

simple valuation of the form
∑n

j=1 ajδxj , with xj in B, and
∑n

j=1 aj = 1.
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As in the proof of Theorem 5.7, ηX [ν] is the supremum of a directed
family of simple valuations νi =

∑ni
j=1 aijδ(xij ,rij), i ∈ I, where each xij is in

B, and
∑ni

j=1 aij ≤ 1.
We can require that rij < 1 for all i, j, as in the proof of Theorem 5.7,

and we similarly define ν̊i as
∑ni

j=1 aijδxij , R(νi) =
∑ni

j=1 aijrij +1−
∑ni

j=1 aij,
β(νi) = (̊νi, R(νi)). Define i � i′ if and only if νi ≤ νi′ , for all i, i′ ∈ I. As
before, we show that:

(∗) for all i � i′ in I, β(νi) ≤d
a+
KR β(νi′).

This implies that the family (β(νi))i∈I is directed. We also show that β(νi) ≤d
a+
KR

(ν, 0) for every i ∈ I, and that supi∈I β(νi) = (ν, 0). However ν̊i is not a prob-
ability, only a subprobability valuation.

Let us fix a center point x0. (There must exist one: the only algebraic
quasi-metric space without a center point is the empty space, and if X is
empty then V1X is empty as well, so we would not have had a ν ∈ V1X
to start with.) For each i ∈ I, let λi = 1 − ν̊i(X), ν ′i = ν̊i + λiδx0 , and
r′i = R(νi) + aλi. Now ν ′i is a probability valuation.

We check that (ν ′i, r
′
i)i∈I is directed. To this end, it is enough to show

that for all i � i′ in I, (ν ′i, r
′
i) ≤ da+KR(ν ′i′ , r

′
i′). Before we do so, we note

that if i � i′, then νi(B(X, d)) ≤ νi′(B(X, d)), that is,
∑ni

j=1 aij ≤
∑ni′

j=1 ai′j;
equivalently, ν̊i(X) ≤ ν̊i′(X). Therefore:

(∗∗) for all i � i′ in I, λi ≥ λi′ .

We also note that for all i � i′ in I, since by (∗) daKR(̊νi, ν̊i′) ≤ R(νi)−R(νi′),
the inequality

∫
x∈X h(x)dν̊i ≤

∫
x∈X h(x)dν̊i′+R(νi)−R(νi′) holds for h equal

to the constant fonction equal to a; hence aν̊i(X) ≤ aν̊i′(X) +R(νi)−R(νi′).
This implies:

(∗∗∗) for all i � i′ in I, r′i ≥ r′i′ .

Let now h be an arbitrary element from La1(X, d), and assume i � i′. We
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have the following:

dR

(∫
x∈X

h(x)dν ′i,

∫
x∈X

h(x)dν ′i′

)
= max

(∫
x∈X
h(x)dν̊i + h(x0)λi −

∫
x∈X
h(x)dν̊i′ − h(x0)λi′ , 0

)
≤ max(R(νi)−R(νi′) + h(x0)(λi − λi′), 0)

since daKR(̊νi, ν̊i′) ≤ R(νi)−R(νi′), using (∗)
≤ max(R(νi)−R(νi′) + a(λi − λi′), 0)

since h(x0) ≤ a, and λi ≥ λi′ by (∗∗)
= max(r′i − r′i′ , 0) = r′i − r′i′ by (∗∗∗).

This shows that for all i � i′ in I, daKR(ν ′i, ν
′
i′) ≤ r′i − r′i′ , hence that

(ν ′i, r
′
i) ≤d

a+
KR (ν ′i′ , r

′
i′). In particular, (ν ′i, r

′
i)i∈I is directed.

We know that β(νi) ≤d
a+
KR (ν, 0) for every i ∈ I, and we need to show

that (ν ′i, r
′
i) ≤d

a+
KR (ν, 0) as well. For every h ∈ La1(X, d), this means showing

that
∫
x∈X h(x)dν̊i + h(x0)λi ≤

∫
x∈X h(x)dν + R(νi) + aλi. We know that∫

x∈X h(x)dν̊i ≤
∫
x∈X h(x)dν +R(νi) since β(νi) ≤d

a+
KR (ν, 0), and we conclude

since h(x0) ≤ a.
Finally, we know that (ν, 0) is the supremum of the directed family

(β(νi))i∈I in B(V≤1X, d
a
KR), and we must show that it is also the supremum

of the directed family (ν ′i, r
′
i)i∈I in B(V1X, d

a
KR).

We claim that:

(†) infi∈I λi = 0.

Indeed, recall that supi∈I β(νi) = (ν, 0). Since directed suprema are com-
puted as naive suprema (Theorem 4.15), this means that infi∈I R(νi) = 0,
and that

∫
x∈X h(x)dν is equal to supi∈I(

∫
x∈X h(x)dν̊i − R(νi)) for every h ∈

La1(X, d). Taking h = a.1, the latter yields a = supi∈I(aν̊i(X) − R(νi)), or
equivalently supi∈I(−aλi−R(νi)) = 0. Since (−R(νi))i∈I is a directed family
(because i � i′ implies β(νi) ≤ β(νi′), hence R(νi) ≥ R(νi′)), and (−λi)i∈I is
directed as well by (∗∗), we may use the Scott-continuity of addition and of
multiplication by a, and rewrite this as a supi∈I(−λi) + supi∈I(−R(νi)) = 0,
hence to infi∈I λi = 0, considering that infi∈I R(νi) = 0.

Knowing this, and using again that directed suprema are naive suprema,
our task consists in showing that infi∈I r

′
i = 0, and that for every h ∈
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La1(X, d),
∫
x∈X h(x)dν = supi∈I(

∫
x∈X h(x)dν ′i − r′i). The first equality is

proved by rewriting infi∈I r
′
i as infi∈I R(νi)+a infi∈I λi, invoking Scott-continuity

as above, and then using the equality infi∈I R(νi) = 0 and (†).
For the second equality, supi∈I(

∫
x∈X h(x)dν ′i−r′i) is equal to supi∈I(

∫
x∈X h(x)dν̊i+

h(x0)λi−R(νi)−aλi), which is equal to the sum of supi∈I(
∫
x∈X h(x)dν̊i−R(νi)

and of (a − h(x0)) supi∈I(−λi), by Scott-continuity of addition and of mul-
tiplication by a − h(x0), again. The first of those summands is equal to∫
x∈X h(x)dν since (ν, 0) is the supremum of (β(νi))i∈I in B(V≤1X, d

a
KR), and

the second one is equal to 0 by (†). 2

A quasi-metric d on a space X is a-bounded if and only if d(x, y) ≤ a for
all x, y ∈ X. It is bounded if and only if it is a-bounded for some a ∈ R+.

Remark 6.2. The quasi-metric daKR is a-bounded on any space of previsions.

Lemma 6.3. If d is an a-bounded quasi-metric on X, then dKR and daKR

coincide on V∗X, whether ∗ is nothing, “≤ 1”, or “1”.

Proof. Clearly, daKR ≤ dKR. In order to show that dKR ≤ daKR, let ν, ν ′ be
any two continuous valuations, and let us consider any h ∈ L1(X, d). We
claim that there is an h′ ∈ La1(X, d) such that dR(

∫
x∈X h(x)dν,

∫
x∈X h(x)dν ′) =

dR(
∫
x∈X h

′(x)dν,
∫
x∈X h

′(x)dν ′). This will imply that dR(
∫
x∈X h(x)dν,

∫
x∈X h(x)dν ′) ≤

daKR(ν, ν ′), hence, as h is arbitrary, that dKR(ν, ν ′) ≤ daKR(ν, ν ′).
For any two points x, y ∈ X, dR(h(x), h(y)) ≤ d(x, y) ≤ a. This implies

that the range of h is included in an interval of length at most a, namely an
interval [b, b + a] for some b ∈ R+, or {+∞}. In the first case, h′ = h − b.1
fits. In the second case, dR(

∫
x∈X h(x)dν,

∫
x∈X h(x)dν ′) = 0 and the constant

0 map fits. 2

Corollary 6.4. Let X, d be an algebraic complete quasi-metric space with
strong basis B, where d is bounded. The space V1X, dKR is algebraic complete.
All the simple probability valuations

∑n
i=1 aiδxi with xi ∈ B and

∑n
i=1 ai = 1,

are center points, and form a strong basis.

Proof. By Lemma 6.3, dKR = daKR, where a > 0 is some non-negative real
such that d is a-bounded. Now apply Theorem 6.1. 2

Corollary 6.4 is rather restrictive, and we give a better result below. The
proof reuses some of the ideas used above.

In a quasi-metric space X, d, say that x ∈ X is an a-root if and only if
d(x, y) ≤ a for every y ∈ X. As a special case, a 0-root is an element below
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all others in the ≤d+ ordering. For example, 0 is a 0-root in R+. Every lift
X⊥, d⊥ of a quasi-metric space X, d is 0-rooted, where X⊥ is obtained from
X by adding a fresh element ⊥, and d⊥ is defined as d on X, and so that
d⊥(⊥, x) = 0 for every x ∈ X. When X, d is standard, the d⊥-Scott open
subsets of X⊥ are exactly X⊥ itself, plus all the d-Scott open subsets of X.
In that case, there is a well-known isomorphism between V1X⊥ and V≤1X
[9], and we let the reader verify that it extends to an isometry with respect
to d⊥KR and dKR (resp., d⊥

a
KR and daKR). It follows that V1X⊥, d⊥KR (resp.,

d⊥
a
KR) is algebraic complete for every algebraic complete quasi-metric space

X, d, as a consequence of Theorem 5.7. Below, we deal with arbitrary rooted,
algebraic complete quasi-metric spaces instead of just lifts X⊥, d⊥.

We call root any a-root, for some a ∈ R+, a > 0. R has no root.

Lemma 6.5. Let X, d be a standard algebraic quasi-metric space with strong
basis B, and a ∈ R+, a > 0. If X, d has an a-root, then, for every ε > 0, it
also has an (a+ ε)-root in B.

Proof. Assume an a-root x. By Lemma 5.6, (x, 0) is the supremum of
a directed family (xi, ri)i∈I where each xi is in B. Since X, d is standard,
infi∈I ri = 0, so there is an i ∈ I such that ri < ε. We use the fact that
(xi, ri) ≤d

+
(x, 0) to infer that d(xi, x) ≤ ri < ε. It follows that, for every

y ∈ X, d(xi, y) ≤ d(xi, x) + d(x, y) < a+ ε. 2

Theorem 6.6 (Algebraicity for spaces of probabilities, dKR). Let X, d
be an algebraic complete quasi-metric space, with strong basis B, and with a
root x0. The space V1X, dKR is algebraic complete.

All the simple probability valuations
∑n

i=1 aiδxi where xi are center points
and

∑n
i=1 ai = 1, are center points, and form a strong basis, even when each

xi is taken from B.

Proof. By Lemma 6.5, we may assume that x0 is also in B. Let now a ∈ R+,
a > 0, be such that d(x0, x) ≤ a for every x ∈ X.

For all probability valuations ν and ν ′ on X, for every h ∈ L1(X, d),
we claim that there is a map h′ ∈ L1(X, d) such that h′(x0) ≤ a, and such
that dR(

∫
x∈X h(x)dν,

∫
x∈X h(x)dν ′) = dR(

∫
x∈X h

′(x)dν,
∫
x∈X h

′(x)dν ′). The
argument is similar to Lemma 6.3. For every x ∈ X, h(x0) ≤ h(x) + d(x0, x)
since h is 1-Lipschitz, so h(x) ≥ h(x0) − a for every x ∈ X. If h(x0) =
+∞, this implies that h is the constant +∞ map. Then

∫
x∈X h(x)dν =
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∫
x∈X supk∈N k.1(x)dν = supk∈N k = +∞, and similarly

∫
x∈X h(x)dν ′ = +∞,

so dR(
∫
x∈X h(x)dν,

∫
x∈X h(x)dν ′) = 0: we can take h′ = 0. If h(x0) < +∞,

then let h′(x) = h(x) − h(x0) + a for every x ∈ X. Since h(x) ≥ h(x0) − a
for every x ∈ X, h′(x) is in R+. Clearly h′ ∈ L1(X, d), and h′(x0) = a.

Therefore dKR(ν, ν ′) = suph∈L1(X,d),h(x0)≤a dR(
∫
x∈X h(x)dν,

∫
x∈X h(x)dν ′).

The proof is now very similar to Theorem 6.1. Let ν ∈ V1X. Then ηX [ν]
is the supremum of a directed family of simple valuations νi =

∑ni
j=1 aijδ(xij ,rij),

i ∈ I, where each xij is in B, and
∑ni

j=1 aij ≤ 1. We require rij < 1, define ν̊i
as
∑ni

j=1 aijδxij , R(νi) =
∑ni

j=1 aijrij + 1 −
∑ni

j=1 aij, and β(νi) = (̊νi, R(νi)).
Define i � i′ if and only if νi ≤ νi′ , for all i, i′ ∈ I. We have again: (∗) for all

i � i′ in I, β(νi) ≤d
+
KR β(νi′).

Now define ν ′i as ν̊i + λiδx0 , and r′i = R(νi) + aλi, where λi = 1− ν̊i(X),
exactly as in the proof of Theorem 6.1. We show, as before: (∗∗) for all i � i′

in I, λi ≥ λi′ ; (∗∗∗) for all i � i′ in I, r′i ≥ r′i′ .
Let now h be an arbitrary element from L1(X, d) such that h(x0) ≤ a,

and assume i � i′. We have the following chain of inequalities—exactly the
same as in Theorem 6.1:

dR

(∫
x∈X

h(x)dν ′i,

∫
x∈X

h(x)dν ′i′

)
= max

(∫
x∈X
h(x)dν̊i + h(x0)λi −

∫
x∈X
h(x)dν̊i′ − h(x0)λi′ , 0

)
≤ max(R(νi)−R(νi′) + h(x0)(λi − λi′), 0)

since dKR(̊νi, ν̊i′) ≤ R(νi)−R(νi′), using (∗)
≤ max(R(νi)−R(νi′) + a(λi − λi′), 0)

since h(x0) ≤ a, and λi ≥ λi′ by (∗∗)
= max(r′i − r′i′ , 0) = r′i − r′i′ by (∗∗∗).

This shows that for all i � i′ in I, dKR(ν ′i, ν
′
i′) ≤ r′i − r′i′ , since we have taken

the precaution to show that dKR(ν ′i, ν
′
i′) is the supremum of dR(

∫
x∈X h(x)dν ′i,∫

x∈X h(x)dν ′i′) over all h ∈ L1(X, d) such that h(x0) ≤ a. Therefore (ν ′i, r
′
i) ≤d

+
KR

(ν ′i′ , r
′
i′) for all i � i′ in I. In particular, (ν ′i, r

′
i)i∈I is directed.

The proof that (ν ′i, r
′
i) ≤d

+
KR (ν, 0) is also as in the proof of Theorem 6.1.

It suffices to show that for every h ∈ L1(X, d) with h(x0) ≤ a,
∫
x∈X h(x)dν̊i+

h(x0)λi ≤
∫
x∈X h(x)dν+R(νi)+aλi. We know that

∫
x∈X h(x)dν̊i ≤

∫
x∈X h(x)dν+

R(νi) since β(νi) ≤d
a+
KR (ν, 0), and we conclude since h(x0) ≤ a.
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Finally, we show that (ν, 0) is also the supremum of the directed family
(ν ′i, r

′
i)i∈I in B(V1X, dKR) by first showing: (†) infi∈I λi = 0; then by showing

that it is the naive supremum of the family, that is, by showing that infi∈I r
′
i =

0 and that for every h ∈ L1(X, d),
∫
x∈X h(x)dν = supi∈I(

∫
x∈X h(x)dν ′i −

r′i). The first equality is easy, considering (†). For the second equality,
supi∈I(

∫
x∈X h(x)dν ′i − r′i) is equal to supi∈I(

∫
x∈X h(x)dν̊i + h(x0)λi−R(νi)−

aλi), which is equal to the sum of supi∈I(
∫
x∈X h(x)dν̊i − R(νi) and of (a −

h(x0)) supi∈I(−λi), by Scott-continuity of addition and of multiplication by
a−h(x0), again. (We use h(x0) ≤ a again here.) The first of those summands
is equal to

∫
x∈X h(x)dν since (ν, 0) is the (naive) supremum of (β(νi))i∈I in

B(V≤1X, d
a
KR), and the second one is equal to 0 by (†). 2

Remark 6.7. Under the assumptions of Theorem 6.6, all simple probability
valuations supported on center points are themselves center points of V1X.
The converse is certainly not true: we will see in Section 7 that dKR is a
metric if d is a metric; in that case, every element of V1X is a center point.

6.1. Further remarks

We can refine Lemma 5.1 as follows. Under the same assumptions, in
particular assuming that each xi is a center point, the sum

∑n
i=1 aih(xi) is

just the integral of h with respect to the simple valuation
∑n

i=1 aiδxi . Since
all continuous maps from a compact space to (R+)d reach their maximum,
Lemma 5.1 immediately entails:

Lemma 6.8. Let X, d be a continuous quasi-metric space, let ν =
∑n

i=1 aiδxi
be a simple valuation on X such that every xi is a center point, and let
ν ′ be a continuous valuation on X. There is an h ∈ L1(X, d) such that
dKR(ν, ν ′) = dR(

∑n
i=1 aih(xi),

∫
x∈X h(x)dν ′)); in other words, the supremum

in (1) is reached.
Similarly, for every a > 0, the supremum in (3) is reached: there is an

h ∈ La1(X, d) such that daKR(ν, ν ′) = dR(
∑n

i=1 aih(xi),
∫
x∈X h(x)dν ′). 2

Out of curiosity, we realize that one can make such an h explicit. This
will come in handy later.

Definition 6.9 (x↗ b). Let X, d be a quasi-metric space. For each center
point x ∈ X and each b ∈ R+, let x ↗ b : X → R+ map every y ∈ X to the
smallest element t ∈ R+ such that b ≤ t+ d(x, y).

43



When b 6= +∞, we might have said, more simply: (x ↗ b)(y) = max(b −
d(x, y), 0). The definition caters for the general situation. When b = +∞,
(x↗ +∞)(y) is equal to 0 if d(x, y) = +∞, and to +∞ if d(x, y) < +∞.

Lemma 6.10. Let X, d be a standard quasi-metric space, x be a center point
of X, d and b ∈ R+. The function x↗ b is 1-Lipschitz continuous.

Proof. It is clear that x ↗ b is 1-Lipschitz. Let us show that it is contin-
uous. Let f = x ↗ b, and f ′(y, r) = f(y) − r. For every s ∈ R, we wish to
show that f ′−1(]s,+∞]) is Scott-open.

If b 6= +∞, a formal ball (y, r) is in f ′−1(]s,+∞]) if and only if max(b−
d(x, y), 0) − r > s. This is equivalent to d(x, y) + r < b − s or r < −s.
The set V−s = {(y, r) | r < −s} is Scott-open since X, d is standard. The
condition d(x, y) + r < b− s is vacuously false if b ≤ s, and is equivalent to
d+((x, 0), (y, r)) < b − s otherwise. It follows that f ′−1(]s,+∞]) is equal to
V−s if b ≤ s, or to V−s ∪Bd+

(x,0),<b−s otherwise. This is Scott-open in any case,
because x is a center point.

If b = +∞, then (y, r) ∈ f ′−1(]s,+∞]) entails that −r > s if d(x, y) =
+∞, or d(x, y) < +∞. Conversely, if −r > s, then f ′(y, r) > s, whether
d(x, y) = +∞ or d(x, y) < +∞, and if d(x, y) < +∞, then f ′(y, r) = +∞ >
s. Also, d(x, y) < +∞ if and only if d+((x, 0), (y, r)) < +∞, if and only if
d+((x, 0), (y, r)) < N for some natural number N . Therefore f ′−1(]s,+∞])
is equal to V−s ∪

⋃
N B

d+

(x,0),<N , which is Scott-open. 2

Lemma 6.11. Let X, d be a standard quasi-metric space, xi be center points
of X, d and bi ∈ R+, 1 ≤ i ≤ n. The function

∨n
i=1 xi ↗ bi, which maps

every y ∈ X to max{(xi ↗ bi)(y) | 1 ≤ i ≤ n}, is the smallest 1-Lipschitz
map f (hence also the smallest function in L1(X, d)) such that f(xi) ≥ bi for
every i, 1 ≤ i ≤ n.

Proof. First, f =
∨n
i=1 xi ↗ bi is in L1(X, d), by Lemma 6.10 and the fact

that the pointwise max of two α-Lipschitz continuous maps is α-Lipschitz
continuous. For any other 1-Lipschitz map h such that h(xi) ≥ bi, 1 ≤ i ≤ n,
for every y ∈ X, h(xi) ≤ h(y) + d(xi, y). In other words, h(y) is a number
t ∈ R+ such that bi ≤ t + d(xi, y). The smallest such t is xi ↗ bi(y) by
definition, so h(y) ≥ (xi ↗ bi)(y). Since that holds for every i and every y,
h ≥ f . 2
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Proposition 6.12. Let X, d be a continuous complete quasi-metric space,
let ν =

∑n
i=1 aiδxi be a simple valuation on X such that every xi is a center

point, and let ν ′ be a continuous valuation on X. There are numbers bi ∈ R+,
1 ≤ i ≤ n, such that dKR(ν, ν ′) = dR(

∑n
i=1 aih(xi),

∫
x∈X h(x)dν ′), where

h =
∨n
i=1 xi ↗ bi.

Similarly, for every a ∈ R+, a > 0, there are numbers bi ∈ [0, αa],
1 ≤ i ≤ n, such that daKR(ν, ν ′) = dR(

∑n
i=1 aih(xi),

∫
x∈X h(x)dν ′), where

h =
∨n
i=1 xi ↗ bi.

Proof. We deal with the dKR case, the daKR case is similar.
Using Lemma 6.8, there is an h0 ∈ L1(X, d) such that dKR(ν, ν ′) =

dR(
∑n

i=1 aih0(xi),
∫
x∈X h0(x)dν ′). Let bi = h0(xi), 1 ≤ i ≤ n, and de-

fine h as
∨n
i=1 xi ↗ bi. By Lemma 6.11, h is in L1(X, d) and h ≤ h0, so∫

x∈X h(x)dν ′ ≤
∫
x∈X h0(x)dν ′. Since dR is antitone in its second argument,

dKR(ν, ν ′) ≤ dR(
∑n

i=1 aih0(xi),
∫
x∈X h(x)dν ′)), and since h0(xi) = h(xi) for

each i, dKR(ν, ν ′) ≤ dR(
∑n

i=1 aih(xi),
∫
x∈X h(x)dν ′). The reverse inequality is

by definition of dKR. 2

7. Probabilities on metric spaces

Among all quasi-metric spaces, the case of metric spaces stands out.

Lemma 7.1. Let X, d be a metric space. Then dKR is a metric, not just a
quasi-metric, on V1X. The same holds for daKR, for every a ∈ R+, a > 0.

Proof. As a matter of simplification, recall that on a metric space X, d, the
d-Scott topology coincides with the open ball topology. As a result, every
1-Lipschitz map is automatically continuous, hence 1-Lipschitz continuous
since every metric space is standard.

We start with the case of daKR. For every h ∈ La1(X, d), a−h is 1-Lipschitz:
for all x, y ∈ X, (a − h(x)) − (a − h(y)) = h(y) − h(x) ≤ d(y, x) = d(x, y),
using the fact that h is 1-Lipschitz and that d is a metric. Moreover, a − h
is bounded from above by a, so a− h is in La1(X, d).

For every subprobability valuation ν on X,
∫
x∈X(a − h)(x)dν = a −∫

x∈X h(x)dν. Indeed, by linearity
∫
x∈X(a−h)(x)dν+

∫
x∈X h(x)dν =

∫
x∈X adν =

a.
For all probability valuations ν, ν ′ on X, dR(

∫
x∈X(a− h)(x)dν ′,

∫
x∈X(a−

h)(x)dν) is therefore equal to dR(a−
∫
x∈X h(x)dν ′, a−

∫
x∈X h(x)dν), hence to

dR(
∫
x∈X h(x)dν,

∫
x∈X h(x)dν ′). It follows that for every h ∈ La1(X, d), there is
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an h′ ∈ La1(X, d), namely h′ = a−h, such that dR(
∫
x∈X h

′(x)dν ′,
∫
x∈X h

′(x)dν) =
dR(
∫
x∈X h(x)dν,

∫
x∈X h(x)dν ′). Therefore daKR(ν, ν ′) ≤ daKR(ν ′, ν). By sym-

metry, we conclude that daKR(ν, ν ′) = daKR(ν ′, ν): daKR is a metric.
To show that dKR is a metric, it is enough to observe that dKR(ν, ν ′) is

equal to supa∈R+,a>0 d
a
KR(ν, ν ′) (Lemma 3.9), and to use the fact that daKR is

a metric. 2

Since dKR(ν, ν ′) = dKR(ν ′, ν) in the metric case, dKR(ν, ν ′) is also equal to
max(dKR(ν, ν ′), dKR(ν ′, ν)), which is easily seen to be equal to suph∈L1(X,d) max(dR(

∫
x∈X h(x)dν,∫

x∈X h(x)dν ′), dR(
∫
x∈X h(x)dν ′,

∫
x∈X h(x)dν)). The inner maximum is the

symmetrized distance dsymR , defined by dsymR (a, b) = |a − b| for all a, b ∈ R+.
Therefore, we obtain the formula:

dKR(ν, ν ′) = sup
h 1-Lipschitz

∣∣∣∣∫
x∈X

h(x)dν −
∫
x∈X

h(x)dν ′
∣∣∣∣ (12)

= sup
h 1-Lipschitz bounded

∣∣∣∣∫
x∈X

h(x)dν −
∫
x∈X

h(x)dν ′
∣∣∣∣ ,

for ν, ν ′ ∈ V1X, in the case where d is a metric on X. (The second equality
is by Lemma 3.8.)

Similarly,

daKR(ν, ν ′) = sup
h 1-Lipschitz bounded by a

∣∣∣∣∫
x∈X

h(x)dν −
∫
x∈X

h(x)dν ′
∣∣∣∣ , (13)

for ν, ν ′ ∈ V1X, assuming again that d is a metric. We recognize the usual
formula for the Kantorovich-Rubinstein metric when a = 1.

Theorem 4.15 then states:

Theorem 7.2. For every complete metric space X, d, the space V1X with
the Kantorovich-Rubinstein metric (12), or with the a-bounded Kantorovich-
Rubinstein metric (13), a ∈ R+, a > 0, is a complete metric space. 2

We haven’t cared to mention that the simple normalized valuations
∑n

i=1 aiδxi
with xi center points in X, d,

∑n
i=1 ai = 1, are center points. This is trivially

true, because every point of a metric space is a center point. In fact, in the
case of Theorem 7.2, every probability valuation is a center point, and every
complete metric space is algebraic complete.

Theorem 7.2 resembles the classical result that, if X, d is a complete
separable metric space, then V1X, dKR is a complete (separable) metric space.
Note that we do not need X to be separable for Theorem 7.2 to hold.
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8. Continuity

The case of continuous complete quasi-metric spaces follows from the al-
gebraic case, because the continuous complete quasi-metric spaces are exactly
the 1-Lipschitz continuous retracts of algebraic complete quasi-metric spaces
[20, Theorem 7.9]. A 1-Lipschitz continuous retraction of Y, ∂ onto X, d is a
pair of 1-Lipschitz continuous maps r : Y, ∂ → X, d and s : X, d→ Y, ∂ such
that r ◦ s = idX . We also say that r itself is the retraction, that X, d is the
retract, and that s is the section.

Recall the map Vf from Lemma 4.8.

Lemma 8.1. Let X, d and Y, ∂ be two continuous complete quasi-metric
spaces, and f : X, d 7→ Y, ∂ be a 1-Lipschitz continuous map. The restric-
tion of Vf to V≤1X is a 1-Lipschitz continuous map from V≤1X, dKR to
V≤1Y, ∂KR, and also from V≤1X, d

a
KR to V≤1Y, ∂

a
KR for every a ∈ R+, a > 0.

Similarly with V1 instead of V≤1.

Proof. Lemma 4.8 says that Vf is 1-Lipschitz, so B1(Vf) is monotonic.
The same lemma shows that Vf maps subprobability valuations (i.e., el-
ements of V≤1X) to subprobability valuations, and probability valuations
(i.e., elements of V1X) to probability valuations.

By Theorem 4.15, V≤1X, dKR and V≤1Y, ∂KR are complete, and directed
suprema in their spaces of formal balls are naive suprema. Similarly with daKR

and ∂aKR in lieu of dKR and ∂KR, or with V1 instead of V≤1. By Lemma 4.9,
B1(Vf) preserves naive suprema, hence all directed suprema. It must there-
fore be Scott-continuous, which shows the claim. 2

Let X, d be a continuous complete quasi-metric space. There is an alge-
braic complete quasi-metric space Y, ∂ and there are two 1-Lipschitz contin-
uous maps r : Y, ∂ → X, d and s : X, d→ Y, ∂ such that r ◦ s = idX .

By Lemma 8.1, Vr and Vs are also 1-Lipschitz continuous, and clearly
Vr ◦ Vs = idV≤1X , so V≤1X, dKR is a 1-Lipschitz continuous retract of
V≤1Y, ∂KR. (Similarly with daKR and ∂aKR.) Theorem 5.7 states that V≤1Y, ∂KR

(resp., ∂aKR) is algebraic complete, whence:

Theorem 8.2 (Continuity for spaces of subprobabilities). Let X, d be
a continuous complete quasi-metric space. The quasi-metric spaces V≤1X, dKR

and V≤1X, d
a
KR (a ∈ R+, a > 0) are continuous complete. 2

Together with Lemma 8.1, and Theorem 5.7 for the algebraic case, we
obtain.
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Corollary 8.3. V≤1, dKR defines an endofunctor on the category of continu-
ous complete quasi-metric spaces and 1-Lipschitz continuous map. Similarly
with daKR instead of dKR (a > 0), or with algebraic instead of continuous. 2

Remark 8.4. Let X be a poset. We recall from Remark 5.8 that X is a
continuous dcpo if and only if X, d≤ is a continuous complete quasi-metric
space. Remark 3.3 tells us that dKR is the {0,+∞}-valued quasi-metric as-
sociated with the stochastic ordering on V≤1X, so Theorem 8.2 specializes to
the following celebrated result by Jones [21, 22] that V≤1X is a continuous
dcpo for every continuous dcpo X.

Using Remark 3.6 instead, we obtain that, for a continuous dcpo X,
V≤1X is a continuous complete quasi-metric space in Sünderhauf’s sup quasi-
metric (namely, d1KR).

Using Theorem 6.1, the same argument produces:

Theorem 8.5 (Continuity for spaces of probabilities, daKR). Let X, d
be a continuous complete quasi-metric space. The quasi-metric space V1X, d

a
KR

is continuous complete for every a ∈ R+, a > 0. 2

Together with Lemma 8.1, and Theorem 6.1 for the algebraic case, we obtain:

Corollary 8.6. V1, d
a
KR defines an endofunctor on the category of continu-

ous (resp., algebraic) complete quasi-metric spaces and 1-Lipschitz continu-
ous map. 2

Remark 8.7. As in Remark 8.4, we obtain that for every continuous dcpo
X, V1X is a continuous complete quasi-metric space in Sünderhauf’s sup
quasi-metric d1KR.

In the case of dKR, and rooted quasi-metric spaces, the same argument
works again, but we have to show that if X, d is not just continuous complete
but also rooted, then the algebraic complete quasi-metric space Y, ∂ of which
X, d is a 1-Lipschitz continuous retract, as guaranteed by Theorem 7.9 of
[20], is also rooted.

To this end, we need to know that Y, ∂ is the so-called formal ball com-
pletion of X, d, defined as follows (see Section 7 of [20]). Let (x, r) ≺ (y, s)
if and only if d(x, y) < r − s. A rounded ideal of formal balls on X, d is
a set D ⊆ B(X, d) that is ≺-directed in the sense that every finite sub-
set of D is ≺-below some element of D, and ≺-downwards-closed, in the
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sense that any element ≺-below some element of D is in D. The aper-
ture of such a set D is α(D) = inf{r | (x, r) ∈ D}. The elements of
Y are exactly the rounded ideals in this sense that have aperture 0. The
quasi-metric ∂ is defined by ∂(D,D′) = supb∈D infb′∈D′ d

+(b, b′). The set
⇓(x, 0) = {(y, r) ∈ B(X, d) | (y, r) ≺ (x, 0)} is an element of Y for every
x ∈ X. The section maps every x ∈ X to ⇓(x, 0), and the retraction d-lim
maps every rounded ideal D such that α(D) = 0 to the unique point x ∈ X
such that supD = (x, 0). We need to know that to show:

Lemma 8.8. The formal ball completion of a quasi-metric space X, d with
an a-root x (a ∈ R+, a > 0) has an a-root, namely ⇓(x, 0).

Proof. Let D be an element of the formal ball completion. We must show
that ∂(⇓(x, 0), D) ≤ a, where ∂ is defined as above. For every b = (z, t) ∈
⇓(x, 0), by definition d(z, x) < t. For every b′ = (y, s) ∈ D, d+(b, b′) =
max(d(z, y)− t+s, 0) ≤ max(d(z, x)+d(x, y)− t+s, 0) ≤ max(d(x, y)+s, 0).
Since x is an a-root, this is less than or equal to a+ s. We use the fact that
α(D) = 0 to make s arbitrarily small. Therefore infb′∈D d

+(b, b′) ≤ a. Taking
suprema over b ∈ ⇓(x, 0), we obtain ∂(⇓(x, 0), D) ≤ a. 2

Since Y, ∂ is rooted, we can now use Theorem 6.6 and the same retraction-
based argument to show:

Theorem 8.9 (Continuity for spaces of probabilities, dKR, rooted case).
Let X, d be a continuous complete quasi-metric space with an a-root x. The
quasi-metric space V1X, dKR is continuous complete, and δx is an a-root.

Proof. Only the fact that δx is an a-root remains to be proved. Let ν ∈
V1X, and h ∈ L1X. Then:

h(x) =

∫
y∈X

h(x)dν since ν(X) = 1

≤
∫
y∈X

h(y) + d(x, y)dν since h is 1-Lipschitz

≤
∫
y∈X

h(y)dν + a,

since d(x, y) ≤ a for every a ∈ X, and ν(X) = 1. Hence dR(
∫
y∈X h(y)dδx,

∫
y∈x h(y)dν) ≤

a. Taking suprema over h, we obtain dKR(δx, ν) ≤ a. 2
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Corollary 8.10. V1, dKR defines an endofunctor on the category of continu-
ous (resp., algebraic) complete quasi-metric spaces with a root and 1-Lipschitz
continuous map. 2

Remark 8.11. For every quasi-metric space X, d, V≤1X, dKR and VX, dKR

have a root, namely the zero valuation. That holds even when X, d does
not have a root. Indeed, 0 ≤ ν for every continuous valuation ν, namely
d(0, ν) = 0.

We finish by studying bases of B(V∗X, dKR) and B(V∗X, d
a
KR), a > 0,

where ∗ is “≤ 1” or “1”. In the various cases that we studied where X, d
is algebraic complete (Theorems 5.7, 6.1, 6.6), we have a basis of simple
(sub)probability valuations ξ =

∑n
i=1 aiδxi , where each xi is a center point

in X, d. In the continuous case, we have:

Proposition 8.12. Let X, d be a continuous complete quasi-metric space.
Let also ∗ denote either “≤ 1” or “1”. A basis of the continuous dcpo
B(V∗X, dKR) (assuming X, d rooted if ∗ is “1”; resp., B(V≤1X, d

a
KR), a > 0)

is given by the formal balls (ξ, t) where ξ is a simple (sub)probability valua-
tion.

Proof. In each case, V∗X, dKR (resp., daKR) is a 1-Lipschitz continuous re-
tract of V∗Y, ∂KR (resp., ∂aKR) where Y, ∂ is algebraic complete, with retrac-
tion Vr and section Vs. Then B1(Vr) and B1(Vs) form a retraction-section
pair in the category of dcpos and Scott-continuous map. A retract of a con-
tinuous dcpo is also a continuous dcpo, and a basis of the retract is given by
the image of any given basis by the retraction (see Exercise 5.1.44 of [16], for
example). Hence a basis is given by the simple (sub)probability valuations of
the form B1(Vr)(

∑n
i=1 aiδyi , t), where each yi is a center point and t ∈ R+—

alternatively, of the form (
∑n

i=1 aiδr(yi), t). In particular, those are all formal
balls (ξ, r) where ξ is a simple (sub)probability valuation. It follows that
every formal ball on V∗X, dKR (resp., daKR) is a directed supremum of such
formal balls (ξ, r) way-below it, which therefore form a basis. 2

Remark 8.13. Let X be a poset. A root for d≤ is the same thing as a least
element ⊥. Hence, using the same arguments as in Remark 8.4 on the dKR

quasi-metric, Theorem 8.9 implies that for every pointed continuous dcpo,
V1X is a continuous dcpo. This result is due to Edalat [9, Section 3].

Considering d1KR instead, we obtain that, if X is a pointed continuous
dcpo, then V1X is a rooted, continuous complete quasi-metric space in Sünderhauf’s
sup quasi-metric.
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9. The weak topology

Recall that the weak topology on V∗X has subbasic open sets [h > b] =
{ν ∈ V∗X |

∫
x∈X h(x)dν > b}, h ∈ LX, b ∈ R+.

When X, d is a standard quasi-metric space, another subbase for the weak
topology is given by the open sets [h > b], where now h is restricted to be
1-Lipschitz continuous. This is because, for every h ∈ LX, h = supα>0 h

(α),
so [h > b] =

⋃
α>0[1/αh

(α) > b/α].
By the same argument, this time using the fact that h = supβ>0 min(h, β),

hence that [h > b] =
⋃
β>0[min(h, β) > b], the open sets [h > b] also form a

subbase of the weak topology, where h is now bounded and in LX.
Now fix a ∈ R+, a > 0. For h bounded in LX, h is the directed supremum

of bounded Lipschitz continuous maps h(α), α > 0, so the same argument
shows that an even smaller subbase is given by the sets [h > b] where h ∈
Lb
∞(X, d). By Lemma 3.16, h is in Laα(X, d) for some α > 0. Then [h >

b] = [1/αh > b/α], so that we can take the sets [h > b] as a subbase of the
weak topology, where h is now in La1(X, d). This will be used in the next
proposition.

Proposition 9.1. Let ∗ be nothing, “≤ 1”, or “1”. Let X, d be a stan-
dard quasi-metric space, a, a′ > 0 with a ≤ a′, and assume that the spaces
V∗X, d

a
KR, V∗X, d

a′
KR and V∗X, dKR are complete and that directed suprema

in their spaces of formal balls are computed as naive suprema.
Then we have the following inclusions of topologies on Y :

weak ⊆ daKR-Scott ⊆ da
′

KR-Scott ⊆ dKR-Scott.

Proof. First inclusion. We use yet another topology, this time on B(V∗X,
daKR). Let [h > b]+ be defined as the set of those formal balls (ν, r) with
ν ∈ V∗X such that

∫
x∈X h(x)dν > r+b. The weak+ topology on B(V∗X, d

a
KR)

has a subbase of open sets given by the sets [h > b]+, for every h ∈ La1(X, d)
and b ∈ R+.

[h > b]+ is upwards-closed in B(V∗X, d
a
KR). Indeed, assume that (ν, r) ∈

[h > b]+, where h ∈ La1(X, d), and that (ν, r) ≤da+KR (ν ′, r′). By Lemma 3.10,
item 2,

∫
x∈X h(x)dν − r ≤

∫
x∈X h(x)dν ′ − r′. Since

∫
x∈X h(x)dν > r + b,∫

x∈X h(x)dν ′ > r′ + b, namely ν ′ ∈ [h > b]+.
To show that [h > b]+ is Scott-open in B(V∗X, d

a
KR), let (νi, ri)i∈I be a

directed family with (naive) supremum (ν, r) in B(V∗X, d
a
KR) and assume
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that (ν, r) ∈ [h > b]+. Since
∫
x∈X h(x)dν = supi∈I(

∫
x∈X h(x)dνi + r − ri) >

r + b,
∫
x∈X h(x)dνi > ri + b for some i ∈ I, i.e., (νi, ri) is in [h > b]+.

We can now proceed to show that [h > b] is daKR-Scott open, for every
h ∈ La1(X, d). Equating V∗X with the subset of all formal balls (ν, 0),
ν ∈ V∗X, [h > b] is equal to V∗X ∩ [h > b]+. Since [h > b]+ is Scott-open,
[h > b] is daKR-Scott open.

Second and third inclusions. The proofs of the second and third inclusions
are similar. We rely on the easily checked inequalities daKR ≤ da

′
KR ≤ dKR, for

a ≤ a′. This implies that: (∗) (ν, r) ≤d+KR (ν ′, s) implies (ν, r) ≤da
′+

KR (ν ′, s),

and that (ν, r) ≤da
′+

KR (ν ′, s) implies (ν, r) ≤da+KR (ν ′, s).
Let U be a Scott-open subset of B(V∗X, d

a
KR). Since U is upwards-closed

in ≤da+KR , it is also upwards-closed in ≤da
′+

KR by (∗). Assume now that (ν, r) ∈ U
is the supremum in B(V∗X, d

a′
KR) of a family (νi, ri)i∈I that is directed with

respect to ≤ da
′+

KR . By (∗) again, (νi, ri)i∈I is directed with respect to ≤ da+KR.
Therefore (νi, ri)i∈I has a supremum (ν ′, r′) in B(V∗X, d

a
KR) that is uniquely

characterized by r′ = infi∈I ri,
∫
x∈X h(x)dν ′ = supi∈I(

∫
x∈X h(x)dνi + r − ri)

for every h ∈ La1(X, d), since suprema are assumed to be naive. However, by
naivety again, r = infi∈I ri and

∫
x∈X h(x)dν = supi∈I(

∫
x∈X h(x)dνi + r − ri)

for every h ∈ La′1 (X, d). This holds in particular for every h ∈ La1(X, d),
so
∫
x∈X h(x)dν =

∫
x∈X h(x)dν ′ for every h ∈ La1(X, d), whence ν = ν ′ by

Corollary 3.19. We have therefore obtained that (ν, r) is also the supremum
of the directed family (νi, ri)i∈I in B(V∗X, d

a
KR). Since (ν, r) ∈ U , some

(νi, ri) is also in U since U is Scott-open in B(V∗X, d
a
KR). This shows that

U is Scott-open in B(V∗X, d
a′
KR). Similarly, we show that every Scott-open

subset of B(V∗X, d
a′
KR) is Scott-open in B(V∗X, dKR), using Corollary 3.14

instead of Corollary 3.19.
By taking intersections U ∩V∗X, it follows that every daKR-Scott open is

da
′

KR-Scott open, and that every da
′

KR-Scott open is dKR-Scott open. 2

The assumptions of Proposition 9.1 are in particular satisfied when X, d
is continuous complete, by Theorem 4.15.

We will see that the dKR-Scott topology is in general strictly finer than
the other topologies (Remark 9.4). We will also see that the other topologies
are all equal, assuming X, d algebraic.

Lemma 9.2. Let Y, ∂ be a standard algebraic quasi-metric space, and B be
a strong basis of Y, ∂. Fix also ε > 0. Every ∂-Scott open subset of Y is a
union of open balls B∂

b,<r, where b ∈ B and 0 < r < ε.
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Proof. Let V be a ∂-Scott open subset of Y , and y ∈ V . Our task is to
show that y ∈ B∂

b,<r ⊆ V for some b ∈ B and r > 0 such that r < ε. By
definition of the ∂-Scott topology, V is the intersection of the Scott-open
subset V̂ of B(Y, ∂) with Y . Since X, d is standard, Vε is also Scott-open,

and V is also the intersection of V̂ ∩ Vε with Y . (V̂ is the largest Scott-open
subset of B(Y, ∂) whose intersection with Y equals V .) We use Lemma 5.6

and the fact that (y, 0) is in V̂ ∩ Vε to conclude that there is a b ∈ B and an

r ∈ R+ such that (b, r)� (y, 0) and (b, r) is in V̂ ∩ Vε. Since (b, r)� (y, 0),
∂(b, y) < r, which implies in particular that r > 0, and also that y is in
B∂
b,<r. Since (b, r) is in Vε, r < ε. Finally, B∂

b,<r is included in V : for every

z ∈ B∂
b,<r, d(b, z) < r, so (b, r) � (z, 0), using the final part of Lemma 5.6.

That shows that (z, 0) is in ↑↑(b, r) ⊆ V̂ . 2

Proposition 9.3. Let X, d be an algebraic complete quasi-metric space. For
every a ∈ R+, a > 0, the daKR-Scott topology coincides with the weak topology
on V≤1X, and on V1X.

Proof. The daKR-Scott topology is finer by Proposition 9.1. Conversely, let
ν ∈ V≤1X (resp., V1X) and U be a daKR-Scott open neighborhood of ν. We
wish to show that ν is in some weak open subset of U . By Theorem 5.7 (resp.,
Theorem 6.1), V≤1X, d

a
KR (resp., V1X, d

a
KR) is algebraic, and we can then ap-

ply Lemma 9.2, taking B equal to the subset of simple (subprobability, resp.
probability) valuations

∑n
i=1 aiδxi where each xi is a center point. There-

fore we can assume that U = B
daKR∑n
i=1 aiδxi ,<ε

for some such simple valuation∑n
i=1 aiδxi and some ε > 0.
By assumption, daKR(

∑n
i=1 aiδxi , ν) < ε. Let η > 0 be chosen such that

daKR(
∑n

i=1 aiδxi , ν) < ε− η. Let N be a natural number such that a/N < η,
and let us consider the collection H of maps of the form

∨n
i=1 xi ↗ bi (see

Proposition 6.12) where each bi is an integer multiple of a/N in [0, a]. Note
that H is a finite family, and that for each h ∈ H,

∑n
i=1 aih(xi) < +∞.

Let V be the weak open set
⋂
h∈H[h >

∑n
i=1 aih(xi)− ε+ η]. (We extend

the notation [h > b] to the case where b < 0 in the obvious way, as the set
of continuous valuations ν ′ such that

∫
x∈X h(x)dν ′ > b; when b < 0, this is

the whole set, hence is again open.) For every h ∈ H, h is in La1(X, d): it
is in L1(X, d) by Lemma 6.10, and clearly bounded from above by a. Since
daKR(

∑n
i=1 aiδxi , ν) < ε − η,

∑n
i=1 aih(xi) <

∫
x∈X h(x)dν + ε − η. Hence ν is

in V .
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Next, we show that V is included in U = B
daKR∑n
i=1 aiδxi ,<ε

. Let ν ′ be an arbi-

trary element of V . By Proposition 6.12 (second part), there are numbers b′i ∈
[0, a], 1 ≤ i ≤ n, such that daKR(

∑n
i=1 aiδxi , ν

′) = dR(
∑n

i=1 aih
′(xi),

∫
x∈X h

′(x)dν ′),
where h′ =

∨n
i=1 xi ↗ b′i. For each i, let bi be the largest integer multiple

of a/N below b′i, and let h =
∨n
i=1 xi ↗ bi. Since h is in H, and ν ′ ∈ V ,∑n

i=1 aih(xi) <
∫
x∈X h(x)dν ′+ε−η. For each i, b′i ≤ bi+a/N ≤ bi+η. It fol-

lows that, for every x ∈ X, (xi ↗ b′i)(x) = max(b′i−d(xi, x), 0) ≤ max(bi+η−
d(xi, x), 0) ≤ max(bi− d(xi, x), 0) + η = (xi ↗ bi)(x) + η. In turn, we obtain
that for every x ∈ X, h′(x) ≤ h(x) + η, so

∑n
i=1 aih

′(xi) ≤
∑n

i=1 aih(xi) + η,
using the fact that

∑n
i=1 ai ≤ 1. Therefore

∑n
i=1 aih

′(xi) <
∫
x∈X h(x)dν ′ + ε.

This implies that daKR(
∑n

i=1 aiδxi , ν
′) < ε. Therefore ν ′ is in U . 2

Remark 9.4. As a special case of Proposition 9.3, applied to complete met-
ric spaces X, d, the daKR-Scott topology on V1X (resp., V≤1X) coincides with
the weak topology. Since the former is the usual open ball topology of the
metric daKR, daKR metrizes the weak topology on spaces of (sub)probability val-
uations on complete metric spaces. This subsumes the well-known result that
it metrizes the weak topology on spaces of probability measures on complete
separable (Polish) spaces. Recall that on Polish spaces, and more generally,
on quasi-Polish spaces, bounded measures and bounded continuous valuations
are in bijective correspondence.

However, the unbounded dKR metric does not metrize the weak topology.
For a counterexample, we reuse one due to Kravchenko [26, Lemma 3.7].
Take any complete metric space X, d, with points (xn)n∈Nr{0} such that n ≤
d(x0, xn) < +∞. Let νn = 1

n
δxn + (1 − 1

n
)δx0. Then (νn)n∈Nr{0} converges

to δx0 in the weak topology, since for every subbasic weak open set [f > r]
containing δx0 (i.e., f(x0) > r),

∫
x∈X f(x)dνn = 1

n
f(xn) + (1 − 1

n
)f(x0)

is strictly larger than r for n large enough (this is easy if r ≥ 0 since
then f(x0) > 0, and is trivial if r < 0 since f ∈ LX takes its values in
R+). However, dKR(δx0 , νn) = suph∈L1X dR(h(x0),

1
n
h(xn) + (1 − 1

n
)h(x0)) ≥

dR(d(x0, xn), (1− 1
n
)d(x0, xn)) (taking h = d( , xn)) = 1

n
d(x0, xn) ≥ 1, which

shows that (νn)n∈Nr{0} does not converge to δx0 in the open ball topology of
dKR.

We reassure ourselves in checking that (νn)n∈Nr{0} does converge to δx0 in
the open ball topology of daKR, though (this must be, since we announced that it
would coincide with the weak topology): daKR(δx0 , νn) = suph∈La1X max( 1

n
(h(x0)−

h(xn))) ≤ a
n

.
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Theorem 9.5 (daKR quasi-metrizes the weak topology). Let X, d be a
continuous complete quasi-metric space. For every a ∈ R+, a > 0, the daKR-
Scott topology coincides with the weak topology on V≤1X, and on V1X.

Proof. We reduce to the case of algebraic complete quasi-metric spaces.
We invoke [20, Theorem 7.9] again: X, d is the 1-Lipschitz continuous

retract of an algebraic complete quasi-metric space Y, ∂. Call s : X → Y
the section and r : Y → X the retraction. Then Vs and Vr form a 1-
Lipschitz continuous section-retraction pair by Lemma 4.8, and in particular
Vs is an embedding of V≤1X into V≤1Y with their daKR-Scott topologies
(similarly with V1). However, s and r are also just continuous, since every 1-
Lipschitz continuous map between standard spaces is, so Vs and Vr also form
a section-retraction pair between the same spaces, this time with their weak
topologies. (Indeed, note that whenever f is continuous, so is Vf , because
(Vf)−1([h > b]) = [h ◦ f > b].) By Proposition 9.3, the two topologies on
V≤1Y (resp., V1Y ) are the same. However, V≤1X (resp., V1X) embeds in
the latter, both in its daKR-Scott topology and in its weak topology, through
the topological embedding Vs. Hence the two topologies on V≤1X (resp.,
V1X) are the same as well. 2

10. Open Questions

1. Assume X, d standard algebraic. Is V1X, dKR algebraic? This is the
case if X has a root (Theorem 6.6), in particular if d is bounded.
Close results are that V1X, d

a
KR is algebraic for every a > 0 (Theo-

rem 6.1), and that V≤1X, dKR is algebraic (Theorem 5.7). Beware of
Kravchenko’s counterexample: the dKR-Scott topology on V1X is in
general different from the weak topology, and the coincidence with the
weak topology in the rooted and daKR cases followed more or less directly
from algebraicity.

2. The above theorems apply to spaces of normalized, or subnormalized
valuations. Are there analogous results for the space VX of all contin-
uous valuations? I doubt it, since, by analogy, the space of all measures
on a Polish space is in general not even metrizable.

3. Does the Kantorovich-Rubinstein duality theorem extend to interesting
classes of non-metric quasi-metric spaces? As we have already said in
the related work section, such a result was announced for symcompact
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spaces [15, Theorem 5]. One would hope a form of it for quasi-Polish
spaces, or more precisely, for second countable Smyth-complete quasi-
metric spaces. Alternatively, can one imagine doing an independent
study of W p-like quasi-metrics on such spaces?

The difficulty, which may appear silly at first but runs deep, is that
the map (x, y) 7→ d(x, y) is not lower semicontinuous, because it is
antitonic in y. It is not even Borel measurable in general, so that
the integral

∫
(x,y)∈X2 d(x, y)d$ defining W 1 does not make sense. For

a counterexample, consider the d≤ metric on ω1 + 1, where ω1 is the
first uncountable ordinal. The d≤-Scott topology coincides with the
Scott topology (see Remark 3.3). The family of countable subsets of
ω1 + 1 that do not contain ω1 and their complements forms a σ-algebra
containing all the Scott-open sets, so {ω1} is not Borel. But {ω1} is the
inverse image of the closed set [0, 1] by the map y 7→ d≤(ω1, y). Hence
y 7→ d≤(ω1, y) is not Borel measurable, and therefore neither is d≤.
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les espaces polonais. Séminaire de probabilités (Strasbourg) 15, 6–10.

[13] Gierz, G., Hofmann, K. H., Keimel, K., Lawson, J. D., Mislove, M.,
Scott, D. S., 2003. Continuous Lattices and Domains. Vol. 93 of En-
cyclopedia of Mathematics and its Applications. Cambridge University
Press.

[14] Goubault-Larrecq, J., Sep. 2007. Continuous previsions. In: Duparc,
J., Henzinger, T. A. (Eds.), Proceedings of the 16th Annual EACSL
Conference on Computer Science Logic (CSL’07). Springer-Verlag LNCS
4646, Lausanne, Switzerland, pp. 542–557.

[15] Goubault-Larrecq, J., Mar.-Apr. 2008. Simulation hemi-metrics between
infinite-state stochastic games. In: Amadio, R. (Ed.), Proceedings of the
11th International Conference on Foundations of Software Science and
Computation Structures (FoSSaCS’08). Springer-Verlag LNCS 4962,
Budapest, Hungary, pp. 50–65.

[16] Goubault-Larrecq, J., 2013. Non-Hausdorff Topology and Domain
Theory—Selected Topics in Point-Set Topology. Vol. 22 of New Mathe-
matical Monographs. Cambridge University Press.

57



[17] Goubault-Larrecq, J., 2017. Complete quasi-metrics for hyper-
spaces, continuous valuations, and previsions, arXiv 1707.03784, v2,
https://arxiv.org/abs/1707.03784; v6, July 2020.

[18] Goubault-Larrecq, J., 2019. Formal ball monads. Topology and its Ap-
plications 263, 372–391.

[19] Goubault-Larrecq, J., 2020. Some topological properties of spaces
of Lipschitz continuous maps on quasi-metric spaces. Topology
and its Applications. 282, available online 1 June 2020, 107281,
https://doi.org/10.1016/j.topol.2020.107281.

[20] Goubault-Larrecq, J., Ng, K. M., Oct. 2017. A few notes on formal balls.
Logical Methods in Computer Science 13 (4:18), 1–34, special issue of
Domain Theory and Applications (the Domains XII Workshop), Cork,
Ireland, August 2015.

[21] Jones, C., 1990. Probabilistic non-determinism. Ph.D. thesis, University
of Edinburgh, technical Report ECS-LFCS-90-105.

[22] Jones, C., Plotkin, G. D., 1989. A probabilistic powerdomain of evalu-
ations. In: Proc. 4th IEEE Symposium on Logics in Computer Science
(LICS’89). IEEE Computer Society Press, pp. 186–195.

[23] Kantorovich, L. V., 1942. On the translocation of masses. Comptes Ren-
dus (Doklady) de l’Acad. Sci. URSS 37, 199–201, reprinted in Manage-
ment Science, vol. 5, 1–4, 1958.

[24] Kantorovich, L. V., Rubinshtĕın, G. S., 1958. On a space of totally
additive functions. Vestnik Leningradskogo Universiteta 13 (7), 52–59.

[25] Kostanek, M., Waszkiewicz, P., 2010. The formal ball model for Q-
categories. Mathematical Structures in Computer Science 21 (1), 1–24.

[26] Kravchenko, A. S., 2006. Completeness of the space of separable mea-
sures in the Kantorovich-Rubinshtĕın metric. Siberian Mathematical
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