
HAL Id: hal-03186336
https://hal.science/hal-03186336

Submitted on 31 Mar 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Expressive Completeness of Separation Logic With Two
Variables and No Separating Conjunction

Stéphane Demri, Morgan Deters

To cite this version:
Stéphane Demri, Morgan Deters. Expressive Completeness of Separation Logic With Two Variables
and No Separating Conjunction. ACM Transactions on Computational Logic, 2016, 17 (2), pp.12:1-
12:44. �10.1145/2835490�. �hal-03186336�

https://hal.science/hal-03186336
https://hal.archives-ouvertes.fr

SL2

Expressive Completeness of Separation Logic With Two Variables
and No Separating Conjunction

STEPHANE DEMRI, LSV, ENS Cachan, CNRS, Université Paris-Saclay, 94235 Cachan, France
MORGAN DETERS, New York University, USA

Separation logic is used as an assertion language for Hoare-style proof systems about programs with point-
ers, and there is an ongoing quest for understanding its complexity and expressive power. Herein, we show
that first-order separation logic with one record field restricted to two variables and the separating impli-
cation (no separating conjunction) is as expressive as weak second-order logic, substantially sharpening a
previous result. Capturing weak second-order logic with such a restricted form of separation logic requires
substantial updates to known proof techniques. We develop these, and as a by-product identify the smallest
fragment of separation logic known to be undecidable: first-order separation logic with one record field, two
variables, and no separating conjunction. Because we forbid ourselves the use of many syntactic resources,
this underscores even further the power of separating implication on concrete heaps.

Categories and Subject Descriptors: F.3.1 [Specifying and Verifying and Reasoning about Programs]:
Logics of Programs

General Terms: Theory, Verification

Additional Key Words and Phrases: separation logic, expressive completeness, two-variable logics, undecid-
ability

ACM Reference Format:
S. Demri, M. Deters, October 9th, 2015 [paper accepted], September 8th, 2015 [revised submission]. Initial
submission: April 3rd, 2015. Expressive Completeness of Separation Logic With Two Variables and No Sep-
arating Conjunction ACM Trans. Comput. Logic V, N, Article SL2 (January YYYY), 52 pages.
DOI:http://dx.doi.org/10.1145/0000000.0000000

1. INTRODUCTION
Expressive completeness. The literature is rich with results comparing the expressive

power of non-classical logics with most standard logics such as first- or second-order
logic. For instance, the celebrated Kamp’s Theorem [Kamp 1968; Rabinovich 2014]
amounts to stating that linear-time temporal logic (LTL) is equal in expressive power
to first-order logic. More generally, we know the expressive completeness of Stavi con-
nectives for general linear time, see e.g. [Gabbay et al. 1994]. This has been refined
to the restriction to two variables, leading to the equivalence between unary LTL and
FO2, see e.g. [Etessami et al. 1997; Weis 2011] (see also [Sreejith 2013] for related
questions). Monadic second-order logic (MSO) is another yardstick logic and, for in-
stance, it is well-known that ω-regular languages are exactly those definable in MSO,

Work partially supported by the EU Seventh Framework Programme (under grant PIOF-GA-2011-301166,
DATAVERIF), the Air Force Office of Scientific Research (under award FA9550-09-1-0596), and the National
Science Foundation (under grant 0644299). Part of this work was completed when the first author visited the
ACSys group at New York University during the outgoing phase of the Marie Curie IOF Project DATAVERIF.
This is a completed and extended version of [Demri and Deters 2014].
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© YYYY ACM 1529-3785/YYYY/01-ARTSL2 $15.00
DOI:http://dx.doi.org/10.1145/0000000.0000000

ACM Transactions on Computational Logic, Vol. V, No. N, Article SL2, Publication date: January YYYY.

see e.g. [Straubing 1994]. Similarly, extended temporal logic ETL, defined in [Wolper
1983] and extending LTL, is also known to be equally expressive with MSO. This ap-
plies also to linear µ-calculus [Vardi 1988] or to PSL [Lange 2007], to quote a few
more examples. On non-linear structures, bisimulation invariant fragment of MSO
and modal µ-calculus have been shown equivalent [Janin and Walukiewicz 1996]. In
addition, there is a wealth of results relating first-order logic with two variables and
non-classical logics, providing a neat characterization of the expressive power of many
formalisms since first-order logic and second-order logic are queen logics. For instance,
Boolean modal logic with converse and identity is as expressive as first-order logic
with two quantified variables (FO2) [Lutz et al. 2001]. For sets of nodes, XPath has
also been established equally expressive as FO2, see e.g. an overview in [Marx and
de Rijke 2005], see also in [Bojanczyk et al. 2009] a version of FO2 on data trees.
Sometimes, a third variable is needed to get expressive completeness. For instance,
in [Venema 1991] it is proved that interval logic with connectives Chop, D and T is ex-
pressively complete over linear flows of time with respect to first-order logic restricted
to three quantified variables. In the realm of interval temporal logics, we also know
expressive completeness of metric propositional neighborhood logic with respect to the
two-variable fragment of first-order logic for linear orders with successor function, in-
terpreted over natural numbers [Bresolin et al. 2010].

In this paper, we compare separation logic restricted to two variables with (weak)
second-order logic over concrete heaps.

Expressive power of separation logic. Separation logic is used as an assertion lan-
guage for Hoare-style proof systems about programs with pointers [Apt 1981; Reynolds
2002], and there is an ongoing quest for understanding its complexity and expressive
power. Alternatively, there are a lot of activities to develop verification methods with
decision procedures for fragments of practical use, see e.g. [Cook et al. 2011; Haase
et al. 2013]. Many decision procedures have been designed for fragments of separation
logics or abstract variants, from analytic methods [Galmiche and Méry 2010; Hou et al.
2014; Hou et al. 2015] to translation to theories handled by SMT solvers [Piskac et al.
2013; Pérez and Rybalchenko 2013; Piskac et al. 2014; Bansal et al. 2015], passing via
graph-based algorithms [Haase et al. 2013]. Of course, there are also plenty of methods
or heuristics that are even more tailored to verification, see e.g. [Calcagno et al. 2011;
Thakur et al. 2014] and there are plenty of other methods to verify heap manipulating
programs, see a nice overview in [Chakraborty 2012] for automata-based techniques.

Theoretical issues for separation logic stem from the design of expressive fragments
with relatively low complexity (see e.g. [Cook et al. 2011]) to the extension of known de-
cidability results, see e.g. [Bozga et al. 2010; Iosif et al. 2013; Antonopoulos et al. 2014].
Indeed, it is known since [Calcagno et al. 2001] that first-order separation logic with
two record fields (herein called 2SL) is undecidable (with a proof that does not require
separating connectives and uses Trakhtenbrot’s Theorem [Trakhtenbrot 1963]). This is
sharpened in [Brochenin et al. 2012] by showing that first-order separation logic with
a unique record field (herein called 1SL) is also undecidable, as a consequence of the
expressive equivalence between 1SL and weak second-order logic. More recently, 1SL
restricted to two variables (1SL2) is shown undecidable too [Demri and Deters 2015]
(by reduction from the halting problem for Minsky machines) but without touching the
central question of expressive completeness—the purpose of the current paper. From
the very beginning, the relationships between separation logic and second-order logic
have been quite puzzling (see e.g. an interesting answer with infinite arbitrary struc-
tures in [Kuncak and Rinard 2004]). Moreover, comparisons of fragments have been
also studied, for instance 1SL(∗) has been established strictly less expressive than
MSO in [Antonopoulos and Dawar 2009] (see also the related work [Marcinkowski

2

2006]). In this paper, we go one step further by showing that two variables suffice to get
expressive completeness, which is a real technical tour de force while establishing quite
a surprising result. As a consequence, we conclude that 1SL2(−∗) (that is, 1SL2 without
separating conjunction) is undecidable, too. This should not be confused with undecid-
ability results from [Brotherston and Kanovich 2014; Larchey-Wendling and Galmiche
2013], which are obtained in an alternative setting with propositional variables and
without first-order quantification. It is fair to recall that separating implication (also
called the “magic wand”) has been less well-studied than separating conjunction in the
literature, but its use for program verification is far more recognized nowadays; see
e.g. [Lee and Park 2014, Section 1] for a recent, insightful analysis (see also [Hou et al.
2014, Section 8] or [Thakur et al. 2014; Schwerhoff and Summers 2015]).

Our contribution. In this paper, we show that first-order separation logic with one
record field, two quantified variables, and no separating conjunction is as expressive
as weak second-order logic on heaps; in short, 1SL2(−∗) ≡WSOL. Even though conjec-
tured in [Brochenin et al. 2012; Brochenin 2013], it is surprising that two variables
suffice, and that further we are able to drop the separating conjunction, thus obtain-
ing expressive completeness and undecidability with only two variables and the magic
wand operator. In doing so, we improve previous undecidability results about sepa-
ration logic [Calcagno et al. 2001; Brochenin et al. 2012; Demri and Deters 2015].
Because we forbid ourselves the use of many syntactic resources, this underlines even
further the power of the magic wand. By way of comparison with [Grädel et al. 1999;
Immerman et al. 2004], we show undecidability of a two-variable logic with second-
order features. Our main undecidability result cannot be derived from [Grädel et al.
1999; Immerman et al. 2004] since in 1SL models, we deal with a single functional
binary relation, namely the finite heap. We believe that we have identified the core of
separation logic as far as undecidability and expressive completeness are concerned,
since, for instance, first-order separation logic with one record field, one quantified
variable and an unbounded number of program variables, has recently been shown
decidable and it admits a PSPACE-complete satisfiability problem [Demri et al. 2014].
Figure 1 illustrates how the main result of the paper (Theorem 5.13) compares with
known results from the literature. Section 2 contains formal definitions of the different
logics.

Consequences of 1SL2(−∗) ≡ WSOL. The first consequence of the equivalence
1SL2(−∗) ≡ WSOL is certainly that two variables suffice to capture full 1SL and con-
sequently to express any property on heaps that can be stated in weak second-order
logic. As a consequence, undecidability holds, and the set of valid formulae in 1SL2(−∗)
is not recursively enumerable. Clearly, this contrasts with many logical formalisms,
such as FO2 on first-order structures or FO2 on ω-sequences that are decidable when
the number of quantified variables is restricted to two or for which the computational
complexity decreases significantly, see e.g. [Grädel et al. 1997; Etessami et al. 1997].
Moreover, such an expressive completeness result can be also used to establish struc-
tural completeness of separation logic, as shown in [Lozes 2012]. Hence, our main
result has many interesting consequences, apart from the proof technique to show it,
which we describe briefly, below.

Proof technique. In our proof, most of the difficulties are concentrated on the use of
only two variables: we recycle variables as done for modal logics [Gabbay 1981], but
this is insufficient, especially when separating conjunction is also banished. So, as far
as the proof for expressive completeness goes, we borrow some of the first principles
from [Brochenin et al. 2012], but very quickly we are faced with serious problems when

3

1SL ≡ DSOL ≡WSOL ≡ 1SL(−∗)
undecidable

[Brochenin et al. 2012]

2SL
undecidable

[Calcagno et al. 2001]

1SL2
undecidable

[Demri and Deters 2015]

1SL(∗)
decidable, non-elementary

[Brochenin et al. 2012]

1SL2(−∗) ≡WSOL
undecidable

(Theorem 5.13)

1SL2(∗)
decidable, non-elementary

[Demri and Deters 2015]

1SL1
PSPACE-complete
[Demri et al. 2014]

Propositional 1SL
PSPACE-complete

[Calcagno et al. 2001]

Fig. 1: Contribution of the paper and related work.

we need to identify in some heap at least k > 0 heap patterns (a typical example is to
specify that at least k > 0 locations point to a given location).

Indeed, the standard way to identify such patterns is to use an unbounded number
of variables or the separating conjunction. So, in the presence of only two variables
and by using only the magic wand operator, instead of chopping the heap in k disjoint
subheaps, we add O(k) new patterns so that the newly combined heap satisfies struc-
tural properties that witness the presence of the k patterns in the original heap. This
high-level description has to be instantiated as many times as we have to identify dif-
ferent types of patterns, but this new point of view allows us to go far beyond what
was known previously (see e.g., the proof of Lemma 3.3). At times, it is not strictly
necessary to introduce a radically new method, but instead we can be more thrifty in
the way formulae are defined to express desirable properties; of course, this may come
with more complex proofs and, above all, more ingenuity to design such formulae. At
last, after using the new techniques, after saving syntactic resources on formulae and
after using first principles from [Brochenin et al. 2012], we are able to design a lengthy
and tedious proof and to conclude that 1SL2(−∗) is as expressive as weak second-order
logic on heaps, and as a by-product it is also the smallest known undecidable fragment
of separation logic.

It should be noted that the paper is structured in such a way that we provide more
and more complex building blocks to establish our main results. Indeed, after Sec-
tion 2’s preliminary material, Section 3 is dedicated to expressing properties about

4

reachability and comparing a number of location predecessors against a constant,
whereas Section 4 deals with much richer comparisons between numbers of location
predecessors. Another contribution of the present paper rests on the fact that we con-
siderably simplify some of the technical insights borrowed from [Brochenin et al. 2012]
and therefore the current paper proposes a self-contained proof of the equivalence be-
tween 1SL2(−∗) and weak second-order logic that in many ways is much simpler than
what has been done so far, even though our results are stronger. The main result is
proven in Section 5. Extensions with program variables or with heaps having k > 1
record fields are presented in Section 6. Furthermore, the variant when an infinite
domain is allowed, is briefly discussed in Section 6.

2. PRELIMINARIES
2.1. First-order separation logic with one selector (1SL)
A heap h is a partial function h : N⇁ N with finite domain. We write dom(h) to denote
its domain and ran(h) to denote its range. Two heaps h1, h2 are said to be disjoint, if
their domains are disjoint; when this holds, we write h1] h2 to denote their disjoint
union. Locations are elements of N and are denoted by l, possibly decorated with super-
scripts or subscripts. We write l1 → l2 → · · · → lm to mean that for every i ∈ [1,m− 1],
h(li) = li+1. In that case {l1, . . . , lm−1} ⊆ dom(h). We write]̃l to denote the cardinal of
the set {l′ ∈ N : h(l′) = l} made of predecessors of l (heap h is implicit in the expression
]̃l) and]̃l

?
to denote the cardinal of ({l′ ∈ N : h(l′) = l} \ {l}). So,]̃l =]̃l

?
precisely when

either l 6∈ dom(h) or h(l) 6= l (otherwise]̃l
?
=]̃l − 1 and h(l) = l). Most probably, the

notation ‘]pred(l, h)’ is more suggestive of its meaning than]̃l since it contains ’pred’ by
reference to the predecessors of l and the heap h is made explicit. However, we believe
that ‘]pred(l, h)’ is a bit lengthy, especially when it is used in more complex expressions.
The same applies for the alternative notation ‘]pred\l(l, h)’ instead of]̃l

?
.

Usually, in models for separation logic(s), memory states have a heap and also a
store, for interpreting program variables (see e.g. [Reynolds 2002]). Herein, there is
no need for program variables; we establish expressiveness results without their help.
However, an adaption with program variables is presented in Section 6.

Let FVAR = {u1, u2, . . .} be a countably infinite set of variables. Formulae of 1SL are
defined by the abstract grammar below:

φ ::= ui = uj | ui ↪→ uj | φ ∧ φ | ¬φ | φ ∗ φ | φ−∗φ | ∃ ui φ.

The connective ∗ is called the separating conjunction and the connective −∗ is called
the separating implication (also known as the magic wand). We make use of standard
definitions to derive other standard operations (∀, ∨,⇒, 6=, etc.).

A valuation is a map f of the form FVAR→ N. The satisfaction relation |= is parame-
terized by valuations and is defined as follows (Boolean clauses are omitted):

— h |=f ui = uj iff f(ui) = f(uj).
— h |=f ui ↪→ uj iff f(ui) ∈ dom(h) and h(f(ui)) = f(uj).
— h |=f φ1 ∗ φ2 iff there exist h1, h2 such that h1 and h2 are disjoint, h = h1] h2, h1 |=f φ1

and h2 |=f φ2.
— h |=f φ1−∗φ2 iff for all h′, if h and h′ are disjoint, and h′ |=f φ1 then h] h′ |=f φ2.
— h |=f ∃ ui φ iff there exists l ∈ N such that h |=f[ui 7→l] φ where f[ui 7→ l] refers to a map

equal to f except that ui takes the value l.

We also introduce the so-called septraction operator ¬−∗: φ ¬−∗ ψ is defined as the for-
mula ¬(φ−∗¬ψ) [Vafeiadis and Parkinson 2007]. So, h |=f φ

¬−∗ ψ iff there exists h′,
disjoint from h, such that h′ |=f φ and h] h′ |=f ψ. The septraction operator states

5

the existence of a disjoint heap satisfying a formula and for which its addition to the
original heap satisfies another formula. Note that the magic wand makes a universal
statement about (disjoint) additions to the heap, septraction an existential one.

For every i ≥ 1, 1SLi denotes the fragment of 1SL restricted to i variables and
1SLi(−∗) denotes its restriction when separating conjunction is disallowed. Let L be
a logic among 1SL, 1SLi, 1SLi(−∗). The satisfiability problem for L takes as input a
sentence φ from L and asks whether there is a heap h such that h |= φ (regardless of
valuation, as φ has no free variables).

THEOREM 2.1. [Brochenin et al. 2012; Demri and Deters 2015] The satisfiability
problem for 1SL is undecidable, even if restricted to two individual variables (1SL2).

2.2. Weak second-order logic (WSOL)
In order to define formulae in WSOL, we consider a family SVAR = (SVARi)i≥1 of second-
order variables, denoted by P, Q, R, . . . and interpreted as finite relations over N. Each
variable in SVARi is interpreted as an i-ary relation. A second-order valuation f is an
interpretation of the second-order variables such that for every P ∈ SVARi, f(P) is a
finite subset of Ni.

Formulae of WSOL are defined by the grammar below:

φ ::= ui = uj | ui ↪→ uj | φ ∧ φ | ¬φ | ∃ ui φ | ∃ P φ | P(u1, . . . , un)

where ui, uj , u1, . . . , un are first-order variables and the P are second-order variables
with P ∈ SVARn for some n ≥ 1. We write DSOL (dyadic second-order logic) to denote the
restriction of WSOL to second-order variables in SVAR2. Like 1SL, models for WSOL are
finite heaps and quantification is performed over all possible locations. The satisfaction
relation |= is defined as follows (f is a hybrid valuation providing interpretation for both
first-order and second-order variables):

— h |=f ∃ P φ iff there exists a finite relation R ⊆ Nn such that h |=f[P7→R] φ where
P ∈ SVARn.

— h |=f P(u1, . . . , un) iff (f(u1), . . . , f(un)) ∈ f(P).

The satisfiability problem for WSOL takes as input a sentence φ in WSOL and
asks whether there is a heap h such that h |= φ. By Trakhtenbrot’s Theorem (see
e.g. [Trakhtenbrot 1963; Börger et al. 1997]), the satisfiability problem for DSOL (and
therefore also for WSOL) is undecidable since finite satisfiability for first-order logic
with a single binary relation symbol is undecidable. Note that a monadic second-order
variable can be simulated by a binary second-order variable from SVAR2, and this can
be used to relativize a formula from DSOL in order to check finite satisfiability.

THEOREM 2.2. [Brochenin et al. 2012] 1SL, WSOL and DSOL have the same ex-
pressive power.

Consequently, in order to show that 1SL2(−∗) is as expressive as WSOL (our main
result), it is sufficient to prove that every sentence from DSOL has an equivalent sen-
tence in 1SL2(−∗). It is worth noting that Theorem 2.2 can be extended to the case with
k > 1 record fields [Brochenin et al. 2012], which actually requires a simpler proof. A
similar adaptation is possible from our main result (see Section 6).

3. EXPRESSING PROPERTIES IN 1SL2(−∗)
In the following, let u and u be the variables u1 and u2, in either order. Throughout this
article, we build formulae with the quantified variables u and u. Note that any formula
φ(u) with free variable u can be turned into an equivalent formula with free variable u
by permuting the two variables.

6

One of the first challenges we face in tracking information with 1SL2(−∗) is that of
remembering references to memory cells. With only two variables, expressing simple
properties of the heap becomes difficult. If we care to express the property the domain
of the heap is a singleton, there is no trouble; we can write

∃ u ((∃ u u ↪→ u) ∧ ∀ u (u 6= u⇒ ¬ (∃ u u ↪→ u))) .

However, to express that the domain contains exactly two locations, we run into trou-
ble. With additional variables, this would not be a problem, as we would have the
ability to refer to these locations at the same time; similarly, with the separating con-
junction ∗, there would be no difficulty, as we could express our simpler property twice
on two disjoint subheaps, each of which must then contain a single memory cell. But
with the severe syntactic restriction of 1SL2(−∗), a new method is needed.

In this section, we propose a new and natural method to compare a number of pre-
decessors against a constant, and also a way to express a reachability property.

3.1. Warming up with basic properties
Let us begin by defining simple, standard formulae. These are easily seen to be correct.

— u has a successor in the heap (equivalently, we say it is allocated):

alloc(u)
def
= ∃ u u ↪→ u.

— u is an isolated location, that is, it is not in dom(h), nor is it in ran(h):

isoloc(u)
def
= ¬alloc(u) ∧ ¬∃ u u ↪→ u.

— dom(h) has exactly one location:

(size = 1)
def
= ∃ u

(
alloc(u) ∧ ∀ u (u 6= u⇒ ¬alloc(u))

)
.

Using the separating conjunction ∗, it is easy to define the formula (size = k) stating
that dom(h) has exactly k locations (k > 1).

— u has at least one predecessor:

]u > 0
def
= ∃ u u ↪→ u.

Naturally, since the number of predecessors is nonnegative, we can also write:

]u = 0
def
= ¬(]u > 0).

Let us now proceed with more complicated constructions.

3.2. Counting z-predecessors
In this paper, we will make heavy use of counting predecessors of memory locations.
This is critical to many of the technical developments of this work; without an adequate
number of variables to refer to locations of interest, we instead “remember” locations
by installing a large (and uniquely identifiable) number of predecessors to a location
in the heap. At another point in the formula, we can identify this location and operate
on it, having not used any of the logic’s limited syntactic resources.

As one may imagine, counting and comparing numbers of predecessors is difficult to
do in this logic. We first build up a method of counting a certain type of predecessor,
then use it to formulate more involved constructions, and finally introduce a way to
count the full number of predecessors of a location—that is, to compare its number
of predecessors with some given k ≥ 0. After this is achieved, nearly the entirety of
Section 4 extends this to comparing numbers of predecessors between two locations
(rather than just a comparison to some given k).

7

With that in mind, we first introduce the notion of z-predecessors, which are prede-
cessors of a location that themselves have no predecessors (‘z’ is for ‘zero’). We can then
write:

— u’s predecessors (if it has any) are all z-predecessors:

allzpred(u)
def
= ∀ u u ↪→ u⇒]u = 0.

— u has no z-predecessor:

]zu = 0
def
= ∀ u u ↪→ u⇒]u > 0.

— u has at most k > 0 z-predecessors:

]zu ≤ k
def
= (size = 1) ¬−∗ (]zu ≤ k − 1)

where]zu ≤ 0 is defined as]zu = 0.

These definitions easily allow us to define]zu ./ k for every k ∈ N and ./ ∈
{=, <,≤, >,≥}. The following lemma establishes correctness of the above formulae and
all of the derivative forms.

LEMMA 3.1. Let h be a heap, f be a valuation, and k ∈ N. We have h |=f]zu ≤ k iff
card({l ∈ N :]̃l = 0, h(l) = f(u)}) ≤ k.

PROOF. The proof is by induction on k and the base case with k = 0 is by an easy
verification. In the induction step, assume k > 0 and suppose that the induction hy-
pothesis is the following: h |=f]zu ≤ k′ iff card({l ∈ N :]̃l = 0, h(l) = f(u)}) ≤ k′ for any
k′ < k. In particular this holds for k′ = k − 1.

(⇐) First, suppose that card({l ∈ N :]̃l = 0, h(l) = f(u)}) ≤ k.
Case 1: card({l ∈ N :]̃l = 0, h(l) = f(u)}) ≤ k − 1. Let h′ be the heap with singleton

domain such that h′(l) = l for some l 6∈ (dom(h) ∪ ran(h) ∪ {f(u)}). Because l is quite
isolated, we also have that card({l ∈ N :]̃l = 0, (h] h′)(l) = f(u)}) ≤ k − 1 and
h′ |=f (size = 1). By (IH), h] h′ |=f]zu ≤ k− 1. Consequently, by definition of |=, we get
h |=f (size = 1) ¬−∗]zu ≤ k − 1, that is h |=f]zu ≤ k.

Case 2: card({l ∈ N :]̃l = 0, h(l) = f(u)}) = k. Let l0 be in {l ∈ N :]̃l = 0, h(l) = f(u)}
and l be a location not in (dom(h) ∪ ran(h) ∪ {f(u)}). Let h′ be the heap with singleton
domain such that h′(l) = l0. In h] h′, f(u) has one less z-predecessor, so card({l ∈ N :

]̃l = 0, (h] h′)(l) = f(u)}) = k − 1 and h′ |=f (size = 1). By (IH), h] h′ |=f]zu ≤ k − 1.
Consequently, by definition of |=, we obtain h |=f (size = 1) ¬−∗]zu ≤ k − 1, that is
h |=f]zu ≤ k.

(⇒) Now suppose that h |=f (size = 1) ¬−∗]zu ≤ k− 1. There is a heap h′ disjoint from
h such that card(dom(h′)) = 1 and h]h′ |=f]zu ≤ k− 1. By (IH), f(u) has at most (k− 1)
z-predecessors in h] h′. By removing h′ from h] h′, one can augment the number of
z-predecessors of f(u) by at most one (since card(dom(h′)) = 1). So, f(u) has at most k
z-predecessors in h.

3.3. A matter of knives and forks
To address the problem of referring to many distinct memory locations despite not
having sufficient variables to do so, we introduce the notion of forks. Forks are simple,
recognizable shapes that we add to the heap with the magic wand. The forks can then
be found at another point, “deeper” in the formula. Forks are also a critical building
block for comparing predecessor counts in Section 4.

8

A fork in h is a sequence of distinct locations l, l0, l1, l2 such that h(l0) = l,]̃l0 = 2,
h(l1) = h(l2) = l0 and]̃l1 =]̃l2 = 0. The endpoint of the fork is l, and its midpoint is
l0. The fork is isolated iff]̃l = 1 and l /∈ dom(h). Similarly, a knife in h is a sequence of
distinct locations l, l0, l1 such that h(l0) = l,]̃l0 = 1, h(l1) = l0 and]̃l1 = 0. The endpoint
of the knife is l, and the midpoint of the knife is l0. The knife is isolated iff]̃l = 1 and
l /∈ dom(h).

By way of example, the heap represented in Figure 2 contains three knives, two forks
and four endpoints (identified by ‘?’). Of these, one of the depicted forks and one of the
knives are isolated. The locations participating in the “lasso” shape, at the right of the
figure, are not part of any knife or fork.

To identify fork and knife endpoints in a heap, we define the following formulae:

forkendpt(u)
def
= ∃ u (u ↪→ u ∧]zu = 2 ∧ allzpred(u))

knifeendpt(u)
def
= ∃ u (u ↪→ u ∧]zu = 1 ∧ allzpred(u)) .

Now, let forky(u) be a formula stating that all predecessors of f(u), possibly excepting
f(u) itself, are endpoints of forks:

forky(u)
def
= ∀ u ((u ↪→ u ∧ u 6= u)⇒ forkendpt(u)) .

Three forks, two endpoints, and a forky location are depicted in Figure 3.
Next, let antiforky(u) be a formula stating that no predecessor of f(u) is the endpoint

of a fork, and let antiknify(u) be a formula stating that no predecessor of f(u) is the
endpoint of a knife. We define these as

antiforky(u)
def
= ∀ u (u ↪→ u⇒ ¬forkendpt(u))

antiknify(u)
def
= ∀ u (u ↪→ u⇒ ¬knifeendpt(u)) .

Note the asymmetry between forky(u) and antiforky(u): f(u) does not have to be the
endpoint of a fork for forky(u) to hold (which would be then impossible to realize for
all the predecessors of f(u) if f(u) were a self-loop, assuming that the number of prede-
cessors of f(u) remains constant). It is also easy to enforce that the heap is made of a
single fork, which will be useful in later constructions.

LEMMA 3.2. There exists a formula 1fork in 1SL2(−∗) such that for all heaps h, we
have h |= 1fork iff h is made of a single, isolated fork (and nothing else).

PROOF. In a heap h, a trident location, in short a tril, is a location l such that

? ? ?

? ••• •

•

•

•
•

•
•

•

•

•

•
•

•

•

Fig. 2: A heap with three knives, two forks, and four distinct endpoints (marked ‘?’).

9

(1) l ∈ dom(h),
(2) l has exactly two predecessors and none of them has a predecessor, and
(3) h(l) 6∈ dom(h).

So, a tril has exactly two predecessors that are both z-predecessors, and it points to
the endpoint of a fork. Therefore it belongs to a fork, but it may not be isolated (the
endpoint may have more than one predecessor).

Let tril(u) be defined as the following 1SL2(−∗) formula:

tril(u)
def
=]zu = 2 ∧ allzpred(u) ∧ ∃ u (u ↪→ u ∧ ¬alloc(u)).

It is easy to show that h |=f tril(u) iff f(u) is a tril. Moreover the following property
can be easily established:

—. The heap h is made of a single, isolated fork (and nothing else) iff (1) h contains
a unique tril, and (2) for all locations l ∈ dom(h), either l is a tril or h(l) is a tril.

Let 1fork be the formula below, which jointly expresses the properties (1) and (2)
above.

1fork
def
=

property (1)︷ ︸︸ ︷(
∃ u tril(u) ∧ ∀ u (u 6= u⇒ ¬tril(u))

)
∧

∀ u
(
alloc(u)⇒ (tril(u) ∨ (∃ u (u ↪→ u) ∧ tril(u)))

)︸ ︷︷ ︸
property (2)

.

Clearly, then, h |= 1fork iff h is made of a single, isolated fork (and nothing else).

3.4. Counting predecessors
We now have the necessary developments to build formulae that constrain the total
number of predecessors (not just z-predecessors) of a location: with k ∈ N, we define

]u ≤ k def
=

{
¬∃ u u ↪→ u k = 0

(u ↪→ u ∧
?

]u ≤ k − 1) ∨ (¬(u ↪→ u) ∧
?

]u ≤ k) k > 0

fork endpoints

forky

Fig. 3: Forky locations.

10

where

?

]u ≤ k def
=

¬∃ u (u ↪→ u ∧ u 6= u) if k = 0

(]u = 0) ¬−∗ (antiforky(u) ∧ (1fork ¬−∗ · · · ¬−∗ 1fork︸ ︷︷ ︸
k times

¬−∗ forky(u)) k > 0

In a nutshell, f(u) has at most k > 0 predecessors if one can make f(u) antiforky without
changing its predecessor count (which is always possible) and then adding k forks to
the heap to make f(u) forky (we distinguish the case when f(u) is a self-loop).

In Figure 4, we present three heaps; the leftmost heap is the original heap. The
heap in the middle is obtained from the leftmost heap by destroying forks pointing to
predecessors of the location ? (just add memory cells to destroy the fork shapes). The
rightmost heap is obtained from the heap in the middle by adding two forks pointing
to predecessors of the location ?, except for the predecessor equal to the location ?. This

amounts to check the satisfaction of
?

]u ≤ 2.

LEMMA 3.3. Let k ∈ N, h be a heap and f be a valuation. (I) h |=f

?

]u ≤ k iff]̃f(u)
?
≤ k.

(II) h |=f]u ≤ k iff]̃f(u) ≤ k.

PROOF. With k = 0, the proof is by an easy verification.
With k ≥ 1, let us start by giving a few definitions that are useful for the proof.
First, we define a family (ψk)k∈N of formulae in 1SL2(−∗) so that ψ0

def
= forky(u) and

ψk+1
def
= 1fork

¬−∗ ψk. For all formulae in (ψk)k∈N, the variable u is free. Each formula
]u ≤ k with k ≥ 1 is thus equal to(

(u ↪→ u) ∧
(
(]u = 0) ¬−∗ (antiforky(u) ∧ ψk−1)

))
∨(

¬(u ↪→ u) ∧
(
(]u = 0) ¬−∗ (antiforky(u) ∧ ψk)

))
.

Note that in the first disjunct, requiring that u ↪→ u holds is not incompatible with
the possibility to add a disjoint heap such that]u = 0 holds (thanks to disjointness).

?•

•

• •

•

• •

?

antiforky(?)

•

•

• •

•

• •

•

•

?

forky(?)

•

•

• •

•

• •

•

•

•

• •

•

•

•

Fig. 4: Removing and adding forks.

11

Similarly, each formula
?

]u ≤ k with k ≥ 1 is equal to

(]u = 0) ¬−∗ (antiforky(u) ∧ ψk).

Given a heap h and a location l, we write pne(l) to denote the number of predecessors
of l in h that are not endpoints of some forks in h and that, further, are different from l.
In particular, for all l ∈ N, pne(l) ≤]̃l

?
, and also h |=[u7→l] forky(u) iff pne(l) = 0. We will

establish the following property for all k ≥ 0:

(E). For all l ∈ N, for all heaps h, we have h |=[u7→l] ψk iff pne(l) ≤ k.

For the base case (k = 0), we have h |=[u7→l] ψ0 iff h |=[u7→l] forky(u) (by definition of
ψ0) iff all the predecessors of l (possibly with the exception of l) are endpoints of some
fork (by the property characterizing the formula forky(u)) iff pne(l) = 0 (by definition
of pne(·)) iff pne(l) ≤ 0 (pne(l) is always non-negative).

For the induction step, let us assume that pne(l) ≤ k + 1.
Case 1: pne(l) ≤ k. Let h′ be some disjoint heap such that h′ |= 1fork and the endpoint

of the unique fork in h′ is not in (dom(h)∪ran(h)∪{l}). It is always possible to construct
such an h′ since h is a finite structure. Still, pne(l) ≤ k in h]h′ and therefore by (IH), we
have h]h′ |=[u7→l] ψk. Consequently, there is a disjoint heap h′ such that h′ |=[u7→l] 1fork

and h] h′ |=[u7→l] ψk, whence h |=[u7→l] ψk+1.
Case 2: pne(l) = k + 1. Let l′ be some location such that h(l′) = l and l′ 6= l. Let h′ be

some disjoint heap such that h′ |= 1fork and the endpoint of the unique fork in h′ is
precisely l′. Again, it is always possible to construct such an h′. So, pne(l) = k in h] h′

and therefore by (IH), we have h] h′ |=[u7→l] ψk. As for Case 1, we can conclude that
h |=[u7→l] ψk+1.

Now assume that h |=[u7→l] ψk+1, i.e., h |=[u7→l] 1fork
¬−∗ ψk. There is a heap h′ disjoint

from h such that h′ |=[u7→l] 1fork and h]h′ |=[u7→l] ψk. By (IH), pne(l) in h]h′ is less than
or equal to k (say it equals k′). If the endpoint of the unique fork in h′ is a predecessor
of l that is not the endpoint of some fork in h and different from l, then pne(l) in h is
at most k′ + 1 ≤ k + 1. Otherwise, if the endpoint of the unique fork in h′ is not a
predecessor of l, then pne(l) in h is at most k′ ≤ k. In both cases, pne(l) ≤ k + 1 in h. So,
we have established (E).

Now let h be some heap. We have (†) h |=[u7→l] (]u = 0) ¬−∗ (antiforky(u) ∧ ψk)) iff
there exists a heap h′ disjoint from h such that]̃l in h is equal to]̃l in h]h′, h]h′ |=[u7→l]

antiforky(u) and pne(l) ≤ k in h] h′.]̃l in h is equal to]̃l in h] h′ (and also]̃l
?

is the
same in both heaps), and l is antiforky in h] h′, so pne(l) in h is less than or equal to
pne(l) in h] h′, and pne(l) =]̃l

?
in h] h′. Now, (†) iff there exists a heap h′ disjoint from

h such that]̃l in h is equal to]̃l in h] h′, h] h′ |=[u7→l] antiforky(u), and]̃l
?
≤ k in h] h′.

Since it is always possible to build a disjoint heap h′ satisfying those properties, we
have that (†) is equivalent to]̃l

?
≤ k in h. This establishes (I).

By performing a simple case analysis depending whether h(l) = l, we can show that
for all heaps h, for all locations l, for all k ≥ 1, we have h |=[u7→l]]u ≤ k iff]̃l ≤ k. As a
conclusion, we have established (II) as well.

Thus we can express in 1SL2(−∗) the following properties:

— f(u) has at least k predecessors:]u ≥ k def
= ¬ (]u ≤ k − 1).

— f(u) has exactly k predecessors:]u = k
def
=]u ≤ k ∧]u ≥ k.

12

Of course we can also define strict inequalities. Note that these definitions are entirely
consistent with the earlier definitions of]u > 0 and]u = 0 given in Section 3.1. Further-
more, all the difficulties to define]u ≥ k vanish if we consider the fragment 1SL2(∗);
it is sufficient to consider k identical conjuncts (∃ u u ↪→ u) built with the separation
conjunction.

3.5. Lonely memory cells
The formula below states that f(u) is an isolated cell: it is allocated but has no prede-
cessors, its successor has no other predecessors besides it, and its successor has itself
no successor.

isocell(u)
def
=]u = 0 ∧

(
∃ u u ↪→ u ∧]u = 1 ∧ ¬alloc(u)

)
.

Now, we can express a useful property of the heap itself. A heap h is segmented when-
ever dom(h) ∩ ran(h) = ∅ and no location has strictly more than one predecessor. Oth-
erwise said, all the memory cells in h are isolated. This segmentation can be naturally
expressed in 1SL2(−∗):

seg
def
= ∀ u ∀ u

(
u ↪→ u⇒ (]u = 1 ∧]u = 0)

)
.

3.6. Expressing reachability
In 1SL, reachability can be expressed, and [Demri and Deters 2015] gives a tech-
nique for doing so with the two-variable restriction 1SL2, itself a variant of material
from [Dawar et al. 2007; Brochenin et al. 2012].

In 1SL2(−∗) we do not have the luxury of using the separating conjunction, but we
can still specify reachability between a pair of locations—say from f(u) to f(u), since
our goal is to write a formula parameterized by u and u. However, we need a new
technique: we first install a fork at f(u), we propagate this fork forward in the heap,
and finally we check whether f(u) is the endpoint of some fork. This is analogous to
the way reachability is handled with a monadic second-order predicate, but here, a
finite set of locations is identified by propagation of forks. We define propagate(u) as
the formula characterizing the property that f(u) is the endpoint of some fork in h, and
that the property of being the endpoint of some fork is propagated along memory cells.
The reachability predicate (for reachability from f(u) to f(u)) is written reach(u, u):

propagate(u)
def
= forkendpt(u) ∧ ∀ u ∀ u

(
(u ↪→ u ∧ forkendpt(u))⇒ forkendpt(u)

)
reach(u, u)

def
= >−∗

(
propagate(u)⇒ forkendpt(u)

)
.

The purpose of the initial “>−∗” is to enrich the original heap such that the satisfac-
tion of the formula propagate(u) implies the satisfaction of the formula forkendpt(u).
Of course, a disjoint subheap could change the very reachability property we are test-
ing. But some such subheaps do not, and the implicit universal quantification of the
magic wand ensures that we are on the safe side: if for all combined heaps satisfying
propagate(u), f(u) is the endpoint of a fork, then we can conclude that f(u) reaches f(u)
in the original heap.

LEMMA 3.4. Given a heap h, a location l, and a valuation f, if h |=[u7→l] propagate(u),
then for all k ≥ 0, if hk(l) exists, then h |=[u7→hk(l)] forkendpt(u).

PROOF. The proof is by induction on k. To show the base case (k = 0), note that
for any location l, h0(l) = l. h |=[u7→l] propagate(u) implies h |=[u7→l] forkendpt(u), so
h |=[u7→hk(l)] forkendpt(u).

Now we assume the statement holds for some k ≥ 0 and prove the result for k + 1.
Assuming hk+1(l) exists, we need to show h |=[u7→hk+1(l)] forkendpt(u). If hk+1(l) exists

13

then hk(l) does also (and is its predecessor). By (IH), we get h |=[u7→hk(l)] forkendpt(u).
Thus h |=[u7→hk(l),u7→hk+1(l)] u ↪→ u ∧ forkendpt(u). By the definition of propagate(u) we
have h |= ∀ u ∀ u

(
(u ↪→ u ∧ forkendpt(u)) ⇒ forkendpt(u)

)
, so therefore h |=[u7→hk+1(l)]

forkendpt(u).

LEMMA 3.5. Given a heap h and a valuation f, we have h |=f reach(u, u) iff
hk(f(u)) = f(u) for some k ≥ 0.

PROOF. (⇒) As a direct consequence of h |=f reach(u, u) (that is, expanding the
definitions of reach and the magic wand), we know that for all disjoint heaps h′ such
that h] h′ |=f propagate(u), the property h] h′ |=f forkendpt(u) holds. We will next
construct such an h′ where h] h′ |=f forkendpt(u) and use it to demonstrate that f(u)
can be reached from f(u) in h.

First, let lreach0 , . . . , lreachk be the locations reachable from f(u) in h. Let forks = {l ∈ N :

l is the midpoint of a fork in h} and let free def
= N \ (dom(h) ∪ ran(h) ∪ {f(u), f(u)}). Next,

let lji ∈ free be some unique location for all i ∈ [0, k] and j ∈ [1, 3], and let lforkl′ ∈ free be
some unique location for each l′ ∈ forks, with these two sets of locations disjoint.

Now, let h′ be the unique heap whose graph is exactly the set below:

{(l1i , l3i), (l2i , l3i), (l3i , hi(f(u))) : i ∈ [0, k]} ∪ {(lforkl′ , l′) : l′ ∈ forks}.

By construction, h′ is disjoint from h (since all memory cells are taken from the set
free, which does not include any location from dom(h)). The locations l10, l

2
0, l

3
0, f(u) make

up a fork with endpoint f(u), so h′ |=f forkendpt(u), and note that for all i > 0,
l1i , l

2
i , l

3
i , h

i(f(u)) make up a fork with endpoint hi(f(u)). In particular, this means that
for all i ∈ [1, k], lreachi is the endpoint of a fork in h] h′. Thus h] h′ |=f propagate(u).

Next, observe that lreach0 , . . . , lreachk are the only fork endpoints that exist in h] h′. To
see this, note that

(1) the only forks in h′ are those with endpoints lreach0 , . . . , lreachk ,
(2) forks in h are destroyed such that their endpoints are not endpoints of forks in h]h′

unless they are also endpoints in h′, and
(3) by construction, h′ uses locations from the set free that excludes dom(h) ∪ ran(h), so

no fork can be “accidentally” constructed by parts from h and h′.

Thus, for every location l ∈ N, l is the endpoint of a fork in h] h′ iff l = lreachi for
some i.

Now, since we assumed h |=f reach(u, u) and we have found a heap h′ such that
h] h′ |=f propagate(u), the property h] h′ |=f forkendpt(u) holds. Since f(u) is the
endpoint of a fork in h] h′, it must be equal to lreachi (for some i), and consequently
must be equal to hi(f(u)) (for some i).

(⇐) Assume that hk(f(u)) = f(u) for some k ≥ 0 and we need to show h |=f reach(u, u).
To do so, we must show that for all heaps h′ disjoint from h, the following property
holds true:

(†) If h] h′ |=f propagate(u), then h] h′ |=f forkendpt(u).

Assuming h] h′ |=f propagate(u), f(u) is the endpoint of a fork in h] h′. Now, from
Lemma 3.4 we know h] h′ |=f forkendpt(u), completing the proof.

It is notable that 1SL2(−∗) has no need for built-in reachability predicates, in contrast
to formalisms from e.g. [Immerman et al. 2004]. In the rest of the paper, we generalize,
in a sense, what was done here in an ad hoc manner for reachability, so that any
second-order property can be represented in 1SL2(−∗).

14

4. COMPARING NUMBERS OF PREDECESSORS
The main goal of this section is to define in 1SL2(−∗) a formula expressing that
]̃f(u) + k ≤]̃f(u) + k′, where k, k′ ∈ N, for any heap h and valuation f. Without the
restriction on the number of variables, we know that such properties can be expressed
in 1SL(−∗) [Brochenin et al. 2012]. Note that arithmetical constraints on list lengths
can be found in [Bozga et al. 2010] but this is primitive in the logical formalism. By
contrast, we show that constraints of the form]̃f(u) + k ≤]̃f(u) + k′ can be expressed
in 1SL2(−∗) itself. Since a property of the form]̃f(u) + k ≤]̃f(u) + k′ requires a formula
with O(k+k′) variables in 1SL(−∗) according to [Brochenin et al. 2012], herein we need
to circumvent this issue by proposing an alternative way to express the key properties
that are helpful to state that]̃f(u) + k ≤]̃f(u) + k′. Below, we still use first principles
from [Brochenin et al. 2012] to construct a formula in 1SL2(−∗)—mainly, how to build a
fork from a knife and an isolated memory cell—but we will need to bypass the serious
problem of having only two variables at our disposal, without permitting ourselves any
use of the separating conjunction.

4.1. Principles of the construction and principal difficulties with 1SL2(−∗)

Let h be a heap and f be a valuation for which we wish to check whether]̃f(u)
?
+ k ≤

]̃f(u)
?
+ k′ holds (afterward, it will be easy to conclude for]̃f(u) + k ≤]̃f(u) + k′, see the

proof of Theorem 4.4). Below, we explain which extensions of h must be performed to
achieve this. There will be a correspondence with formulae in 1SL2(−∗) to enforce the
construction of these extensions, and this is the subject of the technical developments
below. We mainly describe first principles from [Brochenin et al. 2012], but the reader
should be warned that in several places, we propose a simplified alternative, apart
from the fact that all the formulae need to be part of the restricted fragment 1SL2(−∗).

4.1.1. Preparing the heap. The first step consists in preparing the heap by destroying
any forks and knives at f(u) and f(u), and ensuring there are no isolated memory cells—
these properties will be necessary in later steps—while maintaining the number of
predecessors at f(u) and f(u). To do this, we augment h with a heap hp so that the
following properties are satisfied:

(a). hp is disjoint from h;
(b). f(u) has the same number of predecessors in h and in h] hp, say]̃f(u)

?
= m ≥ 0;

(c). f(u) has the same number of predecessors in h and in h] hp, say]̃f(u)
?
= m ≥ 0;

(d). In h] hp, f(u) has no predecessor that is an endpoint of a fork or knife;
(e). In h] hp, f(u) has no predecessor that is an endpoint of a fork or knife;
(f). h] hp has no isolated memory cell.

Note that this step is always possible, since to destroy the structure of an isolated
memory cell, a fork or a knife, it is sufficient to add a memory cell at some position
as to no longer have the object—for instance, to destroy a fork that does not involve
either f(u) or f(u) one can give its midpoint a third predecessor. In the case f(u) (or
f(u)) is the midpoint of a fork, it is sufficient to add a new memory cell l′ → l where l
is a predecessor of f(u) (so that the fork is destroyed without modifying the number of
predecessors of f(u)). We take advantage of the formulae antiforky(·) and antiknify(·)
to establish properties (d) and (e); the others are straightforward.

4.1.2. Addition of a segmented heap. This step consists in checking whether, for each
segmented heap hs satisfying certain properties, the condition (P) defined below holds
true. The heap hs must be segmented and also must satisfy the following:

15

u

u

u

u

Fig. 5: Using knives and segments to make forks and compare predecessor counts.

(a). hs is disjoint from h] hp;
(b). f(u) and f(u) have no predecessors in hs;
(c). In h]hp]hs, neither f(u) nor f(u) has a predecessor that is an endpoint of a fork
or knife (they are antiforky and antiknify).

Although hs is segmented, we cannot assume that hs is completely disconnected from
h] hp since ran(hs) ∩ dom(h] hp) may be non-empty but ran(hs) cannot contain f(u) or
f(u). Let n be the number of isolated memory cells in h] hp] hs. The heap hs may have
strictly more than n isolated memory cells but those that really matter are the ones
that are isolated in h] hp] hs. Note that for each q ≥ 0, it is possible to build hqs so that
h] hp] hqs has exactly q isolated memory cells and hqs satisfies the above conditions.

In order to construct forks in h] hp] hs whose endpoints are predecessors of f(u) or
f(u), either we can augment the heap with a fork, or we can augment the heap with
a knife so that its combination with an isolated memory cell in h] hp] hs leads to a
fork whose endpoint is a predecessor of f(u) or f(u). See Figure 5, which depicts two
locations, each with three predecessors. Imagine we are performing the comparison
]̃f(u)

?
≤]̃f(u)

?
(presently equivalent to]̃f(u) ≤]̃f(u)). First, a segmented heap is added

(allocated locations are marked with a white circle in the figure). The left half of the
figure shows the addition of a collection of knives through these segments to make f(u)
forky; with the same segments, it must then be possible to add a collection of knives to
make f(u) forky. Indeed it is; if this is true for all such segmented heaps, then it must
be that]̃f(u)

?
≤]̃f(u)

?
. The segments from the segmented heap should really be seen as

“potential forks.” When k or k′ is nonzero, we consider additional forks on one or both
sides to compensate for the offset.

This illustrates the principle behind the definition of the following property (P): If
there is a heap h[k] disjoint from h]hp]hs made of isolated knives and k isolated forks so
that f(u) is forky in h]hp]hs]h[k], then there is a heap h[k′] disjoint from h]hp]hs made
of isolated knives and k′ isolated forks so that f(u) is forky in h]hp]hs]h[k′]. Note that
by the conditions satisfied by h[k] or by h[k′], the number of predecessors of f(u) [resp.
f(u)] in h[k] [resp. h[k′]] is necessarily zero (there is no need to specify explicitly that we
do not add predecessors). Indeed, for instance, if in h[k] there were an isolated fork or
knife having as endpoint f(u), because h[k] is made of isolated knives and forks, one of
the predecessors of f(u) in the newly built heap would not be the endpoint of some fork,
and therefore f(u) would not be forky. That predecessor of f(u) in the newly built heap
would be the midpoint of the isolated fork or knife that has f(u) as endpoint in h[k].

16

Let us return to arithmetical considerations. The number of forks in h] hp] hs] h[k]
whose endpoints are predecessors of f(u) is bounded by n+k and similarly, the number
of forks in h]hp]hs]h[k′] whose endpoints are predecessors of f(u) is bounded by n+k′.
Note also that the number of predecessors of f(u) is the same in h and in h]hp]hs]h[k′]
and the number of predecessors of f(u) is the same in h and in h] hp] hs] h[k]. So,
n+ k ≥ m implies n+ k′ ≥ m, i.e. n ≥ m− k implies n ≥ m− k′.

4.1.3. Checking the resulting heap. By checking step 2 for all n ≥ 0, we get that for all
n ≥ 0, we have n ≥ m − k implies n ≥ m − k′, which entails that m − k ≥ m − k′, i.e.
m + k ≤ m + k′, whenever m − k′ ≥ 0 and m − k ≥ 0. Universal quantification over n
is simulated in a formula by using separating implication. When m < k′ or m < k, we
make a dedicated case analysis (see the proof of Theorem 4.4).

Below, we present the technical developments.

4.2. Cutlery revisited
Apart from forks, we introduce the notions of collections and large forks (instrumen-
tal in the proof of Lemma 4.1 below). A large fork is a sequence of distinct locations
l1, · · · , l5 such that l1, l2, and l3 have no predecessors, h(l1) = h(l2) = h(l3) = l4,]̃l4 = 3
and h(l4) = l5. Location l5 is called the endpoint of the large fork and l4 its midpoint,
and as with forks and knives, the large fork is called isolated iff]̃l5 = 1 and l5 /∈ dom(h).
A heap h is a collection of knives and forks def⇔ there is no location in dom(h) that does
not belong to an isolated knife or to an isolated fork. Similarly, a heap h is a collection
of knives and large forks def⇔ there is no location in dom(h) that does not belong to an
isolated knife or isolated large fork.

LEMMA 4.1. There are formulae ksfs, kslfs and ksfs=k (k ≥ 0) in 1SL2(−∗) such
that for every heap h,

(1). h |= ksfs iff h is a collection of knives and forks,
(2). h |= kslfs iff h is a collection of knives and large forks,
(3). h |= ksfs=k iff h is a collection of knives and forks with exactly k forks.

It is also worth noting that ksfs=k is of linear size in k and it can be built in space
O(log(k)) (see the proof below).

PROOF. First, let us introduce auxiliary formulae. For all ./ ∈ {≤,≥,=} and
i ≥ 0, we define the following formulae (formulae of the form]u ./ k are defined in
Lemma 3.3):

]u0 ./ k
def
=]u ./ k

]u+(i+1) ./ k
def
= ∃ u u ↪→ u ∧]u+i ./ k.

For instance,]u+6 ≥ 5 states that there is a (necessarily unique) location at distance 6
from u and its number of predecessors is greater than or equal to 5. Note that (for
example) ¬]u+i ≥ 0 is not equivalent to]u+i < 0 when i 6= 0, since the negation
applies to the existential quantifier rather than to the comparison. This observation
allows a shorthand for expressing a property that an ith successor exists; for example,
h |=f]u

+3 ≥ 0 iff {f(u), h(f(u)), h(h(f(u)))} ⊆ dom(h). Symmetrically,]u−(i+1) ./ k
def
=

∃ u u ↪→ u ∧]u−i ./ k but this plays no role in the rest of the paper and this could be
useful in some other context, see e.g. [Demri and Deters 2015].

Now, in Figure 6, we introduce a classification of the types of allocated locations in
knifes, forks and large forks (we take advantage of obvious symmetries) when they
occur in collections made of disjoint structures.

17

1

2

3

4

6

5

ϕ1(u)
def
= (]u = 0)∧(]u+1 = 1)∧(]u+2 = 1)∧¬(]u+3 ≥ 0)

ϕ2(u)
def
= ∃ u u ↪→ u ∧ ϕ1(u)

ϕ3(u)
def
= (∃ u u ↪→ u ∧ tril(u)) ∧]u+2 = 1

ϕ4(u)
def
= ∃ u u ↪→ u ∧ ϕ3(u)

ϕ5(u)
def
=]u = 3∧]u+1 = 1∧¬(]u+2 ≥ 0)∧allzpred(u)

ϕ6(u)
def
= ∃ u u ↪→ u ∧ ϕ5(u)

Fig. 6: Types of allocated locations in a knife, fork, and large fork, and formulae ϕτ for
each type τ of location.

In order to define the formulae, we make a case analysis depending on the position
of an allocated location on a knife, on a fork or on a large fork. This is a bit tedious but
without essential technical difficulty. Figure 6 associates a formula ϕτ for each location
of type τ (see the proof of Lemma 3.2 for the definition of tril(u)).

The following properties are then easy to establish (see Figure 6):

(Q1). For all h and f, h |=f ϕ1(u) iff f(u) points to the midpoint of an isolated knife.
(Q2). For all h and f, h |=f ϕ2(u) iff f(u) is the midpoint of an isolated knife.
(Q3). For all h and f, h |=f ϕ3(u) iff f(u) points to the midpoint of an isolated fork.
(Q4). For all h and f, h |=f ϕ4(u) iff f(u) is the midpoint of an isolated fork.
(Q6). For all h and f, h |=f ϕ6(u) iff f(u) points to the midpoint of an isolated large
fork.
(Q5). For all h and f, h |=f ϕ5(u) iff f(u) is the midpoint of an isolated large fork.

It is now easy to define ksfs and kslfs:

ksfs
def
= ∀ u alloc(u)⇒ ϕ1(u) ∨ ϕ2(u) ∨ ϕ3(u) ∨ ϕ4(u)

kslfs
def
= ∀ u alloc(u)⇒ ϕ1(u) ∨ ϕ2(u) ∨ ϕ5(u) ∨ ϕ6(u).

Next, in order to define ksfs=k, the most natural way would be to use ∗, but in the
fragment 1SL2(−∗), separating conjunction is banished. Similarly, using O(k) variables
would help to identify k forks but again we have only two variables at hand. It is now
time to take advantage of large forks in order to identify forks in the original heap.

We define ψi as follows:

ψ0
def
= kslfs

ψi+1
def
= ∃ u ∃ u ϕ4(u) ∧ isoloc(u) ∧

[
(size = 1 ∧ u ↪→ u) ¬−∗ ψi

]
.

Let ksfs=k be defined as ksfs ∧ ψk.

18

(A). Let us show that h |= ksfs iff h is a collection of knives and forks.
(⇐) By way of contradiction, assume h is a collection of knives and forks but h 6|=
ksfs. There must exist some location lbad such that h 6|=[u7→lbad] alloc(u) ⇒ ϕ1(u) ∨
ϕ2(u) ∨ ϕ3(u) ∨ ϕ4(u).
By definition, if h is a collection of knives and forks, every location in the domain of
the heap belongs to an isolated knife or to an isolated fork. We consider three cases.
— Assume lbad ∈ dom(h) belongs to an isolated knife. By definition, an isolated

knife consists of three distinct locations, l0, l1, and l, such that h(l0) = l,]̃l0 = 1,
h(l1) = l0,]̃l1 = 0,]̃l = 1, and l 6∈ dom(h). There are two cases.
(Case lbad = l1.)]̃lbad = 0, so h |=[u7→lbad]]u = 0. h(lbad) = l0 and]̃l0 = 1, so
h |=[u7→lbad]]u

+1 = 1. h(h(lbad)) = l and]̃l = 1, so h |=[u7→lbad]]u
+2 = 1. Finally,

h(h(lbad)) 6∈ dom(h), so h |=[u7→lbad] ¬(]u+3 ≥ 0). Thus, h |=[u7→lbad] ϕ1(u), a contra-
diction.
(Case lbad = l0.) lbad has a single predecessor l1 such that h |=[u7→l1] ϕ1(u) by
the same reasoning in the previous case. Thus h |=[u7→lbad] ϕ2(u), and we have a
contradiction.

— Assume lbad ∈ dom(h) belongs to an isolated fork. By definition, an isolated fork
consists of four locations l, l0, l1, and l2, such that h(l0) = l,]̃l0 = 2, h(l1) = h(l2) =

l0,]̃l1 =]̃l2 = 0,]̃l = 1, and l 6∈ dom(h).
(Case lbad = l0.) h(lbad) = l and]̃l = 1, so h |=[u7→lbad]]u

+1 = 1. Further, lbad is a tril,
so h |=[u7→lbad] tril(u), and h |=[u7→lbad] ϕ4(u), and we have a contradiction.
(Case lbad = l1 or lbad = l2.) h(lbad) = l0, and h |=[u7→l0] ϕ4(u) by the previous case.
Thus h |=[u7→lbad] ϕ3(u), and we have a contradiction.

— Assume lbad 6∈ dom(h). Then h |=[u7→lbad] ¬alloc(u), and we have a contradiction.
(⇒) Now assume h |= ksfs but h is not a collection of knives and forks.
If h is not a collection of knives and forks, then a location lbad ∈ dom(h) exists that
is not on an isolated knife or isolated fork. Contradiction, since ksfs requires such
locations to satisfy one of ϕ1, ϕ2, ϕ3, ϕ4, which are on isolated knives and isolated
forks.
Thus, h is a collection of knives and forks.
(B). Let us show that h |= kslfs iff h is a collection of knives and large forks (proof
very similar to the proof for (A)).
(⇐) By way of contradiction, assume h is a collection of knives and large forks but
h 6|= kslfs. There must exist some location lbad such that h 6|=[u7→lbad] alloc(u) ⇒
ϕ1(u) ∨ ϕ2(u) ∨ ϕ5(u) ∨ ϕ6(u).
By definition, if h is a collection of knives and large forks, every location in the
domain of the heap belongs to an isolated knife or to an isolated large fork. We
consider three cases.
— Assume lbad ∈ dom(h) belongs to an isolated knife. Identical to the first part of

Case (A) proven above.
— Assume lbad ∈ dom(h) belongs to an isolated large fork. By definition, an isolated

large fork consists of five distinct locations l1, · · · , l5, such that l1, l2, and l3 have
no predecessors, h(l1) = h(l2) = h(l3) = l4,]̃l4 = 3, h(l4) = l5,]̃l5 = 1, and l5 6∈
dom(h).
(Case lbad = l4.) h(lbad) = l5,]̃lbad = 3,]̃l5 = 1, and l5 6∈ dom(h), so h |=[u7→lbad]]u =

3 ∧]u+1 = 1 ∧ ¬(]u+2 ≥ 0) ∧ allzpred(u). Thus h |=[u7→lbad] ϕ5(u), and we have a
contradiction.

19

(Case lbad = l1 or lbad = l2 or lbad = l3.) h(lbad) = l4, and h |=[u7→l4] ϕ5(u) by the
previous case. Thus h |=[u7→lbad] ϕ6(u), and we have a contradiction.

— Assume lbad 6∈ dom(h). Then h |=[u7→lbad] ¬alloc(u), and we have a contradiction.
(⇒) Now assume h |= kslfs but h is not a collection of knives and large forks.
If h is not a collection of knives and large forks, then a location lbad ∈ dom(h) exists
that is not on an isolated knife or isolated large fork. Contradiction, since kslfs
requires such locations to satisfy one of ϕ1, ϕ2, ϕ5, ϕ6, which are on isolated knives
and isolated large forks.
Thus, h is a collection of knives and large forks.
(C). Let us show that h |= ksfs=k iff h is a collection of knives and forks with exactly
k forks.
We first prove an inductive property of ψi.

We extend the definitions of this section naturally to include a new type
of collection. A heap h is a collection of knives, forks and large forks def⇔
there is no location in dom(h) that does not belong to an isolated knife,
fork, or large fork.
Inductive property (∗): For all i ≥ 0, h and f, we have h |=f ψi iff h is a
collection of knives, forks and large forks with exactly i forks.
Base case i = 0 is by an easy verification. Indeed, h |=f ψ0 iff h |=f kslfs
(by definition of ψ0) iff h is a collection of knives and large forks (by
(B)) iff h is a collection of knives, forks and large forks with exactly zero
forks.
Now, suppose that the property (∗) holds for all j ≤ i for some i ≥ 0. Let
us show it for i+ 1.
(⇐) Assume h is a collection of knives, forks and large forks with exactly
i+ 1 forks. Since h has at least one fork, let l be the midpoint of such a
fork and l′ be an isolated location in h. So, h |=[u7→l,u7→l′] ϕ4(u)∧isoloc(u).
Let h′ be the heap such that card(dom(h′)) = 1 and h′(l′) = l. Conse-
quently,

(1) h′ is disjoint from h and h′ |=[u7→l,u7→l′] size = 1 ∧ u ↪→ u,
(2) h] h′ is a collection of knives, forks and large forks with exactly i

forks. Actually, in h]h′, the location l is the midpoint of a large fork
and all other locations are untouched by this disjoint union.

By (IH), we have h] h′ |=[u7→l,u7→l′] ψi. By definition of |=, we have
h |=[u7→l,u7→l′] (size = 1 ∧ u ↪→ u) ¬−∗ ψi and therefore h |=f ∃ u u (ϕ4(u) ∧
isoloc(u)) ∧ (size = 1 ∧ u ↪→ u) ¬−∗ ψi (for any valuation f), that is
h |=f ψi+1.
(⇒) Assume that h |=f ψi+1. There are locations l and l′ such that
h |=[u7→l,u7→l′] ϕ4(u) ∧ isoloc(u) ∧ ((size = 1 ∧ u ↪→ u) ¬−∗ ψi). Thus, l the
midpoint of a fork in h and by definition of |=, there is a heap h′ disjoint
from h such that h′ |=[u7→l,u7→l′] size = 1∧u ↪→ u and h]h′ |=[u7→l,u7→l′] ψi.
The heap h′ is uniquely defined, since card(dom(h′)) = 1 and h′(l′) = l
and by (IH), h] h′ is a collection of knives, forks and large forks with
exactly i forks. Since h′ converts a single fork of h into a large fork, h
must be a collection of knives, forks and large forks with exactly i + 1
forks.

Now we can proceed with the proof about ksfs=k.
(⇐) Assume h is a collection of knives and forks with exactly k forks. By (A), we
have h |= ksfs and by (∗), we have h |= ψk (indeed h is a collection of knives, forks

20

and large forks with zero large fork and k forks). Since by definition ksfs=k is equal
to ksfs ∧ ψk, we get h |= ksfs=k.
(⇒) Now suppose that h |= ksfs=k. Since ksfs=k is equal to ksfs ∧ ψk, by (A), h is
a collection of knives and forks, and by the property (∗), h is a collection of knives,
forks and large forks with exactly k forks. Consequently, h has no large fork and
exactly k forks. Hence, h is a collection of knives and forks with exactly k forks.

4.3. Using collections of forks for comparison
Here is the way we can use the formulae from Lemma 4.1.

LEMMA 4.2. Let k ≥ 0, h be a heap and f be a valuation such that h |=f

antiforky(u) ∧ antiknify(u), h has n isolated memory cells, m =]̃f(u)
?

and m− k ≥ 0.
We have h |=f (ksfs=k

¬−∗ forky(u)) iff n ≥ m− k.

The proof of Lemma 4.2 uses principles similar to what has been done in [Brochenin
et al. 2012; Demri and Deters 2015] except that all formulae belong to 1SL2(−∗) and
we propose a simplified version of the lemma and proof (note also our use of]̃f(u)

?
).

PROOF. We have h |=f (ksfs=k
¬−∗ forky(u)) iff (†) there is a heap h′, disjoint from h,

such that h′ |=f ksfs=k and h] h′ |=f forky(u). First, let us suppose that (†) holds true
with some heap h′ such that h′ |=f ksfs=k.

— The only forks in h] h′ whose endpoints are predecessors of f(u) are those from forks
in h′ or those obtained by combining an isolated memory cell from h with a knife from
h′. Indeed, by assumption h |=f antiforky(u) ∧ antiknify(u).

— The number of forks pointing to a predecessor of f(u) in h] h′ is therefore less than
or equal to n+ k.

— The number of predecessors of f(u) (other than f(u) itself, if it has a self-loop) in
h] h′ is greater than or equal to its number of predecessors (other than itself) in h.
However, since h′ is collection of knives and forks (and therefore all knives and forks
are isolated) and h]h′ |=f forky(u), the number of predecessors of f(u) (excluding f(u)
itself) in h is less than or equal to n+ k, i.e. n ≥ m− k.

Now suppose that n ≥ m − k and the predecessors of f(u) different from f(u) are p1,
. . . , pm. Let l11, l

2
1, . . . , l

1
n, l

2
n be locations such that for every i ∈ [1, n], we have h(l2i) = l1i

and l2i → l1i is an isolated memory cell in h. Let us build h′ so that it satisfies (†), which
is quite easy to realize. Let lnew1 , . . . , lnewm be (new) locations that are not in dom(h) ∪
ran(h) ∪ {f(u)}. We define h′ so that it contains exactly m − k knives whose endpoints
are predecessors of f(u). For every i ∈ [1,m − k], we define h′(lnewi)

def
= l1i and h′(l1i)

def
= pi

(which is possible because l1i 6∈ dom(h)). We add k additional forks to h′ whose endpoints
are the remaining k predecessors of f(u) different from f(u) itself. It is easy to check that
h′ satisfies (†).

Consequently, h |=f (ksfs=k
¬−∗ forky(u)) iff n ≥ m− k.

Let anti(u, u) be antiforky(u) ∧ antiknify(u) ∧ antiforky(u) ∧ antiknify(u) and let
comp(u, u, k, k′) be defined as follows

comp(u, u, k, k′)
def
=
[
(seg ∧]u = 0 ∧]u = 0)−∗(

anti(u, u)⇒
([
ksfs=k

¬−∗ forky(u)
]
⇒
[
ksfs=k′

¬−∗ forky(u)
]))]

.

21

PROPOSITION 4.3. Let k, k′ ≥ 0, f be a valuation, h be a heap such that h |=f

anti(u, u) ∧ ¬∃ u isocell(u),]̃f(u)
?
− k′ ≥ 0 and]̃f(u)

?
− k ≥ 0. We have h |=f

comp(u, u, k, k′) iff]̃f(u)
?
+ k ≤]̃f(u)

?
+ k′.

Note that without any loss of generality we could assume that k × k′ = 0 but we
provide below a uniform treatment that does not require to distinguish the case k = 0

from the case k′ = 0. Moreover, the assumptions]̃f(u)
?
− k′ ≥ 0 and]̃f(u)

?
− k ≥ 0 in

Proposition 4.3 are required for the following reasons. In the proof of Proposition 4.3,
we use the fact that for all q, q ∈ N, we have q ≤ q iff for all n ∈ N, we have n ≥ q implies
n ≥ q. A similar property holds true for Z, i.e., for all q, q ∈ Z, we have q ≤ q iff for all
n ∈ Z, we have n ≥ q implies n ≥ q. However, with q, q ∈ Z, q ≤ q is not equivalent
to for all n ∈ N, we have n ≥ q implies n ≥ q. That is why we need to assume that q
(]̃f(u)

?
− k′ from the statement of Proposition 4.3) and q (]̃f(u)

?
− k in the statement of

Proposition 4.3) belong to N, if the quantification for n is over N.

PROOF. Let h be such that h |=f anti(u, u)∧¬∃ u isocell(u). The statements below
are equivalent.

(1) h |=f comp(u, u, k, k
′).

(2) For every disjoint heap h′ such that h′ |=f seg∧]u = 0∧]u = 0 and h]h′ |= anti(u, u),
if h] h′ |=f ksfs=k

¬−∗ forky(u), then h] h′ |=f ksfs=k′
¬−∗ forky(u). (By definition of

|=f.)
(3) For every n ≥ 0, let h′ be a heap disjoint from h such that h] h′ has n isolated

memory cells, h′ |=f seg ∧]u = 0 ∧]u = 0 and h] h′ |= anti(u, u), and if h] h′ |=f

ksfs=k
¬−∗ forky(u), then h] h′ |=f ksfs=k′

¬−∗ forky(u). (By using the fact that it
is always possible to add a segmented heap to h so that the resulting heap has n
isolated memory cells and doesn’t change predecessor counts at f(u) and f(u).)

(4) For every n ≥ 0, we have n ≥]̃f(u)
?
− k in h implies n ≥]̃f(u)

?
− k′ in h. (By

Lemma 4.2.)
(5)]̃f(u)

?
+ k ≤]̃f(u)

?
+ k′.

Here is the main result in this section using comp(u, u, k, k′).

THEOREM 4.4. For k, k′ ≥ 0, there is a formula φ in 1SL2(−∗) (of linear size in k+k′
and it can be built in space O(log(k + k′)) such that for all h, f, we have (h |=f φ iff
]̃f(u) + k ≤]̃f(u) + k′).

We denote such a formula φ as]u + k ≤]u + k′ and, as usual, it easily extends
to <,≥, >,=. The structure of the proof of Theorem 4.4 is similar to the structure of
the proof of [Brochenin et al. 2012, Theorem 5.5], except that now all formulae are in
1SL2(−∗) instead of being defined in the less-constrained 1SL(−∗). Moreover, our case
analysis is quite different and we also provide several simplifications, making our new
proof even more valuable.

PROOF. Below, we show that for k, k′ ≥ 0, there is a formula φk,k′ in 1SL2(−∗) (of
linear size in k + k′ and it can be built in space O(log(k + k′)) such that for every heap
h and valuation f, we have h |=f φk,k′ iff]̃f(u)

?
+ k ≤]̃f(u)

?
+ k′. Once we have such a

φk,k′ , we can define φ as:

(u ↪→ u ∧ u ↪→ u ∧ φk,k′) ∨ (¬(u ↪→ u) ∧ u ↪→ u ∧ φk,k′+1) ∨

22

(u ↪→ u ∧ ¬(u ↪→ u) ∧ φk+1,k′) ∨ (¬(u ↪→ u) ∧ ¬(u ↪→ u) ∧ φk,k′).
Observe that the four disjuncts are exclusive.

So it only remains to define the formulae φk,k′ with k, k′ ≥ 0. By Proposition 4.3, we
have the following property for any h, f:

(?). When h satisfies anti(u, u) ∧ ¬∃ u isocell(u),]̃f(u)
?
− k′ ≥ 0 and]̃f(u)

?
− k ≥ 0,

we have h |=f comp(u, u, k, k
′) iff]̃f(u)

?
+ k ≤]̃f(u)

?
+ k′.

Even though the original heap h may not satisfy the formula anti(u, u) ∧
¬∃ u isocell(u), it can be safely extended to satisfy this property without modifying
the number of predecessors of f(u) and f(u).

Whenever]̃f(u)
?
− k′ ≥ 0 and]̃f(u)

?
− k ≥ 0, we have the following equivalences:

(1) h |=f (]u = 0 ∧]u = 0) ¬−∗ (anti(u, u) ∧ (¬∃ u isocell(u)) ∧ comp(u, u, k, k′)).
(2) There is h′ disjoint from h such that h′ |=f (]u = 0 ∧]u = 0), h] h′ |=f anti(u, u) ∧
¬∃ u isocell(u) and h] h′ |=f comp(u, u, k, k

′).
(3) There is h′ disjoint from h such that h′ |=f (]u = 0 ∧]u = 0) and h] h′ |=f anti(u, u) ∧
¬∃ u isocell(u) and]̃f(u)

?
+ k ≤]̃f(u)

?
+ k′ (in h] h′) by (?).

(4)]̃f(u)
?
+ k ≤]̃f(u)

?
+ k′ in h.

Observe that]̃f(u)
?

and]̃f(u)
?

in h are equal to their values in h] h′ since h′ |=f (]u =
0 ∧]u = 0). Moreover, (4) implies (3) since it is always possible to extend a model
satisfying anti(u, u) ∧ ¬∃ u isocell(u) while preserving]̃f(u)

?
and]̃f(u)

?
. By way of

example, if l is a predecessor of f(u), endpoint of the fork l0, l1, l2, l, then adding a
memory cell lnew → l2 (assuming that l2 6= f(u)) destroys the fork structure. When
l2 = f(u), we add lnew → l1 instead. Similarly, if f(u) → f(u) and that memory cell is
isolated, then it is sufficient to add a new memory cell f(u) → lnew with lnew distinct
from f(u). The other cases can be treated in a similar fashion.

Without any loss of generality, we can assume that k × k′ = 0.
Case k = 0 and k′ ≥ 0. So]̃f(u)

?
−k ≥ 0 and we need to make a case analysis depending

on the satisfaction of]̃f(u)
?
≥ k′. Note that if]̃f(u)

?
< k′, then obviously]̃f(u)

?
≤

]̃f(u)
?
+ k′. So, we write φk,k′ to denote the formula below:

(
?

]u < k′) ∨ ((
?

]u ≥ k′) ∧ ((]u = 0 ∧]u = 0) ¬−∗

(anti(u, u) ∧ (¬∃ u isocell(u)) ∧ comp(u, u, 0, k′)))).

Formulae of the form
?

]u ≥ k′ (and variants) can be defined thanks to Lemma 3.3.
Case k′ = 0 and k ≥ 0. So]̃f(u)

?
− k′ ≥ 0 and we need to make a case analysis

depending on the satisfaction of]̃f(u)
?
≥ k. Note that if]̃f(u)

?
< k, then]̃f(u)

?
+ k ≤

]̃f(u)
?

cannot hold. So, we write φk,k′ to denote the formula below:

(
?

]u ≥ k) ∧ ((]u = 0 ∧]u = 0) ¬−∗

(anti(u, u) ∧ (¬∃ u isocell(u)) ∧ comp(u, u, k, 0))).

23

We can now find locations in a heap with a maximal number of predecessors, and we
conclude this section with a definition useful in later constructions. Let us introduce
the formula maxdeg(u):

maxdeg(u)
def
= ¬∃ u]u >]u.

COROLLARY 4.5. For all h and f, we have h |=f maxdeg(u) iff]̃f(u) = max ({]̃l : l ∈ N}).

We now have the necessary underlying machinery to tackle the encoding of second-
order formulae in our fragment of separation logic.

5. EXPRESSIVE COMPLETENESS FOR 1SL2(−∗)
In order to express sentences in DSOL by sentences in 1SL2(−∗), a hybrid valuation is
encoded in the heap by building a disjoint valuation heap that takes care of pairs of
locations (for interpretation of second-order variables) and that takes care of locations
(for interpretation of first-order variables). In principle, this makes sense since every
heap has a finite domain and therefore there is always an infinite set of locations that
is not in its domain. This leaves enough room to encode a finite amount of information
such as the interpretation of second-order variables when they are interpreted by finite
sets. We can easily add to the original heap with the magic wand; this permits us
to create and update the valuation heap. However, we then must always be able to
distinguish between the original heap and the valuation heap.

The main idea to build such a valuation heap rests on the fact that a pair of locations
(l, l′) belongs to the interpretation of a second-order variable Pi whenever l and l′ can
be identified in the valuation heap by special patterns involving l and l′ that uniquely
characterise the interpretation by Pi. Similarly, a location l is the interpretation of a
first-order variable whenever l can be identified in the valuation heap thanks to some
dedicated pattern around l.

Before explaining further the general principles, let us first provide more informa-
tion about the above-mentioned patterns. An entry of degree d ≥ 2 is a sequence of
distinct locations l1, . . . , ld, lind, l such that

— h(l1) = · · · = h(ld) = lind,
—]̃lind = d,
—]̃l1 = · · · =]̃ld = 0, and
— h(lind) = l.

The location l is called the element, lind the index and the locations l1, . . . , ld, the pins.
Entries generalize the notions of forks and large forks from Section 3 and are called
markers in [Brochenin et al. 2012]. See an entry of degree 4 in the middle of Figure 7.
So, the pair of locations (l, l′) is identified as part of the interpretation of Pi when l and
l′ are elements of entries with very large degree. The above-mentioned special patterns
are therefore entries, but we require that the degree of the respective entries for l and
l′ satisfy some arithmetical constraints, which is possible thanks to Theorem 4.4, and
which allows us to relate l with l′.

Then, the principle of the translation consists in building the valuation heap on de-
mand (typically when a quantification appears) and to find special patterns involving
entries with large degree whenever an atomic formula needs to be evaluated.

Apart from our essential restriction to 1SL2(−∗) and therefore the need for encoding
also first-order valuations, these principles have been introduced in [Brochenin et al.
2012] to translate DSOL formulae into 1SL(−∗) formulae. However, because we are
restricted to two first-order variables and because we also require that the separating
conjunction is banished, we present below a different way to apply these principles so

24

that we can show that 1SL2(−∗) is expressively equivalent to DSOL (and therefore to
WSOL).

This high-level description of the formula translation and of the encoding of some
hybrid valuation in the heap hides many of the details, which can be found below.
However, before explaining how we apply these principles within 1SL2(−∗), let us em-
phasize the most obvious and difficult problems to be solved:

(I). we must be able to distinguish the pairs of locations from distinct second-order
variables,
(II). we also need to encode first-order valuations, and
(III). the main problem is certainly to access the original heap properly without
interference from the valuation heap.

5.1. Left and right parentheses
We introduce variants of entries that are used as delimiters.

A left j-parenthesis of degree d ≥ 3 with j ≥ 0 is a sequence of distinct locations l′j+1,
. . . , l′1, l1, . . . , ld, lind such that

(u). h(l1) = · · · = h(ld) = lind;]̃lind = d;]̃l′j+1 =]̃l3 =]̃l4 = · · · =]̃ld = 0,

(v). lind 6∈ dom(h); l′j+1 → l′j → l′j−1 → · · · → l′1 → l1;]̃l′j =]̃l′j−1 = · · · =]̃l′1 =]̃l1 = 1,
and
(w).]̃l2 = 0.

The location lind is called the index. The heap at the left of Figure 7 presents a left
j-parenthesis of degree 3.

A right j-parenthesis of degree d ≥ 3 with j ≥ 0 is a sequence of distinct locations
l′j+1, . . . , l′1, l′′j+1, . . . , l′′1 , l1, . . . , ld, lind such that (u), (v), and

—]̃l′′j+1 = 0,

—]̃l′′j =]̃l′′j−1 = · · · =]̃l′′1 =]̃l2 = 1, and
— l′′j+1 → l′′j → l′′j−1 → · · · → l′′1 → l2.

The location lind is also called the index. The heap at the right of Figure 7 presents a
right j-parenthesis of degree 5. A j-parenthesis can be understood as an entry, except
that the index location is not allocated, and containing one or two paths of length j+1,
depending on whether it is a left or a right parenthesis.

LEMMA 5.1. For all j ≥ 0, there is a formula lpj(u) [resp. rpj(u)] in 1SL2(−∗) such
that for all heaps h and valuations f, we have h |=f lpj(u) [resp. h |=f rpj(u)] iff f(u) is
the index of some left [resp. right] j-parenthesis in h.

By the proof below, one can add that lpj(u) [resp. rpj(u)] is of linear size in j and it
can be built in space O(log(j)).

PROOF. Let us start by defining formulae for backward paths of length j + 1:

— bpath(1, u)
def
= (]u = 1) ∧ ∀ u (u ↪→ u)⇒]u = 0.

— bpath(j + 1, u)
def
= (]u = 1) ∧ ∃ u (u ↪→ u) ∧ bpath(j, u).

So, whenever j ≥ 0, we have h |=f bpath(j + 1, u) iff there are l0, . . . , lj such that
l0 → l1 → · · · → lj ↪→ f(u) and]̃l0 = 0, for every k ∈ [1, j]]̃lk = 1 and]̃f(u) = 1.

25

The formula below characterizes the locations such that the predecessors either have
no predecessor or have a backward path of length j + 1 exactly:

ϕj+1(u)
def
= ∀ u (u ↪→ u)⇒ (]u = 0 ∨ bpath(j + 1, u)).

Then, the formulae lpj(u) and rpj(u) are defined as follows:

— lpj(u)
def
= ¬alloc(u)∧ϕj+1(u)∧ (]u ≥ 3)∧ (∃ u (u ↪→ u)∧bpath(j+1, u))∧ ((size = 1) ¬−∗

ϕj+2(u)).
— rpj(u)

def
= ¬alloc(u) ∧ ϕj+1(u) ∧ (]u ≥ 3) ∧ (∃ u (u ↪→ u) ∧ bpath(j + 1, u)) ∧ ¬((size =

1) ¬−∗ ϕj+2(u)) ∧ ((size = 1) ¬−∗ ((size = 1) ¬−∗ ϕj+2(u))).

The formula lpj(u) states that f(u) is not allocated, it has at least three predecessors
and any predecessor of f(u) either has no predecessor or has a backward path of length
j + 1. Moreover, there is at least one predecessor of f(u) that has a backward path of
length j+1 thanks to the satisfaction of the subformula (∃ u (u ↪→ u)∧ bpath(j+1, u)).
Satisfaction of the subformula (size = 1) ¬−∗ ϕj+2(u) entails that there is only one such
backward path of length j + 1. A similar analysis can be performed with the formula
rpj(u) with the exception that it is required to guarantee that there are exactly two
predecessors of f(u) that have a backward path of length j + 1.

In several places, we need to identify the indices from entries as well as their pins. Let
eindex(u) be defined as follows:

eindex(u)
def
= (]zu ≥ 2) ∧ allzpred(u) ∧ ∃ u u ↪→ u

that characterises indices from entries. Let epin(u) characterise pins from entries:
epin(u)

def
= ∃ u u ↪→ u ∧ eindex(u). Similarly, we need to characterise the locations from

parentheses. We already know how to identify their indices (Lemma 5.1). It remains to
identify the other locations via the formula onpari(u) to characterise the locations on
some i-parenthesis: roughly speaking, such locations are exactly those that can reach
the index of some i-parenthesis in less than i+ 2 steps. Let onpari(u) be the formula

onpari(u)
def
=

i+2∨
j=0

disti(j, u)

where disti(j, u) is defined as follows:

disti(0, u)
def
= lpi(u) ∨ rpi(u)

disti(j + 1, u)
def
= ∃ u (u ↪→ u) ∧ disti(j, u) (j ≥ 0).

A rough analysis leads to a construction of onpari(u) in space O(log(i)) and onpari(u)
is of quadratic size in i.

LEMMA 5.2. Let h be a heap, f be a valuation and i ≥ 0. Then, h |=f onpari(u) iff f(u)
is on some left or right i-parenthesis in h.

PROOF. The proof takes advantage of the following properties.

— h |=f disti(j, u) iff f(u) can reach an index location from a left i-parenthesis or from a
right i-parenthesis, in j steps for some j ≥ 0. The proof is obvious, by induction on j.

— If f(u) can reach an index location from an i-parenthesis, then f(u) is necessarily on
an i-parenthesis.

— Every location on an i-parenthesis can reach its index in less than i+ 2 steps.

26

As a conclusion, f(u) is on an i-parenthesis iff it can reach the index of some i-
parenthesis in less than i+ 2 steps, which is exactly the way onpari(u) is defined with
the help of the generalized disjunction.

5.2. The role of parentheses
Before explaining the role of parentheses, we introduce the interval of variable indices
[1,K] (K ∈ N \ {0}) assuming that for each j ∈ [1,K], either Pj or uj occurs in the
DSOL formula to be translated (but not both of them). So, the developments below are
relative to a finite set of first-order and second-order variables and this is concretized
by the interval [1,K] (always possible since a formula has a finite number of variables).

Let us come back to parentheses and assume that X is a subset of [0,K]. In an X-
well-formed heap h (see Definition 5.8 below), the parentheses play the following role.
For each j ∈ X, we have the index location lpj from a distinguished left j-parenthesis
and the index location rpj from a distinguished right j-parenthesis. Moreover, let dlj =
]̃lpj and drj =]̃rpj (in h). When j ∈ X is related to a first-order variable, we require that
drj = dlj +2 and there is an entry of degree dlj +1 such that its element is understood as
the interpretation of the variable uj (see Figure 7 with drj = 5 and dlj = 3). That explains
why the parentheses are viewed as delimiters. Similarly, let {(l1, l′1), . . . , (lβ , l′β)} be
a finite set of pairs of locations, understood as the interpretation of a second-order
variable Pj with j ∈ X. In h, there are 2β entries whose respective degrees are exactly

{dlj + 3(i− 1) + 1, dlj + 3(i− 1) + 2 : i ∈ [1, β]}

with drj = dlj + 3β + 1. A pair of entries of respective degrees dlj + 3(i − 1) + 1 and
dlj+3(i−1)+2 have exactly as elements li and l′i respectively, which allows to encode the
pair (li, l

′
i). All this underlying encoding makes sense only if the left and right paren-

theses as well as the entries whose degrees are related to their degrees are uniquely
determined (see Condition (1) in Definition 5.4, below). For this reason, we introduce a
left 0-parenthesis and a right 0-parenthesis with dr0 = dl0 +1 (0 is not a variable index),
the degree dl0 is strictly greater than the degree of any location in the original heap, all
degrees dlj with j 6= 0 are strictly greater than dl0 and finally, the above-mentioned en-
tries and parentheses are the only ones with their respective degrees. This guarantees
that any entry from a pair of entries with successive degrees serving for the interpre-
tation of a second-order variable, cannot serve twice for another pair or for another
variable. Below, we provide the technical developments.

We say that a heap h is made of entries and parentheses only def⇔ every location in
dom(h) belongs either to a left i-parenthesis for some i ≥ 0, to a right i-parenthesis for
some i ≥ 0, or to an entry. Given a heap h made of entries and parentheses only, we
define the set indspect(h) as follows:

indspect(h)
def
= {]̃l : l is the index of some entry or parenthesis in h}.

The (finite) set indspect(h) is called the index spectrum of h.
Let hB be a heap such that α = max ({]̃l : l ∈ N}). For instance, if hB has empty

domain, then α = 0. We have seen in Section 4 that it is possible to characterise the
locations that witness this maximal value α thanks to the formula maxdeg(u). A valua-
tion heap hV for hB is made of entries and parentheses only whose degrees are greater
than max (3, α + 1). The heap hV satisfies the following simple conditions (more con-
straints will follow): min(indspect(hV)) is greater than max (3, α+1) and it is witnessed
by the degree of some left 0-parenthesis; each degree in indspect(hV) is witnessed by ex-
actly one entry or parenthesis. The formula indmin(u) below is satisfied in h = hB] hV

27

l

length (j + 1)

Fig. 7: Encoding [uj 7→ l].

by a location l witnessing the minimal value in indspect(hV):

indmin(u)
def
= lp0(u) ∧ (∀ u ((u 6= u) ∧ lp0(u))⇒]u <]u).

Note that thanks to Section 4, we know that it is possible to compare numbers of
predecessors as expressed above. So, indmin(u) holds when f(u) is the unique location
that is the index of some left 0-parenthesis with greatest degree.

LEMMA 5.3. Let f be a valuation and h be a heap. We have h |=f indmin(u) iff f(u)
is an index of some left 0-parenthesis and there is no other location l 6= f(u) such that
]̃l ≥]̃f(u) and l is the index of some left 0-parenthesis.

The proof is by an easy verification by using Lemma 5.1. Once a heap h satisfies
∃ u indmin(u), the unique location l0 such that h |=[u7→l0] indmin(u) (say with]̃l0 = d0)
plays the role of a delimiter between the original heap and the part of the heap that
encodes the hybrid valuation. We have seen that an index spectrum is defined for heaps
made of entries and parentheses only. This is fine, but below we adapt the definition
to heaps h satisfying ∃ u indmin(u). Let us define the set spect(h) as follows:

spect(h)
def
= {]̃l : l is an index of some entry or parenthesis in h} ∩ [d0,+∞[.

The (finite) set spect(h) is called the spectrum of h. This illustrates how the location l0
and the degree]̃l0 = d0 play the role of separator between the original heap and the
valuation heap.

The subheap encoding the valuation is made of parentheses and entries and we shall
need to identify the indices of such patterns. The formula Lindex(u) defined below
suffices for this purpose:

Lindex(u)
def
= (∃ u indmin(u) ∧]u ≤]u) ∧

((∨
i∈[0,K]

(lpi(u) ∨ rpi(u))
)
∨ eindex(u)

)
(u is interpreted as a large index). Given X ⊆ [0,K], we shall use also the following
formula:

LindexX(u)
def
= (∃ u indmin(u) ∧]u ≤]u) ∧

((∨
i∈X

(lpi(u) ∨ rpi(u))
)
∨ eindex(u)

)
.

Entries and parentheses with large indices are also called large entries and parenthe-
ses, respectively. The elements in [1,K] will be later used as variable indices. Note also
that Lindex(u) is of quadratic size in K and it can be built in space O(log(K)). It is

28

easy to define a large index that is also the index of a left [resp. right] parenthesis.
Let Llpi(u)

def
= Lindex(u)∧ lpi(u) and Lrpi(u)

def
= Lindex(u)∧ rpi(u) (see Lemma 5.1). The

large index with a maximal degree can be also characterised as follows:

maxLindex(u)
def
= (∀ u Lindex(u)⇒ (]u ≤]u)) ∧ Lindex(u).

Below, we state how the parentheses are organized.

Definition 5.4. Let X = {i0, . . . , is} ⊆ [0,K] with 0 = i0 < i1 < · · · < is. A heap h is
X-almost-well-formed def⇔

(1) For every j ∈ [0, s], there is a unique location llj [resp. lrj] such that h |=[u7→llj]
Llpij (u)

[resp. h |=[u7→lrj]
Lrpij (u)].

(2) For every j ∈ [0, s],]̃llj <]̃lrj , and]̃lr0 =]̃ll0 + 1.

(3) For every j ∈ [1, s], we have]̃llj =]̃lrj−1 + 1.
(4) h |=[u7→lrs]

maxLindex(u).

(5) For every j ∈ [1, s], if ij is the index of a first-order variable, then]̃llj =]̃lrj − 2 (see
Figure 7).

(6) For every j ∈ ([1,K] \X), there is no location l such that h |=[u7→l] Llpj(u) ∨ Lrpj(u).

The definition for X-almost-well-formed heaps mainly specifies the existence of j-
parentheses with j ∈ X and how their respective degrees are related. The degrees are
organized as follows and they all belong to the spectrum of h (below we let dlj =]̃llj and
drj =]̃lrj).

dl0

|=[u7→dl0] indmin(u)

< dr0
||

dl0 + 1

< dl1 < dr1
||

dr0 + 1

< dl2 < dr2
||

dr1 + 1

< . . . < dls < drs
||

drs−1 + 1

|=[u7→drs] maxLindex(u)

Moreover, when ij is the index of a first-order variable, we have drj = dlj + 2.

LEMMA 5.5. There exists a formula awfhX in 1SL2(−∗) of cubic size in K (and it can
be built in space O(log(K))) such that h |= awfhX iff h is X-almost-well-formed.

PROOF. We consider the conjunction of the formulae below, each of which deals with
one of the conditions. The cubic size of awfhX is essentially due to the fact that a linear
amount of formulae (in K) is built and each formula is of quadratic size (here, we use
the size properties of already introduced subformulae). Below, arithmetical constraints
can be expressed thanks to Theorem 4.4 and its immediate consequences. Condition
(1) is taken care by the formula below∧
j∈[0,s]

[∃ u Llpij (u)∧¬(∃ u Llpij (u)∧ u 6= u)]∧
∧

j∈[0,s]

[∃ u Lrpij (u)∧¬(∃ u Lrpij (u)∧ u 6= u)].

Condition (2) is expressed as follows:∧
j∈[0,s]

[∃ u ∃ u Llpij (u) ∧ Lrpij (u) ∧ (]u <]u)] ∧ [∃ u ∃ u Llp0(u) ∧ Lrp0(u) ∧ (]u =]u+ 1)].

29

Condition (3) is dealt with∧
j∈[1,s]

[∃ u ∃ u Llpij (u) ∧ Lrpij−1
(u) ∧ (]u =]u+ 1)].

Condition (4) is expressed by ∃ u Lrpis(u) ∧ maxLindex(u).
Condition (5) is easily expressed by the formula below:∧

j∈[1,s], FO ij

[∃ u ∃ u Llpij (u) ∧ Lrpij (u) ∧ (]u =]u+ 2)].

Because of the unicity of the left or right parentheses, alternative formulae can be
defined by using universal quantifiers instead of existential ones. By way of example,
the respective formulae expressing the conditions (3) and (5) with universal quantifiers
are the following: ∧

j∈[1,s]

[∀ u ∀ u (Llpij (u) ∧ Lrpij−1
(u))⇒ (]u =]u+ 1)].

∧
j∈[1,s], FO ij

[∀ u ∀ u (Llpij (u) ∧ Lrpij (u))⇒ (]u =]u+ 2)].

Finally, Condition (6) is expressed by:∧
j∈[1,K]\X

¬∃ u (Llpj(u) ∨ Lrpj(u)).

Let h be an X-almost-well-formed heap for some {0} ⊆ X ⊆ [0,K] and i ∈ X. We
write vindi(u) to denote the formula below:

Lindex(u) ∧ eindex(u) ∧ (∃ u Llpi(u) ∧]u <]u) ∧ (∃ u Lrpi(u) ∧]u >]u).

It characterises indices whose degree is strictly between the degree of some large left
i-parenthesis and the degree of some large right i-parenthesis. The size of vindi(u) is
quadratic in K. We write degrees(i, h) to denote the set:

degrees(i, h)
def
= {]̃l ∈ N : h |=[u7→l] vindi(u), l ∈ N}.

LEMMA 5.6. Let h be a heap such that h |= ∃ u indmin(u) and i ≥ 0 be such that
there are unique locations lp and rp with h |=[u7→lp] Llpi(u) and h |=[u7→rp] Lrpi(u). For
every l ∈ N, we have h |=[u7→l] vindi(u) iff l is the index of some entry and]̃lp <]̃l <]̃rp.

PROOF. Let h be a heap such that:

(1) h |= ∃ u indmin(u) with h |=[u7→l0] indmin(u) and]̃l0 = d0.
(2) There is a unique index location lp such that h |=[u7→lp] Llpi(u) and]̃lp ≥ d0.
(3) There is a unique index location rp such that h |=[u7→rp] Lrpi(u) and]̃rp ≥ d0.

First, suppose that h |=[u7→l] vindi(u). By definition of vindi(u), we have

h |=[u7→l] Lindex(u) ∧ eindex(u) ∧ (∃ u Llpi(u) ∧]u <]u) ∧ (∃ u Lrpi(u) ∧]u >]u).

Since h |=[u7→l] Lindex(u)∧eindex(u), l is the index of some entry whose degree is greater
than d0. Since h |=[u7→l] (∃ u Llpi(u) ∧]u <]u), by (2) we have h |=[u7→l,u7→lp]]u <]u

and therefore]̃lp <]̃l. Similarly, h |=[u7→l] (∃ u Lrpi(u) ∧]u >]u), by (3), we have

30

l l′

Fig. 8: How the translation of Pi(uj , uk) works (j < i < k): (l, l′) ∈ Vh(Pi).

h |=[u7→l,u7→rp]]u >]u and therefore]̃l <]̃rp. Consequently, l is the index of some entry
and]̃lp <]̃l <]̃rp.

Now, suppose that l is the index of some entry and]̃lp <]̃l <]̃rp. Since l is some
index, we have h |=[u7→l] eindex(u). By (2), we get that d0 <]̃l and therefore h |=[u7→l]

eindex(u) ∧ ∃ u indmin(u) ∧]u ≤]u, which implies h |=[u7→l] Lindex(u) by definition of
Lindex(u). By assumption, we have h |=[u7→l,u7→lp]]u <]u and h |=[u7→l,u7→rp]]u >]u and
consequently, h |=[u7→l] (∃ u Llpi(u)∧]u <]u) and h |=[u7→l] (∃ u Lrpi(u)∧]u >]u). So, all
the conjuncts of vindi(u) are satisfied and therefore h |=[u7→l] vindi(u).

The formula eltj(u) defined below holds true when u is interpreted as the element
of the unique entry attached to the first-order variable uj .

eltj(u)
def
= ∃ u (u ↪→ u) ∧ vindj(u).

Let us anticipate a little how the translation from DSOL to 1SL2(−∗) works: the trans-
lation of Pi(uj , uk) can be designed as follows:

∃ u (eltj(u) ∧ ∃ u (u ↪→ u ∧ vindi(u) ∧

∃ u (]u =]u+ 1 ∧ vindi(u) ∧ ∃ u (u ↪→ u ∧ eltk(u))))).

These definitions take advantage of the fact that there are unique large left and
right parentheses for each variable index. Figure 8 illustrates the constraints satisfied
by the formula when j < i < k. From left to right, the figure represents explicitly
a left j-parenthesis, then a right j-parenthesis, then a left i-parenthesis, a right i-
parenthesis and a left k-parenthesis, followed finally by a right k-parenthesis. Other
entries and parentheses are present in the figure, but they are represented by dots in
order to focus on the memory cells relevant to evaluate the formula obtained by the
translation of Pi(uj , uk). The degrees of parentheses and entries increase from left to
right.

5.3. Taking care of valuations
Now that we have a way of identifying that part of the heap that encodes our valuation,
we turn our attention to encoding the valuation itself. Below, we introduce a condition
for a subheap to be “glued” to an existing valuation. We distinguish three cases.

— A local 0-valuation is a heap made of a left 0-parenthesis of degree d and a right
0-parenthesis of degree d+ 1 only, for some d ≥ 3.

31

— Let i ∈ [1,K] be the index of some first-order variable. A local i-valuation is a heap
made of a left i-parenthesis of degree d, an entry of degree d + 1 and a right i-
parenthesis of degree d+ 2 only, for some d ≥ 3.

— Let i ∈ [1,K] be the index of some second-order variable. A local i-valuation is a heap
h such that
(1) every location l in dom(h) belongs either to a left i-parenthesis, to a right i-

parenthesis, or to an entry,
(2) h contains a unique left [resp. right] i-parenthesis,
(3) the minimal value min(indspect(h)) is the degree of some left i-parenthesis,
(4) the maximal value max (indspect(h)) is the degree of some right i-parenthesis,
(5) the index spectrum indspect(h) is of the form below for some α ≥ 3, β ≥ 0,

{α} ∪ {α+ 3(i− 1) + 1, α+ 3(i− 1) + 2 : i ∈ [1, β]} ∪ {α+ 3β + 1}

(when β = 0, indspect(h) is equal to {α, α+ 1}),
(6) there are no two distinct index locations with the same degree.

Note that indspect(h) ⊆ [α, α+3β+1] and the missing values in [α, α+3β+1]\indspect(h)
are precisely those in the set {α+3(i−1)+3 : i ∈ [1, β]}, i.e. in {α+3i : i ∈ [1, β]}. Since
local i-valuations are typically heaps that are added to the current heap to encode the
interpretation of a variable, it is essential to be able to characterise them by 1SL2(−∗)
formulae. This is the purpose of the result below.

LEMMA 5.7. Let i ∈ [0,K]. There is a formula localvali(u) in 1SL2(−∗) (of
quadratic size in K and it can be built in space O(log(K))) such that h |=f localvali(u)
iff h is a local i-valuation and f(u) is the index of its left i-parenthesis.

PROOF. For characterising local 0-valuations, it is sufficient to express the proper-
ties below:

(1) any location in the domain is on some left or on some right 0-parenthesis,
(2) there is exactly one left 0-parenthesis whose index is f(u),
(3) there is exactly one right 0-parenthesis,
(4)]̃l =]̃f(u) + 1 where l is the index of the unique right 0-parenthesis.

(1)-(4) can be expressed by the formula below:

(∀ u alloc(u)⇒ onpar0(u)) ∧ (lp0(u) ∧ ¬(∃ u lp0(u) ∧ u 6= u)) ∧

(∃ u (rp0(u) ∧ ¬(∃ u rp0(u) ∧ u 6= u)) ∧ (]u =]u+ 1)).

Formulae of the form lpi(u) and rpi(u) are provided in the proof of Lemma 5.1
whereas formulae of the form onpari(u) are provided before the statement of
Lemma 5.2.

For characterising local i-valuations for some first-order variable ui, it is sufficient
to express the properties below:

(1) any location in the domain is on some left i-parenthesis, or on some right i-
parenthesis or on some entry,

(2) there is exactly one left i-parenthesis whose index is f(u),
(3) there is exactly one right i-parenthesis,
(4) there is a unique entry, whose degree is d, such that]̃l =]̃f(u) + 2 and]̃f(u) = d − 1

where l is the index of the unique right i-parenthesis.

(1)-(4) can be expressed by the formula below:

32

(∀ u alloc(u)⇒ onpari(u) ∨ epin(u) ∨ eindex(u))∧

(lpi(u) ∧ ¬(∃ u lpi(u) ∧ u 6= u)) ∧ (∃ u (rpi(u) ∧ ¬(∃ u rpi(u) ∧ u 6= u) ∧ (]u =]u+ 2))∧

(∃ u eindex(u) ∧ (¬∃u (u 6= u) ∧ eindex(u)) ∧ (]u =]u+ 1)).

For characterising local i-valuations for some second-order variable Pi, it is sufficient
to express the properties below:

(1) any location in the domain is on some left i-parenthesis, or on some right i-
parenthesis or on some entry,

(2) there is exactly one left i-parenthesis whose index is f(u),
(3) there is exactly one right i-parenthesis whose index is the location l,
(4) any entry has degree in []̃f(u) + 1,]̃l − 1] and its index is the unique one with that

degree,
(5)]̃l >]̃f(u),
(6) if]̃l >]̃f(u) + 1, then

(a) there is an entry with degree]̃f(u) + 1,
(b) there is an entry with degree]̃f(u) + 2,
(c) if there are entries with respective degree d and d+ 1, then there is no entry or

right i-parenthesis of degree d+ 2,
(d) if there are entries with respective degree d and d+ 1 and d+ 3 <]̃l, then there

are entries of respective degree d+ 3 and d+ 4.

(1)–(5) can be expressed by the formula below:

(∀ u alloc(u)⇒ onpari(u) ∨ epin(u) ∨ eindex(u))∧

(lpi(u) ∧ ¬(∃ u lpi(u) ∧ u 6= u)) ∧ (∃ u (rpi(u) ∧ ¬(∃ u rpi(u) ∧ u 6= u) ∧]u >]u))∧

∀ u eindex(u)⇒ ¬(∃ u ((eindex(u) ∨ lpi(u) ∨ rpi(u)) ∧]u =]u)∧

(∃ u rpi(u) ∧ (∀ u eindex(u)⇒]u <]u− 1)) ∧ (∀ u eindex(u)⇒]u >]u).

(6a)–(6d) can be expressed by the formula below:

(∃ u rpi(u) ∧]u >]u+ 1)⇒

(∃ u eindex(u) ∧]u =]u+ 1) ∧ (∃ u eindex(u) ∧]u =]u+ 2)∧

∀ u (eindex(u)∧(∃ u eindex(u)∧]u =]u+1))⇒ ¬(∃ u (eindex(u)∨rpi(u))∧]u =]u+2)∧

∀ u (eindex(u) ∧ (∃ u eindex(u) ∧]u =]u+ 1) ∧ (∃ u rpi(u) ∧]u >]u+ 3))⇒

((∃ u eindex(u) ∧]u =]u+ 3) ∧ (∃ u eindex(u) ∧]u =]u+ 4)).

The definition for X-almost-well-formed heaps mainly takes care of parentheses. In
Definition 5.8 below, constraints on the degrees of large indices are specified.

Definition 5.8. Let X = {i0, . . . , is} ⊆ [0,K] with 0 = i0 < i1 < · · · < is. A heap h is
X-well-formed def⇔ the following conditions hold:

33

(1) h is X-almost-well-formed,
(2) for every j ∈ [1, s], if ij is the index of a first-order variable, then degrees(ij , h) is a

singleton,
(3) for every j ∈ [1, s], if ij is the index of a second-order variable, then degrees(ij , h) is

the set below for some αj ≥ 3, βj ≥ 0:

{αj + 3(i− 1) + 1, αj + 3(i− 1) + 2 : i ∈ [1, βj]},

(4) for every location l such that h |=[u7→l] Lindex(u), there is no l′ 6= l such that h |=[u7→l′]

Lindex(u) and]̃l =]̃l′.
(5) If a location has degree greater than the degree of the unique large left 0-

parenthesis, then it is a large index.

When h is X-well-formed, we write h = hB]hV such that dom(hV) is made of entries
and parentheses of degree d ≥]̃l0 for some l0 ∈ N such that h |=[u7→l0] indmin(u) (i.e.,
l0 is the index of the left 0-parenthesis with the maximal degree). More precisely, l ∈
dom(hV) iff h |=[u7→l] ∃ u (reach(u, u)∧LindexX(u)). By Definition 5.8, we have spect(h) =
indspect(hV) and clearly the decomposition is unique since l0 is unique.

Again, well-formed heaps can be characterised by formulae in 1SL2(−∗) whose size
is cubic in K.

LEMMA 5.9. Given {0} ⊆ X ⊆ [0,K], there is a formula wfhX in 1SL2(−∗) of cubic
size in K (and it can be built in space O(log(K))) such that h |= wfhX iff h is X-well-
formed.

PROOF. We consider the conjunction of the formulae below, each of them deals with
one of the five conditions. Condition (1) is obviously taken care by the formula awfhX
(see the proof of Lemma 5.5). Condition (2) is dealt with the formula below:∧

j∈[1,s], FO ij

∃ u vindij (u).

Note that since the heap is already X-almost-well-formed, at most one location can
satisfy the above existential quantification for each FO variable index ij . Similarly,
Condition (3) is taken care by the formula below (see the proof of Lemma 5.7 and more
specifically Condition (6) in that proof with indices from second-order variables):∧

j∈[1,s], SO ij

(∃ u ∃ u Llpij (u) ∧ Lrpij (u) ∧ (]u >]u+ 1))⇒

[

(a)︷ ︸︸ ︷
(∃ u ∃ u Llpij (u) ∧ vindij (u) ∧]u =]u+ 1)∧

(b)︷ ︸︸ ︷
(∃ u ∃ u Llpij (u) ∧ vindij (u) ∧]u =]u+ 2)∧

(c)︷ ︸︸ ︷
∀ u (vindij (u) ∧ (∃ u vindij (u) ∧]u =]u+ 1)) ⇒ ¬(∃ u (vindij (u) ∨ rpij (u)) ∧]u =]u+ 2)∧

(d)︷ ︸︸ ︷
∀ u (vindij (u) ∧ (∃ u vindij (u) ∧]u =]u+ 1) ∧ (∃ u Lrpij (u) ∧]u >]u+ 3))⇒

34

((∃ u vindij (u) ∧]u =]u+ 3) ∧ (∃ u vindij (u) ∧]u =]u+ 4))].

The above formula expresses the conditions below, mimicking Condition (6) from the
proof of Lemma 5.7:

(a) there is an entry with degree dl + 1 where dl is the degree of the unique left ij-
parenthesis,

(b) there is an entry with degree dl + 2,
(c) if there are entries with respective degree d and d+ 1 in degrees(ij , h), then there is

no entry or right ij-parenthesis of degree d+ 2 in degrees(ij , h),
(d) if there are entries with respective degree d and d+1 in degrees(ij , h) and d+3 < dr

where dr is the degree of the unique right ij-parenthesis, then there are entries of
respective degree d+ 3 and d+ 4 in degrees(ij , h).

Condition (4) is expressed as follows by simply internalizing the condition in 1SL2(−∗):
∀ u Lindex(u)⇒ ¬(∃ u Lindex(u) ∧ (u 6= u) ∧]u =]u).

Condition (5) can be expressed as follows:

∀ u (∃ u indmin(u) ∧]u ≥]u)⇒ LindexX(u).

Let us define formally a valuation from a valuation heap.

Definition 5.10. Let h be an X-well-formed heap for some {0} ⊆ X ⊆ [0,K].

— For every second-order i ∈ X, we define

Vh(Pi)
def
= {(hV (l), hV (l′)) :]̃l′ =]̃l+ 1,]̃l,]̃l′ ∈ degrees(i, h), l, l′ are index locations}.

— For every first-order i ∈ X, Vh(ui)
def
= hV (l) where l is the unique index location such

that]̃l ∈ degrees(i, h).

We say that Vh is the valuation extracted from h.

Below, we present an essential technical result stating how heaps can be composed
when a new variable needs to be interpreted. The formulae involved to compose the
X-well-formed heap h and the local i-valuation heap h′ are directly used in the trans-
lation of quantified formulae (see Section 5.4). Lemma 5.11 is used in the proof of
Lemma 5.12.

LEMMA 5.11 (COMPOSITION). Let f be a valuation, h be an X-well-formed heap
with {0} ⊆ X ⊆ [0,K], i ∈ [1,K] \ X with i > max (X), and h′ be a disjoint heap such
that:

(1) h |=f indmin(u) ∧ isoloc(u),
(2) h′ |=f localvali(u),
(3) h] h′ |=f wfhX∪{i} ∧ indmin(u) ∧ Llpi(u).

Then, spect(h] h′) = spect(h)] indspect(h′).

Roughly speaking, Lemma 5.11 states that given an X-well-formed heap h, adding
a disjoint local i-valuation h′ with i 6∈ X, leads to an (X ∪ {i})-well-formed heap so
that the interpretation of variables with variable indices in X from the extracted val-
uation, is the same with h and with h] h′. The heap h] h′ can be then understood as a
conservative extension of the heap h.

The proof of Lemma 5.11 is quite combinatorial and this is the place where we check
that the original heap cannot be confused with the valuation heap (and the other way

35

around). It is important to guarantee, as the proof does, that adding a new part of the
valuation does not destroy what has been built so far.

The proof itself is made of an imbrication of case analyses and it takes advantage of
our notions of well-formed heaps and local valuations.

Alternative definitions are probably possible (maybe even simpler ones) but their
correctness and usefulness should be tested against the satisfaction of Lemma 5.11.
We believe that our definitions allow to have relatively clear proofs while avoiding the
boredom of repetitive arguments.

PROOF. Let X = {i0, . . . , is} with 0 = i0 < i1 < · · · < is. Since h is X-well-formed,
for every j ∈ X, there is a location lpj [resp. rpj] such that h |=[u7→lpj]

Llpj(u) [resp.
h |=[u7→rpj]

Lrpj(u)]. For instance, each lpj is the index of some left j-parenthesis. Sim-
ilarly, since h] h′ |=f wfhX∪{i} (so by Lemma 5.9, h] h′ is (X ∪ {i})-well-formed), for
every j ∈ (X ∪ {i}), there is a location lp′j [resp. rp′j] such that h] h′ |=[u7→lp′j]

Llpj(u)

[resp. h |=[u7→rp′j]
Lrpj(u)].

By Definition 5.8, we have the following inequalities in h:

]̃lpi0 <]̃rpi0 <]̃lpi1 <]̃rpi1 < · · · <]̃lpis <]̃rpis . (1)

Similarly, we have the following inequalities in h] h′:

]̃lp′i0 <]̃rp′i0 <]̃lp′i1 <]̃rp′i1 < · · · <]̃lp′is <]̃rp′is <]̃lp′i <]̃rp′i. (2)

One of the goals of the proof is to show that (lpi0 , . . . , rpis) = (lp′i0 , . . . , rp
′
is
). Be-

low, we establish the properties (I)–(VIII) and then we show that spect(h] h′) =
spect(h)] indspect(h′).

(I) Let us show that lp0 = lp′0 and]̃lp0 in h is equal to]̃lp0 in h] h′. Since h |=f indmin(u)

and h] h′ |=f indmin(u), we have f(u) = lp0 = lp′0. It remains to prove that]̃lp0 in h is
equal to]̃lp0 in h] h′.

(1) For every l ∈ dom(h) such that h(l) = lp0, there is no l′ ∈ dom(h′) so that h′(l′) = l
(otherwise lp0 is not anymore the index of a 0-parenthesis in h] h′). Consequently,
]̃lp0 in h] h′ is not strictly less than]̃lp0 in h.

(2) Let us show now that]̃lp0 in h] h′ is not strictly more than]̃lp0 in h. Ad absurdum,
suppose that there is a location l such that h′(l) = lp0 and l has no predecessor in
h] h′. So, in h′, the location l′ is necessarily the pin of the left i-parenthesis, or the
pin of the right i-parenthesis or the pin of some entry. In all these cases, this implies
that lp0 cannot be anymore the index of a 0-parenthesis in h] h′, which leads to a
contradiction.

Consequently,]̃lp0 in h is equal to]̃lp0 in h] h′ and lp′0 = lp0.

(II) Any location in dom(h′) belongs either to a left or right i-parenthesis, or to an
entry (this is an obvious consequence of the assumption (2) and Lemma 5.7). So, for
any l ∈ dom(h′), we can associate a unique index location lind. We say that a location
l ∈ dom(h′) associated to the index location lind wrongly contributes to a large entry
[resp. parenthesis] in h] h′

def⇔ l belongs to a large parenthesis [resp. entry] in h] h′

with index location l′ind distinct from lind. Below we show that no location in dom(h′)
wrongly contributes to a large entry/parenthesis in h]h′ and that the right situation is
actually when l′ind = lind. Indeed, if l is an ancestor of lind in h′, adding a disjoint heap

36

preserves that property. So if l belongs to an entry, left or right parenthesis in h] h′,
the only possible index is lind. So, l cannot wrongly contribute.

Furthermore, if l belongs to ran(h′) and l ∈ dom(hV) with h = hB] hV (such a de-
composition is possible because h is X-well-formed), and the associated index location
of l in hV is lind, then lind is not anymore an index in h] h′. So glueing two components
from h′ and hV respectively, cannot lead to a new component (with possibly a different
index).

As a consequence, an allocated location in h′ that is not an index cannot be trans-
formed into an index in h] h′.

(III) Consequently, any large index l in h (either from some entry or from some
parenthesis) either remains a large index in h] h′ of the same type and degree, or l
is not anymore part of some entry and parenthesis. So, a large index in h cannot be
transformed into another type of large index in h] h′. Roughly speaking, the type of
an index is determined by the degree and whether the index is from an entry, from a
left j-parenthesis or from a right j-parenthesis for some j.

(IV)]̃lp′i in h] h′ is equal to]̃lp′i in h′. This is a consequence of h |=f isoloc(u),
h′ |=f localvali(u) and h] h′ |=f wfhX∪{i} ∧ Llpi(u).

(V) Let us show that (lpi0 , . . . , rpis) = (lp′i0 , . . . , rp
′
is
), and for every j ∈ [0, s],]̃lpij

in h is equal to]̃lpij in h] h′ and]̃rpij in h is equal to]̃rpij in h] h′. Suppose
that there is j such that lpij 6= lp′ij . By (III), the left ij-parenthesis with index lp′ij
cannot be built from (III). By (IV), it cannot be built from the left parenthesis in h′

neither from the entries in h′ (because each index is allocated in entries). Similarly,
the left ij-parenthesis with index lp′ij cannot be built from the right i-parenthesis
from h′ because it contains already two paths of length i + 1. Similarly, suppose
that there is j such that rpij 6= rp′ij . By (III), the right ij-parenthesis with index
rp′ij cannot be built from (III). By (IV), it cannot be built from the left parenthesis
in h′ neither from the entries in h′ (because each index is allocated in entries).
Similarly, the right ij-parenthesis with index rp′ij cannot be built from the right
i-parenthesis from h′ because of the length of the two paths. Additionally, by (III),
for every j ∈ [0, s],]̃lpij in h is equal to]̃lpij in h]h′ and]̃rpij in h is equal to]̃rpij in h]h′.

(2holes) h] h′ |=f wfhX∪{i} implies that there are no d, d + 1 ∈ [min,max] where min

is equal to]̃lp′i0 in h] h′, max is equal to]̃rp′i in h] h′, such that neither d nor d + 1
belongs to spect(h] h′). This is a direct consequence of the conditions in Definition 5.4
and in Definition 5.8. Similarly, there are no d, d+1 ∈ [min′,max′] where min′ is equal
to]̃lpi in h′ (lpi is the index of the unique left i-parenthesis), max′ is equal to]̃rpi in
h′ (rpi is the index of the unique right i-parenthesis), such that neither d nor d + 1
belongs to indspect(h′).

(VI)]̃rp′i in h] h′ is equal to]̃rp′i in h′. Let rpi be the index of the right i-parenthesis in
h′. Let us first show that rpi = rp′i. We know that lp0 = lp′0, lp′i is the index of the left
i-parenthesis in h′ as well as the index of the large left i-parenthesis in h] h′ (by (IV)).
Since]̃lp′i in h′ is equal to]̃lp′i in h] h′ (by (IV)),]̃rp′i in h] h′ is strictly greater than
]̃lp′i (in h′, or in h] h′ since it is the same value). In particular,]̃lp0 is strictly less than

37

]̃rp′i in h] h′ (since h] h′ |=f wfhX∪{i} ∧ indmin(u) ∧ Llpi(u)). Now let us consider the
following facts:

(1) An entry in h′ cannot be transformed into a right or a left parenthesis in h] h′

(simply because the index of the entry is allocated).
(2) The left i-parenthesis in h′ is transformed into a left i-parenthesis in h] h′ (IV).

So, the only ways to build a large right i-parenthesis whose degree is greater that]̃lp′i
is either by considering the right i-parenthesis from h′ with index rpi or by building
another large right i-parenthesis with a different index either from the entries of h′ or
from the right i-parenthesis in h′, which is not possible by (II). Consequently, rpi = rp′i.
So far, we can observe that]̃rp′i in h] h′ is greater than]̃rp′i in h′. Let us show that we
have indeed equality between these two degrees. Note that indspect(h′) can be defined
as some set below where α =]̃lp′i (in h′) and β ≥ 0:

{α} ∪ {α+ 3(j − 1) + 1, α+ 3(j − 1) + 2 : j ∈ [1, β]} ∪ {α+ 3β + 1}.
Indeed, h′ is a local i-valuation. Since h |=f isoloc(u) and h] h′ |=f wfhX∪{i} ∧ Llpi(u),
we also have that]̃lp′i in h] h′ is equal to α (this is actually (IV)).

So, indspect(h′) contains the following values:

α, α+ 1, α+ 2, α+ 4, α+ 5, . . . , α+ 3(β − 1) + 1, α+ 3(β − 1) + 2, α+ 3β + 1.

The values in spect(h] h′) ∩ [α,+∞[can only be obtained from the degree of index
locations from h′ and therefore are of the form

α+ α0, α+ 1 + α1
1, α+ 2 + α1

2, α+ 4 + α2
1, α+ 5 + α2

2, . . .

. . . , α+ 3(β − 1) + 1 + αβ1 , α+ 3(β − 1) + 2 + αβ2 , α+ 3β + 1 + αβ+1

with α0, αβ+1, α
1
1, α

1
2, . . . , α

β
1 , α

β
2 ≥ 0. These latter values should be understood as the

potential differences of degrees.
Since h |=f isoloc(u) and h] h′ |=f Llpi(u), we have α0 = 0 (this is actually (IV)).

Since h] h′ |=f wfhX∪{i}, there is β′ ≥ 0 such that spect(h] h′) ∩ [α,+∞[is equal to

{α} ∪ {α+ 3(j − 1) + 1, α+ 3(j − 1) + 2 : j ∈ [1, β′]} ∪ {α+ 3β′ + 1}. (3)

So necessarily β′ ≥ β.
Moreover, if β = 0, then αβ+1 = 0, otherwise spect(h] h′) ∩ [α,+∞[cannot be of the

form of Equation (3). Assuming that β ≥ 1, we can show by induction on j that αj1 = 0

and then αj2 = 0 with j ∈ [1, β]. For instance, α1
1 6= 0 leads to a contradiction, since

α+ 1 would not belong to spect(h] h′) ∩ [α,+∞[and therefore could not be of the form
of Equation (3) by (2holes). Then, α1

2 6= 0 leads to a contradiction, since α + 2 would
not belong to spect(h] h′) ∩ [α,+∞[(while α+ 1 does) and therefore could not be of the
form of Equation (3). The same reasoning can be performed for all j ∈ [2, β].

(VII) For every l such that h |=[u7→l] Lindex(u), we have h] h′ |=[u7→l] Lindex(u), and]̃l
in h is equal to]̃l in h]h′. Let l be a large index in h. By (III), either l is a large index in
h] h′ or l is not anymore an index in h] h′. In the latter case, l cannot be the index of
some j-parenthesis with j ∈ X by (V). This latter case with l being a large entry index
is nevertheless ruled out because h] h′ |= wfhX∪{i} and there will be then a missing
value in the spectrum spect(h] h′) by (2holes).

As a consequence, an allocated location in h that is not a large index, cannot be
transformed into an index in h] h′, otherwise we would have two large indices with

38

the same degree which is not possible since h] h′ |=f wfhX∪{i}.

(VIII) For every l such that h′ |=[u7→l] eindex(u), we have h] h′ |=[u7→l] Lindex(u),
and]̃l in h′ is equal to]̃l in h] h′. Let l be an index in h′. By (VI), if l is the index
of the left [resp. right] i-parenthesis, then l is also the index of the left [resp. right]
i-parenthesis in h]h′ with the same amount of predecessors. If h′ |=[u7→l] eindex(u) and
h] h′ 6|=[u7→l] Lindex(u), there will be then a missing value in the spectrum spect(h] h′),
which would lead to a contradiction by invoking (2holes).

We are then able to conclude the statement of the lemma by showing the propositions
below:

(†). spect(h) ⊆ spect(h] h′).
(† †). indspect(h′) ⊆ spect(h] h′).
(† † †). spect(h] h′) ⊆ spect(h)] indspect(h′).

Proof of (†). Let n ∈ spect(h). So, there is l ∈ N such that]̃l = n and l is an index of
some entry or parenthesis in h such that n ≥ d0 with]̃lp0 = d0. Hence, l is a large index
and by (VII), l is also a large index in h] h′ with]̃l in h] h′ greater or equal to d0. This
is true only if n ≥]̃lp′i0 . So n ∈ spect(h] h′).

Proof of († †). Let n ∈ indspect(h′). In the case there is some index l of some entry
such that]̃l = n, by (VIII), l is a large index in h] h′ and therefore n ∈ spect(h] h′). In
the case n =]̃lp′i, the value]̃lp′i in h]h′ is also equal to n by (IV), and by the assumption
(3) of the lemma, lp′i is a large left parenthesis in h] h′, whence n ∈ spect(h] h′).

The case n =]̃rp′i admits a similar treatment by using (VI).

Proof of († † †). Let n ∈ spect(h] h′). In the case n ∈ []̃lp′i0 ,]̃rp
′
is
], by (V), we get

n ∈ []̃lpi0 ,]̃rpis]. Suppose that n 6∈ spect(h) and

n ∈ []̃lpi0 ,]̃rpis] \ {]̃lpi0 ,]̃rpi0 , . . . ,]̃lpis ,]̃rpis}.

Considering the structure of the spectrum of h, n − 1 and n + 1 belong to spect(h). By
(VII), n− 1 and n+ 1 belong to spect(h] h′), which leads to a contradiction since there
cannot be such three consecutive values (n− 1, n and n+ 1) in spect(h] h′).

Since h] h′ |=f wfhX∪{i}, we can conclude that]̃lpi
′
(in h] h′) is equal to]̃lp′is +1 (also

equal to]̃lp′is+1 in h). In the remaining case n ∈ []̃lp′i,]̃rp
′
i], suppose that n 6∈ indspect(h′)

and n ∈ (]̃lp′i,]̃rp
′
i). Considering the structure of the index spectrum of h′, n−1 and n+1

belong to indspect(h′). By (VIII), n− 1 and n+ 1 belong to spect(h] h′), which leads to a
contradiction since there cannot be such three consecutive values (n − 1, n and n + 1)
in (]̃lp′i,]̃rp

′
i).

5.4. A reduction from DSOL into 1SL2(−∗)
Below, we define a translation from a sentence φ in DSOL into a sentence in 1SL2(−∗)
that uses only logarithmic space. Without any loss of generality, we assume that

(1) two occurrences of quantified variables in φ have distinct variable indices (e.g., P4
and u4 cannot both occur in φ and “∀ u4” cannot occur more than once) and

(2) if ∃ ui ψ1 is a subformula of ∃ uj ψ2, then i > j and this holds for any combination of
first-order/second-order variables.

39

At the outset, we may rename variables so that these simple conditions are satis-
fied. We assume that the variable indices for (first-order or second-order) variables are
among [1,K]. Obviously, K is less than the size of the formula φ to be translated.

The translation of the formula φ, written T(φ), first applies a top-level translation
ttop(·) which takes care of initializing the valuation heap (mainly to introduce the left
0-parenthesis and the right 0-parenthesis); then, a recursive map t(·) is applied. So,
T(φ)

def
= ttop(φ) where ttop(φ) is defined as follows:

ttop(φ)
def
= ∃ u isoloc(u) ∧ (localval0(u)

¬−∗ (wfh{0}∧

indmin(u) ∧ (∀ u ((u 6= u) ∧ ¬Lrp0(u))⇒ (]u <]u)) ∧ t({0}, φ))).
The first step of the translation consists in adding 0-parentheses so that the heap

that evaluates t({0}, φ) is {0}-well-formed. The translation map t(·) has two argu-
ments: the formula to be transformed and the set of variable indices for variables that
have been quantified so far. The map t(·) is inductively defined as follows (X ⊆ [0,K],
ψ subformula of φ):

— t(X, ·) is homomorphic for Boolean connectives,
— t(X, ui = uj)

def
= ∃ u elti(u) ∧ eltj(u),

— t(X, ui ↪→ uj)
def
= ∃ u ∃ u (elti(u) ∧ eltj(u) ∧ u ↪→ u),

— t(X, Pi(uj , uk))
def
= ∃ u (eltj(u) ∧ ∃ u (u ↪→ u ∧ vindi(u) ∧

∃ u (]u =]u+ 1 ∧ vindi(u) ∧ ∃ u (u ↪→ u ∧ eltk(u))))).
— Translating the quantifiers themselves is a bit trickier, as we need to introduce the

new entries to the valuation heap by applying the magic wand. For the quantifier
∃ ui, we choose two locations l and l′ such that l is the index of the left 0-parenthesis
and l′ is an isolated location in the original heap.
We construct a new heap that is a local i-valuation while enforcing that the index of
the left 0-parenthesis is preserved and l′ becomes the index of the unique large left
i-parenthesis (see Lemma 5.11). t(X,∃ ui ψ)

def
=

∃ u ∃ u ((indmin(u) ∧ isoloc(u)) ∧ (localvali(u)
¬−∗

(wfhX∪{i} ∧ indmin(u) ∧ Llpi(u) ∧ t(X ∪ {i}, ψ)))).
— The translation with second-order variables is analogous (the formula localvali(u)

below is actually defined differently, see the proof of Lemma 5.7):

t(X,∃ Pi ψ)
def
= ∃ u ∃ u ((indmin(u) ∧ isoloc(u)) ∧

(localvali(u)
¬−∗ (wfhX∪{i} ∧ indmin(u) ∧ Llpi(u) ∧ t(X ∪ {i}, ψ)))).

Every subformula t(X,ψ) has no free variable from free(ψ) ⊆ X where free(ψ) de-
notes the set of variable indices in ψ from either first-order or second-order free vari-
ables. As noted by one anonymous referee, a standard trick is to convert first-order
variables into second-order ones so that the proof has only to deal with one type of
variable. Herein, we do not quite eliminate first-order variables but we provide a uni-
form treatment for first-order quantifications and second-order quantifications, which
essentially amounts to dealing with a single type of encoding.

Below, we state the correctness lemma that allows us to get Theorem 5.13 (the proof
is by structural induction).

LEMMA 5.12 (CORRECTNESS). Let φ be a DSOL sentence of the above form, ψ be
one of its subformulae and (free(ψ) ∪ {0}) ⊆ X ⊆ [0,K]. Let h = hB] hV be a X-well-
formed heap and Vh be the valuation extracted from h. Then, hB |=Vh

ψ iff h |= t(X,ψ).

40

PROOF. The proof is by structural induction.
Base case 1: ψ is equal to ui = uj .
Since h is X-well-formed and i, j ∈ X, Vh(ui) is equal to hV (l) where l is the unique
index location such that]̃l ∈ degrees(i, h). Similarly, Vh(uj) is equal to hV (l

′) where l′ is
the unique index location such that]̃l′ ∈ degrees(j, h). Uniqueness is a consequence of
Definition 5.8(2).

Let us recall that elti(u) = ∃ u (u ↪→ u) ∧ vindi(u) with vindi(u) = Lindex(u) ∧
eindex(u)∧ (∃ u Llpi(u)∧]u <]u)∧ (∃ u Lrpi(u)∧]u >]u). Similarly, eltj(u) = ∃ u (u ↪→
u) ∧ vindj(u).

First, let us suppose that hB |=Vh
ui = uj . This means that Vh(ui) and Vh(uj) are

equal, say to l′ and therefore there is a unique index location li such that hV (li) = l′ and
]̃li ∈ degrees(i, h). Moreover, there is a unique index location lj such that hV (lj) = l′ and
]̃lj ∈ degrees(j, h). Since]̃li and]̃lj belong to the index spectrum of hV , the locations li
and lj , have the same number of predecessors in h and in hV and they are also indices
in h (see Lemma 5.11). Consequently, h |=[u7→l′] elti(u) ∧ eltj(u) (see also Lemma 5.6),
whence h |= ∃ u elti(u) ∧ eltj(u).

Now suppose that h |= ∃ u elti(u) ∧ eltj(u). There is a location l′ such that
h |=[u7→l′] elti(u) ∧ eltj(u). Therefore there are index locations li and lj such that
]̃li ∈ degrees(i, h),]̃lj ∈ degrees(j, h), h(li) = l′ and h(lj) = l′. By Lemma 5.11, hV (li) = l′,
]̃li ∈ indspect(hV), hV (lj) = l′ and]̃lj ∈ indspect(hV). By definition of Vh (see Defini-
tion 5.10), this implies that Vh(ui) = Vh(uj) and therefore hB |=Vh

ui = uj .

Base case 2: ψ is equal to ui ↪→ uj .
Again, since h is X-well-formed and i, j ∈ X, Vh(ui) is equal to hV (l) where l is the
unique location such that]̃l ∈ degrees(i, h). Similarly, Vh(uj) is equal to hV (l) where l is
the unique location such that]̃l ∈ degrees(j, h).

First, let us suppose that hB |=Vh
ui ↪→ uj . This means that hB(Vh(ui)) = Vh(uj),

and there is a unique location li such that hV (li) = Vh(ui) and]̃li ∈ degrees(i, h). There
is also a unique location lj such that hV (lj) = Vh(uj) and]̃lj ∈ degrees(j, h). Since]̃li
and]̃lj belong to the index spectrum of hV , the locations li and lj , have the same num-
ber of predecessors in h and in hV and they are also indices in h (see Lemma 5.11).
There are index locations l′, l′′ such that h |=[u7→l′,u7→l′′] elti(u) ∧ eltj(u) ∧ u ↪→ u. Note
that hB(Vh(ui)) = Vh(uj) implies h(Vh(ui)) = Vh(uj) since hB is a subheap of h. Con-
sequently, h |= ∃ u ∃ u elti(u) ∧ eltj(u) ∧ u ↪→ u.

Now suppose that h |= ∃ u ∃ u elti(u) ∧ eltj(u) ∧ u ↪→ u. Consequently, there are
locations l′ and l′′ such that h |=[u7→l′,u7→l′′] elti(u) ∧ eltj(u) ∧ u ↪→ u. Therefore there
are locations li and lj such that]̃li ∈ degrees(i, h),]̃lj ∈ degrees(j, h), h(li) = l′, h(lj) = l′′

and of course h(l′) = l′′. By Lemma 5.11 and since indspect(hV) = spect(h), hV (li) = l′,
]̃li ∈ indspect(hV), hV (lj) = l′′ and]̃lj ∈ indspect(hV). By construction of Vh (see
Definition 5.10), this implies that h(Vh(ui)) = Vh(uj) and therefore hB |=Vh

ui ↪→ uj .
Note that Vh(ui) 6∈ dom(hV) since h is X-well-formed.

Base case 3: ψ is equal to Pi(uj , uk).
Suppose that hB |=Vh

Pi(uj , uk). By definition of the satisfaction relation |=, this is
equivalent to (Vh(uj),Vh(uk)) ∈ Vh(Pi). By definition of Vh, Vh(uj) is equal to hV (lj)

where lj is the unique index location such that]̃lj ∈ degrees(j, h). Similarly, Vh(uk) is
equal to hV (lk) where lk is the unique index location such that]̃lk ∈ degrees(k, h). So,

41

h |=[u7→lj] vindj(u) and h |=[u7→lk] vindk(u). Moreover, by definition of Vh, there are index
locations li and l′i such that

(1)]̃l′i =]̃li + 1,
(2)]̃li,]̃l′i ∈ degrees(i, h),
(3) h(li) = Vh(uj) and h(l′i) = Vh(uk),
(4) h |=[u7→li] vindi(u) and h |=[u7→l′i]

vindi(u).

Finally, the formulae eltj(u) and eltk(u) are defined so that h |=[u7→Vh(uj)] eltj(u) and
h |=[u7→Vh(uk)] eltk(u). So, we have

— li → Vh(uj) (i.e. h(li) = Vh(uj)),
—]̃l′i =]̃li + 1,
— l′i → Vh(uk) (i.e. h(l′i) = Vh(uk)).

This guarantees the satisfaction of

h |= ∃ u
(
eltj(u) ∧ ∃ u

(
u ↪→ u ∧ vindi(u)∧

∃ u (]u =]u+ 1 ∧ vindi(u) ∧ ∃ u (u ↪→ u ∧ eltk(u)))
))
.

The proof in the other direction is by an easy verification and similar since all of the
above implications are indeed equivalences.

Induction step. The induction hypothesis is the following: for every subformula ψ′ of
size strictly less than the size of ψ, for every free(ψ′) ⊆ X ′ ⊆ [0,K], we have hB |=Vh

ψ′

iff h |= t(X ′, ψ′). The cases when the outermost connective is Boolean are by an easy
verification.

Case 1: ψ is equal to ∃ ui ψ
′. Suppose that hB |=Vh

∃ ui ψ
′. By definition of the

satisfaction relation |=, there is l ∈ N such that hB |=Vh[ui 7→l] ψ
′. In case l belongs to the

set Y defined below,

Y = dom(hV) ∪ {l ∈ N : h |=[u7→l]

∨
j∈X

(Llpj(u) ∨ Lrpj(u))}

(and therefore l is an isolated location in hB), we pick another location l′ that does not
belong to Y and that is also isolated in hB . It is then easy to show that hB |=Vh[ui 7→l] ψ

′

iff hB |=Vh[ui 7→l′] ψ
′. So, without any loss of generality, below we assume that l does not

belong to Y .
Let us build hiV and an assignment f such that:

(1) hiV |=f localvali(u),
(2) h |=f indmin(u) ∧ isoloc(u),
(3) h] hiV |=f wfhX∪{i} ∧ indmin(u) ∧ Llpi(u).

Assume that max(X) = j and m is the degree of the right j-parenthesis with greatest
degree. It is easy to define a local i-valuation hiV disjoint from h such that the degree of
the left i-parenthesis is m+1, the degree of the right i-parenthesis is m+3, the degree
of the unique entry is m+2, its element is precisely l and all the locations in its domain
are isolated in h (always possible since dom(h) ∪ ran(h) is finite).

It is not difficult to check that hiV and f satisfy the above conditions. Since h] hiV
is (X ∪ {i})-well-formed by construction, by Lemma 5.11, we have Vh[ui 7→ l] equal
to Vh]hi

V
. Hence, hB |=V

h]hi
V

ψ′ and by the induction hypothesis, we get h] hiV |=

42

t(X ∪ {i}, ψ′). However, it is easy to conclude then that h |= t(X,ψ). Indeed, h satisfies
the formula below

∃ u ∃ u (indmin(u) ∧ isoloc(u) ∧ (localvali(u)
¬−∗

(wfhX∪{i} ∧ indmin(u) ∧ Llpi(u) ∧ t(X ∪ {i}, ψ
′))))

whenever there are locations l? and l?? and a disjoint heap h? such that:

(1) l? is the unique large 0-parenthesis in h and l?? is isolated in h,
(2) h? is an i-local valuation such that the index of the left i-parenthesis is l??, h] h? is

(X ∪ {i})-well-formed,
(3) l? is the left 0-parenthesis in h] h? and l?? is the left i-parenthesis in h] h?,
(4) h] h? |=[u7→l?,u7→l??] t(X ∪ {i}, ψ′).
It is clear that such objects exist by considering the above construction.

The proof in the other direction (i.e. h |= t(X,ψ) implies hB |=Vh
∃ ui ψ′) is actually

very similar since most of the above implications are indeed equivalences.

Case 2: ψ is equal to ∃ Pi ψ
′. Suppose that hB |=Vh

∃ Pi ψ
′. By definition of the

satisfaction relation |=, there is a finite binary relation R ⊆ N2 such that hB |=Vh[Pi 7→R]

ψ′. In case R involves locations in Y defined below,

Y = dom(hV) ∪ {l ∈ N : h |=[u7→l]

∨
j∈X

(Llpj(u) ∨ Lrpj(u))}

(and therefore R involves some isolated locations in hB), we pick another R′ (of same
cardinality β) that does not involve locations in Y . It is then easy to show that
hB |=Vh[Pi 7→R] ψ

′ iff hB |=Vh[Pi 7→R′] ψ
′. So, without any loss of generality, below we

assume that R does not involve locations in Y (see also [Brochenin et al. 2012, Lemma
2.1]).

Let us build hiV and an assignment f such that:

(1) hiV |=f localvali(u),
(2) h |=f indmin(u) ∧ isoloc(u),
(3) h] hiV |=f wfhX∪{i} ∧ indmin(u) ∧ Llpi(u).

Assume that max(X) = j and m is the degree of the right j-parenthesis with greatest
degree. It is easy to define a local i-valuation hiV disjoint from h such that

(1) the degree of the left i-parenthesis is m+ 1,
(2) the degree of the right i-parenthesis is (m+ 1) + 3β + 1 for some β ≥ 0,
(3) there are 2β entries,
(4) for every pair (l, l′) inR, there are two entries of consecutive degrees whose elements

are l and l′ respectively.

This is always possible since dom(h) ∪ ran(h) and R are finite.
It is not difficult to check that hiV and f satisfy the above conditions. Since h] hiV

is (X ∪ {i})-well-formed by construction, by Lemma 5.11, we have Vh[Pi 7→ R] equal
to Vh]hi

V
. Hence, hB |=V

h]hi
V

ψ′ and by the induction hypothesis, we get h] hiV |=
t(X ∪ {i}, ψ′). However, it is easy to conclude then that h |= t(X,ψ). Indeed, h satisfies
the formula below

∃ u ∃ u (indmin(u) ∧ isoloc(u) ∧ (localvali(u)
¬−∗

(wfhX∪{i} ∧ indmin(u) ∧ Llpi(u) ∧ t(X ∪ {i}, ψ
′))))

43

whenever there are locations l? and l?? and a disjoint heap h? such that:

(1) l? is the unique large 0-parenthesis in h and l?? is isolated in h,
(2) h? is an i-local valuation such that the index of the left i-parenthesis is l??, h] h? is

(X ∪ {i})-well-formed,
(3) l? is the left 0-parenthesis in h] h? and l?? is the left i-parenthesis in h] h?,
(4) h] h? |=[u7→l?,u7→l??] t(X ∪ {i}, ψ′).
It is clear that such objects exist by considering the above construction.

The proof in the other direction (i.e. h |= t(X,ψ) implies hB |=Vh
∃ Pi ψ′) is actually

very similar since most of the above implications are indeed equivalences.

Here is the main result of the paper.

THEOREM 5.13. For every sentence φ in DSOL, for every heap h, we have h |= φ iff
h |= T(φ), so WSOL and 1SL2(−∗) have the same expressive power.

It is worth recalling that we already know that DSOL and WSOL have the same
expressive power with 1SL [Brochenin et al. 2012].

PROOF. First, we can establish the following lemma:

LEMMA 5.14. Let h be some heap, ψ be some sentence in 1SL2(−∗). Then, the propo-
sitions below are equivalent:

(I). h satisfies the formula below:

∃ u isoloc(u) ∧ (localval0(u)
¬−∗

(wfh{0} ∧ indmin(u) ∧ (∀ u ((u 6= u) ∧ ¬Lrp0(u))⇒ (]u <]u) ∧ ψ)).
(II). There is a heap h0 disjoint from h, that is a local 0-valuation such that h] h0
is {0}-well-formed and its large left 0-parenthesis is precisely the left 0-parenthesis
from h0. Moreover, h] h0 satisfies ψ.

The proof is by an easy verification but it is helpful to show the correctness of the
full translation.

Let φ be a sentence in DSOL. If φ does not satisfy the syntactic conditions defined
at the beginning of Section 5.4, one can easily define an equivalent formula in DSOL
satisfying those simple conditions. By Lemma 5.14, h |= T(φ) iff there is a heap h0 dis-
joint from h, that is a local 0-valuation such that h] h0 is {0}-well-formed and its large
0-parenthesis is precisely the left 0-parenthesis from h0 and h] h0 satisfies t({0}, φ).
It is always possible to build a local 0-valuation h0 disjoint from h such that its large
left 0-parenthesis is precisely the left 0-parenthesis from h0. By Lemma 5.12, we have
h |=Vh0

φ iff h] h0 |= t({0}, φ). By assumption, if h |= φ, then h |= T(φ) by using
Lemma 5.14 and Lemma 5.12. Similarly, if h |= T(φ), by using the equivalences of
Lemma 5.14 and Lemma 5.12 in the other direction, we get that h |= φ.

Observe that T(φ) is of cubic size in the size of φ thanks to the size properties of
all the subformulae involved in the translation. Moreover, T(φ) can be computed in
logarithmic space in the size of φ but here we have to be a bit careful. Indeed, one of
the parameters of the translation is the set X of indices and updating it through the
translation requires linear space if no further observation is made. However, whenever
a formula t(X,ψ) needs to be constructed, X is not arbitrary. The set X is actually the
set of variables indices whose variables are quantified above ψ and therefore, it would
be possible to omit the first parameter and to reconstruct on demand the set X, which
can be done in logarithmic space. Moreover, zero always belongs to X (even though
this is not a variable index).

44

So, the restriction to two variables in 1SL2(−∗) does not reduce the expressive power,
unlike restrictions in [Venema 1991; Etessami et al. 1997] but we know also other
logics restricted to two variables that are expressively complete, see e.g. [Lutz et al.
2001; Marx and de Rijke 2005].

We get the ultimate undecidability result below (no separating conjunction, two
quantified variables, one record field).

COROLLARY 5.15. Satisfiability problem for 1SL2(−∗) is undecidable.

The absence of program variables in 1SL2(−∗) makes the proof of Corollary 5.15 even
more difficult to design, which is perfect to obtain the sharpest undecidability result.
An expressiveness result with program variables is briefly presented in Section 6.1.

THEOREM 5.16. The set of valid formulae in 1SL2(−∗) is not recursively enumerable.

Indeed, finitary validity for classical predicate logic restricted to a single binary
predicate is not recursively enumerable [Trakhtenbrot 1963], which implies a similar
property for DSOL and therefore for 1SL2(−∗) by Theorem 5.13.

It is also possible to establish the following consequences.

COROLLARY 5.17.

(I). Let φ be a sentence in 1SL. There is an equivalent sentence in 1SL2(−∗) of poly-
nomial size in the size of φ.
(II). 1SL2(−∗) is strictly more expressive than 1SL(∗).

Corollary 5.17(II) follows from Theorem 5.13 and 1SL(∗) is strictly less expressive
than MSO [Antonopoulos and Dawar 2009, Corollary 5.3] (see also [Antonopoulos
2010]). Corollary 5.17(I) is a consequence of Theorem 5.13 and of the fact that 1SL
can be translated into DSOL in polynomial time. The composition of two maps that
increase respectively the formula size only polynomially, provides a formula of polyno-
mial size too.

Our main results are Theorem 5.13 and Corollary 5.15, significantly improving pre-
viously known results (see the figure in Section 1). As far as the translation into
1SL2(−∗) is concerned (see the current section but it uses in essential ways the for-
mulae of Section 4), the lack of variables is partially compensated by the introduction
of left and right parentheses in order to constrain sufficiently the valuation heap. More
importantly, we have shown that this is a viable solution in 1SL2(−∗) despite only hav-
ing two variables (see the proof of Lemma 5.11). In particular, this means that we were
able to apply the method of dividing the heap into two disjoint heaps: the original heap
and the heap encoding the valuation without provoking any confusion and this is prob-
ably the hardest part of our technical developments (see the proof of Lemma 5.11). This
was not at all clear at the outset, and of course, in view of the complexity of the final
proof, this led to lengthy arguments to show correctness of the whole enterprise.

Probably, alternative definitions for local i-valuations and X-well-formed heaps are
possible, while leading to slightly simpler structures. One may reach the same main
results with a unique type of i-parenthesis (instead of having a left version and a
right version); maybe only one type of parenthesis is also possible, for instance by
repeating the parenthesis i times at the appropriate place. Our current encoding has
more constraints and it is more explicit in view of the design of proofs. We believe our
current version is a fair compromise between understandable valuation heaps and the
complexity of the proofs.

45

6. EXTENSIONS
In this section, we present several variants of 1SL2(−∗) for which undecidability or
expressive power can be established on the lines of the previous developments.

6.1. Adding an unbounded number of program variables
In this section, we consider 1SL with program variables, which is a strict extension of
1SL and therefore undecidability for 1SL2(−∗) is still valid in the presence of program
variables. Adding program variables is the usual way to consider separation logic and
below we show that the previous developments can be easily lifted to the case with
program variables.

Let PVAR = {x1, x2, . . .} be a countably infinite set of program variables. A memory
state is a pair (s, h) such that s : PVAR → N and h is a heap. Formulae of 1SL with
program variables are built from expressions of the form e ::= x | u where x ∈ PVAR and
u ∈ FVAR, and atomic formulae of the form

π ::= e= e′ | e ↪→ e′.

Formulae are defined by the grammar

φ ::= π | φ ∧ ψ | ¬φ | φ ∗ ψ | φ−∗ψ | ∃ u φ,

where u ∈ FVAR. A valuation is a map f : FVAR → N. The satisfaction relation |= is
extended as follows:

— (s, h) |=f e = e′ iff JeK = Je′K, with JxK def
= s(x), JuK def

= f(u). Obviously, program variables
can be understood as free quantified variables interpreted rigidly.

— (s, h) |=f e ↪→ e′ iff JeK ∈ dom(h) and h(JeK) = Je′K.

The satisfiability problem takes as input a sentence from 1SL with program vari-
ables, in which the only free variables are program variables. The version of DSOL
with program variables is defined similarly when models are memory states.

THEOREM 6.1. There is a translation T such that for every sentence φ in DSOL with
program variables, the sentence T(φ) in 1SL2(−∗) with program variables (of polynomial
size in the size of φ) is such that for all (s, h), we have (s, h) |= φ iff (s, h) |= T(φ).

Actually, the translation T is defined as a variant of the one in Section 5.4 that takes
into account program variables. The variant is pretty natural since program variables
do not require any encoding.

PROOF. Let us update the translation T from Section 5 as follows so that we can
take into account program variables.

t(X, ui = x)
def
= ∃ u elti(u) ∧ u = x

t(X, x = x′)
def
= x = x′

t(X, x ↪→ x′)
def
= x ↪→ x′

t(X, Pi(x, x
′))

def
= Pi(x, x

′)

t(X, ui ↪→ x)
def
= ∃ u (elti(u) ∧ u ↪→ x)

t(X, x ↪→ ui)
def
= ∃ u (elti(u) ∧ x ↪→ u)

t(X, Pi(uj , x))
def
= ∃ u (eltj(u)∧
∃ u (u ↪→ u ∧ vindi(u) ∧ ∃ u vindi(u) ∧ (]u =]u+ 1 ∧ u ↪→ x)))

t(X, Pi(x, uj))
def
= ∃ u ((vindi(u) ∧ u ↪→ x)∧

(∃ u vindi(u) ∧ ((]u =]u+ 1) ∧ ∃ u (eltj(u) ∧ u ↪→ u)))).

46

This is all that is required to update the translation, except that we should also
guarantee that the allocated locations in the valuation heap do not correspond to the
interpretation of program variables. Otherwise, this would lead to an unsound reduc-
tion.

To do this, we write PVAR(φ) to denote the set of program variables occurring in φ. In
the definition of ttop(φ), we replace localval0(u) by the formula below:

localval0(u) ∧

(∧
x∈PVAR(φ)

¬alloc(x)

)
∧

(∧
x∈PVAR(φ)

(∀ u (u ↪→ x)⇒ (Lindex(u) ∧ eindex(u)))

)
.

Similarly, in the inductive definition of the translation for quantified formulae, we
replace localvali(u) by

localvali(u) ∧

(∧
x∈PVAR(φ)

¬alloc(x)

)
∧

(∧
x∈PVAR(φ)

(∀ u (u ↪→ x)⇒ (Lindex(u) ∧ eindex(u)))

)
.

The notion of X-well-formed heap is slightly updated in order to exclude the possi-
bility that a location in the domain of the valuation heap corresponds to s(x) for some
x ∈ PVAR(φ) and moreover, s(x) cannot be the index of some parenthesis. We have taken
care of that in updating the formulae when subformulae of the form localvali(u) were
present (see above). So, we can establish the lemma below. Actually, the proof is exactly
the proof of Lemma 5.11 since we strengthen the assumptions.

LEMMA 6.2 (COMPOSITION). Let f be a valuation, h be an X-well-formed heap with
{0} ⊆ X ⊆ [0,K], i ∈ [1,K] \X and i > max(X), s be a store and h′ be a disjoint heap
such that:

(1) (s, h) |=f indmin(u) ∧ isoloc(u),
(2) (s, h′) |=f localvali(u) ∧

(∧
x∈PVAR(φ) ¬alloc(x)

)
∧
(∧

x∈PVAR(φ)(∀ u (u ↪→ x) ⇒

(Lindex(u) ∧ eindex(u)))
)
,

(3) (s, h] h′) |=f wfhX∪{i} ∧ indmin(u) ∧ Llpi(u).

Then, we have spect(h] h′) = spect(h)] indspect(h′).

With the above update of the translation, we can also establish correctness below,
which leads to the proof of the statement.

LEMMA 6.3 (CORRECTNESS). Let φ be a DSOL sentence with program variables,
ψ be one of its subformulae and (free(ψ) ∪ {0}) ⊆ X ⊆ [0,K]. Let h = hB] hV be a
X-well-formed heap, s be a store and Vh be the valuation extracted from h. Then, we
have (s, hB) |=Vh

ψ iff (s, h) |= t(X,ψ).

The proof of Lemma 6.3 is similar to the proof of Lemma 5.12 except that there are
additional base cases since there are new atomic formulae. By way of example, we
present the proof for ψ equal to uj = x.

47

Since h is X-well-formed and j ∈ X, Vh(uj) is equal to hV (l) where l is the unique
index location such that]̃l ∈ degrees(j, h).

Let us recall that eltj(u) = ∃ u (u ↪→ u) ∧ vindj(u) with vindj(u) = Lindex(u) ∧
eindex(u) ∧ (∃ u Llpj(u) ∧]u <]u) ∧ (∃ u Lrpj(u) ∧]u >]u).

First, let us suppose that (s, hB) |=Vh
uj = x. This means that Vh(uj) and s(x) are

equal, say to l′ and therefore there is a unique index location lj such that hV (lj) = l′

and]̃lj ∈ degrees(j, h). Since]̃lj belong to the index spectrum of hV , the location lj ,
has the same number of predecessors in h and in hV and it is also an index in h (see
Lemma 6.2). Consequently, (s, h) |=[u7→l′] eltj(u), whence (s, h) |= ∃ u eltj(u) ∧ u = x.

Now suppose that (s, h) |= ∃ u eltj(u) ∧ u = x. There is a location l′ such that
(s, h) |=[u7→l′] eltj(u)∧u = x. Therefore there are an index lj such that]̃lj ∈ degrees(j, h),
h(lj) = l′ and s(x) = l′. By Lemma 6.2, hV (lj) = l′ and]̃lj ∈ indspect(hV). By definition
of Vh, this implies that Vh(uj) = s(x) and therefore (s, hB) |=Vh

uj = x.
The base cases for the other atomic formulae are obtained from those in the proof of

Lemma 5.12 in a similar fashion. The cases in the induction step are proved similarly.
It is worth noting that we can guarantee that for all x ∈ PVAR(φ), s(x) does not fall in
the set Y (see the proof of Lemma 5.12) thanks to the addition of the conjunct(∧

x∈PVAR(φ)

¬alloc(x)
)
∧
(∧
x∈PVAR(φ)

(∀ u (u ↪→ x)⇒ (Lindex(u) ∧ eindex(u)))
)

when a local i-valuation needs to be built.

6.2. Extension with k record fields
In this work, we have considered memory cells with a unique record field. It is pos-
sible to extend our results to k > 1 record fields, along the lines of [Brochenin et al.
2012, Section 7]. Let kSL be the (separation) logic in which heaps are partial func-
tions h : N ⇁ Nk with finite domain and atomic formulae include uj

i
↪→ uj′ (i ∈ [1, k]);

kWSOL and kDSOL are defined similarly. Let kSL2(−∗) be the two-variable fragment
of kSL with the magic wand as the only separating connective. One can show that ev-
ery sentence in kDSOL has an equivalent sentence in kSL2(−∗). To do so, we need to
adapt the definitions from Sections 3 and 4 so that memory cells involved in the valua-
tion heap are relevant only with respect to

1
↪→ (and comparing numbers of predecessors

is performed only with respect to
1
↪→). Details are tedious because many notions need

to be redefined relatively to
1
↪→ but the encoding of valuations is based on the same

general principles as for 1SL2(−∗).

6.3. Allowing infinite domains
Let kSL∞ be the variant of kSL in which the heap domain can be either finite or
infinite. Remember that in kSL, the heap domain is necessarily finite. The set of valid
formulae for kSL∞ without separating connectives is recursively enumerable, which
contrasts with Theorem 5.16. Indeed, the heap can be encoded by a (k+1)-ary relation
that is deterministic on its first argument. By contrast, 1SL∞ with the separating
connectives does not admit a recursively enumerable set of valid formulae. Indeed,
finiteness of the heap domain is a property that can be internalised in 1SL∞ with the
quite simple formula seg

¬−∗ ∀ u alloc(u). By contrast, classical predicate logic cannot
specify finiteness of the model.

LEMMA 6.4. For every heap h, dom(h) is infinite iff h |= seg
¬−∗ ∀ u alloc(u).

48

PROOF. Let h be a heap such that dom(h) is infinite. Let l1, l2, . . . be an arbitrary
enumeration of the locations in dom(h). Suppose that N\dom(h) is infinite. Let l′1, l′2, . . .
be an arbitrary enumeration of the locations in N\dom(h). Let h′ be the heap such that
dom(h′) = N \ dom(h) and for every i ≥ 1, we set h′(l′i) = li. Since {l1, l2, . . .}, {l′1, l′2, . . .}
is a partition of N, we have h′ |= seg. As dom(h)] dom(h′) = N, we conclude that
h] h′ |= ∀ u alloc(u), whence h |= seg

¬−∗ ∀ u alloc(u). When N \ dom(h) is finite, we
follow a similar and even simpler reasoning, the details are omitted.

Now, let h be a heap such that dom(h) is finite. Suppose that h |= seg
¬−∗ ∀ u alloc(u).

So, there is a heap h′ such that h′ |= seg and h] h′ |= ∀ u alloc(u). Let l1, l2, . . .
be an arbitrary (infinite) enumeration of the locations in dom(h′). Since h′ |= seg,
h′(l1), h

′(l2), . . . is an infinite sequence of distinct locations. Since dom(h) is finite, there
is i such that h′(li) 6∈ dom(h), say h′(li) = lj , which leads to a contradiction because h′

is supposed to be a segmented heap.

Let SOL be the variant of WSOL such that quantification over infinite relations is
allowed and the models are those of 1SL∞. The logic SOL is therefore not a ‘weak’
version of second-order logic since second-order variables are not required to be in-
terpreted by finite relations. It is open whether there exist statements in SOL that
cannot be expressed in 1SL∞. A possible candidate statement could be that there are
an infinite number of non-empty connected components that are pairwise isomorphic.
Indeed, this property can be expressed in SOL, in particular because infinity of a set
can be expressed as well as isomorphism between two connected components. By con-
trast, it is unclear how to express it in 1SL∞. Note that if we attempted to adapt the
proof from the previous sections to show that 1SL∞ and SOL have the same expressive
power, we encounter a problem. For our encoding (see Section 5), we relied on having
an infinite supply of isolated locations to draw from in order to build our valuation
heap. If all the locations are “used up,” so to speak, this is impossible.

7. CONCLUSION
We have shown that first-order separation logic with one record field, two quantified
variables and no separating conjunction, 1SL2(−∗), is as expressive as weak second-
order logic on concrete heaps (Theorem 5.13). As a consequence, the satisfiability prob-
lem for 1SL2(−∗) is undecidable (Corollary 5.15) and we have identified the undecidable
core of separation logic, significantly improving several known results from the litera-
ture [Calcagno et al. 2001; Brochenin et al. 2012]. Moreover, this entails that 1SL2(−∗)
has no finite axiomatization since weak second-order logic is not finitely axiomatizable.

On the positive side, we have provided means to express rich properties by only
using a restricted amount of syntactic resources. Nevertheless, first-order separation
logic with one record field, one quantified variable and an unbounded number of pro-
gram variables, has recently been shown decidable and it admits a PSPACE-complete
satisfiability problem [Demri et al. 2014]. Similarly, fragments using the list predicate
ls and restricted use of the magic wand−∗ or the separation conjunction ∗ are known to
admit decision procedures or semi-procedures, see e.g. [Cook et al. 2011; Thakur et al.
2014] and they are useful for formal verification. That is why, there are still some room
to find fragments of separation logics that are tailored for verification and that have
low computational cost, see also [Sighireanu and Cok 2014] where is described how
the first competition of solvers for several fragments of separation logic has been run
and which fragments have been considered.

We only use two variables, and our results also exclude separating conjunction,
which is quite remarkable in view of the restricted number of variables. As far as
the proofs of these results are concerned, we used first principles from [Brochenin
et al. 2012] but we had to provide non-trivial adaptations to fit the restricted frag-

49

ment 1SL2(−∗). However, this illustrates the robustness of those principles since they
could be applied by using the proof techniques developed in the present paper. Other
semantical variants are possible; those variants may include the case when heap do-
main may be infinite (see Section 6.3) or when composition of heaps is allowed as soon
as they agree on their common part. Finally, we believe that we identified a remark-
able example of a two-variable logic that is equivalent to a queen logic, namely weak
second-order logic, and that we have illustrated further the power of separating impli-
cation when interpreted on concrete heaps.

Certainly, this work can be completed or refined following several directions. We
mention some of them below, sometimes inspired by remarks made by the anonymous
referees. At the atomic level, the points-to formulae x ↪→ y could be replaced by its
exact version x 7→ y or even by its undirected version (which is less relevant in the
context of links). How does the undecidability status of 1SL2(−∗) evolve with such vari-
ants? Similarly, we have established undecidability of 1SL2(−∗) but without placing it
precisely in the arithmetical hierarchy: what is an optimal upper bound? Finally, the
formulae in 1SL2(−∗) used to encode the formulae from DSOL are constructed with the
septraction (or the magic wand) often with restrictions on the antecedents of septrac-
tion. What would be an optimal restriction on antecedents of septraction (for instance)
that would preserve undecidability? Answering to most of these questions, would re-
fine further the results presented in the paper.

ACKNOWLEDGMENTS

We would like to thank the anonymous referees for many suggestions that help to improve the quality of the
paper. We are also grateful to the anonymous referees of the CSL-LICS 2014 edition of this paper for their
suggestions and remarks.

References
T. Antonopoulos. 2010. Expressive power of query languages. Ph.D. Dissertation. University of Cambridge.
T. Antonopoulos and A. Dawar. 2009. Separating Graph Logic from MSO. In FOSSACS’09 (LNCS), Vol.

5504. Springer, 63–77.
T. Antonopoulos, N. Gorogiannis, C. Haase, M. Kanovich, and J. Ouaknine. 2014. Foundations for Decision

Problems in Separation Logic with General Inductive Predicates. In FOSSACS’14 (LNCS), Vol. 8412.
Springer, 411–425.

K. Apt. 1981. Ten Years of Hoare’s Logic. ACM Transactions on Programming Languages and Systems 3, 4
(1981), 431–483.

K. Bansal, A. Reynolds, T. King, C. Barrett, and Th. Wies. 2015. Deciding local theory extensions via E-
matching. In CAV’15 (LNCS), Vol. 9207. Springer, 87–105.

M. Bojanczyk, A. Muscholl, Th. Schwentick, and L. Segoufin. 2009. Two-variable logic on data trees and
XML reasoning. Journal of the Association for Computing Machinery 56, 3 (2009).

E. Börger, E. Grädel, and Y. Gurevich. 1997. The Classical Decision Problem. Springer.
M. Bozga, R. Iosif, and S. Perarnau. 2010. Quantitative Separation Logic and Programs with Lists. Journal

of Automated Reasoning 45, 2 (2010), 131–156.
D. Bresolin, D. Della Monica, V. Goranko, A. Montanari, and G. Sciavicco. 2010. Metric Propositional Neigh-

borhood Logics: Expressiveness, Decidability, and Undecidability. In ECAI’10 (Frontiers in Artificial
Intelligence and Applications), Vol. 215. IOS Press, 695–700.

R. Brochenin. 2013. Separation Logic: Expressiveness, Complexity, Temporal Extension. Ph.D. Dissertation.
LSV, ENS Cachan.

R. Brochenin, S. Demri, and E. Lozes. 2012. On the Almighty Wand. Information and Computation 211
(2012), 106–137.

J. Brotherston and M. Kanovich. 2014. Undecidability of Propositional Separation Logic and Its Neighbours.
Journal of the Association for Computing Machinery 61, 2 (2014).

C. Calcagno, D. Distefano, P. O’Hearn, and H. Yang. 2011. Compositional Shape Analysis by Means of Bi-
Abduction. Journal of the Association for Computing Machinery 58, 6 (2011), 26.

50

C. Calcagno, P. O’Hearn, and H. Yang. 2001. Computability and Complexity Results for a Spatial Assertion
Language for Data Structures. In FSTTCS’01 (LNCS), Vol. 2245. Springer, 108–119.

S. Chakraborty. 2012. Reasoning about heap manipulating programs using automata techniques. In Modern
Applications of Automata Theory, D. D’Souza and P. Shankar (Eds.). IISc Research Monographs Series,
Vol. 2. World Scientific, Chapter 7, 193–228.

B. Cook, C. Haase, J. Ouaknine, M. Parkinson, and J. Worrell. 2011. Tractable Reasoning in a Fragment of
Separation Logic. In CONCUR’11 (LNCS), Vol. 6901. Springer, 235–249.

A. Dawar, Ph. Gardner, and G. Ghelli. 2007. Expressiveness and complexity of graph logic. Information and
Computation 205, 3 (2007), 263–310.

S. Demri and M. Deters. 2014. Expressive completeness of separation logic with two variables and no sepa-
rating conjunction. In CSL-LICS’14. ACM, 37.

S. Demri and M. Deters. 2015. Two-variable separation logic and its inner circle. ACM Transactions on
Computational Logic 16, 2 (2015), 15.

S. Demri, D. Galmiche, D. Larchey-Wendling, and D. Mery. 2014. Separation Logic with One Quantified
Variable. In CSR’14 (LNCS), Vol. 8476. Springer, 125–138.

K. Etessami, M. Vardi, and Th. Wilke. 1997. First-Order Logic with Two variables and Unary Temporal
logics. In LICS’97. IEEE, 228–235.

D. Gabbay. 1981. Expressive Functional Completeness in Tense Logic. In Aspects of Philosophical Logic.
Reidel, 91–117.

D. Gabbay, I. Hodkinson, and M. Reynolds. 1994. Temporal Logic - Mathematical Foundations and Compu-
tational Aspects, Vol. 1. Oxford University Press.

D. Galmiche and D. Méry. 2010. Tableaux and Resource Graphs for Separation Logic. Journal of Logic and
Computation 20, 1 (2010), 189–231.

E. Grädel, Ph. Kolaitis, and M. Vardi. 1997. On the decision problem for two-variable first-order logic. Bul-
letin of Symbolic Logic 3, 1 (1997), 53–69.

E. Grädel, M. Otto, and E. Rosen. 1999. Undecidability Results on Two-Variable Logics. Arch. Mathematical
Logic 38, 4–5 (1999), 313–354.

C. Haase, S. Ishtiaq, J. Ouaknine, and M. Parkinson. 2013. SeLoger: A Tool for Graph-Based Reasoning in
Separation Logic. In CAV’13 (LNCS), Vol. 8044. Springer, 790–795.

Z. Hou, R. Clouston, R. Goré, and A. Tiu. 2014. Proof search for propositional abstract separation logics via
labelled sequents. In POPL’14. ACM, 465–476.

Z. Hou, R. Goré, and A. Tiu. 2015. Automated Theorem Proving for Assertions in Separation Logic with All
Connectives. In CADE’15 (LNCS), Vol. 9195. Springer, 501–516.

N. Immerman, A. Rabinovich, Th. Reps, M. Sagiv, and G. Yorsh. 2004. The Boundary Between Decidability
and Undecidability for Transitive-Closure Logics. In CSL’04 (LNCS), Vol. 3210. Springer, 160–174.

R. Iosif, A. Rogalewicz, and J. Simacek. 2013. The Tree Width of Separation Logic with Recursive Definitions.
In CADE’13 (LNCS), Vol. 7898. Springer, 21–38.

D. Janin and I. Walukiewicz. 1996. On the expressive completeness of the propositional mu-calculus with
respect to monadic second order logic. In CONCUR’96 (LNCS), Vol. 1119. 263–277.

H. Kamp. 1968. Tense Logic and the theory of linear order. Ph.D. Dissertation. UCLA, USA.
V. Kuncak and M. Rinard. 2004. On spatial conjunction as second-order logic. Technical Report MIT–CSAIL–

TR–2004–067. MIT CSAIL.
M. Lange. 2007. Linear Time Logics around PSL: Complexity, Expressiveness, and a little bit of Succinct-

ness. In CONCUR’07 (LNCS), Vol. 4703. Springer, 90–104.
D. Larchey-Wendling and D. Galmiche. 2013. Nondeterministic Phase Semantics and the Undecidability of

Boolean BI. ACM Transactions on Computational Logic 14, 1 (2013).
W. Lee and S. Park. 2014. A proof system for separation logic with magic wand. In POPL’14. ACM, 477–490.
E. Lozes. 2012. Separation Logic: Expressiveness and Copyless Message-Passing. ENS Cachan. (2012). Ha-

bilitation thesis.
C. Lutz, U. Sattler, and F. Wolter. 2001. Modal Logic and the Two-Variable Fragment. In CSL’01 (LNCS),

Vol. 2142. Springer, 247–261.
J. Marcinkowski. 2006. On the expressive power of graph logic. In CSL’06 (LNCS), Vol. 4207. Springer,

486–500.
M. Marx and M. de Rijke. 2005. Semantic characterizations of navigational XPath. SIGMOD Record 34, 2

(2005), 41–46.
J. Navarro Pérez and A. Rybalchenko. 2013. Separation Logic Modulo Theories. In APLAS’13 (LNCS), Vol.

8301. 90–106.

51

R. Piskac, Th. Wies, and D. Zufferey. 2013. Automating Separation Logic using SMT. In CAV’13 (LNCS),
Vol. 8044. Springer, 773–789.

R. Piskac, Th. Wies, and D. Zufferey. 2014. GRASShopper - Complete Heap Verification with Mixed Specifi-
cations. In TACAS’14 (LNCS), Vol. 8413. Springer, 124–139.

A. Rabinovich. 2014. A Proof of Kamp’s theorem. LMCS 10, 1 (2014).
J.C. Reynolds. 2002. Separation logic: a logic for shared mutable data structures. In LICS’02. IEEE, 55–74.
M. Schwerhoff and A. Summers. 2015. Lightweight support for magic wands in an automatic verifier. In

ECOOP’15. Leibniz-Zentrum für Informatik, LIPICS, 999–1023.
M. Sighireanu and D. Cok. 2014. Report on SL-COMP 2014. Journal of Satisfiability, Boolean Modeling and

Computation (2014). To appear.
A.V. Sreejith. 2013. Regular Quantifiers in Logic. Ph.D. Dissertation. The Institute of Mathematical Sci-

ences, Chennai.
H. Straubing. 1994. Finite Automata, Formal Logic, and Circuit Complexity. Birkhäuser.
A. Thakur, J. Breck, and Th. Reps. 2014. Satisfiability modulo abstraction for separation logic with linked

lists. In SPIN’14. ACM, 58–67.
B. Trakhtenbrot. 1963. Impossibility of an algorithm for the decision problem in finite classes. AMS Trans-

lations, Series 2 23 (1963), 1–5.
V. Vafeiadis and M. Parkinson. 2007. A Marriage of Rely/Guarantee and Separation Logic. In CONCUR’07

(LNCS), Vol. 4703. Springer, 256–271.
M.Y. Vardi. 1988. A temporal fixpoint calculus. In 15th Annual ACM SIGACT-SIGPLAN Symposium on

Principles of Programming Languages, San Diego. ACM, 250–259.
Y. Venema. 1991. A Modal Logic for Chopping Intervals. Journal of Logic and Computation 1, 4 (1991),

453–476.
Ph. Weis. 2011. Expressiveness and Succinctness of First-Order Logic on Finite Words. Ph.D. Dissertation.

University of Massachussetts.
P. Wolper. 1983. Temporal logic can be more expressive. Information and Computation 56 (1983), 72–99.

52

	Introduction
	Preliminaries
	First-order separation logic with one selector (1SL)
	Weak second-order logic (WSOL)

	Expressing Properties in 1SL2(-)
	Warming up with basic properties
	Counting z-predecessors
	A matter of knives and forks
	Counting predecessors
	Lonely memory cells
	Expressing reachability

	Comparing Numbers of Predecessors
	Principles of the construction and principal difficulties with 1SL2(-)
	Preparing the heap
	Addition of a segmented heap
	Checking the resulting heap

	Cutlery revisited
	Using collections of forks for comparison

	Expressive Completeness for 1SL2(-)
	Left and right parentheses
	The role of parentheses
	Taking care of valuations
	A reduction from DSOL into 1SL2(-)

	Extensions
	Adding an unbounded number of program variables
	Extension with k record fields
	Allowing infinite domains

	Conclusion

