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Abstract

Two-level domain decomposition methods are preconditioned Krylov solvers. What sep-
arates one and two- level domain decomposition method is the presence of a coarse space in
the latter. The abstract Schwarz framework is a formalism that allows to define and study a
large variety of two-level methods. The objective of this article is to define, in the abstract
Schwarz framework, a family of coarse spaces called the GenEO coarse spaces (for General-
ized Eigenvalues in the Overlaps). This is a generalization of existing methods for particular
choices of domain decomposition methods. Bounds for the condition numbers of the precon-
ditioned operators are proved that are independent of the parameters in the problem (e.g.,
any coefficients in an underlying PDE or the number of subdomains). The coarse spaces are
computed by finding low or high frequency spaces of some well chosen generalized eigenvalue
problems in each subdomain.

Contents

1 Introduction 2

2 Abstract Schwarz Framework 4
2.1 One-level preconditioner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Two-level projected and preconditioned linear system . . . . . . . . . . . . . . 5
2.3 Spectral bounds in the abstract framework . . . . . . . . . . . . . . . . . . . . 5

3 Coarse spaces of the GenEO family 8
3.1 Definitions of YL and YH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.2 A coarse space for bounding λmax . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.3 A coarse space for bounding λmin . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.4 Some corollaries for the result on λmin . . . . . . . . . . . . . . . . . . . . . . . 12

4 Spectral bounds with the GenEO coarse spaces 14
4.1 Hybrid Schwarz with the GenEO coarse space . . . . . . . . . . . . . . . . . . . 15
4.2 Additive Schwarz with the GenEO coarse space . . . . . . . . . . . . . . . . . . 17

∗CNRS, CMAP, Ecole Polytechnique, Institut Polytechnique de Paris, 91128 Palaiseau Cedex, France
(nicole.spillane@cmap.polytechnique.fr)

1



Abstract theory of GenEO coarse spaces 2

5 Example: 2d linear elasticity with Additive Schwarz, Neumann-Neumann
and Inexact Schwarz 19
5.1 Two dimensional linear elasticity . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5.2 Domain Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

5.2.1 Fulfillment of Assumptions 1 and 5 . . . . . . . . . . . . . . . . . . . . 20
5.2.2 Additive Schwarz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.2.3 Neumann-Neumann . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.2.4 Inexact Schwarz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

5.3 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

6 Conclusion 28

1 Introduction

Throughout this article we consider the problem of finding x∗ ∈ Rn that is the solution of the
following linear system

Ax∗ = b, where A ∈ Rn×n is symmetric positive and definite (spd), (1)

for a given right hand side b ∈ Rn.
The applications to bare in mind are ones for which A is typically sparse and the number n

of unknowns is very large. Hence, parallel solvers, and more specifically domain decomposition
solvers, are studied. The purpose of the article is to provide unified definitions and theory
for two-level domain decomposition methods with coarse spaces of the GenEO family. This
is done in the abstract Schwarz framework by which it is referred to the formalism presented
in Chapters 2 and 3 of the book by Toselli and Widlund [47]. This framework provides both
a way of defining two-level domain decomposition preconditioners and to prove condition
number bounds that involve them.

Having chosen a partition of the global computational domain into subdomains, one-level
domain decomposition preconditioners are sums of inverses of some well-chosen local problems
in each of the subdomains. Two-level methods have an extra ingredient that is the coarse
space. Choosing the coarse space comes down to choosing an extra, low rank, problem that
is shared between all subdomains and solved at every iteration of the Krylov subspace solver.
A good choice of coarse space can have a huge, positive, effect on the convergence of the
method. It is with the introduction of coarse spaces that domain decomposition methods
became scalable. Indeed, the first coarse spaces already ensured that, for some problems, the
condition number of the two-level preconditioned operators did not depend on the number of
subdomains and only weakly on the number of elements in each subdomain (see e.g., [14, 30]
for FETI, [11, 30] for Neumann-Neumann, and [41] or [47][Lemma 3.24] for Additive Schwarz).
Robustness with respect to the coefficients in the underlying partial differential equation has
always been an objective. It has long been known that the solution for some, but not all,
coefficient distributions, and partitions into subdomains is to adequately choose the weights
that govern how global quantities are split between subdomains. The strengths and limitations
of this strategy are explored in the following articles [19, 37, 38, 39]. The literature on this
topic is particularly well described in [38].

Over the past decade a consensus seems to have occurred that it is worth enlarging more
significantly the coarse space if this enlargement allows to achieve robustness and scalability.
One popular way of doing this is to compute the coarse space by solving generalized eigenvalue
problems in the subdomains. These generalized eigenvalue problems are chosen to seek out the
vectors that make convergence slow. A first group of methods was tailored to the scalar elliptic
problem with a varying conductivity in the Additive Schwarz framework. Among these are the
two articles [15, 16] on one hand, and [34, 35, 9] on the other. The method in this last series
of articles is called the ‘DtN coarse space’ (for Dirichlet-to-Neumann). Indeed, the generalized
eigenvalue problems are between a DtN operator and a weighted L2-product on the subdomain
boundary. This offers the advantage of solving generalized eigenvalue problems only on the
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interfaces of the subdomains although they are denser than the original operators. The proof
relies on weighted Poincaré inequalities [40]. The same two groups of authors contributed, with
collaborators, to the set of articles [13] and [43, 44]. This time the methods apply to a much
wider range of PDEs that include the linear elasticity equations. The method in [43, 44] is
called GenEO for Generalized eigenvalues in the overlaps. Indeed, the generalized eigenvalue
problem can be reduced to one in the overlap between subdomains. A different version of
the GenEO coarse space was proposed for FETI and BDD in [45]. The problems there are
reduced to the interfaces between subdomains but the name GenEO was kept since these
interfaces in some sense constitute an overlap between subdomains. The family of GenEO
coarse spaces has grown since with e.g., the contributions [20] for Optimized Schwarz and [32]
in the context of boundary element methods. In this article the coarse spaces will be referred
to as coarse spaces of the GenEO family as their construction follows the same procedure as
the two original GenEO coarse spaces: [44, 45].

The idea of solving generalized eigenvalue problems to design coarse spaces with guaranteed
good convergence had in fact already been proposed, unknowingly to the authors previously
mentioned. Indeed, the pioneering work [31] proposes such a technique for FETI-DP and
BDDC. The authors make use of a ‘Local Indicator of the Condition Number Bound’ to fill
a gap in what would be an otherwise complete full proof of boundedness for the condition
number. The follow-up article [42] illustrates the efficiency of the method for BDDC in a mul-
tilevel framework and [28] (by different authors) makes the proof complete in two dimensions.
It must also be noted that, as early as 1999, the authors of [3] proposed a multigrid smoothed
aggregation algorithm with an enrichment technique that includes low frequency eigenmodes
of the operator in the aggregate (which is like a subdomain). Thanks to this procedure any
convergence rate chosen a priori can be achieved. Spectral enrichment is also at the heart of
the spectral algebraic multigrid method [6].

The field of coarse spaces based on generalized eigenproblems in subdomains has been so
active that it is not realistic to list all contributions here. The following list gives an overview
of some methods that have been developed as well as the ones already cited: [17, 22] for
Additive Schwarz, [48] for additive average Schwarz, [28, 26, 4, 25, 7, 36, 27, 49] for BDDC
and/or FETI-DP where the last two references in particular present impressive large scale
numerical results.

In this article, the objective is to define coarse spaces for preconditioners in the abstract
Schwarz framework. Compared to the framework in [47], quite a significant generalization is
made by allowing the local solvers (in each subdomain) to be non-singular. The coarse spaces
are defined in order for the user to have some control over the extreme eigenvalues of the
preconditioned operators, and hence over convergence. This is done by exploiting the results
from the abstract Schwarz framework that allow reduce the proofs of these bounds to proving
properties in the subdomains. Here, similar abstract results are proved with possibly singular
local problems and with weakened assumptions that make full use of the coarse space. The
amount of notation has been kept to the minimum. It is fair to mention that the article [1]
proposes a setting similar to the one here. One difference is that here all abstract results are
proved from scratch to fit exactly the framework that is considered.

The outline of the article is the following. In Section 2, the Abstract Schwarz framework is
presented. All assumptions are clearly stated and the abstract results for the spectral bounds
are proved. In Section 3, the GenEO coarse spaces are introduced and the spectral bounds
for the projected and preconditioned operator are proved. More precisely, there are two sets
of contributions to the coarse space. Each is obtained by solving partially a generalized eigen-
value problem in each subdomain and addresses the problem of bounding one end of the
spectrum of the projected and preconditioned operator. Section 4 extends the spectral results
with the GenEO coarse spaces to other two-level preconditioned operators (hybrid/balanced
and additive when possible). As an illustration, Section 5 considers a two-dimensional linear
elasticity problem and presents precisely the Additive Schwarz, Neumann-Neumann, and inex-
act Schwarz preconditioners along with their GenEO coarse spaces and the resulting spectral
bounds. Numerical results are presented for each method to illustrate the behaviour predicted
by the theorems.
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Notation The abbreviations spd and spsd are used to mean symmetric positive definite
and symmetric positive semi-definite.

Throughout the article, the following notation is used:

• I is the identity matrix of the conforming size that is always clear in the context;

• the `2, or Euclidian, inner product in Rm (m ∈ N) is denoted by 〈·, ·〉 and the induced
norm by ‖ · ‖;

• if M ∈ Rm (m ∈ N) is an spd matrix, let 〈·, ·〉M and ‖ ·‖M denote, respectively, the inner
product and norm induced by M. They are defined as usual by

〈x,My〉 = x>My, and ‖x‖M = 〈x,Mx〉1/2, for any x,y ∈ Rm;

• if N ∈ Rm (m ∈ N) is an spsd matrix, let | · |N denote the semi-norm induced by N. It
is defined as usual by

|x|N = 〈x,Ny〉1/2 for any x ∈ Rm;

• if {yj}j=1,...,J is a family of J ∈ N vectors in Rm (m ∈ N), the matrix whose j-th column
is yj for every j, is denoted by

[y1| . . . |ym] ∈ Rm×J ;

• if {aj}j=1,...,J is a family of J ∈ N scalars in R (m ∈ N), the diagonal matrix with
diagonal coefficients (in order) given by (a1, . . . , am) is denoted by

diag(a1, . . . , am);

• if M is a matrix, λ(M) is one of its eigenvalues.

2 Abstract Schwarz Framework

In this section the abstract Schwarz framework is introduced in matrix formulation. This
makes sense as the linear system (1) is given directly in matrix formulation.

2.1 One-level preconditioner

Let V = Rn denote the space in which the linear system (1) is to be solved, called the global
space. Let N ∈ N be the chosen number of subdomains in the first level preconditioner. Let
these subdomains be denoted by V s for s = 1, . . . , N , assume that they are linear subspaces of
V , that their dimensions are denoted ns, and that they form a cover of V . For each subdomain,
s = 1, . . . , N , also assume that an orthonormal basis for V s is available and stored in the lines
of a matrix Rs ∈ Rn

s×n. The requirements from this paragraph are summed up in the
following assumption which is made throughout the article.

Assumption 1. For any s = 1, . . . , N , it holds that

Rs> ∈ Rn×n
s

; RsRs> = I; V s = range
(
Rs>

)
; and V = Rn =

N∑
s=1

V s.

It is not required that the spaces V s be pairwise disjoint. In fact, for all domain decompo-
sition methods there is some overlap between the spaces V s. The other ingredient in defining
a one-level domain decomposition method in the abstract Schwarz framework is a family of
local solvers (one per subdomain). More precisely, the following is assumed

Assumption 2. For each s = 1, . . . , N , assume that

Ãs ∈ Rn
s×ns

is an spsd matrix, and that Ãs † is the pseudo-inverse of Ãs.
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The pseudo-inverse M† of any real matrix M is also called the Moore-Penrose inverse of M.
Its definition and characteristics can be found, e.g., in [2] and [18][section 5.5.2]. The pseudo-
inverse satisfies the following properties that we will refer back to in the proofs involving Ãs †:

M†MM† = M†; MM†M = M; and range(M†) = range(M>). (2)

By symmetry, the last property is range(Ãs †) = range(Ãs).
Having chosen the set of subdomains, interpolation operators, and local solvers, the one-

level abstract Schwarz preconditioner for linear system (1) is defined as:

H :=

N∑
s=1

Rs>Ãs †Rs. (3)

Although, the local solvers can be singular, it is assumed that the resulting preconditioner
H is non-singular:

Assumption 3. Assume that the one-level abstract Schwarz preconditioner H is spd.

2.2 Two-level projected and preconditioned linear system

To inject a second level into the preconditioners, a coarse space and a coarse solver must be
chosen. The coarse space is the central topic of this article. It will be denoted by V 0 and the
following assumption is made.

Assumption 4. A basis for the coarse space V 0 is stored in the lines of a matrix denoted R0:

V 0 = range(R0>); R0 ∈ Rn
0×n; n0 = dim(V 0); n0 < n.

The dimension of the coarse space has been denoted by n0 and it has been assumed that
n0 < n which means that the coarse space is not the entire space Rn. A solver must be chosen
for the coarse space. In this article we will focus on the case where the coarse solver is the

exact solver on the coarse space: (R0AR0>)−1.
There are several ways to incorporate the coarse space into the one-level preconditioner that

are presented in Section 4. In the current section and the next one, the focus will temporarily
be on the projected preconditioner. A crucial role is played by the A-orthogonal projection

Π that is characterized by ker(Π) = range(R0>), i.e.,

Π := I−R0>(R0AR0>)−1R0A, where I is the n× n identity matrix. (4)

Indeed, the so called coarse component (I−Π)x∗ of the solution can be computed explicitly
as:

(I−Π)x∗ = R0>(R0AR0>)−1R0(Ax∗) = R0>(R0AR0>)−1R0b.

To solve (1), it then remains to compute Πx∗ satisfying

AΠx∗ = b−A(I−Π)x∗ = Π>b or, equivalently HAΠx∗ = HΠ>b.

This is done by means of the projected (by Π) and preconditioned (by H) conjugate gradient
algorithm (PPCG) introduced and studied in [10].

2.3 Spectral bounds in the abstract framework

It is well known [10] that the convergence of PPCG depends on the effective condition number
of the projected and preconditioned operator HAΠ defined by

κ =
λmax

λmin
; where

{
λmax is the largest eigenvalue of HAΠ,
λmin is the smallest eigenvalue of HAΠ excluding zero.

The abstract Schwarz theory presented in [47][Chapters 2 and 3] provides theoretical results
that greatly simplify the problem of finding bounds for λmin and λmax. For the bound on the
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largest eigenvalue the results are [47][Assumption 2.3, Assumption 2.4, Lemma 2.6, Lemma
2.10 and Theorem 2.13]. For the bound on the smallest eigenvalue, the results for the projected
operator can be found in [47][Theorem 2.13 under Assumption 2.12 (that weakens Assumption
2.2 by considering only elements in range(Π))]. In this section, we state and prove very similar
results with the generalization that Ãs can be singular and with Π playing a more central
role in the assumptions. First, we define the coloring constant as in [47][Section 2.5.1].

Definition 1 (Coloring constant). Let N ∈ N be such that there exists a set {Cj ; 1 ≤ j ≤ N}
of pairwise disjoint subsets of J1, NK satisfying

J1, NK =
⋃

1≤j≤N

Cj and RsARt> = 0 if s, t ∈ Cj with s 6= t for some j.

One can always choose N = N but in general there are values of N that are significantly
smaller than the number N of subdomains. The number N is often referred to as the coloring
constant since in can be viewed as the number of colors needed to color each subdomain in such
a way that any two subdomains with the same color are orthogonal. Next, the abstract result
used to bound λmax is given and proved. Note that a difference with [47][Assumption 2.4] is
that the result must be proved for vectors in range(Ãs †RsΠ>), instead of range(Ãs †Rs). This
subtlety is what will allow to choose the coarse space, and already appeared in [45][Lemma 2.8,
Lemma 3.12] in the particular settings of BDD and FETI. Another difference, is the presence
of a projection operator Π̃

s
in the assumption of the lemma. This weakens the assumption as

long as the kernel of Ãs (once extended to the global space) is in the coarse space.

Lemma 1 (Upper bound for λmax). Assume that the kernels of the local solvers Ãs contribute
to the coarse space in the sense that

N∑
s=1

Rs >Ker(Ãs) ⊂ V 0,

and, for each s = 1, . . . , N , let Π̃
s

be the A-orthogonal projection characterized 1 by Ker(Π̃
s
) =

Rs>Ker(Ãs). Assume that there exists ω > 0 such that

‖Π̃s
Rs>xs‖2A ≤ ω|xs|2Ãs for every s = 1, . . . , N and every xs ∈ range(Ãs †RsΠ>).

Then the largest eigenvalue λmax of HAΠ satisfies

λmax ≤ Nω,

where N is as in Definition 1.

Proof. Let x ∈ range(Π>). By assumption it holds that

‖Π̃s
Rs>Ãs †Rsx‖A ≤ ω〈Ãs †Rsx, ÃsÃs †Rsx〉, for any s = 1, . . . , N.

With the notation Hs := Rs>Ãs †Rs, this is equivalent to

‖Π̃s
Hsx‖2A ≤ ω|x|2Hs . (5)

We next prove the intermediary result ‖ΠHx‖2A ≤ ωN ‖x‖2H as follows

‖ΠHx‖2A =

∥∥∥∥∥
N∑
s=1

ΠHsx

∥∥∥∥∥
2

A

=

∥∥∥∥∥∥
N∑
j=1

∑
s∈Cj

ΠHsx

∥∥∥∥∥∥
2

A

≤

 N∑
j=1

∥∥∥∥∥∥
∑
s∈Cj

ΠHsx

∥∥∥∥∥∥
A

2

≤ N
N∑
j=1

∥∥∥∥∥∥
∑
s∈Cj

ΠHsx

∥∥∥∥∥∥
2

A

≤ N
N∑
j=1

∥∥∥∥∥∥
∑
s∈Cj

Π̃
s
Hsx

∥∥∥∥∥∥
2

A

= N
N∑
j=1

∑
s∈Cj

∥∥∥Π̃s
Hsx

∥∥∥2

A

≤ N
N∑
j=1

∑
s∈Cj

ω |x|2Hs = N
N∑
s=1

ω |x|2Hs = ωN ‖x‖2H ,

1If the columns in Z̃s form a basis for Rs >Ker(Ãs) then Πs := Z̃s(Z̃s >AZ̃s)−1Z̃s >A
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where in the first line the sets Cj are as in Definition 1; in the second line the Cauchy-Schwarz
estimate in the `2-inner product, the definition of Π̃

s
, as well as the definition of the sets Cj

are applied; and (5) is injected into the third line.
Next, we prove the bound for λmax starting with the definition of an eigenvalue:

λmax is an eigenvalue of HAΠ ⇔ λmax is an eigenvalue of Π>AH

⇔ ∃y ∈ Rn; y 6= 0 such that Π>AHy = λmaxy. (6)

Let y be as in (6). It is obvious that y ∈ range(Π>). Taking the inner product of (6) by Hy,
and injecting the intermediary result that was just proved gives

λmax‖y‖2H = 〈Hy,Π>AHy〉 = ‖ΠHy‖2A ≤ ωN‖y‖2H. (7)

The common factor ‖y‖2H can be cancelled because ‖y‖2H = 0 would imply λmax = 0, and this is
not the case since the coarse space was assumed not to be the whole of Rn in Assumption 4.

The abstract Schwarz theory ([47][Theorem 2.13 under Assumption 2.12]) also provides a
result for bounding the spectrum of the two-level operator from below. The result proved in
the next Lemma is similar with the differences that are pointed out below the lemma.

Lemma 2 (Lower bound for λmin). Assume that the kernels of the local solvers contribute to
the coarse space in the sense that

N∑
s=1

Rs >Ker(Ãs) ⊂ V 0.

If, for any x ∈ range(Π), there exist z1, . . . , zn such that

x =

N∑
s=1

ΠRs >zs and

N∑
s=1

〈zs, Ãszs〉 ≤ C2
0 〈x,Ax〉 (stable splitting of x),

then, the smallest eigenvalue λmin of HAΠ, excluding zero, satisfies

λmin ≥ C−2
0 .

The differences with [47][Theorem 2.13] are the possible singularity of Ãs, the extra pres-
ence of Π in the definition of a splitting, and the extra assumption on the minimal coarse
space.

Proof. Let x ∈ range(Π) and {zs}s=1,...,N provide a stable splitting as defined in the lemma,
then

〈x,Ax〉 =

N∑
s=1

〈x,AΠRs >zs〉 =

N∑
s=1

〈Ãs †RsΠ>Ax, Ãszs〉.

Indeed ÃsÃs †RsΠ> = RsΠ> holds because of (2) and

range(RsΠ>) =
(

Ker(ΠRs>)
)⊥`2

⊂
(

Ker(Ãs)
)⊥`2

= range(Ãs),

recalling that Rs >Ker(Ãs) ⊂ V 0 = Ker(Π). Next, the generalized Cauchy-Schwarz inequal-
ity for the semi-norm induced by Ãs, the first property in (2), the Cauchy-Schwarz inequality
in the `2-inner product, and the stable splitting assumption are applied in order to get

〈x,Ax〉 ≤
N∑
s=1

〈Ãs †RsΠ>Ax, ÃsÃs †RsΠ>Ax〉1/2〈zs, Ãszs〉1/2

≤
N∑
s=1

〈Ãs †RsΠ>Ax,RsΠ>Ax〉1/2〈zs, Ãszs〉1/2

≤

[
N∑
s=1

〈Ãs †RsΠ>Ax,RsΠ>Ax〉

]1/2 [ N∑
s=1

〈zs, Ãszs〉

]1/2

≤ 〈x,AHAx〉1/2C0〈x,Ax〉1/2.
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Squaring and cancelling the common factor 〈x,Ax〉 ( 6= 0 if x 6= 0) yields

〈x,AHAx〉 ≥ C−2
0 〈x,Ax〉, for any x ∈ range(Π). (8)

Finally, the bound for λmin is proved starting with the definition of an eigenvalue:

λmin is an eigenvalue of HAΠ ⇔ ∃x ∈ Rn; x 6= 0 such that HAΠx = λminx.

Let x be such an eigenvector corresponding to eigenvalue λmin. By definition, λmin 6= 0 so
Πx 6= 0. Taking the inner product by AΠx gives

〈Πx,AHAΠx〉 = λmin〈AΠx,x〉 = λmin〈AΠx,Πx〉 ≤ λminC
2
0 〈Πx,AHAΠx〉,

where the inequality comes from (8). Cancelling the common factor 〈Πx,AHAΠx〉 6= 0,
leads to the conclusion that λminC

2
0 ≥ 1.

3 Coarse spaces of the GenEO family

In this section, the definitions of the coarse spaces are given and the bounds on the spectrum of
the resulting projected and preconditioned operator are proved. First, some general results on
generalized eigenvalue problems and simultaneous diagonalization are recalled. In Definition 2,
the notation YL and YH is introduced to designate bases of low or high frequency spaces (with
respect to a threshold and a matrix pencil).

3.1 Definitions of YL and YH

The results in this subsection are not new. They all follow quite straightforwardly from the
textbook result recalled in Theorem 1. The purpose of the subsection is to introduce notation
for defining the coarse spaces and outlining in the, still abstract, framework the properties
that will be useful in proving the theorems in the next two subsections.

Theorem 1. from [18][Corollary 8.7.2] Let m ∈ N∗, let MA and MB be two matrices in
Rm×m. If MA is spsd and MB is spd, then there exists a non-singular Y = [y1| . . . |ym] ∈
Rm×m, such that

Y>MAY = diag(a1, . . . , am), and Y>MBY = diag(b1, . . . , bm).

Moreover,

MAyj =
aj
bj

MByj for j = 1, . . . ,m.

Note that all entries bj in the diagonalization of MB are non-zero, because MB is spd,
so aj/bj is always well defined in R. A couple (λ = aj/bj ; yj) is called an eigenpair of the
generalized eigenvalue problem MAy = λMBy associated with the matrix pencil (MA,MB),
while aj/bj is called an eigenvalue and yj an eigenvector.

Corollary 1. Let m ∈ N∗, let MA and MB be two matrices in Rm×m. If MA is spsd and
MB is spd, then there exists a non-singular matrix Y ∈ Rm×m such that

Y>MAY = diag(λ1, . . . , λm), with λ1 ≤ · · · ≤ λm, and Y>MBY = I. (9)

Moreover, denoting by yj, the j-th column in Y, (λj ,yj) is an eigenpair for the matrix pencil
(MA,MB):

MAyj = λjMByj for j = 1, . . . ,m.

Proof. The assumptions in Theorem 1 hold so the results from the theorem also hold. To avoid
a clash in notation, denote by Y′′ the Y matrix from Theorem 1. Then Y in this corollary
is obtained by performing the two following steps. First, set Y′ = Y′′diag(b

−1/2
1 , . . . , b

−1/2
m ).

The obtained Y′ is non-singular and satisfies

Y′
>

MAY′ = diag(a1/b1, . . . , am/bm) and Y′
>

MBY′ = I.



Abstract theory of GenEO coarse spaces 9

Second, sort the columns in Y′ in non-decreasing order of ak/bk to obtain Y. For k = 1, . . . ,m
(in the new ordering), set λk = ak/bk, and let yk denote the k-th column of Y. Y is non-
singular and satisfies

Y>MAY = diag(λ1, . . . , λm), with λ1 ≤ · · · ≤ λm, and Y>MBY = I,

as well as MAyk = λkMByk for k = 1, . . . ,m.

Next, for any given threshold τ > 0 and suitable matrix pencil (MA,MB), notation for the
set of eigenvectors that correspond to eigenvalues below or above the threshold τ is introduced.
These are of the utmost importance as they appear in the definitions of the GenEO coarse
spaces.

Definition 2. Let m ∈ N∗, let MA ∈ Rm×m be an spsd matrix, let MB ∈ Rm×m be an spd
matrix and let Y and {λ1, . . . , λm} be as given by Corollary 1. For any scalar τ > 0, set

YL(τ,MA,MB) := [y1| . . . |ymL ], and YH(τ,MA,MB) := [ymL+1| . . . |ym],

where, mL = min {k ∈ J0,m− 1K;λk+1 ≥ τ} if λm ≥ τ and mL = m otherwise.
The matrix YL(τ,MA,MB) (respectively, YH(τ,MA,MB)) is assembled by concatenating

all MB-normalized eigenvectors y that correspond to an eigenvalue λ < τ (respectively, λ ≥ τ)
in the generalized eigenvalue problem MAx = λMBx.

There are choices of τ for which mL = 0 (respectively, mL = m). In those cases,
YH(τ,MA,MB) = Y (respectively, YL(τ,MA,MB) = Y) and YL(τ,MA,MB) (respec-
tively, YH(τ,MA,MB)) has 0 columns. By convention, we consider the range of a matrix
with 0 columns to be the empty set. To end this section, some properties of the quantities
that were just defined are proved.

Lemma 3. Let m ∈ N∗, let MA ∈ Rm×m be an spsd matrix, let MB ∈ Rm×m be an spd
matrix, and let τ > 0. With the notation from Definition 2, the two following properties hold

• spectral estimates:{
|y|2MA

< τ‖y‖2MB
for any y ∈ range(YL(τ,MA,MB)),

|y|2MA
≥ τ‖y‖2MB

for any y ∈ range(YH(τ,MA,MB)),
(10)

• conjugacy :{
(range(YL(τ,MA,MB)))⊥

`2
= range(MBYH(τ,MA,MB))

(range(YH(τ,MA,MB)))⊥
`2

= range(MBYL(τ,MA,MB)).
(11)

Proof. Throughout the proof MA, MB and τ are fixed, so the shortened notation YL =
YL(τ,MA,MB) and YH = YH(τ,MA,MB) is used. Also, as in Definition 2, let mL be the
number of columns in YL. Corollary 1 ensures that

Y>LMAYL = diag(λ1, . . . , λmL) and Y>LMBYL = I.

Any vector in range(YL) can be written in the form (YLα) for some α ∈ RmL , and it holds
that

|YLα|2MA
= 〈α,Y>LMAYLα〉 = 〈α,diag(λ1, . . . , λmL)α〉

≤ λmL〈α,α〉 = λmL〈α,Y
>
LMBYLα〉 = λmL‖YLα‖2MB

< τ‖YLα‖2MB
.

The proof of (10) for YH is essentially identical and is skipped here. It only remains to justify
(11). It is obvious from (9) that Y>LMBYH = 0 so

range(MBYH) ⊂ (range(YL))⊥
`2

and range(MBYL) ⊂ (range(YH))⊥
`2
.

The dimensional arguments

dim
(

(range(YL))⊥
`2
)

= rank(MBYH) and dim
(

(range(YH))⊥
`2
)

= rank(MBYL)

allow to conclude for each pair of subsets that the inclusion is in fact an equality.
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The space spanned by the columns in YL(τ,MA,MB) (respectively, YH(τ,MA,MB)) is
the low (respectively, high) frequency space for the matrix pencil (MA,MB) according to
threshold τ . This justifies the choice of subscripts L and H.

3.2 A coarse space for bounding λmax

Next, one of the main results in the article is given. First, a GenEO coarse space is defined
with the objective of bounding from above the eigenvalues of the projected and preconditioned
operator. Then, the spectral result is stated and proved.

Definition 3 (GenEO coarse space for λmax). Let τ] be chosen and define

V 0
] (τ]) :=

N∑
s=1

range(Rs>YL(τ], Ã
s,RsARs>)).

For any s ∈ J1, NK, the quantity YL(τ], Ã
s,RsARs>) is indeed well defined following

Definition 2, since Ãs is spsd and RsARs> is spd (as a result of Rs> having full rank and
A being spd). The matrix YL(τ], Ã

s,RsARs>) is formed by the normalized eigenvectors
corresponding to eigenvalues less than τ] with respect to the matrix pencil (Ãs,RsARs>).

Theorem 2 (Bound for λmax with the GenEO coarse space). Under Assumptions 1, 2, 3 and
4, let τ] > 0, and let V 0

] (τ]) be as proposed in Definition 3, then the largest eigenvalue λmax

of HAΠ satisfies:

V 0
] (τ]) ⊂ V 0 ⇒ λmax ≤

N
τ]
,

where N is the coloring constant introduced in Definition 1.

Proof. It is assumed that τ] > 0, so for each s = 1, . . . , N , Ker(Ãs) ⊂ YL(τ], Ã
s,RsARs>)

and
Rs>Ker(Ãs) ⊂ V 0.

Then, according to the result in Lemma 1, a sufficient condition for the result in the theorem
is that, for any s = 1, . . . , N ,

xs ∈ range(Ãs †RsΠ>)⇒ ‖Π̃s
Rs>xs‖2A ≤ τ−1

] N|x
s|2Ãs . (12)

Recall that Π̃
s

was defined in Lemma 1. Let s = 1, . . . , N be fixed and, for the length of the
proof let YL = YL(τ], Ã

s,RsARs>) and YH = YH(τ], Ã
s,RsARs>) in order to shorten

notations.
We first characterize the space range(Ãs †RsΠ>). The assumption is that V 0

] ⊂ V 0, so

V 0
] ⊂ ker(Π) =

(
range(Π>)

)⊥`2

which implies that

range(YL) ⊂
(

range(RsΠ>)
)⊥`2

where the `2-orthogonality is now in Rn
s

instead of Rn. Taking the orthogonal again and
applying (11) from Lemma 3 yields

range(RsΠ>) ⊂ (range(YL))⊥
`2

= (range(RsARs>YH)) = (range(ÃsYH)).

It then follows that

range(Ãs †RsΠ>) ⊂ range
(
Ãs †ÃsYH

)
⊂ range(YH) + Ker(Ãs),

by definition of Ãs †.
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Now, let xs ∈ range(Ãs †RsΠ>). It has just been proved that there exists a vector
α ∈ Rrank(YH ) and zs ∈ Ker(Ãs) such that

xs = YHα + zs,

so Π̃
s
Rs>xs = Π̃

s
Rs>YHα. Moreover, Π̃

s
being an A-orthogonal projection, its range is

the space

range(Π̃
s
) =

(
Ker(Π̃

s
)
)⊥A

=
(
Rs>Ker(Ãs)

)⊥A

⊃
(

range(Rs>YL)
)⊥A

.

The last inclusion follows from Ker(Ãs) ⊂ range(YL). Another application of (11) from

Lemma 3 guarantees that (range(YH))⊥
`2

= range(RsARs>YL) so

range(Rs>YH) ⊂
(

range(Rs>YL)
)⊥A

⊂ range(Π̃
s
).

Consequently, Π̃
s
Rs>xs = Rs>YHα and the desired estimate can finally be proved, using

the second spectral estimate from (10) in Lemma 1 to get the inequality,

‖Π̃s
Rs>xs‖2A = ‖Rs>YHα‖2A = ‖YHα‖2RsARs> ≤ τ−1

] |YHα|2Ãs = τ−1
] |x

s|2Ãs .

This ends the proof.

3.3 A coarse space for bounding λmin

Next, another one of the main results in the article is given. A GenEO coarse space is defined
with the objective of bounding from below the eigenvalues of the projected and preconditioned
operator. Then, the spectral result is stated and proved. But first, a crucial assumption that
both the definition and theorem rely on is stated.

Assumption 5. Assume that there exist a family of N vectors ys ∈ Rn
s

(for s = 1, . . . , N),
a family of N spsd matrices Ms ∈ Rn

s×ns

(for s = 1, . . . , N), and a real number N ′ > 0 such
that

N∑
s=1

Rs>ys = x, and

N∑
s=1

〈ys,Msys〉 ≤ N ′〈x,Ax〉, for every x ∈ Rn. (13)

More will be said about this assumption in the next subsection. It is not always the case
that matrices Ms that fit the requirement are known.

Definition 4 (GenEO coarse space for λmin). Let Assumption 5 hold and let {Ms}s=1,...,N ,
and N ′ be as in the Assumption. Let Ws ∈ Rn

s×rank(Ms) be a matrix whose columns form an
`2-orthonormal basis of range(Ms). For any given τ[ > 0, define

V 0
[ (τ[) :=

N∑
s=1

Rs >Ker(Ãs)+

N∑
s=1

Rs>Ker(Ms)+

N∑
s=1

range(Rs>WsYH(τ[,W
s>ÃsWs,Ws>MsWs)).

For any s ∈ J1, NK, the quantity YH(τ[,W
s>ÃsWs,Ws>MsWs) is indeed well de-

fined following Definition 2, since Ws>ÃsWs is spsd, and Ws>MsWs is spd. The matrix
YH(τ[,W

s>ÃsWs,Ws>MsWs) is formed by all the normalized eigenvectors corresponding
to eigenvalues greater than or equal to τ[ with respect to the matrix pencil (Ws>ÃsWs,Ws>MsWs).

Remark 1. The eigensolver SLEPc [23] provides an option for a deflation space. Setting it
to Ker(Ms) allows to solve the eigenvalue problem that enters into the definition of V 0

[ .

Theorem 3 (Bound for λmin with the GenEO coarse space). Under Assumptions 1, 2, 3, 4,
and 5, let V 0

[ (τ[) be as proposed in Definition 4, then the smallest eigenvalue λmin of HAΠ
satisfies:

V 0
[ (τ[) ⊂ V 0 ⇒ λmin >

1

τ[N ′
,

where N ′ is as in Assumption 5.
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Proof. The proof consists in checking that the assumptions in Lemma 2 are satisfied. The fact
that

∑N
s=1 Rs >Ker(Ãs) ⊂ V 0 is explicitly assumed so it remains to prove that there exists a

stable splitting of any x ∈ range(Π) with C2
0 = τ[N ′.

Let x ∈ range(Π), it will be proved that the following components form a stable splitting
of x:

zs = WsPsWs>ys; where ys comes from Assumption 5,

and Ps is the (Ws>MsWs)-orthogonal projection onto YL(τ[,W
s>ÃsWs,Ws>MsWs).

The first requirement is that
∑N
s=1 ΠRs>zs = x. Let s ∈ J1, NK and set Ys

L = YL(τ[,W
s>ÃsWs,Ws>MsWs)

for the length of the proof. With the assumption in the theorem it is sufficient to check that
ΠRs> (I−WsPsWs>)ys = 0. We proceed as follows

range(I−WsPsWs>) =
(

Ker(I−WsPs>Ws>)
)⊥`2

⊂ (range(MsWsYs
L))⊥

`2
,

since WsPs>(Ws>MsWs)Ys
L = Ws(Ws>MsWs)PsYs

L = MsWsYs
L which implies that

range(MsWsYs
L) ⊂ Ker(I−WsPs>Ws>). It follows that

range(I−WsPsWs>) = Ker(Ys
L
>Ws>Ms)

= Ker(Ms) + range(WsYH(τ[,W
s>ÃsWs,Ws>MsWs)))

⊂ Ker(ΠRs>),

where in the second step, one inclusion is easy to check with (11) from Lemma 3 and the
dimensions of both spaces are equal. With this, it becomes clear that

∑N
s=1 ΠRs>zs = x and

the stability of the splitting is proved next

N∑
s=1

〈zs, Ãszs〉 =

N∑
s=1

〈PsWs>ys, (Ws>ÃsWs)PsWs>ys〉

< τ[

N∑
s=1

〈PsWs>ys, (Ws>MsWs)PsWs>ys〉 (by (10) in Lemma 3)

≤ τ[
N∑
s=1

〈Ws>ys, (Ws>MsWs)Ws>ys〉 (Ps is a (Ws>MsWs)-orthogonal projection)

= τ[

N∑
s=1

〈ys,Msys〉 since Msys = MsWsWs>ys + Ms (I−WsWs>)ys︸ ︷︷ ︸
∈Ker(Ms)

≤ τ[N ′〈x,Ax〉 by Assumption 5.

This concludes the proof.

3.4 Some corollaries for the result on λmin

In Definition 4 of V 0
[ (τ[), if Ms is non-singular then Ws can be taken equal to the identity

matrix. Otherwise, the effect of Ws must be implemented when computing V 0
[ (τ[). A way of

avoiding this, if the matrices Ãs are non-singular, is to replace V 0
[ by the space V 0

[
′
(τ[) for

which the same bound on the spectrum can be obtained, as is proved in the theorem below.

Definition 5 (Alternate V 0
[ (τ]) if Ãs are non-singular). Let Assumption 5 hold and let

{Ms}s=1,...,N and N ′ be as in Assumption 5. Assume that the matrices Ãs for s = 1, . . . , N
are non-singular. For any given τ[ > 0, define

V 0
[
′
(τ[) :=

N∑
s=1

range(Rs>YL(τ−1
[ ,Ms, Ãs)).
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For any s ∈ J1, NK, the quantity YL(τ−1
[ ,Ms, Ãs) is indeed well defined following Defini-

tion 2, since Ms is spsd, and Ãs is spd. Notice that for any τ[ > 0,
∑N
s=1 Rs>Ker(Ms) ⊂

V 0
[
′
(τ[).

Theorem 4. Let Assumptions 1, 2, 3, 4, and 5 hold. Moreover, assume that the matrices Ãs

are non-singular. Let V 0
[
′
(τ[) be as proposed in Definition 4 then

V 0
[
′
(τ[) ⊂ V 0 ⇒ λmin >

1

τ[N ′
,

where N ′ is as in Assumption 5.

Proof. The proof consists in checking that the assumptions in Lemma 2 are satisfied. With
non-singular Ãs matrices, the fact that

∑N
s=1 Rs >Ker(Ãs) ⊂ V 0 is trivial so it remains to

prove that there exists a stable splitting of any x ∈ range(Π) with C2
0 = τ[N ′.

Let x ∈ range(Π), it will be proved that the following components form a stable splitting
of x:

zs = Ps′ys; where ys comes from Assumption 5,

and Ps′ is the Ãs-orthogonal projection onto YH(τ[
−1,Ms, Ãs). The first requirement is

that
∑N
s=1 ΠRs>zs = x. With the assumption in the theorem it is sufficient to check that

ΠRs> (I−Ps′)ys = 0. This is indeed the case since ΠRs>YL(τ[
−1,Ms, Ãs) = 0 and

range(I−Ps′) = Ker(Ps′) =
(
YH(τ[

−1,Ms, Ãs)
)⊥Ãs

= range(YL(τ[
−1,Ms, Ãs)),

by (11) in Lemma 3.
The stability of the splitting is proved next

N∑
s=1

〈zs, Ãszs〉 =

N∑
s=1

〈Ps′ys, ÃsPs′ys〉

≤ τ[
N∑
s=1

〈Ps′ys,MsPs′ys〉 (by (10) in Lemma 3)

≤ τ[
N∑
s=1

[
〈Ps′ys,MsPs′ys〉+ 〈(I−Ps′)ys,Ms(I−Ps′)ys〉

]
≤ τ[

N∑
s=1

〈ys,Msys〉 (by (11) in Lemma 3)

≤ τ[N ′〈x,Ax〉 by Assumption 5.

This concludes the proof.

Remark 2. The connection between the eigenvalue problems in Definitions 4 and 5 is discussed
in [8][Lemma 7.8]. In particular it is proved that the spaces are not in general equal. In the
original GenEO article [44], the matrices Ãs are spd (Additive Schwarz preconditioner) and
the matrices Ms are only spsd. The eigenvalue problem that is solved does not involve a
restriction to the range of Ms because it is of the form given in Definition 5 (with one of the
matrices in the generalized eigenvalue problem restricted to the overlap).

The usual way of defining the GenEO coarse spaces is slightly less general and involves a
family of matrices that form a partition of unity. Here, the partition of unity matrices are not
assumed to be diagonal.

Assumption 6. There exists a family of spd matrices Ds ∈ Rn
s×ns

for s = 1, . . . , N that
satisfy

I =

N∑
s=1

Rs >DsRs (partition of unity; I is the n× n identity matrix). (14)



Abstract theory of GenEO coarse spaces 14

If a family of partition of unity matrices is available, then the splitting of x can be chosen to
be x =

∑N
s=1 Rs>ys with ys = DsRsx. Assumption 5 can then be rewritten in the following

way.

Assumption 7. Assume that there exist a family of N matrices Ds ∈ Rn
s×ns

(for s =
1, . . . , N) that form a partition of unity (i.e., such that Assumption 6 holds), a family of N
spsd matrices Ms ∈ Rn

s×ns

(for s = 1, . . . , N), and a real number N ′ > 0 such that

N∑
s=1

〈DsRsx,MsDsRsx〉 ≤ N ′〈x,Ax〉, for every x ∈ Rn. (15)

Assumption 7 is less general than Assumption 5. So in all the theoretical results, it is
Assumption 5 that is made without loss of generality. It is important to note that the splitting
of the matrix A is still needed and this remains a very strong assumption. The existence of
Ds and a possible choice of these matrices is guaranteed in some cases by the lemma below.

Lemma 4. If
(∑N

t=1 Rt>Rt
)

is a diagonal matrix, one possible choice of partition of unity

matrices Ds that satisfy Assumption 6 is, for any s = 1, . . . , N , to set

Ds := Rs

(
N∑
t=1

Rt>Rt

)−1

Rs>.

Proof. We first justify the fact that the inversion in the definition of Ds is well defined by prov-
ing the definiteness of the spsd matrix that is inverted. Let x ∈ Rn, the following equivalences
hold

〈x,
N∑
s=1

Rs>Rsx〉 = 0 ⇔
N∑
s=1

〈Rsx,Rsx〉 = 0 ⇔ x ∈
⋂

s=1,...,N

(Ker(Rs)) .

Next, we use some basic linear algebra identities and (in the last step) the assumption that∑N
s=1 range(Rs>) = Rn to conclude that x = 0:

x ∈
⋂

s=1,...,N

(Ker(Rs)) =
⋂

s=1,...,N

(
range(Rs>)

)⊥`2

=

(
N∑
s=1

range(Rs>)

)⊥`2

= {0}.

It may now be written that

I =

N∑
s=1

(
N∑
t=1

Rt>Rt

)−1

Rs>Rs =

N∑
s=1

Rs>Rs

(
N∑
t=1

Rt>Rt

)−1

Rs>Rs.

The justification for the last equality is that Rs>Rs is a projection onto range
(
Rs>)

(because the columns in Rs> are orthonormal) and that range

((∑N
t=1 Rt>Rt

)−1

Rs>
)

=

range
(
Rs>) (because the inverted matrix is assumed to be diagonal).

4 Spectral bounds with the GenEO coarse spaces

For clarity of presentation, it is recalled that the one-level preconditioner and coarse projector
were defined in (3) and (4) as

H =

N∑
s=1

Rs>Ãs †Rs, and Π = I−R0>(R0AR0>)−1R0A.

So far, the focus has been on the projected and preconditioned operator HAΠ. In this
section, two other two-level preconditioners are studied: the Hybrid preconditioner and the
Additive preconditioner.
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Remark 3. All the results that guarantee a lower bound for a preconditioned operator rely on
the Assumption that V 0

[ (τ[) ⊂ V 0 for some τ[ > 0 where V 0
[ (τ[) is from Definition 4. In the

case where the matrices Ãs are non-singular for every s = 1, . . . , N , all results remain true
with V 0

[
′
(τ[) from Definition 5 instead of V 0

[ (τ[) . To prove it, it suffices to apply Theorem 4
instead of Theorem 3 in the proofs. This will not be recalled every time a result is established.

4.1 Hybrid Schwarz with the GenEO coarse space

The Hybrid Schwarz preconditioner is defined next. It is a two-level preconditioner where the
coarse space is balanced (see [46, 29, 47]).

Definition 6 (Hybrid Schwarz Preconditioner). Under Assumptions 1, 2, and 4, the hybrid
Schwarz preconditioner is defined as

Hhyb := ΠHΠ> + R0>(R0AR0>)−1R0,

where H is the one-level preconditioner and Π is the A-orthogonal projection satisfying Ker(Π) =

V 0 = range(R0>) (the coarse space).

Theorem 5. Let Assumptions 1, 2, 3, 4, and 5 hold. Let λtarget
min > 0 and λtarget

max > 0 be the
desired bounds for the two-level preconditioned operator. Let the coarse space V 0 be defined as

V 0 = V 0
]

(
N

λtarget
max

)
+ V 0

[

(
1

N ′λtarget
min

)
,

where V 0
] and V 0

[ are as introduced in Definitions 3 and 4, N is the coloring constant from
Definition 1, and N ′ comes from Assumption 5.

Then, the eigenvalues of the projected (also called deflated) and preconditioned operator
satisfy

λ(HAΠ) ∈ {0}∪[λtarget
min , λtarget

max ], and V 0 is exactly the eigenspace corresponding to λ(HAΠ) = 0.

Moreover, the eigenvalues of the operator preconditioned by Hhyb from Definition 6 satisfy

λ(HhybA) ∈ [min(1, λtarget
min ),max(1, λtarget

max )].

Proof. The result λ(HAΠ) ∈ {0}∪[λtarget
min , λtarget

max ] for the projected preconditioner is obtained
by applying theorems 2 and 3 with τ] = N

λ
target
max

and τ[ = 1

N ′λtarget
min

. This ensures that all non-

zero eigenvalues of HAΠ are in the interval [λtarget
min , λtarget

max ]. Moreover, since H and A are
non-singular, HAΠx = 0 if and only if x ∈ Ker(Π) = V 0 and so the eigenspace corresponding
to eigenvalue 0 is V 0.

The connection between the spectra of the projected and hybrid/balanced preconditioned
operators is well known (see e.g., [46, 29]) and easy to verify. Let x ∈ V , it holds that

〈x,AHhybAx〉 = 〈x,AΠHΠ>Ax〉+ 〈x,AR0>(R0AR0>)−1R0Ax〉
= 〈Πx,AHAΠx〉+ 〈(I−Π)x,A(I−Π)x〉,

so, with the result for the projected preconditioned operator:{
〈x,AHhybA〉 ≥ λtarget

min 〈Πx,AΠx〉+ 〈(I−Π)x,A(I−Π)x〉
and 〈x,AHhybA〉 ≤ λtarget

max 〈Πx,AΠx〉+ 〈(I−Π)x,A(I−Π)x〉

and the result follows by recalling that Π is an A-orthogonal projection.

Corollary 2. Let Assumptions 1, 2, 3, 4, and 5 hold. Let τ] > 0 and τ[ > 0 and let the
coarse space V 0 be defined as

V 0 = V 0
] (τ]) + V 0

[ (τ[) ,

where V 0
] (τ]) and V 0

[ (τ[) are as introduced in Definitions 3 and 4. Then, the eigenvalues of
the two-level preconditioned operators satisfy
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• λ(HAΠ) ∈ {0}∪[ 1
N ′τ[

, N
τ]

], and V 0 is exactly the eigenspace corresponding to λ(HAΠ) = 0,

• λ(HhybA) ∈ [min(1, 1
N ′τ[

),max(1, N
τ]

)],

where again N is the coloring constant from Definition 1 and N ′ comes from Assumption 5.

Proof. Apply the previous theorem with the change of variables : τ] = N
λ
target
max

and τ[ =
1

N ′λtarget
min

In the next corollary, it is assumed that the local solvers satisfy a stability (with constant
C#) estimate with respect to the exact local solver RsARs>. Then a certain upper bound for
the eigenvalues (that involves C#) holds as long as the kernels of the local operators contribute
to the coarse space. In particular, it is not necessary to solve any eigenvalue problem to
obtain this bound. The reason it is natural and important to consider this case is that a very
frequently used preconditioner is the Additive Schwarz preconditioner where Ãs = RsARs>

and C# = 1 (see Section 5.2.2).

Corollary 3. Let Assumptions 1, 2, 3, 4, and 5 hold. Let C] > 0 and assume that, for every
s = 1, . . . , N and every xs ∈ Rn

s

,

‖Π̃s
Rs>xs‖2A ≤ C−1

] |x
s|2Ãs ,

where, again, Π̃
s

is the A-orthogonal projection characterized by Ker(Π̃
s
) = Rs>Ker(Ãs).

Then,
YL(C], Ã

s,RsARs>) = Ker(Ãs).

Consequently, if
∑N
s=1 Rs>Ker(Ãs) ⊂ V 0, then the eigenvalues of the projected and hybrid

preconditioned operators can be bounded from above as follows:

• λ(HAΠ) ≤ N
C]
,

• λ(HhybA) ≤ max
(

1, N
C]

)
.

Moreover, for any τ[ > 0, if V 0
[ (τ[) ⊂ V 0, then the eigenvalues of the projected and hybrid

preconditioned operators can be bounded as follows:

• λ(HAΠ) ∈ {0}∪[ 1
N ′τ[

, N
C]

], and V 0 is exactly the eigenspace corresponding to λ(HAΠ) = 0,

• λ(HhybA) ∈ [min(1, 1
N ′τ[

),max(1, N
C]

)],

where again N is the coloring constant from Definition 1 and N ′ comes from Assumption 5.

Proof. Let s ∈ J1, NK. It must first be proved that YL(C], Ã
s,RsARs>) = Ker(Ãs). Since

C] > 0, and the vectors in Ker(Ãs) form the eigenspace associated with eigenvalue 0 with
respect to the matrix pencil (Ãs,RsARs>), it is clear that Ker(Ãs) ⊂ YL(C], Ã

s,RsARs>).
It remains to prove that all non-zero eigenvalues are greater than C]. Let (λs,ps) ∈ R∗×Rn

s

be an eigenpair for the matrix pencil (Ãs,RsARs>):

Ãsps = λsRsARs>ps and ps 6= 0⇒ |ps|Ãs = λs‖ps‖RsARs> and ‖ps‖RsARs> 6= 0.

The projection Π̃
s

is such that Π̃
s
Rs>ps = Rs>ps. Indeed,

range(Π̃
s
) =

(
Ker(Π̃

s
)
)⊥A

=
(
Rs>Ker(Ãs)

)⊥A

so Rs>ps ∈ range(Π̃
s
)⇔ ps ∈

(
Ker(Ãs)

)RsARs>

.

The fact that ps ∈
(

Ker(Ãs)
)Rs>ARs

is obvious if Ker(Ãs) = {0} and follows from (11) in

Lemma 3 otherwise. The estimate in the corollary can now be written as

‖ps‖RsARs> = ‖Rs>ps‖2A = ‖Π̃s
Rs>ps‖2A ≤ C−1

] |p
s|2Ãs = C−1

] λs‖ps‖RsARs> .

Cancelling the common factor ‖ps‖RsARs> 6= 0 allows to conclude that C−1
] λ ≥ 1. It is

then obvious that
∑N
s=1 Rs>Ker(Ãs) = V 0

] (C]) and the spectral bounds result from applying
Theorem 2 as well as Corollary 2 for the projected and balanced preconditioners V 0

[ (τ[) ⊂ V 0

(recalling that
∑N
s=1 Rs>Ker(Ãs) ⊂ V 0

[ (τ[) by definition).
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4.2 Additive Schwarz with the GenEO coarse space

Another way of incorporating the coarse space into the preconditioner is to do so additively.

Definition 7 (Two-level Additive Schwarz preconditioner). Under Assumptions 1, 2, and 4,
the two-level Additive Schwarz preconditioner is defined as

Had := H + R0>(R0AR0>)−1R0,

where it is recalled that H is the one-level preconditioner and the columns in R0> form a basis
of the coarse space V 0.

The fully additive preconditioner is appealing because the coarse solve (R0AR0>)−1 can
be performed in parallel to the solves Ãs † in the subdomains. The condition number of the
fully additive preconditioner is however greater than the effective condition number of the
projected preconditioned operator. This is proved for instance in [47][Lemma 2.15] in the case
where the matrices Ãs are non-singular. The next theorems give rather general results for
the additive preconditioner with one important restriction compared to previous results: the
matrices Ãs are non-singular.

Theorem 6. Let Assumptions 1, 2, 4, and 5 hold. Moreover, assume that the matrices Ãs

are non-singular. Let τ] > 0 and τ[ > 0 and let the coarse space V 0 again be defined as

V 0 = V 0
] (τ]) + V 0

[ (τ[) ,

where V 0
] and V 0

[ are as introduced in Definitions 3 and 4.
Then, the eigenvalues of the preconditioned operator with the two-level additive precondi-

tioner Had from Definition 7 satisfy

λ(HadA) ≥
[
max

(
2, 1 + 2

N
τ]

)
max(1,N ′τ[)

]−1

,

where again N is the coloring constant from Definition 1 and N ′ comes from Assumption 5.

Proof. First note that under Assumption 1 with spd local solvers Ãs, H is necessarily non-
singular so Assumption 3 has been skipped. The proof comes down to applying Lemma 2
(stable splitting). Indeed, the two-level Additive preconditioner fits the abstract framework
by considering that there are N + 1 subspaces (V s = range(Rs>) for s = 0, . . . , N) that play
the same role. In other words, the coarse space V 0 is viewed just like any of the other subspaces

V s with the local solver Ã0 = R0AR0> and the interpolation operator R0>. Assumptions 1
and 2 hold in this framework. Assumption 4 is trivial as there is no coarse space that is treated
by projection so Π = I. Let x ∈ Rn, in order for the result in the theorem to be true it must
be proved that there exist zs ∈ Rn

s

for any s = 0, . . . , N such that

x =

N∑
s=0

Rs>zs and

N∑
s=1

‖zs‖2Ãs + ‖z0‖2Ã0 ≤ max

(
2, 1 + 2

N
τ]

)
max(1,N ′τ[)‖x‖2A. (16)

In order to define the components zs, it is first noticed that the assumptions in Corollary 2
hold, so spectral bounds for the Hybrid preconditioner are known. In particular, all eigenvalues
of HhybA are greater than min(1, 1

N ′τ[
), which is equivalent to:

〈x,H−1
hybx〉 ≤ max(1,N ′τ[)〈x,Ax〉; for all x ∈ Rn.

Inspired by [47][Lemma 2.15], the quantity 〈x,H−1
hybx〉 can be written to make a stable splitting
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of x appear:

〈x,H−1
hybx〉 = 〈H−1

hybx,HhybH
−1
hybx〉

=

N∑
s=1

〈H−1
hybx,ΠRs>Ãs −1RsΠ>H−1

hybx〉+ 〈H−1
hybx,R

0>A0−1
R0H−1

hybx〉

=

N∑
s=1

〈RsΠ>H−1
hybx, Ã

s −1ÃsÃs −1RsΠ>H−1
hybx〉+ 〈H−1

hybx,R
0>A0−1

A0A0−1
R0H−1

hybx〉

=

N∑
s=1

‖zs‖2Ãs + ‖z0′‖2Ã0 ,

with zs := Ãs −1RsΠ>H−1
hybx for s = 1, . . . , N , and z0′ := A0−1

R0H−1
hybx. The zs, for

s = 1, . . . , N , together with z0′ provide a stable splitting of x with respect to the abstract
setting for Hhyb in the sense that

x =

N∑
s=1

ΠRs>zs + R0>z0′, and
N∑
s=1

‖zs‖2Ãs + ‖z0′‖2Ã0 ≤ max(1,N ′τ[)〈x,Ax〉. (17)

Next, the splitting of x is rewritten to suit the fully additive setting, i.e., so that it satisfies
(16):

x =

N∑
s=1

Rs>zs−(I−Π)

N∑
s=1

Rs>zs+R0>z0′ =

N∑
s=1

Rs>zs+R0>
[
−(R0AR0>)−1R0A

N∑
s=1

Rs>zs + z0′
]

︸ ︷︷ ︸
:=z0 ∈V 0

.

It remains to prove that

N∑
s=1

‖zs‖2Ãs + ‖z0‖2Ã0 ≤ max

(
2, 1 + 2

N
τ]

)
max(1,N ′τ[)〈x,Ax〉.

To this end we calculate

‖z0‖2A ≤ 2‖z0′‖2Ã0 + 2‖R0>(−R0AR0>)−1R0A

N∑
s=1

Rs>zs‖2Ã0

= 2‖z0′‖2Ã0 + 2〈
N∑
s=1

Rs>zs,AR0>(R0AR0>)−1R0A

N∑
s=1

Rs>zs〉

= 2‖z0′‖2Ã0 + 2‖(I−Π)

N∑
s=1

Rs>zs‖2A

= 2‖z0′‖2Ã0 + 2‖(I−Π)HΠ>H−1
hybx‖

2
A

≤ 2‖z0′‖2Ã0 + 2‖HΠ>H−1
hybx‖

2
A

≤ 2‖z0′‖2Ã0 + 2N
N∑
s=1

‖Rs>Ãs −1RsΠ>H−1
hybx‖

2
A (Cauchy-Schwarz with Definition 1 of N )

≤ 2‖z0′‖2Ã0 + 2N
N∑
s=1

‖Ãs −1RsΠ>H−1
hybx‖

2
RsARs>

≤ 2‖z0′‖2Ã0 + 2
N
τ]

N∑
s=1

‖Ãs −1RsΠ>H−1
hybx‖

2
Ãs((12) in the proof of Theorem 2 with Π̃

s
= I)

= 2‖z0′‖2Ã0 + 2
N
τ]

N∑
s=1

‖zs‖2Ãs
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Finally, by putting this together with (17), it follows that

N∑
s=1

‖zs‖2Ãs + ‖z0‖2Ã0 ≤
N∑
s=1

‖zs‖2Ãs + 2‖z0′‖2Ã0 + 2
N
τ]

N∑
s=1

‖zs‖2Ãs

=

(
1 + 2

N
τ]

) N∑
s=1

‖zs‖2Ãs + 2‖z0′‖2iÃ0

≤ max

(
2, 1 + 2

N
τ]

)
max(1,N ′τ[)〈x,Ax〉,

and this ends the proof.

The following corollary it the counterpart of Corollary 3 for the two-level Additive precon-
ditioner.

Corollary 4. Let Assumptions 1, 2, 4, and 5 hold. Moreover, assume that the matrices Ãs

are non-singular. Let C] > 0 and assume that, for every s = 1, . . . , N and every xs ∈ Rn
s

,

‖Rs>xs‖2A ≤ C−1
] ‖x

s‖2Ãs .

Then, with no condition on the coarse space, the eigenvalues of the additively preconditioned
operator are bounded from above as

λ(HadA) ≤ N
C]

+ 1.

Moreover, if V 0
[ (τ[) ⊂ V 0 for some τ[ > 0, the eigenvalues are bounded as follows:

λ(HadA) ∈

[(
max

(
2, 1 + 2

N
C]

)
max(1,N ′τ[)

)−1

,
N
C]

+ 1

]
,

where, as usual, N is the coloring constant from Definition 1 and N ′ comes from Assumption 5.

Proof. The Assumptions are the same as the assumptions of Corollary 3 with the added
restriction that the Ãs are non-singular (so, in particular, Π̃

s
= I). The assumption that∑N

s=1 Rs>Ker(Ãs) ⊂ V 0, is trivial even for a coarse space reduced to {0}, or equivalently
a coarse projector Π equal to identity. Consequently, by Corollary 3, the eigenvalues of the
preconditioned operator with the one-level preconditioner H satisfy

λ(HA) ≤ N
C]
.

With λmax(M) denoting the largest eigenvalue of any matrix M, it then follows that

λ(HadA) ≤ λmax(HadA) ≤ λmax(HA) + λmax(R0>(R0AR0>)
−1

R0A) ≤ N
C]

+ 1,

where no assumption on the coarse space was made.
The lower bound for the spectrum comes from Theorem 6 with τ] = C] . Indeed, in

Corollary 3, it is shown that that V 0
] (C]) = {0} so the assumption on V 0 in Theorem 6

holds.

5 Example: 2d linear elasticity with Additive Schwarz,
Neumann-Neumann and Inexact Schwarz

In this Section, the abstract framework is made concrete. The linear systems that are consid-
ered result from discretizing a two-dimensional linear elasticity problem with P1 finite elements
(see Subsection 5.1). In practice it is very easy to replace the variational formulation with the
variational formulation of another elliptic PDE on another geometry, if that is what the reader
wishes to do. The two-level Additive Schwarz, Neumann-Neumann, and Inexact Schwarz pre-
conditioners (with their GenEO coarse spaces) are presented in Section 5.2 and applied to
solving the linear system in Section 5.3.
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5.1 Two dimensional linear elasticity

Let Ω = [0, 2] × [0, 1] ⊂ R2 be the computational domain. Let ∂ΩD be the left hand side
boundary of Ω and let V = {v ∈ H1(Ω)2; v = 0 on ∂ΩD}. The linear elasticity equations
posed in Ω with mixed boundary conditions are considered. A solution u ∈ V is sought such
that ∫

Ω

2µε(u) : ε(v) dx+

∫
Ω

Ldiv(u) div(v) dx =

∫
Ω

g · v dx, for all v ∈ V, (18)

where, for i, j = 1, 2, εij(u) = 1
2

(
∂ui
∂xj

+
∂uj

∂xi

)
, δij is the Kronecker symbol, g = (0, 1)> and the

Lamé coefficients are functions of Young’s modulus E and Poisson’s ratio ν : µ = E
2(1+ν)

, L =
Eν

(1+ν)(1−2ν)
. It is well known (see, e.g., [39]) that the solution of (18) in a heterogeneous

medium is challenging due to ill-conditioning. In the following experiments, after setting
ν = 0.4 in all of the domain for all test cases, a heterogeneous distribution is chosen for E
(that is specified later on).

The computational domain is discretized by a uniform mesh with element size h = 1/42
and the boundary value problem is solved numerically with standard piecewise linear (P1)
Lagrange finite elements. Let Vh be the space of P1 finite elements that satisfy the Dirichlet
boundary condition. Let {φk}nk=1 be a basis of Vh. The linear system that is to be solved is

Find x∗ ∈ Rn such that Ax∗ = b,

with Aij =
∫

Ω

[
2µε(φi) : ε(φj) + Ldiv(φi) div(φj)

]
dx and bi =

∫
Ω

g · φi dx. The dimension
of the global problem is n = 43 × 84 × 2 = 7224 where it has been taken into account that
there are two degrees of freedom at each gridpoint (the x and y displacements) and that there
are no degrees of freedom where a Dirichlet boundary condition has been prescribed.

5.2 Domain Decomposition

This section introduces the preconditioners that are to be applied to the linear system as well
as their theoretical properties. First, the domain decomposition framework is introduced.

5.2.1 Fulfillment of Assumptions 1 and 5

The computational domain Ω is partitioned into N non-overlapping subdomains (N is given)
that are denoted Ωs for s ∈ J1, NK. The subdomains are assumed to be conforming with the
mesh of Ω. Only the degrees of freedom that are on the interfaces between subdomains are
duplicated. The sets of degrees of freedom that are in each Ωs (for s ∈ J1, NK) are denoted V s,
and their cardinalities ns. The restriction matrices Rs ∈ Rn

s×n are boolean matrices with
exactly one non-zero entry per line. They satisfy Assumption 1.

In order to compute the GenEO coarse spaces it is necessary to assemble matrices that
correspond to the discretization of the problem (18) restricted to each subdomain s ∈ J1, NK:

As
|Ωs := RsA|ΩsRs>; with (A|Ωs)ij =

∫
Ωs

[
2µε(φi) : ε(φj) + Ldiv(φi) div(φj) dx

]
for all i, j ∈ J1, nK.

These are frequently referred to as the local Neumann matrices as they arise from assem-
bling the original problem over the subdomain Ωs with natural boundary conditions. They
can’t be computed from the global matrix A. Since we consider non-overlapping subdomains
they satisfy the very useful property that

A =

N∑
s=1

Rs>As
|ΩsRs.

It is chosen to fulfill Assumption 5 through the use of a partition of unity as proposed
in Assumptions 6 and 7. Two partitions of unity are introduced next. They are formed by
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families of diagonal matrices, defined for every s ∈ J1, NK by

Ds
µ := Rs

(
N∑
t=1

Rt>Rt

)−1

Rs> (multiplicity or µ-scaling – as in Lemma 4),

(Ds
k)ii := (As

|Ωs)ii/(R
sARs>)ii, ∀i ∈ J1, nsK (k-scaling).

Assumption 5 is then fulfilled for N ′ = 1 with

Ms = Ms
µ := (Ds

µ)−1As
|Ωs(Ds

µ)−1; and ys = ysµ := Ds
µx, (19)

or
Ms = Ms

k := (Ds
k)−1As

|Ωs(Ds
k)−1; and ys = ysk := Ds

kx. (20)

For clarity of presentation, it is recalled that the one-level abstract preconditioner, coarse
projector, two-level hybrid preconditioner, and two-level additive preconditioner were defined
in (3) and (4) as well as Definitions 6 and 7 as

H =

N∑
s=1

Rs>Ãs †Rs, Π = I−R0>(R0AR0>)−1R0A,

Hhyb = ΠHΠ> + R0>(R0AR0>)−1R0, Had = H + R0>(R0AR0>)−1R0.

For these definitions to be complete it only remains to chose Ãs for s ∈ J1, NK and R0. Three
possibilities are described below with their properties: Additive Schwarz, Neumann-Neumann,
and inexact Schwarz with incomplete Cholesky.

5.2.2 Additive Schwarz

The Additive Schwarz Preconditioners are considered first. They are defined by the choice
Ãs = RsARs> (for every s ∈ J1, NK). This gives the one-level preconditioner

HAS :=

N∑
s=1

Rs>(RsARs>)−1Rs. (21)

The local matrices Ãs in Additive Schwarz are spd as a result of A being spd and the Rs>

being full rank. Next, given any threshold τ[ > 0, the coarse space is the one from Definition 4
with two hidden variants depending on the choice of partition of unity (Ms is either Ms

µ from
(19) or Ms

k from (20)):

V 0
AS(τ[) :=

N∑
s=1

Rs>Ker(Ms) +

N∑
s=1

range(Rs>WsYH(τ[,W
s>RsARs>Ws,Ws>MsWs)),

where Ws contains an `2-orthonormal basis of range(Ms).
It is finally assumed that an interpolation matrix R0

AS(τ[) is defined such that it satisfies
Assumption 4 for V 0 = V 0

AS(τ[). Then the coarse projector ΠAS(τ[) as well as the precondi-
tioners HAS

hyb(τ[) and HAS
ad (τ[) are defined naturally as

ΠAS(τ[) := I−R0
AS(τ[)

>(R0
AS(τ[)AR0

AS(τ[)
>)−1R0

AS(τ[)A,

HAS
hyb(τ[) := ΠAS(τ[)H

ASΠAS(τ[)
>

+ R0
AS(τ[)

>
(R0

AS(τ[)AR0
AS(τ[)

>
)−1R0

AS(τ[),

HAS
ad (τ[) := HAS + R0

AS(τ[)
>

(R0
AS(τ[)AR0

AS(τ[)
>

)−1R0
AS(τ[).

They are indexed by τ[ as we will vary the value of τ[ throughout the numerical tests. It has
been chosen not to make explicit the choice of the partition of unity in the notation as it is
already quite heavy. The bounds for the spectrum of the Additive Schwarz preconditioned
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operators are summed up below by applying Corollaries 3 and 4 (with C] = 1, N ′ = 1, N ≥ 1).
For any threshold τ[ > 1, it holds that :

λ(HASA) ≤ N (22)

1/τ[ ≤ λ(HASAΠAS(τ[)) ≤ N if λ(HASAΠAS(τ[)) 6= 0 (23)

1/τ[ ≤ λ(HAS
hyb(τ[)A) ≤ N (24)

1/((1 + 2N )τ[)) ≤ λ(HAS
ad (τ[)A) ≤ N + 1. (25)

Remark 4 (Computation of V 0
AS(τ])). The coarse space V 0

AS(τ[) is formed by contributions
coming from each subdomain s ∈ J1, NK. They are computed as follows. First, a Cholesky fac-
torization with pivoting of the matrix Ms is performed. This gives both a factorization of Ms

and an orthonormal basis Zs for the kernel of Ms. Then, WsYH(τ[,W
s>RsARs>Ws,Ws>MsWs)

is computed by solving iteratively the generalized eigenvalue problem

Find (λ,xs) ∈ [τ[,+∞[× range(Ms) such that (I−ZsZs>)RsARs>(I−ZsZs>)xs = λMsxs.

The factorization of Ms is used at every iteration of the eigensolver since (Ms)† must be
applied to compute the largest eigenvalues and (I − ZsZs>) is the orthogonal projection onto
range(Ms).

Remark 5 (Choice of τ[). The lower bounds for the spectrum of the preconditioned operator
give an idea of how to choose τ[ to achieve a chosen condition number. It is important to
keep in mind that, as τ[ decreases, the number of vectors in the coarse space becomes larger.
In particular, it is not advised to choose τ[ < 1 as this would lead to a very large coarse
space. Indeed, by definition the matrices RsARs> and Ms differ only at lines and columns
corresponding to the degrees of freedom of Ωs that are shared with other subdomains. This set
will be denoted Γs and there exists a matrix Bs such that

RsARs> + Bs = Ms; with rank(Bs) ≤ #Γs.

The generalized eigenvalue problem that defines the coarse space is then

Ws>MsWsxs + Ws>BsWsxs = λWs>MsWsxs,

and it is clear that all vectors xs ∈ Ker(Ws>BsWs) form the eigenspace corresponding to
λ = 1. Its dimension is in the interval [ns −#Γs − 3, ns −#Γs] where the number 3 comes
from the fact that dim(Ker(Ms)) ≤ 3 for linear elasticity in R2. If τ[ ≤ 1 this very large
eigenspace would be in the coarse space and that is not desirable.

Remark 6. The coarse vectors are discrete harmonic inside the subdomains. This remark
follows from the previous one: all eigenvectors that correspond to an eigenvalue other than 1
are orthogonal to Ms Ker(Ws>BsWs) and to RsARs>Ker(Ws>BsWs).

Remark 7. Instead of choosing the coarse space V 0
[ (τ[) from Definition 4, it is possible to

choose the coarse space V 0
[
′
(τ[) from Definition 5 leading to

V 0
AS
′
(τ[) :=

N∑
s=1

range(Rs>YL(τ−1
[ ,Ms,RsARs>)),

All the results remain true with the simplification that the kernel of Ms does not need any
special treatment in the presentation of the method. For sake of completeness the slightly
harder to write results with V 0

[ (τ[) are the ones that are completely presented in the article.
Note that the cost of handling the kernel of Ms in the code is roughly the same with both
choices of the coarse space since applications of Ms† must in any case be computed.
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5.2.3 Neumann-Neumann

The Neumann-Neumann Preconditioners are considered next. They are defined by the choice
Ãs = Ms with Ms the weighted Neumann matrix defined either by (19) or by (20) depend-
ing on the choice of partition of unity Ds (for every s ∈ J1, NK). This gives the one-level
preconditioner

HNN :=

N∑
s=1

Rs>DsAs
|Ωs
†DsRs. (26)

The local matrices Ãs in Neumann-Neumann can be singular. For the two-dimensional
linear elasticity problem, the kernel of As

|Ωs is of dimension at most 3 (spanned by the three
rigid body modes if they are not blocked by the boundary conditions). Next, given any
threshold τ] > 0, the coarse space is the one from Definition 3:

V 0
NN(τ]) :=

N∑
s=1

range(Rs>YL(τ],M
s,RsARs>)).

Note that, for any τ] > 0,
∑N
s=1 Rs>Ker(Ms) ⊂ V 0

NN(τ]).
A remarkable feature is that the coarse space V 0

NN(τ]) is the same as the alternate coarse
space V 0

AS
′
(1/τ]) for Additive Schwarz from Remark 7: there is a set of coarse vectors that

fixes both the Neumann-Neumann preconditioners and the Additive Schwarz preconditioners.
This was already pointed out in [1].

It is finally assumed that an interpolation matrix R0
NN(τ]) is defined such that it satisfies

Assumption 4 for V 0 = V 0
NN(τ]). Then, the coarse projector ΠNN(τ]), and preconditioner

HNN
hyb(τ]) are defined naturally as

ΠNN(τ]) := I−R0
NN(τ])

>(R0
NN(τ])AR0

NN(τ])
>)−1R0

NN(τ])A,

HNN
hyb(τ]) := ΠNN(τ])H

NNΠNN(τ])
>

+ R0
NN(τ])

>
(R0

NN(τ])AR0
NN(τ])

>
)−1R0

NN(τ]).

They are indexed by τ] as we will vary the value of τ] throughout the numerical tests. It
has been chosen not to make explicit the choice of the partition of unity in the notation as it
is already quite heavy.

The bounds for the spectrum of the Neumann-Neumann preconditioned operators are
summed up below by applying Corollary 2 (with τ[ = 1 + ε, ε > 0, N ′ = 1, N ≥ 1). For any
threshold τ] < 1 and any ε > 0, it holds that :

(1 + ε)−1 ≤ λ(HNNAΠNN(τ])) ≤ N/τ] if λ(HNNAΠNN(τ])) 6= 0 (27)

(1 + ε)−1 ≤ λ(HNN
hyb(τ])A) ≤ N/τ]. (28)

Indeed, the choice τ[ = 1 + ε, very conveniently leads to V 0(τ[) =
∑N
s=1 Rs>Ker(Ms) in

Definition 4 (because all eigenvalues in the generalized eigenvalue problem are equal to 1) and
this space is already in V 0 = V 0

NN(τ]). This is why there is no eigenvalue problem necessary
for ensuring the lower bounds. Letting ε→ 0 it even holds that, for any τ] < 1:

1 ≤ λ(HNNAΠNN(τ])) ≤ N/τ] if λ(HNNAΠNN(τ])) 6= 0 (29)

1 ≤ λ(HNN
hyb(τ])A) ≤ N/τ]. (30)

The additive version of the Neumann-Neumann preconditioner is not considered as no
results can be proved without the Assumption that involves C] in Corollaries 3 and 4 (and
it does not show good numerical performance either). There is no interesting result for the
spectrum of the operator without a coarse space either. The closest thing to that is that
λ(HNNAΠNN(0)) ≥ 1 with a coarse space consisting only of the kernels of the local solvers.

Remark 8 (Computation of V 0
NN(τ])). The coarse space V 0

NN(τ]) is formed by contributions
coming from each subdomain s ∈ J1, NK. They are computed as follows. First, a Cholesky
factorization with pivoting of the matrix Ms is performed. This gives both a factorization of
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Ms and a basis for the kernel of Ms. Then, YL(τ], M̃
s,RsARs>)) is computed by solving

iteratively the generalized eigenvalue problem

Find (λ,xs) ∈ [0, τ[[×Rn
s

such that Msxs = λRsARs>xs.

The factorization of Ms is used at every iteration of the eigensolver since (Ms)† must be
applied to compute the smallest eigenvalues.

Remark 9 (Choice of τ]). The upper bounds for the spectrum of the preconditioned operator
give an idea of how to choose τ] to achieve a chosen condition number. Following the same
line of reasoning as in Remark 5, it is advised not to choose τ] > 1.

Remark 10. The coarse vectors are discrete harmonic inside the subdomains (see Remark 6
for the similar remark in the Additive Schwarz case).

5.2.4 Inexact Schwarz

As a third preconditioner, it has been chosen to consider for Ãs, the no-fill incomplete Cholesky
factorization of RsARs> [5]. More precisely, for every s ∈ J1, NK, Ãs is the spd matrix given
by:

Ãs = LsLs>,

where Ls is the factor in the no-fill incomplete Cholesky factorization of A. In very rough
terms, with this choice of Ãs it is expected that the conditioning should deteriorate compared
to Additive Schwarz but that each application of the preconditioner should be significantly
cheaper. This gives the one-level preconditioner

HIS :=

N∑
s=1

Rs>(Ls>)−1Ls−1Rs. (31)

Next, given any two thresholds τ] > 0 and τ[ > 0, the coarse space is the sum of the ones from
Definition 3 and Definition 4 with two hidden variants depending on the choice of partition of
unity (Ms is either Ms

µ from (19) or Ms
k from (20)):

V 0
IS(τ], τ[) :=

N∑
s=1

range(Rs>YL(τ],L
sLs>,RsARs>))+ (32)

N∑
s=1

Rs>Ker(Ms) +

N∑
s=1

range(Rs>WsYH(τ[,W
s>LsLs>Ws,Ws>MsWs)).

(33)

It is finally assumed that an interpolation matrix R0
IS(τ], τ[) is defined such that it satisfies

Assumption 4 for V 0 = V 0
IS(τ], τ[). Then the coarse projector ΠIS(τ], τ[), and preconditioner

HIS
hyb(τ], τ[) are defined naturally as

ΠIS(τ], τ[) := I−R0
IS(τ], τ[)

>(R0
IS(τ], τ[)AR0

IS(τ], τ[)
>)−1R0

IS(τ], τ[)A,

HIS
hyb(τ], τ[) := ΠIS(τ], τ[)H

ISΠIS(τ], τ[)
>

+ R0
IS(τ], τ[)

>
(R0

IS(τ], τ[)AR0
IS(τ], τ[)

>
)−1R0

IS(τ], τ[).

They are indexed by τ] and τ[ as we will vary the value of these thresholds throughout the
numerical tests. It has been chosen not to make explicit the choice of the partition of unity
in the notation as it is already quite heavy.

The bounds for the spectrum of the Inexact Schwarz preconditioned operators are summed
up below by applying Corollary 2 (with N ′ = 1 and N ≥ 1). For any thresholds τ[ > 1 and
τ] < 1, it holds that :

1/τ[ ≤ λ(HISAΠIS(τ[, τ])) ≤ N/τ] if λ(HISAΠIS(τ[, τ])) 6= 0 (34)

1/τ[ ≤ λ(HIS
hyb(τ[)A) ≤ N/τ]. (35)
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Remark 11 (Computation of V 0
IS(τ], τ[)). The coarse space V 0

IS(τ], τ[) is formed by contribu-
tions coming from each subdomain s ∈ J1, NK. In each subdomain two generalized eigenvalue
problems must be solved:

Find (λ,xs) ∈ [0, τ][×Rn
s

such that LsLs>xs = λRsARs>xs.

and

Find (λ,xs) ∈ [τ[,+∞[× range(Ms) such that (I− ZsZs>)LsLs>(I− ZsZs>)xs = λMsxs,

where Zs is an orthonormal basis of the kernel of Ms so (I−ZsZs>) is the orthogonal projection
onto range(Ms). Both generalized eigenvalue problems are solved with iterative solvers as only
the smallest or largest eigenvalues are required. For the first eigenproblem, at each iteration
of the eigensolver, linear systems with LsLs> need to be solved which is convenient since the
matrix is already in factorized form. For the second eigenproblem, at each iteration of the
eigensolver, linear systems with Ms need to be solved. That is why, a Cholesky factorization
with pivoting of the matrix Ms is performed. This gives both a factorization of Ms and a basis
Zs for the kernel of Ms.

Remark 12 (Another choice for V 0
IS(τ], τ[)). The same bounds for the preconditioned operator

are guaranteed if the coarse space is replaced by

V 0
IS
′
(τ], τ[) :=

N∑
s=1

range(Rs>YL(τ],L
sLs>,RsARs>)) +

N∑
s=1

range(Rs>YL(τ−1
[ ,Ms,LsLs>)),

(36)

following the definition of V 0
[
′
(τ[) from Definition 5. This simplifies notation as Ws is no

longer necessary. In practice it is still necessary to factorize Ms so its kernel is still computed
and then deflated within the eigensolver although it is not explicit in the definition.

5.3 Numerical results

The results in this section were obtained with the software libraries FreeFem++ [21] and GNU
Octave [12]. The problem presented in Subsection 5.1 is solved by the preconditioned conjugate
gradient method (PCG) with the Additive Schwarz, Neumann-Neumann, and Inexact Schwarz
preconditioners. The problem is by no means a very large problem that requires state of the
at parallel solvers. The purpose is to illustrate how the GenEO coarse spaces decrease the
condition number and how many vectors per subdomain need to be added to the coarse space
to achieve fast convergence. The stopping criterion for PCG is always that the error ‖xi−x∗‖A
be less than 10−9‖x∗‖A. The algorithm is initialized by 0 so that ‖x∗‖A is the initial error.
This is not feasible in practice but allows us to compare all algorithms fairly. The bounds for
the spectrum of the preconditioned operators that are reported are the approximations given
by the extreme Ritz values once the algorithm has converged (see e.g., [33] for details on how
to implement this procedure).

Let us recall that the size of the problem is n = 7224. The computational domain Ω is
partitioned into N = 8 non-overlapping subdomains with Metis [24] (see Figure 1–left). The
value of the coloring constant from Definition 1 is N = 3. There are nΓ = 546 degrees of
freedom that belong to more than one subdomain. This is an important order of magnitude to
compare the size of the coarse spaces to because it is always possible to eliminate all the degrees
of freedom that are inside the subdomains and invert the nΓ × nΓ Schur complement. For a
two-level method to be efficient, the cost of inverting the coarse space must be significantly
less than the cost of inverting the Schur complement.

The first distribution of Young’s modulus E is constant per subdomain: E = 105 if s is odd
and E = 108 if s is even. The second distribution of Young’s modulus E is obtained by adding
some rigid layers to the first one: E is augmented by 109 if y ∈ [1/7, 2/7]∪[3/7, 4/7]∪[5/7, 6/7].
These test cases are referred to as ‘no layers’ and ‘with layers’ and the coefficient distributions
are plotted in Figure 1.
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N = 8 subdomains E = 105 (dark) or 108 (light) E += 109 in white stripes
‘no layers’ ‘with layers’

Figure 1: Partition into subdomains, distribution of E without and with harder layers.

The first set of results is for Additive Schwarz. The first thing to check is that the condition
numbers that are estimated satisfy the theoretical bounds. In Figure 2, the estimated condition
numbers for the preconditioners HAS

ad and HAS
hyb introduced in Section 5.2.2 are represented

for several values of τ[, with both µ-scaling and k-scaling (i.e., Ms given by (19) or (20) in
the generalized eigenvalue problems), and on both test cases. The theoretical bounds are also
plotted. All the numerically obtained condition numbers are below the theoretical bound. The
theoretical bound is less sharp when τ[ becomes larger: the numerically obtained conditioned
bounds don’t degrade as much as the worst case scenario that is the theoretical bound. As
expected, the hybrid preconditioned operator always has lower condition numbers than the
corresponding additive preconditioned operator. Of course, this plot only tells one part of
the story since it does not include any information about the cost of the methods. Table
1 gives a lot more information. Only the test case with layers is considered. In all four
configurations (hybrid/additive and µ-scaling/k-scaling), the choice τ[ = 10 seems to offer
a good compromise between the condition number (or number of iterations) and the size of
the coarse space. With the same value τ[ = 10, there is a big difference between the size
of the coarse space with multiplicity scaling (241) and the size of the coarse space with k-
scaling (68). With multiplicity scaling the table tells us that there is at least one subdomain
that contributes 70 vectors to the coarse space. This is due to the fact that the k-scaling
already contributes to handling the jumps in E across the subdomains. To better illustrate
this behaviour, Figure 3 shows the eigenvalues of the generalized eigenvalue problem solved to
compute the coarse space. It becomes clear that the subdomains with E = 108 will contribute
many vectors for any desirable τ[. This may appear to be a failure of the GenEO method but
it is highly unlikely that an automatic graph partitioner would produce such a configuration.
A human partitioner might choose such a configuration but if that were the case, she would
be aware of it and choose the scaling accordingly.

For lack of space the results for Neumann-Neumann and Inexact Schwarz are presented in
a lot less detail. The condition numbers for all methods are plotted with respect to the size of
the coarse space for several values of τ[ and τ] (that are not reported here) in Figure 4 (test
case without layers) and Figure 5 (test case with layers). In this plot, the best methods are the
ones which have data points closest to the origin (small condition number with a small coarse
space). It appears clearly that k-scaling gives better results. This was previously explained,
but it is to be noted that with irregular subdomains, when the jumps in the coefficients
become larger, the k-scaling can lead to very ill conditioned matrices Ds

k that can make the
whole method less efficient again. This problem is well known and independent of GenEO.
When there are no hard layers, the Neumann-Neumann method is the most impacted by the
multiplicity scaling. This is to be expected because the matrices Ds

k appear in the definition
of the one-level preconditioner and not only through the generalized eigenvalue problem that
is solved to compute the coarse space. With k-scaling the methods from most to least efficient
rank as follows: Neumann-Neumann, Additive Schwarz with hybrid preconditioner, Additive
Schwarz with additive preconditioner, Inexact Schwarz. Again, this does not tell the whole
story as the cost of one iteration depends on the choice of method. With inexact Schwarz, the
local solves are cheapest. With additive Schwarz in the additive variant, the coarse solve can
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Figure 2: Condition numbers for Additive Schwarz preconditioners: additive and hybrid; µ-scaling
and k-scaling; with and without layers; τ ∈ [4; 10; 100; 1000]. All condition numbers are below
the theoretical bound.
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Figure 3: Solution of the generalized eigenvalue problem for computing V 0
AS in the case with layers.

Left: µ-scaling, right: k-scaling.
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Figure 4: Efficiency of the methods for the test case without layers

be done in parallel to the local solves. With Neumann-Neumann, the matrices that must be
handled with most care numerically (the ones that are singular) are the local solvers whereas
they only appear in the generalized eigenvalue problem for the other methods. All these
arguments lead only to one conclusion: it is impossible from this data to tell which of the
methods is most efficient. Numerical testing with measurements of the CPU time, memory
requirements and overall stability of the algorithm is required. The answer would probably
be problem dependant and is well beyond the scope of this article. Another question that has
not been addressed yet is scalability. It is clearly guaranteed theoretically and illustrations
can be found in the original articles [44, 45] with very similar coarse spaces.

As a final remark on Figure 4 and Figure 5, let us comment on the zig-zags in the Inexact
Schwarz data in Figure 5. Since there are two parameters for the Inexact Schwarz coarse
space, there are several choices of parameters that lead to coarse spaces that have the same size
with possibly very different condition numbers. The local solvers being incomplete Cholesky
factorizations of RsARs> it is mostly only adding vectors to V 0

[ that makes the method more
efficient while adding vectors to V 0

] makes the coarse space grow very fast and the condition
number decrease very little.

6 Conclusion

GenEO coarse spaces have been introduced for all domain decomposition methods in the
abstract Schwarz framework that satisfy some clearly stated assumptions. By solving one or
two generalized eigenvalue problems in each subdomain, it is possible to construct a method
for which the eigenvalues of the preconditioned operator are bounded as desired. Proofs of
these bounds were given for the projected preconditioned operators, the hybrid operators and,
when possible, the additive operators. Finally, the method was applied to a linear elasticity
problem discretized by P1 finite elements. The results in the last section could very easily
be applied to any elliptic PDE, just by changing the definitions of A and the matrices As

|Ωs .
The most restrictive assumption in the construction of the coarse space is Assumption 5. If a
two-level method with guaranteed convergence existed without that assumption it would be
even easier to implement in a black box fashion and this will be the topic of future work.
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Additive Schwarz with µ-scaling (Ms
µ from (19) in gevp)

λmin λmax κ It (final error) #V 0 min #V 0
s max #V 0

s

one-level 7.7 · 10−4 3.0 3875 > 100 (6 · 10−3) 0 0 0
τ[ = 1010 hyb 0.003 3.0 959 > 100 (1 · 10−5) 18 0 3

(only Ker(Ms)) ad 0.002 3.3 1517 > 100 (3 · 10−4) 18 0 3
τ[ = 1000 hyb 0.014 3.0 216 > 100 (1 · 10−9) 72 1 24

ad 0.007 4.0 545 > 100 (1 · 10−6) 72 1 24
τ[ = 100 hyb 0.024 3.0 127 92 159 3 60

ad 0.014 4.0 276 > 100 (1 · 10−7) 159 3 60
τ[ = 10 hyb 0.13 3.0 23 42 241 10 70

ad 0.06 4.0 63 64 241 10 70
τ[ = 4 hyb 0.37 3.0 7.9 23 303 14 77

ad 0.28 4.0 14 31 303 14 77
Theory (τ[) hyb 1/τ[ N = 3 3τ[

ad 1/(7τ[) N + 1 = 4 28τ[
Additive Schwarz with k-scaling (Ms

k from (20) in gevp)
λmin λmax κ It (final error) #V 0 min #V 0

s max #V 0
s

one-level 7.7 · 10−4 3.0 3875 > 100 (6 · 10−3) 0 0 0
τ[ = 1010 hyb 0.0030 3.0 1003 > 100 (2 · 10−5) 18 0 3

(only Ker(Ms)) ad 0.0025 3.2 1271 > 100 (2 · 10−4) 18 0 3
τ[ = 1000 hyb 0.016 3.0 192 98 29 1 6

ad 0.0087 3.3 380 > 100 (3 · 10−7) 29 1 6
τ[ = 100 hyb 0.02 3.0 152 93 31 1 7

ad 0.098 3.3 338 > 100 (2 · 10−7) 31 1 7
τ[ = 10 hyb 0.13 3.0 22 43 68 5 13

ad 0.069 3.37 49 63 68 5 13
τ[ = 4 hyb 0.35 3.0 8.5 26 118 8 20

ad 0.25 3.4 14 34 118 8 20
Theory (τ[) hyb 1/τ[ N = 3 3τ[

ad 1/(7τ[) N + 1 = 4 28τ[

Table 1: Test case with hard layers - All additive Schwarz methods - λmin and λmax: extreme
eigenvalues, κ: condition number, It: iteration count (with relative error at iteration 100 in paren-
thesis if the method has not converged), #V 0 : dimension of the coarse space, min #V 0

s : number of
coarse vectors contributed by the subdomain that contributes the fewest vectors, max #V 0

s : num-
ber of coarse vectors contributed by the subdomain that contributes the most eigenvectors, gevp:
generalized eigenvalue problem. The one-level method does not satisfy any theoretical bound for
λmin.
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Figure 5: Efficiency of the methods for the test case with layers
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