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Abstract

Magnetic Resonance Imaging allows to measure the three-dimensional velocity field in blood flows. There-
fore, several methods have been proposed to reconstruct the pressure field from such measurements using
the incompressible Navier-Stokes equations. However, those measurements are obtained at limited spatial
resolution given by the voxel dimensions in the image. Therefore, the velocity entering to the right-hand-side
corresponds to a piecewise linear interpolation of the exact velocity.
In this work we propose a strategy for convergence analysis of state-of-the-art pressure reconstruction meth-
ods. The methods analyzed are the the so called Pressure Poisson Estimator (PPE) and Stokes Estimator
(STE). In the theoretical error analysis, we show that many terms of different convergence order appear.
However, numerical results, show in academic examples that only the PPE may profit of increasing the
polynomial order, and that the STE presents a higher accuracy than the PPE.
Additionally, we compare the pressure estimation methods on real MRI data, assessing the impact of different
spatial resolutions and polynomial degree on each of the methods. Here, the results are aligned with the
academic test cases in terms of sensitivity to polynomial order and that the STE shows to be potentially
more accurate when compared to reference pressure measurements.
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21. Introduction

The intra-arterial spatial distribution of the blood pressure can be measured by means of catheterization [2].
This technique consists in inserting a catheter equipped with a pressure transducer into the vasculature of the
patient and manoeuvring it, under local anaesthesia and guided by fluoroscopy, to the location of interest.
Although it is the ‘clinical gold standard’ for pressure quantification, the invasive nature of the method is
associated with a risk of complications [27, 25, 14]. Given that there are recommendations to avoid its use
[23], to compute the pressure difference from measured flow fields is strongly preferred.
Time-resolved 3D velocity encoded magnetic resonance imaging, or 4D flow MRI, offers measuring the
complete 3D velocity field within a region of interest [11, 19]. The measured velocities can then be inserted
in the linear momentum balance of the incompressible Navier-Stokes equations (NSE) and the velocity terms
laid in the right-hand-side while the pressure holds as an unknown, i.e.,for a given measurement of the velocity
u, the pressure gradient ∇p is found by solving:

∇p = −fu in Ω (1)

with Ω ⊂ Rd and fu := (u · ∇)u − ν∆u., where the proper function spaces will be defined for each of the
methods throughout the article. An example of pressure map estimation from real 4D Flow MRI data is
shown in Figure 1.

(a) anatomical image (b) segmentation & mesh (c) velocity field (d) pressure field
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Figure 1: Pressure map estimation from in an experimental phantom of a thoraxic aorta [21], adapted and reprinted from [13]:
Left: The 4D Flow MRI velocity measurements. Right: Relative pressure map computed from velocity data. Shown: cuts
through roughly the center of the vessels.

In practice, and as it can be appreciated in Figure 1-Left, those measurements are obtained at limited
spatial resolution –given by the voxel size in the image – and therefore the velocity entering to the right-
hand-side corresponds to an interpolated version of the exact velocity. Therefore, there is not a unique
numerical approach to compute the reconstructed pressures. A review and preliminary numerical comparison
of methods can be found in [3]. Among those methods, only a few can compute pressure fields and not just
averaged pressure differences between two locations.
The first one is the so-called Pressure Poisson Estimator (PPE) [6, 18] and it consists of applying the
divergence to the NSE obtaining a pressure Poisson equation, similarly as it is used in projection methods
[9]. However, the original PPE method cannot include the viscous contribution to the pressure gradient at
the level of accuracy of the measured data. Therefore, recently in [16] the PPE method was modified by
adding a boundary term with the viscous contribution.
Another more modern method corresponds to the Stokes Estimator (STE) was reported in [22]. The STE
consists in adding to the NSE the Laplacian of an artificial incompressible velocity field with null trace



3leading to a linear Stokes problem for both pressure and artificial velocity fields. Such artificial velocity is
supposed to be zero for perfect velocity measurements. The STE has shown more accurate results than the
PPE in numerically simulated data [22, 3] and in real phantom and patient data [13]. However, the STE
method is considerably more expensive computationally than the PPE.
To the best of the authors’ knowledge, neither a mathematical convergence analysis of both PPE and STE
methods or a comparison among discretization schemes for each of the methods has been reported.
Therefore, the purpose of this work is to propose a strategy for performing a priori error analysis and
applied it to the PPE and STE methods. The strategy is based on the splitting of the solution in two
components and adding their contributions to the overall error. Moreover, for both methods we studied
different discretization strategies in order to verify the theoretical analysis and give insights on the cost-
effectiveness of each approach. In order to assess the impact of discretizations on each of the methods,
calculations of pressure fields based on experimental MRI data are also included.
The remainder of this work is organized as follows. In Section 2 we present and analyze the PPE method in
the standard and modified variants using Continuos Galerkin approaches. Section 3 introduces the STE and
analyzes the classical Taylor-Hood and a tailored PSPG discretization. Then, in Section 4 we show numerical
results using three known analytical solutions for the NSE, confirming the a priori error analysis. In Section
5 the methods are assessed under different spatial resolutions and polynomial degree on experimental MRI
data. Finally, in Section 6 we draw some interpretation of the results and give recommendations for the use
of these methods.

2. The Poisson Pressure Estimator

2.1. The continuous problem

The Poisson Pressure Estimator (PPE) consists in obtaining the pressure from the classical Navier-Stokes
equation by mean a Poisson equation. That is, by applying the divergence operator on Equation (1) one
gets 

−∆q = ∇ · fu, in Ω

− ∂q
∂n = fu · n, on ∂Ω∫

Ω
q dx = 0,

(2)

with n the outward normal vector of ∂Ω. We will make use of the function spaces H := [H1(Ω)]d,V :=
[H1

0 (Ω)]d and

Hj :=

{{
v ∈H : ∆v ∈ [L2(Ω)]d

}
if j = 1{

v ∈H : ∇× (∇× u) ∈ [L2(Ω)]d
}

if j = 2

Qj :=

{{
r ∈ H1(Ω) :

∫
Ω
rdx = 0

}
if j = 1{

r ∈ H1(Ω) : n · curl r ∈ L2(∂Ω) and
∫

Ω
r dx = 0

}
if j = 2

Assuming u ∈Hj , the weak formulation of the (2) is given by: Find q ∈ Qj such that

A(q, r) = F ju(r), ∀ r ∈ Qj , (3)

where A(q, r) = (∇q,∇r)Ω and

F ju(r) = −((u · ∇)u,∇r)Ω + δ1j(ν∆u,∇r)Ω + δ2j〈n×∇r, ν∇× u〉∂Ω, (4)

where δij is the Kronecker delta. We refer to Standard-PPE if j = 1 and Modified-PPE if j = 2 [16].
The uniqueness of the solution of Problem (3) follows from the Lax-Milgram lemma [7]. Indeed, the coercivity
of the left-side is straightforward. The continuity of F ju is obtained thanks to the identity

− (∇r, ν∇× (∇× u))Ω = 〈n×∇r, ν∇× u〉∂Ω, (5)

and then

|F ju(r)| ≤ (‖(u · ∇)u‖0,Ω + δ1jν‖∆u‖0,Ω + δ2jν‖∇ × (∇× u)‖0,Ω)|r|1,Ω



42.2. Continuous Galerkin discretizations

The finite element spaces for the pressure approximation and velocity interpolation are:

Qjh := {qh ∈ Qj : qh|K ∈ Pk(K) ∀K ∈ Th} ,
Hjh := {vh ∈Hj : vh|K ∈ P1(K) ∀K ∈ Th} .

We will also consider the Lagrange interpolation operator Jh : Qj ∩ Hk+1(Ω) → Qjh and Lh : Hj ∩
[H2(Ω)]d → Hjh such that:

|q − Jhq|m,Ω ≤ ak hk+1−m|q|k+1,Ω, ∀ q ∈ Hk+1(Ω), 0 ≤ m ≤ k + 1.

|v − Lhv|m,Ω ≤ ak h2−m|v|2,Ω, ∀ v ∈ H2(Ω), 0 ≤ m ≤ 2.
(6)

Thus, the Galerkin scheme associated with the continuous variational formulation (3) reads as follows: Find
qh ∈ Qjh such that

A(qh, rh) := F juh
(rh) ∀ rh ∈ Qjh, (7)

with

F juh
(rh) = −((Lhu · ∇)Lhu,∇rh)Ω + δ2j

∑
F∈Eh∩∂Ω

〈n×∇rh, ν∇×Lhu〉F , (8)

According to discrete Lax-Milgram Theorem (Generalized Lax-Milgram for j = 2), Problem (7) has a unique
solution qh ∈ Qjh .

Remark 1. Note that from the definitions (4) and (8) we can assure that the problem (7) is not a Galerkin
scheme of the continuous problem (3). Indeed, the scheme is not consistent.

The strategy to prove convergence is to use the known Strang’s lemma for conformal and non-consistent
cases.
In order to prove the convergence theorems, let us state the next result.

Lemma 1. Let us assume that u ∈ H2(Ω). Then,

‖(u · ∇)u− (Lhu · ∇)Lhu‖0,Ω ≤ C̃(a1 + a2CI)h|u|2,Ω‖u‖2,Ω. (9)

with a1, a2 the error interpolation constants, C̃ is an injection constant and CI an inverse inequality constant.

Proof. Using properties of interpolation given by (6) and Young inequality we obtain

‖(u · ∇)u− (Lhu · ∇)Lhu‖0,Ω ≤‖(u · ∇)(u− Lhu)‖0,Ω + ‖((u− Lhu) · ∇)Lhu‖0,Ω
≤|u− Lhu|1,Ω‖u‖∞,Ω + ‖∇Lhu‖∞,Ω‖u− Lhu‖0,Ω
≤a1h|u|2,ΩC̃‖u‖2,Ω + CIh

−1‖Lhu‖∞,Ωa2h
2|u|2,Ω

≤C̃a1h|u|2,Ω‖u‖2,Ω + a2CIh‖u‖∞,Ω|u|2,Ω
≤C̃a1h|u|2,Ω‖u‖2,Ω + a2C̃ CIh‖u‖2,Ω|u|2,Ω
=C̃(a1 + a2CI)h|u|2,Ω‖u‖2,Ω

(10)

�

Lemma 2. Assume that u ∈Hj ∩H2(Ω)d if j = 1 and u ∈Hj with u
∣∣
∂Ω
∈ [H2(∂Ω)]d if j = 2. Then,

sup
rh∈Qjh

rh 6=0

|F ju(rh)− F kuh
(rh)|

|rh|1,Ω
≤ C1h|u|2,Ω‖u‖2,Ω + δ1,j‖∆u‖0,Ω + δ2,jC2νh

1/2|u|2,∂Ω



5Proof.

sup
rh∈Qjh

rh 6=0

|F ju(rh)− F kuh
(rh)|

|rh|1,Ω
≤‖(u · ∇)u− (Ihu · ∇)Ihu‖0,Ω + δ1,j‖∆u‖0,Ω

+ δ2,j sup
rh∈Qjh

rh 6=0

∑
F∈Eh∩∂Ω

|〈n×∇rh, ν∇× (u− Ihu)〉∂Ω|

|rh|1,Ω
.

For the first term in above inequality we use Lemma 1 and for the third term we have∑
F∈Eh∩∂Ω

|〈n×∇rh, ν∇× (u− Ihu)〉F |

|rh|1,Ω
≤

∑
F∈Eh∩∂Ω

ν ‖∇rh‖0,F ‖∇ × (u− Ihu)‖0,F

|rh|1,Ω
(11)

Now, thanks to [5, Lemma 1.46], we have

‖∇rh‖0,F ≤ Ctrh−1/2
K |rh|1,K , (12)

where Ctr =

(
(k + 1)(k + 2)

2

)1/2

(see [26, Theorem 3]). Besides, from [20, Lemma 10.8] we get

‖∇ × (u− Ihu)‖0,F ≤ Cb|u− Ihu|1,F ≤ Cba2,I hK |u|2,F . (13)

and then, from (11), (12) and (13) we arrive to∑
F∈Eh∩∂Ω

|〈n×∇rh, ν∇× (u− Ihu)〉F |

|rh|1,Ω
≤ CtrCb a2,I ν h

1/2|u|2,∂Ω,

being C2 = Ctr Cb a2,I , which allows us arrive to the desired result, where C1 = C̃(a1 + a2CI). �
Finally, the next theorem holds.

Theorem 1 (Main Result I). Let q ∈ Qj ∩Hk+1(Ω) and qh ∈ Qjh solutions of (3) and (7), respectively.
In addition, we assume that u ∈ Hj ∩ [H2(Ω)]d and u ∈ Hj with u

∣∣
∂Ω
∈ [H2(∂Ω)]d, for j = 1 and j = 2

respectively. Then,

|q − qh|1,Ω ≤ akh
k|q|k+1,Ω + C1h|u|2,Ω‖u‖2,Ω + δ1,j‖∆u‖0,Ω + δ2,jC2νh

1/2|u|2,∂Ω

with k ≥ 1.

Proof. Thanks to the Strang’s Lemma (see [7, Lemma 2.27]) we have that

|q − qh|1,Ω ≤ sup
rh∈Qjh

rh 6=0

|F ju(rh)− F juh
(rh)|

|rh|1,Ω
+ 2 inf

rh∈Qjh

|q − rh|1,Ω

The bound for the first term in the right-hand side follows directly from Lemma 2. For the second term, we
will consider the interpolation operator, and then

inf
rh∈Qjh

|q − rh|1,Ω ≤|q − Jhq|1,Ω ≤ akhk|q|k+1,Ω

�



6Corollary 1. Let the hypothesis of Theorem 1 hold with Ω is convex polygonal domain. Then,

‖q − qh‖0,Ω ≤ Cr akhk+1|q|k+1,Ω + C1 Cph|u|2,Ω‖u‖2,Ω + δ1,j Cp‖∆u‖0,Ω + δ2,j C2 Cp νh
1/2|u|2,∂Ω

with Cr the regularity constant and k ≥ 1.

Proof.
The proof starts taking q̃h ∈ Qjh such that satisfy Equation (3). It follows from the triangle inequality that

‖q − qh‖0,Ω ≤ ‖q − q̃h‖0,Ω + ‖q̃h − qh‖0,Ω (14)

The bound estimation for ‖q − q̃h‖0,Ω is obtained solving the problem

−∆r = q − q̃h,

with the Dirichlet conditon zero and applying the known Aubin-Nitsche Lemma [7, Lemma 2.31] and inter-
polation properties leading to

‖q − q̃h‖0,Ω ≤ Crh|q − q̃h|1,Ω ≤ Crakhk+1|q|k+1,Ω. (15)

For the second term of the right-hand side in (14) we proceed as follows:

|q̃h − qh|1,Ω ≤ sup
rh∈Qjh

rh 6=0

A(q̃h − qh, rh)

|rh|1,Ω
≤ sup
rh∈Qjh

rh 6=0

F ju(rh)− F juh
(rh)

|rh|1,Ω
.

From Lemma 2 and Poincaré inequality, we get

‖ q̃h − qh‖0,Ω ≤ Cp|q̃h − qh|1,Ω ≤ C1 Cph|u|2,Ω‖u‖2,Ω + δ1,j Cp‖∆u‖0,Ω + δ2,j C2 Cp νh
1/2|u|2,∂Ω. (16)

Hence, the result is a direct consequence of the estimates (15) and (16).
�

3. The Stokes Estimator

3.1. The continuous problem

The STE consists then in adding the Laplacian of an incompressible auxiliary velocity w ∈ V and to the
left-hand side of (1):

−∆w +∇q = −fu in Ω

∇ ·w = 0 in Ω. (17)

Let us define the space P = L2
0(Ω). Hence, we can define the weak problem of (17) as: Find (w, q) ∈ V×P

such that

B((w, q), (v, r)) = Gu(v, r) ∀(v, r) ∈ V × P, (18)

where

B((w, q), (v, r)) := (∇w,∇v)Ω−(q,∇·v)Ω+(r,∇·w)Ω and Gu(v, r) := −((u·∇)u,v)Ω−ν(∇u,∇v)Ω.
(19)

For the analysis, we will use the following norm

‖(v, r)‖V×P := |v|1,Ω + ‖r‖0,Ω,



7and if F is an linear functional operator we use the norm

‖F‖(V×P )′ := sup
(v,r)∈V×P

(v,r) 6=0

|F (v, r)|
‖(v, r)‖V×P

(20)

Note that the problem (18) is well posed thanks to the V−ellipticity of the bilinear form (∇w,∇v)Ω, and
(q,∇ ·w)Ω satisfy an inf-sup condition (cf. [7, Prop. 2.36]).

Lemma 3. There exists a positive constant CB such that

‖B‖ ≤ CB.

Proof. Using triangular inequality, Cauchy-Schwarz inequality, together to the inequalities 1 ≤
√
d and√

a2 + b2 ≤ a+ b, with a, b ≥ 0, we get

|B((w, q), (v, r))| ≤ |w|1,Ω|v|1,Ω +
√
d‖q‖0,Ω|v|1,Ω +

√
d‖r‖0,Ω|w|1,Ω

≤
√
d|w|1,Ω|v|1,Ω +

√
d‖q‖0,Ω|v|1,Ω +

√
d‖r‖0,Ω|w|1,Ω

≤
√
d(|w|21,Ω + |w|21,Ω + ‖q‖0,Ω)1/2(|v|21,Ω + |v|21,Ω + ‖r‖0,Ω)1/2

≤ CB(|w|21,Ω + ‖q‖20,Ω)1/2(|v|21,Ω + ‖r‖20,Ω)1/2

≤ CB‖(w, q)‖V×P ‖(v, r)‖V×P ,

and the result is obtained directly, with CB = 2
√
d. �

3.2. Discrete spaces

Let us denote by {Th} a regular family partition of Ω composed of triangular elements K of diameter hK .
We will denote by h the mesh size, where h = max {hK : K ∈ Th}.
Now, for each h let Wh and Ph be finite-dimensional spaces such that:

Wh :=
{
vh ∈ [H1(Ω)]d : vh|K ∈ [Pl(K)]d ∀K ∈ Th

}
,

Ph := {qh ∈ P : qh|K ∈ Pk(K) ∀K ∈ Th} ,
Hh :=

{
wh ∈H : wh|K ∈ [P1(K)]d ∀K ∈ Th

}
.

For our error analysis we will need to make use of some known results.

Theorem 2. For all w ∈ [Pl(K)]d there holds,

‖∇w‖0,K ≤
√
κl
|∂K|
|K|
‖w‖0,K . (21)

For d = 2, it holds κ1 = 6 and κ2 =
45

2
.

Proof. See [15, Theorem 2] �

Corollary 2. For d = 2 and l = 1 there holds

‖∇w‖0,K ≤ CIh−1
K ‖w‖0,K , (22)

where CI =
6
√
κ1

sin2(θ)
, being θ the minimun angle of the element K.

Proof. The proof is a direct consequence of the minimum angle condition and Theorem 2. �



83.3. Taylor-Hood discretization

For the discrete STE we set Vh = Wh ∩ V where inf-sup stable pairs of finite elements requires the use
of different spaces for velocity and pressure and for this reason we take Taylor-Hood, where l = k + 1.
Otherwise, it is not possible to use conforming spaces of lowest order for the discrete velocity. Furthermore,
we will consider the property of interpolation operator Ih : V ∩ [Hk+1(Ω)]d → Vh :

|w − Ihw|m,Ω ≤ ak hk+1−m|w|k+1,Ω, ∀w ∈ [Hk+1(Ω)]d, 0 ≤ m ≤ k + 1, (23)

Thereby, the discrete version of the problem (18) reads as follows: Find (wh, qh) ∈ Vh × Ph such that

B((wh, qh), (vh, rh)) = Guh
(vh, rh) ∀(vh, rh) ∈ Vh × Ph, (24)

where the bilinear form B is like in the continuous case, and

Guh
(vh, rh) := −((Lhu · ∇)Lhu,vh)Ω − ν(∇Lhu,∇vh)Ω, (25)

with Lh : [H2(Ω)]d −→Hh a Lagrange interpolant.

Lemma 4. There exists a constant β1, independent of h, such that

sup
(vh,rh)∈Vh×Ph

(vh,rh) 6=0

B((wh, qh), (vh, rh))

‖(vh, rh)‖V×P
≥ β1‖(wh, qh)‖V×P , ∀ (wh, qh) ∈ Vh × Ph.

Proof. See equation [8, (1.39)] and [8, Corollary 4.1] �
For the next result, we consider the pair (w̃h, q̃h) ∈ Vh × Ph, such that

B((w̃h, q̃h), (vh, rh)) = Gu(vh, rh) ∀(vh, rh) ∈ Vh × Ph, (26)

where Gu(vh, rh) = −((u · ∇)u,vh)0,Ω − ν(∇u,∇vh)Ω with the continuous velocity u. Let us recall the
following convergence result.

Lemma 5. Let (w, q) and (w̃h, q̃h) solutions of (18) and (26) respectively. Assume that (w, q) ∈ [H1
0 (Ω) ∩

Hk+1(Ω)]d × [L2
0(Ω) ∩Hk(Ω)], with k ≥ 1. Then, there exists C > 0 independent of h such that

‖(w − w̃h, q − q̃h)‖V×P ≤ C1C2h
k
(
|w|k+1,Ω + |q|k,Ω

)
,

with C2 = 1 +
CB
β1

and β1 being the constant given in Lemma 4.

Proof. See [7, Lemma 2.44]
�

In order to show the convergence of qh (Main Result I, see later Theorem 3), we set the following Lemma.

Lemma 6. Let (wh, qh), (w̃h, q̃h) ∈ Vh × Ph, solutions of (24) and (26) respectively, and β1 the constant
given in Lemma 4. Then,

‖(w̃h −wh, q̃h − qh)‖V×P ≤ β−1
1 ‖Gu − Guh

‖(V×P )′

with (Gu − Guh
)(vh, rh) := −((u · ∇)u− (Lhu · ∇)Lhu,vh)Ω − ν(∇u−∇Lhu,∇vh)Ω.

Proof. By Lemma 4 together with the Cauchy - Schwarz inequality, we arrive to the inequality

β1‖(w̃h −wh, q̃h − qh)‖V×P ≤ sup
(vh,rh)∈Vh×Ph

(vh,rh)6=0

B((w̃h −wh, q̃h − qh), (vh, rh))

‖(vh, rh)‖V×P



9
= sup

(vh,rh)∈Vh×Ph

(vh,rh)6=0

Gu(vh, rh)− Guh
(vh, rh)

‖(vh, rh)‖V×P

= sup
(vh,rh)∈Vh×Ph

(vh,rh)6=0

(Gu − Guh
)(vh, rh)

‖(vh, rh)‖V×P

≤ ‖Gu − Guh
‖(V×P )′.

�

Lemma 7. Let Gu and Guh
be as in (19) and (25) respectively and denote by (V×P )′ the dual space of the

product space V × P . In addition, we assume that u ∈ [H2(Ω)]d. Then

‖Gu − Guh
‖(V×P )′ ≤ h|u|2,Ω

[
Cp C̃(a1 + a2 CI)‖u‖2,Ω + ν a1

]
.

Proof.

‖Gu(vh, rh)− Guh
(vh, rh)‖0,Ω ≤ ‖(u · ∇)u− (Lhu · ∇)Lhu)‖0,Ω‖vh‖0,Ω + ν‖∇u−∇Lhu‖0,Ω‖∇vh‖0,Ω.

For the first term of the right-hand side, we use Lemma 1.
For the second term of the right-hand-side, we have from the interpolation bounds:

‖∇(u− Lhu)‖0,Ω ≤ a1h|u|2,Ω.

Finally, using the above inequalities and Poincaré inequality we get

‖(Gu − Guh
)(vh, rh)‖0,Ω ≤ h|u|2,Ω

[
Cp C̃ (a1 + a2 CI)‖u‖2,Ω + ν a1

]
|vh|1,Ω

≤ h|u|2,Ω
[
Cp C̃ (a1 + a2 CI)‖u‖2,Ω + ν a1

]
‖(vh, rh)‖V×P ,

where Cp is the Poincaré constant. Thereby, we arrive straight to the result of the lemma.̧
�

Finally, we can derive the first main convergence result.

Theorem 3 (Main Result II). Assume that (w, q) ∈ [H1
0 (Ω) ∩ Hk+1(Ω)]d × [L2

0(Ω) ∩ Hk(Ω)] and u ∈
[H2(Ω)]d. Then,

|w −wh|1,Ω + ‖q − qh‖0,Ω ≤C1C2h
k
(
|w|k+1,Ω + |q|k,Ω

)
+ β−1

1 h|u|2,Ω
(
ρCp C̃ (a1 + a2 CI)‖u‖2,Ω + µa1

)
.

Proof. The proof follows from Lemmas 5, 6, and 7. �

3.4. Stabilized PSPG discretization

Let us consider again the Stokes problem given as in (17) and its respective variational formulation (18). We
will now analyze the PSPG Stabilization [10] with the end of comparing the error of convergence between
the pressure obtained with both schemes.
We want to use spaces of finite element of order k for the velocity and the pressure, i.e., k = l, by means of
the following stabilized formulation.

Bs((wh, qh)(vh, rh)) = Gsuh
(vh, rh) (27)



10where

Bs((wh, qh)(vh, rh)) := B((wh, qh)(vh, rh)) +
∑
K∈Th

δ h2
K(∇qh,∇rh)K

Gsuh
(vh, rh) := Guh

(vh, rh) +
∑
K∈Th

δ h2
K(−fuh

,∇rh)K

with B((·, ·), (·, ·)) and Guh
(·, ·) defined as in (25), and

fuh
:= (Lhu · ∇)Lhu. (28)

Remark 2. Note that the term ∆wh is not included in the stabilization. This is possible to do while keeping
strong consistency since w = 0. Our choice allows also to avoid conditional well-posedness of the discrete
solution as in standard PSPG stabilized formulations.

Let us define the mesh-dependent norm on the product space V × P

‖(v, r)‖2h := Bs((v, r), (v, r)) = ‖∇v‖20,Ω +
∑
K∈Th

δh2
K‖∇r‖20,K . (29)

Remark 3. It is possible to prove that ‖(vh, rh)‖h � ‖(vh, rh)‖V×P for all (vh, rh) ∈ Vh × Ph. Indeed,
applying the inequality (22) and the previous assumptions we get

‖(vh, rh)‖2h := ‖∇vh‖20,Ω +
∑
K∈Th

δh2
K‖∇rh‖20,K ≤ ‖∇vh‖20,Ω + δC2

I ‖rh‖20,Ω ≤ max
{

1, δC2
I

}
(‖∇vh‖20,Ω + ‖rh‖20,Ω),

and then,
‖(vh, rh)‖h ≤ Ceq‖(vh, rh)‖V×P , (30)

where

Ceq =

[
max

{
1, δC2

I

} ]1/2

Lemma 8.
‖Bs‖ ≤ CBs = max

{
CB,
√
δCeq CI

}
(31)

Proof. Using the inequalities (22) and (30), Theorem 3 and Cauchy-Schwarz inequality we obtain that

|Bs((wh, qh), (vh, rh))| ≤ ‖B‖‖(wh, qh)‖V×P ‖(vh, rh)‖V×P +
∑
K∈Th

δh2
K‖∇qh‖0,K‖∇rh‖0,K

≤ CB‖(wh, qh)‖V×P ‖(vh, rh)‖V×P +

( ∑
K∈Th

δh2
K‖∇qh‖20,K

)1/2( ∑
K∈Th

δh2
K‖∇rh‖20,K

)1/2

≤ CB‖(wh, qh)‖V×P ‖(vh, rh)‖V×P +

( ∑
K∈Th

δC2
I ‖qh‖20,K

)1/2

‖(vh, rh)‖h

≤ CBs‖(wh, qh)‖V×P ‖(vh, rh)‖V×P ,

and then the result follows.
�

In the next lemmas we will consider the pair (w̃h, q̃h) ∈ Vh × Ph which are solution of the equation

Bs((wh, qh)(vh, rh)) = Gsu(vh, rh), ∀ (vh, rh) ∈ Vh × Ph (32)

where
Gsu(vh, rh) := Gu(vh, rh) +

∑
K∈Th

δ h2
K(fu,∇rh)K .

We highlight that the solvability of the problem (32) has been guaranteed in [10].



11Lemma 9. Let (w, q) and (w̃h, q̃h) solutions of (18) and (32) respectively. Assume that (w, q) ∈ [H1
0 (Ω) ∩

Hk+1(Ω)]d × [L2
0(Ω) ∩Hk(Ω)] . Then, there is C > 0 independent of h such that

|w − w̃h|1,Ω + ‖q − q̃h‖0,Ω ≤ C1 C3 h
k
(
|w|k+1,Ω + |q|k,Ω

)
with C3 = 1 + ‖Bs‖.

Proof.
We note that (w, q) and (w̃h, q̃h) satisfy the orthogonality property

Bs((w − w̃h, q − q̃h), (vh, rh)) = 0 ∀(vh, rh) ∈ Vh × Ph.

Indeed, thanks to the consistency of bilinear form B we get

Bs((w − w̃h, q − q̃h), (vh, rh)) = B((w − w̃h, q − q̃h), (vh, rh)) +
∑
K∈Th

δh2
K(∇q,∇rh)K

−
∑
K∈Th

δh2
K(∇q̃h,∇rh)K

=
∑
K∈Th

δh2
K(fu,∇rh)K −

∑
K∈Th

δh2
K(fu,∇rh)K

= 0.

By the triangle inequality we can get,

‖(w − w̃h, q − q̃h)‖V×P = |w − Ihw + Ihw −wh|1,Ω + ‖q − Jhq + Jhq − qh‖0,Ω
≤ ‖(w − Ihw, q − Jhq)‖V×P + ‖(w̃h − Ihw, q̃h − Jhq)‖V×P . (33)

For the second term of the right-hand side, we must consider the result earned in [10] from where we get

‖(w̃h − Ihw, q̃h − Jhq)‖V×P ≤ sup
(vh,rh)∈Vh×Ph

(vh,rh) 6=0

Bs((w̃h − Ihw, q̃h − Jhq), (vh, rh))

‖(vh, rh)‖h

= sup
(vh,rh)∈Vh×Ph

(vh,rh) 6=0

Bs((w − Ihw, q − Jhq), (vh, rh))

‖(vh, rh)‖h

≤ ‖Bs‖‖(w − Ihw, q − Jhq)‖V×P ,

and so, from this inequality and (33) we obtain

‖(w − w̃h, q − q̃h)‖V×P ≤
(
1 + ‖Bs‖

)
‖(w − Ihw, q − Jhq)‖V×P

and thereby we arrive to

|w − w̃h|1,Ω + ‖q − q̃h‖0,Ω ≤ C1C3h
k
(
|w|k+1,Ω + |q|k,Ω

)
,

. �

Lemma 10. Let (w̃h, q̃h) and (wh, qh) be solutions of (32) and (27), respectively. Additionally, we assume
that u ∈ [H2(Ω)]d. Then, the following bound is satisfied:

‖(w̃h −wh, q̃h − qh)‖h ≤‖Gu − Guh
‖(V×P )′ +

√
δh2T (a1, a2,u, h)|u|2,Ω +

√
δνh‖∆u‖0,Ω,



12Proof. Let ewh := w̃h −wh and eqh := q̃h − qh. Then, thanks to the stability of Bs given in (29) we have

‖(ewh , e
q
h)‖h =

Bs((ewh , e
q
h)(ewh , e

q
h))

‖(ewh , e
q
h)‖h

≤ sup
(vh,rh)∈Vh×Ph

(vh,rh)6=0

Bs((ewh , e
q
h)(vh, qh))

‖(vh, qh)‖h

= sup
(vh,rh)∈Vh×Ph

(vh,rh)6=0

Gsu(vh, rh)− Gsuh
(vh, rh)

‖(vh, qh)‖h

= sup
(vh,rh)∈Vh×Ph

(vh,rh)6=0

Gu(vh, rh)− Guh
(vh, rh)−

∑
K∈Th

δh2
K(fu − fuh

,∇rh)K

‖(vh, qh)‖h

We take the term within sum, making use of the Cauchy-Schwarz inequality and proceeding similarly as in
(10), we obtain

−
∑
K∈Th

δh2
K(fu − fuh

,∇rh)K =
∑
K∈Th

δh2
K((u · ∇)u− (Lhu · ∇)Lhu,∇rh)K

− ν
∑
K∈Th

δh2
K(∆u,∇rh)K

≤
∑
K∈Th

δh2
K‖(u · ∇)u− (Lhu · ∇)Lhu‖0,Ω‖∇rh‖0,K

+ ν
∑
K∈Th

δh2
K‖∆u‖0,K‖∇rh‖0,K

≤
( ∑
K∈Th

δh2
K‖(u · ∇)u− (Lhu · ∇)Lhu‖20,K

)1/2( ∑
K∈Th

δh2
K‖∇rh‖20,K

)1/2

+ ν

( ∑
K∈Th

δh2
K‖∆u‖20,K

)1/2( ∑
K∈Th

δh2
K‖∇rh‖20,K

)1/2

≤
√
δh2C̃(a1 + a2CI)|u|2,Ω‖u‖2,Ω‖(vh, rh)‖h

+ ν
√
δ

( ∑
K∈Th

h2
K‖∆u‖20,K

)1/2

‖(vh, rh)‖h

≤
√
δh2C̃(a1 + a2CI)|u|2,Ω‖u‖2,Ω‖(vh, rh)‖h

+ ν
√
δh‖∆u‖0,Ω‖(vh, rh)‖h.

�
As a main result of this section, by employing the approximation properties and a priori estimates, we obtain
the next result.

Theorem 4 (Main Result III). Assume that the hypothesis of Theorem 3 hold. Then,

|w −wh|1,Ω + ‖q − qh‖0,Ω ≤C1C3h
k
(
|w|k+1,Ω + |q|k,Ω

)
+ ν
√
δh‖∆u‖0,Ω

+ h|u|2,Ω
[
Cp C̃ (a1 + a2 CI)‖u‖2,Ω + ν a1 +

√
δhCp C̃ (a1 + a2 CI)‖u‖2,Ω

]
.

Proof. The proof follows from combining the results of Lemmas 7, 9 and 10. �



134. Numerical results for the convergence analysis

In this section we present some numerical examples to illustrate the theoretical results previously described.
The legends in the plots follow the notation:

• e1(q): Pressure error in L2−norm with P1

• e2(q): Pressure error in L2−norm with P2,

with

ei(q) :=
‖q − qh‖0,Ω
‖q‖0,Ω

.

In addition, for Modified-PPE and Standard-PPE we will use the legend PPEvisc and PPE respectively. For
the STE computed using Taylor Hood spaces and PSPS we will use the legend STE (TH) and STE (PSPG)
respectively.
Every numerical routine has been sorted out using the open-source finite element libraries FEniCS [1].

Example 1. For the first example, we consider the exact solution of the two dimensional Kovasznay flow

u(x, y) =

(
1− eλx cos(2πy)
λ
2π e

λx sin(2πy)

)
, p(x, y) =

1

2
eλx − (e3λ − e−λ),

where Ω =

(
− 1

2
,

3

2

)
×
(
0, 2
)

and the parameter λ is given by λ =
1

2ν
−
√

1

4ν2
+ 4π2. For this ilustration

we have taken the Reynold number as in [17] which is given by Re =
1

ν
.

The convergence results for Example are shown in Figure 2 and examples of pressure and velocity fields in
Figures 3–6.
First, it can be appreciated the lack of convergence of the PPE, while adding the viscous terms recovers it.
Also, the STE appears to be more accurate than the PPE(visc) and it seems not to profit from the increase
of polynomial order. Moreover, the STE-PSPG appears to deliver more accurate results than the STE-TH.
Finally, it is worth to say that the sensitivity of all methods with respect to the polynomial order decreases
when increasing the Reynolds number.

Example 2. Next we turn to the testing the scheme, where the computational domain is the rectangle
Ω = [0, 1]2 and we consider the exact solution of the Navier-Stokes equation given by

u(x, y) = (
ν

4
ex sin(νy),

1

4
ex cos(νy)) and p(x, y) = −ν

2
e2x +

ν

4
(e2 − 1) (34)

The convergence results for Example are shown in Figure 7 and the examples of pressure and velocity fields
in Figures 8–11. Here, the same remarks given about the results in Example 4 apply, except that for higher
Reynolds number the STE methods appear to keep the sensitivity (though worsening) when increasing the
polynomial order.
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Figure 2: Pressure error curves and bounds for viscosities values 1, 10−1, 10−2 and 10−3 of Example 1 (Kovaznay flow).
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Exact velocity Exact pressure Image mesh (h = 0.1768) Imaged velocity

STE (TH) STE (PSPG) PPEvisc PPE

Figure 3: P1-interpolated reference velocity and pressure fields (top) and reconstructed pressure fields with order k = 1 (bottom)
for ν = 1 in Example 4 (Kovaznay flow).

Exact velocity Exact pressure Image mesh (h = 0.3536) Imaged velocity

STE (TH) STE (PSPG) PPEvisc PPE

Figure 4: P1-interpolated reference velocity and pressure fields (top) and reconstructed pressure fields with order k = 1 (bottom)
for ν = 0.1 in Example 4 (Kovaznay flow).
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Exact velocity Exact pressure Image mesh (h = 0.7071) Imaged velocity

STE (TH) STE (PSPG) PPEvisc PPE

Figure 5: P1-interpolated reference velocity and pressure fields (top) and reconstructed pressure fields with order k = 1 (bottom)
for ν = 0.01 in Example 4 (Kovaznay flow).

Exact velocity Exact pressure Image mesh (h = 0.7071) Imaged velocity

STE (TH) STE (PSPG) PPEvisc PPE

Figure 6: P1-interpolated reference velocity and pressure fields (top) and reconstructed pressure fields with order k = 1 (bottom)
for ν = 0.001 in Example 4 (Kovaznay flow).
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Figure 7: Pressure error curves and bounds for viscosities values π/4, π/2, π and 2π of Example 4.
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Exact velocity Exact pressure Image mesh (h = 0.1768) Imaged velocity

STE (TH) STE (PSPG) PPEvisc PPE

Figure 8: P1-interpolated reference velocity and pressure fields (top) and reconstructed pressure fields with order k = 1 (bottom)
for ν = 2π in Example 4.

Exact velocity Exact pressure Image mesh (h = 0.1768) Imaged velocity

STE (TH) STE (PSPG) PPEvisc PPE

Figure 9: P1-interpolated reference velocity and pressure fields (top) and reconstructed pressure fields with order k = 1 (bottom)
for ν = π in Example 4.
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Exact velocity Exact pressure Image mesh (h = 0.3536) Imaged velocity

STE (TH) STE (PSPG) PPEvisc PPE

Figure 10: P1-interpolated reference velocity and pressure fields (top) and reconstructed pressure fields with order k = 1
(bottom) for ν = π/2 in Example 4.

Exact velocity Exact pressure Image mesh (h = 0.3536) Imaged velocity

STE (TH) STE (PSPG) PPEvisc PPE

Figure 11: P1-interpolated reference velocity and pressure fields (top) and reconstructed pressure fields with order k = 1
(bottom) for ν = π/4 in Example 4.



205. Computations using experimental MRI data

Experimental MRI data was used to assess the impact of discretization in the pressure estimation methods
in realistic data and flow regimes. The setup consisted of a 3D printed, MR compatible phantom of the
thoracic aorta with 60 % of obstruction in order to produce a typical obstruction. A blood mimicking
fluid was pumped into the phantom obtaining physiological velocities. The phantom was equipped with a
catheterization unit to measure invasively and simultaneously the pressure gradient across the obstruction.
4D Flow MRI was acquired with an isotropic voxel size of 0.9 mm and 25 time instants along the emulated
cardiac cycle. We refer to [21, 12, 13] for the technical details of the experiment. The 4D Flow data is shown
in Figure 1.
Two tetrahedral meshes for the pressure computations were constructed. The first one was created using the
original 0.9 mm resolution where the nodes of the mesh correspond to the voxels center. The second mesh
has 2 mm resolution created using linear interpolation on the first mesh.
Pressure maps were computed from all 4D Flow data sets with the PPE, PPEvisc and STE methods. Due
to the pulsatile nature of the experiment, the term

−(∂τu,∇r)Ω and − (∂τu, r)Ω,

with ∂τ the backward finite difference operator between two measured time instants, were added to the
right-hand-side of the PPE and STE methods, respectively. This implies that the convergence analysis does
not fully apply to the this experimental setup, however, the goal is merely to give an idea on how the
discretization setup and methods compare in a scenario of practical relevance.
The pressure differences, to be compared with the corresponding catheter values, were defined as differences
of the pressure averages over two spheres with a radius of 4 mm at locations proximally (ascending aorta)
and distally to the obstruction.
For the PPE and PPEvisc continuous Galerkin finite elements with k = 1, 2, 3 were considered.
For the STE, both Taylor-Hood (TH) and PSPG cases were computed, the latter with stabilization parameter
δ = 0.01 as in the previous section for the convergence analysis. In the 2 mm element size mesh, k = 1, 2
was tested for both TH and PSPG. In the 0.9 mm element size mesh, only k = 1 was used for TH (due to
the very high computational cost of higher order) and k = 1, 2 was used for PSPG. These methods were
implemented using the FEM library FEniCS [1].
Figure 12 shows the results of the pressure estimation, where the catheter pressure values show that the 4D
Flow based pressure estimation deliver reasonable values. However, note that the catheter measurements
cannot be considered as ground truth, since the precision of the pressure measurements can be considered
within a few mmHg [13, 4, 24]. It can be noted that:

• PPE and PPEvisc deliver visually the same results, which may occur due to the fact that viscous
effects are negligible in this type of (patho-)physiological flows.

• PPE and PPEvisc allow for a larger pressure gradient when increasing k in the coarse mesh.

• PPE and PPEvisc are less sensitive to k for the finest mesh.

• STE methods allow to recover larger pressure differences than PPE methods.

• STE-PSPG delivers equal or better results than STE-TH for k = 1, what is consistent with the
convergence results of the numerical tests in the previous section.

• STE-PSPG seems not to profit from increasing polynomial order, what is consistent with convergence
results for high Reynolds numbers.

• If one may take the catheter measurements as a ground truth, STE-PSPG would deliver the most
accurate results.
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Figure 12: Pressure difference in the obstruction over time error computed from 4D Flow and compared with the catheter
values.

6. Conclusions

In this article we have analyzed theoretically and numerically some strategies used to recover pressure fields
from discrete velocities using the incompressible Navier-Stokes equations.
We analyze two methods, the STE and PPE. While the STE is implemented using the classical Taylor-Hood
finite element spaces and pressure-stabilizing Petrov-Galerkin (PSPG), the PPE is implemented with the
traditional continuous Galerkin method. For the PPE, two versions have been studied, the standard one
without (the viscous term) and a modified one including the viscous term.
The error analysis shows that all methods, except the standard PPE, converge to the exact solution when
decreasing the element size of the image mesh h.With respect to the convergence rate, terms of several
orders appear in the error analysis. Numerical results show that for the PPEvisc linear order dominates
in the presented test cases. For the STE, convergence in the numerical examples vary depending on the
testcase and the polynomial order.
Numerical results in academic test cases show that with increasing Reynolds number, the results appear to
be less sensitive to an increase in polynomial order, in particular for the STE while the PPEvisc shows some
improvements. In many of the cases, the error also appears to decrease faster with h for the STE than the
PPEvisc. Among both STE discretizations, PSPG appears to be equally or sometimes more accurate than
Taylor-Hood approximations.
The computations with real MRI data are aligned with these observations. Therefore, it appears that
STE-PSPG can be the method of choice with the best accuracy and reasonable computational cost.
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