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Abstract

Magnetic Resonance Imaging allows to measure the three-dimensional velocity field of blood flows. There-
fore, several methods have been proposed to reconstruct the pressure field from such measurements using
the incompressible Navier-Stokes equations. However, those measurements are obtained at limited spatial
resolution given by the voxel dimensions in the image. Therefore, the velocity entering to the right-hand-side
corresponds to a piecewise linear interpolation of the exact velocity.
In this work we propose a strategy for convergence analysis of state-of-the-art pressure reconstruction meth-
ods. We show that many terms of different convergence order appear. However, numerical results show that
linear order terms dominate, even when increasing the polynomial degree of the pressure.

1. Introduction

The pressure difference is an important criteria for the severity diagnosis of blood flow obstruction. The
gold standard in clinical practice is invasive catheterization. Given that there are recommendations to avoid
its use [19], to compute the pressure difference from measured flow fields is strongly preferred.
Time-resolved 3D velocity encoded magnetic resonance imaging, or 4D flow MRI, offers measuring the
complete 3D velocity field within a region of interest [10, 16]. The measured velocities can then be inserted
in the linear momentum balance of the incompressible Navier-Stokes equations (NSE) and the velocity
terms laid in the right-hand-side while the pressure holds as an unknown, i.e.,for a given measurement of
the velocity u, the pressure gradient ∇p is found by solving:

∇p = −fu in Ω (1)

with Ω ⊂ Rd and fu := (u · ∇)u − ν∆u., where the proper function spaces will be defined for each of the
methods throughout the article.
In practice, those measurements are obtained at limited spatial resolution –given by the voxel size in the
image – and therefore the velocity entering to the right-hand-side corresponds to an interpolated version
of the exact velocity. Therefore, there is not a unique numerical approach to compute the reconstructed
pressures. A review and preliminary numerical comparison of methods can be found in [2]. Among those
methods, only a few can compute pressure fields and not just averaged pressure differences between two
locations.
The first one is the so-called Pressure Poisson Estimator (PPE) [4, 15] and it consists of applying the
divergence to the NSE obtaining a pressure Poisson equation, similarly as it is used in projection methods
[7]. However, the original PPE method cannot include the viscous contribution to the pressure gradient at
the level of accuracy of the measured data. Therefore, recently in [13] the PPE method was modified by
adding a boundary term with the viscous contribution.

Email addresses: rodolfo.araya@udec.cl (Rodolfo Araya), c.a.bertoglio@rug.nl (Cristobal Bertoglio),
ccarcamo@udec.cl (Cristian Cárcamo)
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Another more modern method corresponds to the Stokes Estimator (STE) was reported in [18]. The STE
consists in adding to the NSE the Laplacian of an artificial incompressible velocity field with null trace
leading to a linear Stokes problem for both pressure and artificial velocity fields. Such artificial velocity is
supposed to be zero for perfect velocity measurements. The STE has shown more accurate results than the
PPE in numerically simulated data [18, 2] and in real phantom and patient data [11]. However, the STE
method is considerably more expensive computationally than the PPE.
To the best of the authors’ knowledge, neither a mathematical convergence analysis of both PPE and STE
methods or a comparison among discretization schemes for each of the methods has been reported.
Therefore, the purpose of this work is to propose a strategy for performing a priori error analysis and
applied it to the PPE and STE methods. The strategy is based on the splitting of the solution in two
components and adding their contributions to the overall error. Moreover, for both methods we studied
different discretization strategies in order to verify the theoretical analysis and give insights on the cost-
effectiveness of each approach.
The remainder of this work is organized as follows. In Section 2 we present and analyze the PPE method
in the standard and modified variants using Continuos Galerkin approaches. Section 3 introduces the STE
and analyzes the classical Taylor-Hood and a tailored PSPG discretization. Then, in Section 4 we show
numerical results using three known analytical solutions for the NSE, confirming the a priori error analysis.
Finally, in Section 5 we draw some conclusions.

2. The Poisson Pressure Estimator

2.1. The continuous problem

The Poisson Pressure Estimator (PPE) consists in obtaining the pressure from the classical Navier-Stokes
equation by mean a Poisson equation. That is, by applying the divergence operator on equation (1) one gets

−∆q = ∇ · fu, in Ω

− ∂q
∂n = fu · n, on ∂Ω∫

Ω
q dx = 0,

(2)

with n the outward normal vector of ∂Ω.
In the sequel, we will make use of the following function spaces H := [H1(Ω)]d,V := [H1

0 (Ω)]d,

Hj :=


{
v ∈H : ∆v ∈ [L2(Ω)]d

}
if j = 1

{
v ∈H : ∇× (∇× u) ∈ [L2(Ω)]d

}
if j = 2

and

Qj :=


{
r ∈ H1(Ω) :

∫
Ω
rdx = 0

}
if j = 1

{
r ∈ H1(Ω) : n · curl r ∈ L2(∂Ω) and

∫
Ω
r dx = 0

}
if j = 2

Assuming u ∈Hj , the weak formulation of (2) is given by: Find q ∈ Qj such that

A(q, r) = F ju(r), ∀ r ∈ Qj , (3)

where A(q, r) := (∇q,∇r)Ω and

F ju(r) := −((u · ∇)u,∇r)Ω + δ1j(ν∆u,∇r)Ω + δ2j〈n×∇r, ν∇× u〉∂Ω, (4)

with δij is the Kronecker delta. We refer to Standard-PPE if j = 1 and Modified-PPE if j = 2 [13].
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The uniqueness of the solution of Problem (3) follows from the Lax-Milgram lemma [5]. Indeed, the coercivity
of the left-side is straightforward. The continuity of F ju is obtained thanks to the identity

− (∇r, ν∇× (∇× u))Ω = 〈n×∇r, ν∇× u〉∂Ω, (5)

and then

|F ju(r)| ≤ (‖(u · ∇)u‖0,Ω + δ1jν‖∆u‖0,Ω + δ2jν‖∇ × (∇× u)‖0,Ω)|r|1,Ω

2.2. Continuous Galerkin discretizations

Let us denote by {Th}h a regular family of triangulations of Ω̄ composed of simplex K of diameter hK . We
will denote by h the mesh size, where h = max {hK : K ∈ Th}.

The finite element spaces for the pressure and velocity approximation are:

Qjh := {qh ∈ Qj : qh|K ∈ Pk(K) ∀K ∈ Th} ,
Hjh :=

{
vh ∈Hj : vh|K ∈ P1(K)d ∀K ∈ Th

}
,

where Pk stands for the space of polynomials of total degree less or equal to an integer k ≥ 1.
We will also consider the Lagrange interpolation operators Jh : Qj ∩ Hk+1(Ω) → Qjh and Lh : Hj ∩
H2(Ω)d →Hjh, which satisfy:

|q − Jhq|m,Ω ≤ ak hk+1−m|q|k+1,Ω, ∀ q ∈ Hk+1(Ω), 0 ≤ m ≤ k + 1.

|v − Lhv|m,Ω ≤ ak h2−m|v|2,Ω, ∀ v ∈ H2(Ω)d, 0 ≤ m ≤ 2.
(6)

The aim is now to find and approximation of the pressure field qh ≈ q from measurements of u which will
be given by Lhu.
Thus, the Galerkin scheme associated with the continuous variational formulation (3) – and replacing u by
Lhu – reads as follows: Find qh ∈ Qjh such that

A(qh, rh) := F juh
(rh) ∀ rh ∈ Qjh, (7)

with

F juh
(rh) := −((Lhu · ∇)Lhu,∇rh)Ω + δ1j(ν∆Lhu,∇rh)Ω + δ2j〈n×∇rh, ν∇×Lhu〉∂Ω, (8)

Lax-Milgram’s lemma gives that (7) has a unique solution qh ∈ Qjh.

Remark 1. Note that, from the definitions (4) and (8), problem (7) is not a Galerkin scheme of the
continuous problem (3).

The strategy to prove convergence is to use an auxiliary solution of the discrete problem, but without
interpolate the velocity u. Indeed, let us consider the auxiliary problem given by: Find q̃h ∈ Qjh such that

A(q̃h, rh) := F ju(rh) ∀ rh ∈ Qjh, (9)

with u ∈Hj .
In order to prove the convergence theorems, we need first to state the next result.

Lemma 1. Let us assume that u ∈ H2(Ω)d and define

T (a1, a2,u, h) := a1‖u‖0,Ω + a2h|u|1,Ω + a1 a2 h
2|u|2,Ω. (10)

where a1, a2 are the error interpolation constants given in (6). Then,

‖(u · ∇)u− (Lhu · ∇)Lhu‖0,Ω ≤ h|u|2,ΩT (a1, a2,u, h). (11)
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Proof. Using (6) and Young inequality we have

‖(u · ∇)u− (Lhu · ∇)Lhu)‖0,Ω = ‖(u · ∇)(u− Lhu) + ((u− Lhu) · ∇)Lhu‖0,Ω
≤ |u− Lhu|1,Ω‖u‖0,Ω + |Lhu|1,Ω‖u− Lhu‖0,Ω
≤ |u− Lhu|1,Ω‖u‖0,Ω + |u|1,Ω‖u− Lhu‖0,Ω + |u− Lhu|1,Ω‖u− Lhu‖0,Ω
≤ a1h|u|2,Ω‖u‖0,Ω + |u|1,Ωa2h

2|u|2,Ω + a1h|u|2,Ωa2h
2|u|2,Ω

= h|u|2,Ω
(
a1‖u‖0,Ω + a2h|u|1,Ω + a1a2h

2|u|2,Ω
)

= h|u|2,Ω T (a1, a2,u, h)

(12)

�
In the sequel we will use the notation TK(a1, a2,u, h), where the norms of u are defined on the element K.

Lemma 2. Let q and q̃h solutions of (3) and (9), respectively, and assume that q ∈ Qj ∩ Hk+1(Ω) with
k ≥ 1. Then, there exists ak > 0, independent of h, such that

|q − q̃h|1,Ω ≤ akh
k|q|k+1,Ω. (13)

Proof. See [5]. �

Lemma 3. Let qh and q̃h in Qjh be solutions of (7) and (9), respectively, and assume that u ∈Hj∩H2(Ω)d

if j = 1 and u ∈Hj with u
∣∣
∂Ω
∈ H2(∂Ω)d if j = 2. Then,

|qh − q̃h|1,Ω ≤ hT (a1, a2,u, h)|u|2,Ω + δ1,jν‖∆u‖0,Ω + δ2,jC̃ ν h
1/2|u|2,∂Ω,

where T (a1, a2,u, h) is given as in Lemma 1.

Proof. We consider the coercivity of the bilinear form A and the Cauchy-Schwarz inequality. Then,

|qh − q̃h|1,Ω ≤ sup
rh∈Qjh

rh 6=0

|A(qh − q̃h, rh)|
|rh|1,Ω

= sup
rh∈Qjh

rh 6=0

|F ju(rh)− F kuh
(rh)|

|rh|1,Ω

≤ ‖(u · ∇)u− (Ihu · ∇)Ihu‖0,Ω + δ1,j‖∆u‖0,Ω + δ2,j sup
rh∈Qjh

rh 6=0

|〈n×∇rh, ν∇× (u− Ihu)〉∂Ω|
|rh|1,Ω

.

To bound the first term in above inequality we use Lemma 1, and for the third term we have

|〈n×∇rh, ν∇× (u− Ihu)〉∂Ω|
|rh|1,Ω

≤ ν ‖∇rh‖0,∂Ω‖∇ × (u− Ihu)‖0,∂Ω

|rh|1,Ω
(14)

Now, thanks to [3, Lemma 1.46], we have

‖∇rh‖0,∂Ω ≤ Ctrh−1/2|rh|1,Ω, (15)

with Ctr :=

(
(k + 1)(k + 2)

2

)1/2

(see [20, Theorem 3]). Besides, from [17, Lemma 10.8], we get

‖∇ × (u− Ihu)‖0,∂Ω ≤ |u− Ihu|1,∂Ω ≤ a2,I h |u|2,∂Ω. (16)
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thus, from (14), (15) and (16), we arrive at

|〈n×∇rh, ν∇× (u− Ihu)〉∂Ω|
|rh|1,Ω

≤ Ctr a2,I ν h
1/2|u|2,∂Ω.

�
Finally, the next theorem holds.

Theorem 1 (Main Result I). Let q ∈ Qj ∩Hk+1(Ω) and qh ∈ Qjh solutions of (3) and (7), respectively.
In addition, assume that u ∈ Hj ∩ H2(Ω)d and u ∈ Hj with u

∣∣
∂Ω
∈ H2(∂Ω)d, for j = 1 and j = 2,

respectively. Then,

|q − qh|1,Ω ≤ akh
k|q|k+1,Ω + δ1,jν‖∆u‖0,Ω + δ2,j Ctr a2,I ν h

1/2|u|2,∂Ω + hT (a1, a2,u, h)|u|2,Ω.

with k ≥ 1.

Proof. It follows directly from Lemmas 2 and 3. �

Corollary 1. Assuming that the hypothesis of Theorem 1 hold. Then,

‖q−qh‖0,Ω ≤ ak C4 Cp h
k+1 |q|k+1,Ω+Cp δ1,j ν‖∆u‖0,Ω+δ2,jCpCtr a2,I ν h

1/2|u|2,∂Ω+CphT (a1, a2,u, h)|u|2,Ω,

with q̃h solution of (9) and k ≥ 1.

Proof. The proof consists in to apply Poincaré’s inequality [1, Theorem 3.2] to obtain

‖q − q̃h‖0,Ω ≤ Cp|q − q̃h|1,Ω.

and to solve the elliptic problem
−∆r = q − q̃h,

with the zero Dirichlet boundary conditon, and apply Aubin-Nitsche Lemma [5, Lemma 2.31] and Theorem
3. �

3. The Stokes Estimator

3.1. The continuous problem

The STE method consists in adding the Laplacian of an incompressible auxiliary velocity w ∈ V to the
left-hand side of (1):

−∆w +∇q = −fu in Ω

∇ ·w = 0 in Ω. (17)

Let us define the space P := L2
0(Ω). The weak problem associated to (17) is given by: Find (w, q) ∈ V×P

such that

B((w, q), (v, r)) = Gu(v, r) ∀(v, r) ∈ V × P, (18)

where

B((w, q), (v, r)) := (∇w,∇v)Ω−(q,∇·v)Ω+(r,∇·w)Ω and Gu(v, r) := −((u·∇)u,v)Ω−ν(∇u,∇v)Ω.
(19)

For the analysis, we will use the following norm

‖(v, r)‖V×P := |v|1,Ω + ‖r‖0,Ω,
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and if F is an linear functional operator we use the norm

‖F‖(V×P )′ := sup
(v,r)∈V×P

(v,r) 6=0

|F (v, r)|
‖(v, r)‖V×P

(20)

Note that the problem (18) is well posed thanks to the V−ellipticity of the bilinear form (∇w,∇v)Ω, and
that (q,∇ ·w)Ω satisfy an inf-sup condition (cf. [5, Prop. 2.36]).

Lemma 4. There exists a positive constant CB such that

‖B‖ ≤ CB.

Proof. Using triangular inequality and Cauchy-Schwarz inequality, we get

|B((w, q), (v, r))| ≤ |w|1,Ω|v|1,Ω +
√
d‖q‖0,Ω|v|1,Ω +

√
d‖r‖0,Ω|w|1,Ω

≤
√
d|w|1,Ω|v|1,Ω +

√
d‖q‖0,Ω|v|1,Ω +

√
d‖r‖0,Ω|w|1,Ω

≤
√
d(|w|21,Ω + |w|21,Ω + ‖q‖0,Ω)1/2(|v|21,Ω + |v|21,Ω + ‖r‖0,Ω)1/2

≤ CB(|w|21,Ω + ‖q‖20,Ω)1/2(|v|21,Ω + ‖r‖20,Ω)1/2

≤ CB‖(w, q)‖V×P ‖(v, r)‖V×P ,

and the result is obtained directly, with CB := 2
√
d. �

3.2. Discrete spaces

Now, we define the following finite-dimensional spaces:

Wh :=
{
vh ∈ [H1(Ω)]d : vh|K ∈ Pl(K)d ∀K ∈ Th

}
,

Ph := {qh ∈ P : qh|K ∈ Pk(K) ∀K ∈ Th} , (21)

Hh :=
{
wh ∈H : wh|K ∈ P1(K)d ∀K ∈ Th

}
.

For our error analysis we will need to make use of some known results.

Theorem 2. For all w ∈ Pl(K)d there holds,

‖∇w‖0,K ≤
√
κl
|∂K|
|K|
‖w‖0,K . (22)

For d = 2, it holds κ1 = 6 and κ2 =
45

2
.

Proof. See [12, Theorem 2] �

Corollary 2. Assuming in Theorem 2 that d = 2 and l = 1, there holds

‖∇w‖0,K ≤ CIh−1
K ‖w‖0,K , (23)

where CI =
6
√
κ1

sin2(θ)
, being θ the minimun angle of the element K.

Proof. The proof is a direct consequence of the minimum angle condition and Theorem 2. �
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3.3. Taylor–Hood discretization

For the discrete STE we set Vh = Wh ∩V. Note that the inf–sup conditions requires the use of different
discrete spaces to approximate the velocity and the pressure. In our case, we will use the so-called Taylor-
Hood spaces, where l = k+ 1. Otherwise, it is not possible to use conforming spaces of lowest order for the
discrete velocity.
Let us consider the property of interpolation operator Ih : V ∩ [Hk+1(Ω)]d → Vh :

|w − Ihw|m,Ω ≤ ak hk+1−m|w|k+1,Ω, ∀w ∈ [Hk+1(Ω)]d, 0 ≤ m ≤ k + 1, (24)

Thereby, the discrete version of the problem (18) reads as follows: Find (wh, qh) ∈ Vh × Ph such that

B((wh, qh), (vh, rh)) = Guh
(vh, rh) ∀(vh, rh) ∈ Vh × Ph, (25)

where the bilinear form B is like in the continuous case, and

Guh
(vh, rh) := −((Lhu · ∇)Lhu,vh)Ω − ν(∇Lhu,∇vh)Ω, (26)

with Lh : [H2(Ω)]d −→Hh a Lagrange interpolant.

Lemma 5. There exists a constant β1 > 0, independent of h, such that

sup
(vh,rh)∈Vh×Ph

(vh,rh) 6=0

B((wh, qh), (vh, rh))

‖(vh, rh)‖V×P
≥ β1‖(wh, qh)‖V×P , ∀ (wh, qh) ∈ Vh × Ph.

Proof. See equation [6, (1.39)] and [6, Corollary 4.1] �
For the next result, we consider the pair (w̃h, q̃h) ∈ Vh × Ph, such that

B((w̃h, q̃h), (vh, rh)) = Gu(vh, rh) ∀(vh, rh) ∈ Vh × Ph, (27)

where Gu(vh, rh) := −((u · ∇)u,vh)0,Ω − ν(∇u,∇vh)Ω, with the continuous velocity u. Let us recall the
following convergence result.

Lemma 6. Let (w, q) and (w̃h, q̃h) solutions of (18) and (27), respectively. Assume that (w, q) ∈ [H1
0 (Ω)∩

Hk+1(Ω)]d × [L2
0(Ω) ∩Hk(Ω)], with k ≥ 1. Then, there exists C > 0, independent of h, such that

‖(w − w̃h, q − q̃h)‖V×P ≤ C1C2h
k
(
|w|k+1,Ω + |q|k,Ω

)
,

with C2 = 1 +
CB
β1

and β1 being the constant given in Lemma 5.

Proof. See [5, Lemma 2.44]
�

In order to show the convergence of qh (Main Result I, see later Theorem 3), we set the following Lemma.

Lemma 7. Let (wh, qh), (w̃h, q̃h) ∈ Vh × Ph, solutions of (25) and (27) respectively, and β1 the constant
given in Lemma 5. Then,

‖(w̃h −wh, q̃h − qh)‖V×P ≤ β−1
1 ‖Gu − Guh

‖(V×P )′

with (Gu − Guh
)(vh, rh) := −((u · ∇)u− (Lhu · ∇)Lhu,vh)Ω − ν(∇u−∇Lhu,∇vh)Ω.
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Proof. By Lemma 5 together with the Cauchy - Schwarz inequality, we arrive to the inequality

β1‖(w̃h −wh, q̃h − qh)‖V×P ≤ sup
(vh,rh)∈Vh×Ph

(vh,rh) 6=0

B((w̃h −wh, q̃h − qh), (vh, rh))

‖(vh, rh)‖V×P

= sup
(vh,rh)∈Vh×Ph

(vh,rh) 6=0

Gu(vh, rh)− Guh
(vh, rh)

‖(vh, rh)‖V×P

= sup
(vh,rh)∈Vh×Ph

(vh,rh) 6=0

(Gu − Guh
)(vh, rh)

‖(vh, rh)‖V×P

≤ ‖Gu − Guh
‖(V×P )′.

�

Lemma 8. Let Gu and Guh
be as in (19) and (26) respectively and denote by (V × P )′ the dual space of

the product space V × P . In addition, we assume that u ∈ [H2(Ω)]d. Then

‖Gu − Guh
‖(V×P )′ ≤ h|u|2,Ω

[
CpT (a1, a2,u, h) + ν a1

]
.

Proof.

‖Gu(vh, rh)− Guh
(vh, rh)‖0,Ω ≤ ‖(u · ∇)u− (Lhu · ∇)Lhu)‖0,Ω‖vh‖0,Ω + ν‖∇u−∇Lhu‖0,Ω‖∇vh‖0,Ω.

For the first term of the right-hand side, we use Lemma 1.
For the second term of the right-hand-side, we have from the interpolation bounds:

‖∇(u− Lhu)‖0,Ω ≤ a1h|u|2,Ω.

Finally, using the above inequalities and Poincaré inequality we get

‖(Gu − Guh
)(vh, rh)‖0,Ω ≤ h|u|2,Ω

[
Cp T (a1, a2,u, h) + ν a1

]
|vh|1,Ω

≤ h|u|2,Ω
[
Cp T (a1, a2,u, h) + ν a1

]
‖(vh, rh)‖V×P ,

Thereby, we arrive straight to the result of the lemma.
�

Finally, we can derive the first main convergence result.

Theorem 3 (Main Result II). Let (wh, qh), (w̃h, q̃h) ∈ Vh × Ph, solutions of (25) and (27) respectively
and u the exact velocity. Also, assume that (w, q) ∈ [H1

0 (Ω)∩Hk+1(Ω)]d×[L2
0(Ω)∩Hk(Ω)] and u ∈ [H2(Ω)]d.

Then,

|w −wh|1,Ω + ‖q − qh‖0,Ω ≤C1C2h
k
(
|w|k+1,Ω + |q|k,Ω

)
+ β−1

1 h|u|2,Ω
(
ρCp T (a1, a2,u, h) + µa1

)
.

Proof. The proof follows from Lemmas 7, 8 and 10. �
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3.4. Stabilized PSPG discretization

Let us consider again the Stokes problem given in (17) and its respective variational formulation (18). We
will now analyze the PSPG Stabilization [8] with the end of comparing the error of convergence between
the pressure obtained with both schemes.
Let us now consider the spaces

P̃ :=
{
r ∈ L2

0(Ω) : r|K ∈ H1(K)
}

P̃h :=
{
qh ∈ P̃ : qh|K ∈ Pk(K) ∀K ∈ Th

}
,

and to use the same space for the auxiliar velocity Wh defined in (21).
The goal now is to use the same polynomial order for both unknowns, i.e., we wil hand k = l. The stabilized
formulation that we will use is given by

Bs((wh, qh)(vh, rh)) = Gsuh
(vh, rh) (28)

where

Bs((wh, qh)(vh, rh)) := B((wh, qh)(vh, rh)) +
∑
K∈Th

δ h2
K(∇qh,∇rh)K

Gsuh
(vh, rh) := Guh

(vh, rh) +
∑
K∈Th

δ h2
K(−fuh

,∇rh)K

with B((·, ·), (·, ·)) and Guh
(·, ·) defined as in (26), and

fuh
:= (Lhu · ∇)Lhu. (29)

Remark 2. Note that the term ∆wh is not included in the stabilization. This is possible to do while keeping
strong consistency since w = 0. Our choice allows also to avoid conditional well-posedness of the discrete
solution as in standard PSPG stabilized formulations.

Let us define the mesh-dependent norm on the product space V × P̃

‖(v, r)‖2h := Bs((v, r), (v, r)) = ‖∇v‖20,Ω +
∑
K∈Th

δh2
K‖∇r‖20,K . (30)

Remark 3. It is possible to prove that ‖(vh, rh)‖h ≤ Ceq ‖(vh, rh)‖V×P for all (vh, rh) ∈ Vh× P̃h. Indeed,
applying the inequality (23) and the previous assumptions we get

‖(vh, rh)‖2h := ‖∇vh‖20,Ω +
∑
K∈Th

δh2
K‖∇rh‖20,K ≤ ‖∇vh‖20,Ω + δC2

I ‖rh‖20,Ω ≤ max
{

1, δC2
I

}
(‖∇vh‖20,Ω + ‖rh‖20,Ω),

and then,
‖(vh, rh)‖h ≤ Ceq‖(vh, rh)‖V×P , (31)

with

Ceq :=

[
max

{
1, δC2

I

} ]1/2

Lemma 9.
‖Bs‖ ≤ CBs := max

{
CB,
√
δCeq CI

}
(32)
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Proof. Using the inequalities (23) and (31), Theorem 4 and Cauchy-Schwarz inequality, we obtain that

|Bs((wh, qh), (vh, rh))| ≤ ‖B‖‖(wh, qh)‖V×P ‖(vh, rh)‖V×P +
∑
K∈Th

δh2
K‖∇qh‖0,K‖∇rh‖0,K

≤ CB‖(wh, qh)‖V×P ‖(vh, rh)‖V×P +

( ∑
K∈Th

δh2
K‖∇qh‖20,K

)1/2( ∑
K∈Th

δh2
K‖∇rh‖20,K

)1/2

≤ CB‖(wh, qh)‖V×P ‖(vh, rh)‖V×P +

( ∑
K∈Th

δC2
I ‖qh‖20,K

)1/2

‖(vh, rh)‖h

≤ CBs‖(wh, qh)‖V×P ‖(vh, rh)‖V×P ,

and then the result follows.
�

In the next lemmas we will consider the pair (w̃h, q̃h) ∈ Vh × P̃h which is the solution of

Bs((wh, qh)(vh, rh)) = Gsu(vh, rh), ∀ (vh, rh) ∈ Vh × P̃h (33)

where
Gsu(vh, rh) := Gu(vh, rh) +

∑
K∈Th

δ h2
K(fu,∇rh)K .

We highlight that the solvability of the problem (33) has been guaranteed in [8].

Lemma 10. Let (w, q) and (w̃h, q̃h) solutions of (18) and (33), respectively. Assume that (w, q) ∈ [H1
0 (Ω)∩

Hk+1(Ω)]d × [L2
0(Ω) ∩Hk(Ω)] . Then, there is C > 0, independent of h, such that

|w − w̃h|1,Ω + ‖q − q̃h‖0,Ω ≤ C1 C3 h
k
(
|w|k+1,Ω + |q|k,Ω

)
with C3 := 1 + ‖Bs‖.

Proof. We note that (w, q) and (w̃h, q̃h) satisfy the orthogonality property

Bs((w − w̃h, q − q̃h), (vh, rh)) = 0 ∀ (vh, rh) ∈ Vh × P̃h.

Indeed, thanks to the consistency of the scheme we get

Bs((w − w̃h, q − q̃h), (vh, rh)) = B((w − w̃h, q − q̃h), (vh, rh)) +
∑
K∈Th

δh2
K(∇q,∇rh)K

−
∑
K∈Th

δh2
K(∇q̃h,∇rh)K

=
∑
K∈Th

δh2
K(fu,∇rh)K −

∑
K∈Th

δh2
K(fu,∇rh)K

= 0.

By the triangle inequality we can obtain,

‖(w − w̃h, q − q̃h)‖V×P = |w − Ihw + Ihw −wh|1,Ω + ‖q − Jhq + Jhq − qh‖0,Ω
≤ ‖(w − Ihw, q − Jhq)‖V×P + ‖(w̃h − Ihw, q̃h − Jhq)‖V×P . (34)

For the second term of the right-hand side, we use [8, Lemma 4.4], to obtain

‖(w̃h − Ihw, q̃h − Jhq)‖V×P ≤ sup
(vh,rh)∈Vh×Ph

(vh,rh)6=0

Bs((w̃h − Ihw, q̃h − Jhq), (vh, rh))

‖(vh, rh)‖h
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= sup
(vh,rh)∈Vh×Ph

(vh,rh)6=0

Bs((w − Ihw, q − Jhq), (vh, rh))

‖(vh, rh)‖h

≤ ‖Bs‖‖(w − Ihw, q − Jhq)‖V×P ,

thus using (34), we get

‖(w − w̃h, q − q̃h)‖V×P ≤
(
1 + ‖Bs‖

)
‖(w − Ihw, q − Jhq)‖V×P

and thereby we arrive to

|w − w̃h|1,Ω + ‖q − q̃h‖0,Ω ≤ C1C3h
k
(
|w|k+1,Ω + |q|k,Ω

)
.

�

Lemma 11. Let (w̃h, q̃h) and (wh, qh) be solutions of (33) and (28), respectively. Additionally, we assume
that u ∈ H2(Ω)d. Then, the following bound is satisfied:

‖(w̃h −wh, q̃h − qh)‖h ≤‖Gu − Guh
‖(V×P )′ +

√
δh2T (a1, a2,u, h)|u|2,Ω +

√
δνh‖∆u‖0,Ω,

Proof. Let ewh := w̃h −wh and eqh := q̃h − qh. Then, thanks to the stability of Bs given in (30), we have

‖(ewh , e
q
h)‖h =

Bs((ewh , e
q
h)(ewh , e

q
h))

‖(ewh , e
q
h)‖h

≤ sup
(vh,rh)∈Vh×Ph

(vh,rh)6=0

Bs((ewh , e
q
h)(vh, qh))

‖(vh, qh)‖h

= sup
(vh,rh)∈Vh×Ph

(vh,rh)6=0

Gsu(vh, rh)− Gsuh
(vh, rh)

‖(vh, qh)‖h

= sup
(vh,rh)∈Vh×Ph

(vh,rh)6=0

Gu(vh, rh)− Guh
(vh, rh)−

∑
K∈Th

δh2
K(fu − fuh

,∇rh)K

‖(vh, qh)‖h

We take the term within sum, making use of the Cauchy-Schwarz inequality and proceeding similarly as in
(12), we obtain

−
∑
K∈Th

δh2
K(fu − fuh

,∇rh)K =
∑
K∈Th

δh2
K((u · ∇)u− (Lhu · ∇)Lhu,∇rh)K

− ν
∑
K∈Th

δh2
K(∆u,∇rh)K

≤
∑
K∈Th

δh2
K‖(u · ∇)u− (Lhu · ∇)Lhu‖0,Ω‖∇rh‖0,K

+ ν
∑
K∈Th

δh2
K‖∆u‖0,K‖∇rh‖0,K

≤
( ∑
K∈Th

δh2
K‖(u · ∇)u− (Lhu · ∇)Lhu‖20,K

)1/2( ∑
K∈Th

δh2
K‖∇rh‖20,K

)1/2

+ ν

( ∑
K∈Th

δh2
K‖∆u‖20,K

)1/2( ∑
K∈Th

δh2
K‖∇rh‖20,K

)1/2

≤
√
δ

[ ∑
K∈Th

h4
KT

2
K(a1, a2,u, h)|u|22,K

]1/2

‖(vh, rh)‖h
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+ ν
√
δ

( ∑
K∈Th

h2
K‖∆u‖20,K

)1/2

‖(vh, rh)‖h

≤
√
δh2T (a1, a2,u, h)|u|2,Ω‖(vh, rh)‖h + ν

√
δh‖∆u‖0,Ω‖(vh, rh)‖h.

�
The main result of this section is given in the following Theorem

Theorem 4 (Main Result III). Assume that the hypothesis of Theorem 3 hold. Then,

|w −wh|1,Ω + ‖q − qh‖0,Ω ≤C1C3h
k
(
|w|k+1,Ω + |q|k,Ω

)
+ h|u|2,Ω

[
CpT (a1, a2,u, h) + ν a1 +

√
δT (a1, a2,u, h)

]
+ ν
√
δh‖∆u‖0,Ω.

Proof. The result follows from Lemmas 8, 10 and 11. �

4. Numerical Results

In this section we present some numerical examples to illustrate the theoretical results previously described.
We also provide the error bounds, except for the Modified-PPE since to the best of our knowledge values
for the interpolation constant a2,I have not been reported. The legends in the plots follow the notation:

• b1: Bound performed with P1.

• b2: Bound performed with P2.

• e1(q): Pressure error in L2−norm with P1

• e2(q): Pressure error in L2−norm with P2,

where bi corresponds to the right-side of every main result, and

ei(q) =
‖q − qh‖0,Ω
‖q‖0,Ω

,

with i = 1, 2. For the STE, the bounds correspond to the ones from the theorems minus the |wh|1,Ω, since
w = 0.

We consider Cp as the Poincaré constant, with Cp =
DΩ

π
if the Ω is convex. Moreover, in [9, Theorem 2]

the authors proved that a1 = 0.4923φ(θ) and a2 =
√

12(1 + | cos θ|), with φ(θ) := 1+| cos θ|√
1−| cos θ|

where θ is the

maximum angle of the mesh.

Example 1. For the first example, we consider the exact solution of the two dimensional Kovasznay flow

u(x, y) =

(
1− eλx cos(2πy)
λ
2π e

λx sin(2πy)

)
, p(x, y) =

1

2
eλx − (e3λ − e−λ),

where Ω =

(
− 1

2
,

3

2

)
×
(
0, 2
)

and the parameter λ is given by λ =
1

2ν
−
√

1

4ν2
+ 4π2. For this ilustration

we have taken the Reynold number as in [14] which is given by Re =
1

ν
.

The convergence results are shown in figure 1 and the isovalues in figures 2, 3, 4 and 5.

Example 2. Next we turn to the testing the scheme, where the computational domain is the rectangle
Ω = [0, 1]2 and we consider the exact solution of the Navier-Stokes equation given by

u(x, y) = (
ν

4
ex sin(νy),

1

4
ex cos(νy)) and p(x, y) = −ν

2
e2x +

ν

4
(e2 − 1) (35)

The convergence results are shown in figure 6 and the isovalues in figures 7, 8, 9 and 10.
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Figure 1: Pressure error curves and bounds for viscosities values 1, 10−1, 10−2 and 10−3 of Example 1 (Kovaznay flow). The
figures for the modified PPE do not present the error bound as explained in the beginning of Section 4.
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Exact velocity Exact pressure Image mesh (h = 0.1768) Imaged velocity

STE (TH) STE (PSPG) PPE (mod) PPE (stand)

Figure 2: P1-interpolated reference velocity and pressure fields (top) and reconstructed pressure fields with order k = 1 (bottom)
for ν = 1 in Example 1 (Kovaznay flow).

Exact velocity Exact pressure Image mesh (h = 0.3536) Imaged velocity

STE (TH) STE (PSPG) PPE (mod) PPE (stand)

Figure 3: P1-interpolated reference velocity and pressure fields (top) and reconstructed pressure fields with order k = 1 (bottom)
for ν = 0.1 in Example 1 (Kovaznay flow).
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Exact velocity Exact pressure Image mesh (h = 0.7071) Imaged velocity

STE (TH) STE (PSPG) PPE (mod) PPE (stand)

Figure 4: P1-interpolated reference velocity and pressure fields (top) and reconstructed pressure fields with order k = 1 (bottom)
for ν = 0.01 in Example 1 (Kovaznay flow).

Exact velocity Exact pressure Image mesh (h = 0.7071) Imaged velocity

STE (TH) STE (PSPG) PPE (mod) PPE (stand)

Figure 5: P1-interpolated reference velocity and pressure fields (top) and reconstructed pressure fields with order k = 1 (bottom)
for ν = 0.001 in Example 1 (Kovaznay flow).
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Figure 6: Pressure error curves and bounds for viscosities values π/4, π/2, π and 2π of Example 2. The figures for the modified
PPE do not present the error bound as explained in the beginning of Section 4.
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Figure 7: P1-interpolated reference velocity and pressure fields (top) and reconstructed pressure fields with order k = 1 (bottom)
for ν = 2π in Example 2.
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STE (TH) STE (PSPG) PPE (mod) PPE (stand)

Figure 8: P1-interpolated reference velocity and pressure fields (top) and reconstructed pressure fields with order k = 1 (bottom)
for ν = π in Example 2.
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Figure 9: P1-interpolated reference velocity and pressure fields (top) and reconstructed pressure fields with order k = 1 (bottom)
for ν = π/2 in Example 2.

Exact velocity Exact pressure Image mesh (h = 0.3536) Imaged velocity

STE (TH) STE (PSPG) PPE (mod) PPE (stand)

Figure 10: P1-interpolated reference velocity and pressure fields (top) and reconstructed pressure fields with order k = 1
(bottom) for ν = π/4 in Example 2.
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5. Conclusions

This article is devoted to the error analysis of methods for approximation of the pressure from discrete
velocity fields, STE and PPE. The STE is analyzed using the classical Taylor-Hood finite element spaces
and pressure-stabilizing Petrov-Galerkin (PSPG). The PPE is analyzed using a continuous Galerkin method,
where two versions of the PPE have been considered, the classical approach without the viscous term and
a new approach with a boundary viscous term as proposed in [13].
Due to the piecewise linear nature of the measured velocities, the error bounds show terms of different
convergence orders. However, for the numerical examples with polynomial order 1 and 2 for the pressure
mainly convergence order 1 is observed. Therefore, in contrast to a classical problem solved by finite elements
with analytical right-hand-side, here we can see that it is not worth to increment of the polynomial order.
A result that draws attention is that in each example the relative error decreases when the Reynolds number
increases possibly due to the reduced viscous contribution which appear to be more difficult to retrieve for
all methods.
The numerical results show that the methods of choice are the STE-PSPG and the Modified-PPE leading
to the best error-cost relations. However, it remains to be clarify if the modification of the PPE achieve
comparable accuracies using measured MRI data in real arteries, where the viscous contribution appears to
be negligible and data has larger errors in the boundaries due to imaging artifacts.
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