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We report results from searches for anisotropic stochastic gravitational-wave backgrounds using data
from the first three observing runs of the Advanced LIGO and Advanced Virgo detectors. For the first time,
we include Virgo data in our analysis and run our search with a new efficient pipeline called PyStoch on data
folded over one sidereal day. We use gravitational-wave radiometry (broadband and narrow band) to
produce sky maps of stochastic gravitational-wave backgrounds and to search for gravitational waves
from point sources. A spherical harmonic decomposition method is employed to look for gravitational-
wave emission from spatially-extended sources. Neither technique found evidence of gravitational-wave
signals. Hence we derive 95% confidence-level upper limit sky maps on the gravitational-wave energy
flux from broadband point sources, ranging from Fα;Θ < ð0.013–7.6Þ × 10−8 erg cm−2 s−1 Hz−1, and on
the (normalized) gravitational-wave energy density spectrum from extended sources, ranging from
Ωα;Θ < ð0.57–9.3Þ × 10−9 sr−1, depending on direction (Θ) and spectral index (α). These limits improve
upon previous limits by factors of 2.9–3.5. We also set 95% confidence level upper limits on the frequency-
dependent strain amplitudes of quasimonochromatic gravitational waves coming from three interesting
targets, Scorpius X-1, SN 1987A and the Galactic Center, with best upper limits range from
h0 < ð1.7–2.1Þ × 10−25, a factor of ≥ 2.0 improvement compared to previous stochastic radiometer
searches.

DOI: 10.1103/PhysRevD.104.022005

I. INTRODUCTION

The stochastic gravitational-wave background (GWB) is
composed of a combination of gravitational-wave signals
from many unresolved sources [1,2]. A major contribution
is expected to be of astrophysical origin, i.e., produced by
the superposition of gravitational-wave signals from unre-
solved individual sources such as binary black hole and
neutron star mergers [3–7], supernovae [8–12], or depleting
boson clouds around black holes [13–18]. The background
may also include signals of cosmological origin, i.e.,
produced in the early Universe during an inflationary
epoch [19–27], or as a direct result of phase transitions
[28–30], primordial black hole mergers [31–34], or other
associated phenomena [35]. Different models could, in
principle, be distinguished by characteristic features in the
angular distribution [36–47]. For example, cosmic strings
have an angular power spectrum which is sharply peaked at
small multipoles [48,49], while neutron stars in our Galaxy
would trace out the Galactic plane [50,51]. In this paper
we search for an anisotropic GWB using data from the
Advanced LIGO [52] and Advanced Virgo [53] gravita-
tional-wave detectors. This is the first time we have

included data from Virgo in a search for an anisotropic
GWB [54,55].
The three analyses presented in this paper rely on cross-

correlation techniques [56], which have been employed
extensively on gravitational-wave data in the past, and are
referred to as the broadband radiometer analysis (BBR)
[57,58], the spherical harmonic decomposition (SHD)
[59,60], and the narrow band radiometer analysis (NBR)
[61]. The BBR analysis targets a small number of resolv-
able, persistent point sources emitting gravitational waves
over a wide frequency band. The SHD analysis reconstructs
the harmonic coefficients of the gravitational-wave power
on the sky, and can identify extended sources with smooth
frequency spectra. Finally, the NBR analysis studies
frequency spectra from three astrophysically relevant sky
locations: Scorpius X-1 [62,63], Supernova 1987A [64,65],
and the Galactic Center [66,67]. Resolvable point sources
in the sky are not expected to follow an isotropic distri-
bution [68], underscoring the importance of analysis
techniques that can deal with anisotropic backgrounds.
For the first time, we employ data folding, a technique

that takes advantage of the temporal symmetry inherent to
Earth’s rotation, to combine the data from an entire
observation run into one sidereal day, greatly reducing
the computational cost of this search [69]. Furthermore, we*Full author list given at the end of the article.
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have employed the PYTHON based pipeline PyStoch [70] to
perform the analyses on folded data reported in this paper.
We do not find evidence for gravitational waves in any of

the three analyses and hence set direction-dependent upper
limits on the gravitational-wave emission. Though stringent
upper limits on the anisotropic GWB have been obtained in
the past [54,55,71], our new constraints improve upon
existing limits by a factor of ≥ 2.0.
This paper is structured as follows: Section II presents

the GWB model adopted in our analyses, and the search
methods used. Section III describes the datasets used in the
searches and briefly explains the data processing. Results
from all three analyses are presented in Sec. IV. Finally, we
conclude with the interpretation of our results in Sec. V.

II. METHODS

The goal of the anisotropic GWB search is to estimate
gravitational-wave power as a function of sky direction and
model its spatial distribution. The analyses presented in this
paper use the methods described in [56,59,72]. Assuming
an unpolarized, Gaussian and stationary GWB, the quad-
ratic expectation value of the gravitational-wave strain
distribution hAðf;ΘÞ across different sky directions and
frequencies can be written as

hh�Aðf;ΘÞhA0ðf0;Θ0Þi ¼ 1

4
Pðf;ΘÞδAA0δðf − f0ÞδðΘ;Θ0Þ;

ð1Þ

where A represents gravitational-wave polarization,
asterisk ( �) denotes the complex conjugate and Pðf;ΘÞ
characterizes the gravitational-wave strain power as a
function of frequency f and direction Θ. As in previous
searches [54,55] and suggested in the literature [56,73],
we factorize Pðf;ΘÞ into frequency and sky-direction
dependent components,

Pðf;ΘÞ ¼ HðfÞPðΘÞ; ð2Þ

where HðfÞ describes the spectral shape and PðΘÞ denotes
the angular distribution of gravitational-wave power. In our
analyses we model the spectral dependence HðfÞ as a
power-law given by

HðfÞ ¼
�

f

fref

�

α−3

; ð3Þ

where α is the spectral index and fref is a reference
frequency set to 25 Hz, as in past searches [54,55]. We
consider three values of α corresponding to different GWB
physical models: α ¼ 0, consistent with many cosmologi-
cal models, such as slow roll inflation and cosmic strings, in
the observed frequency band [35]; α ¼ 2=3, compatible
with an astrophysical background dominated by compact
binary inspirals [74]; and α ¼ 3, indicating a generic flat
strain spectrum [75].

We define the cross-correlation spectra from two detec-
tors ðI; JÞ evaluated at time t and frequency f as [56,59]

CIJðt; fÞ ¼
2

τ
s̃�I ðt; fÞs̃�Jðt; fÞ; ð4Þ

where s̃ðt; fÞ is the short-time Fourier transform of time
segment sðtÞ of duration τ. As shown in [59], the quadratic
expectation value of gravitational-wave strain can be
related to the above cross-correlation spectra CIJðt; fÞ by

hCIJðt; fÞi ¼ HðfÞ
Z

S2
dΘγIJðt;Θ; fÞ;PðΘÞ ð5Þ

where γIJðt;Θ; fÞ is a geometric function which encodes
the combined response of a detector pair to gravitational
waves [59]. The right-hand side of Eq. (5) can be rewritten
in terms of a set of basis functions, labeled by μ, on the
two-sphere (S2) as

hCIJðt; fÞi ¼ HðfÞγμPμ; ð6Þ

where the summation (or integration) over μ is understood.
For the SHD analysis reported in this paper, we employ the
spherical harmonics basis μ → lm and for the BBR and
NBR analyses we choose the pixel basis μ → Θ. In the
weak signal limit, the covariance matrix of the cross-spectra
CIJðt; fÞ is given by [56]

Nft;f0t0 ¼ δtt0δff0PIðt; fÞPJðt; fÞ; ð7Þ

where PI is the one-sided power spectrum of the data from
detector I.
Assuming a fiducial model for the signal spectral shape

HðfÞ and further assuming the detector noise spectra are
well estimated, the likelihood function relating CIJðt; fÞ
and Pμ can be written as

pðCIJðt; fÞjPμÞ ∝ expð½CIJðt; fÞ −HðfÞγμPμ��

N−1
ft;f0t0 ½CIJðt; fÞ −HðfÞγμPμ�Þ: ð8Þ

Maximizing the above likelihood function for Pμ

we get [59]

Pμ ¼ ðΓ−1ÞIJμνXIJ
ν ; ð9Þ

where

XIJ
ν ¼

X

t

X

f

ðγIJÞ�νðt; fÞ
HðfÞ

PIðt; fÞPJðt; fÞ
CIJðt; fÞ; ð10Þ

Γ
IJ
μν¼

X

t

X

f

ðγIJÞ�μðt;fÞ
H2ðfÞ

PIðt;fÞPJðt;fÞ
ðγIJÞνðt;fÞ: ð11Þ
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The vector Xν, often referred to as the “dirty map”, is a
convolution of the gravitational-wave power sky map
with the directional response function of a given baseline
IJ, and Γμν is called the Fisher information matrix. For a
network of detectors with multiple baselines, the combined
Xν and Γμν can be obtained by summing over all baseline
contributions as

Xν ¼
X

I

X

J>I

XIJ
ν ; ð12Þ

Γμν ¼
X

I

X

J>I

Γ
IJ
μν: ð13Þ

Using the above Fisher matrix and dirty map, we
estimate the GWB power Pμ, referred to as the “clean map”

P̂μ ¼
X

ν

ðΓ−1
R ÞμνXν; ð14Þ

which requires inverting the Fisher matrix Γμν. However,
the Fisher matrix tends to be singular as the detector pairs
are insensitive to certain sky directions or lm modes, and
hence a full inversion cannot be performed. Therefore we
use a regularized pseudoinverse (labeled by the subscript
‘R’ above) to obtain clean maps. We note here that
½ðΓ−1

R Þμμ�1=2 is used as the uncertainty estimate (standard

deviation) of P̂μ.
Different regularization techniques are employed in each

analysis based on the signal model assumed [54]. For the
BBR search we assume that the gravitational-wave power is
confined to a single pixel and there is no signal covariance
between neighboring pixels; hence, the inversion of the
Fisher matrix reduces to the inversion of its diagonal.
However, because of the detector response function, neigh-
boring pixels are indeed correlated and hence theBBR results
are valid only for a signal model in which we expect a small
number of well-separated gravitational-wave point sources.
On the other hand, the SHD analysis uses both the

diagonal and off-diagonal elements of the Fisher matrix,
and as in past searches, sets the smallest 1=3 of the
eigenvalues to infinity and also uses a finite maximum
value of l [54,59,60]. The choice of 1=3 is based on the
recovery of simulated injections carried out in refer-
ence [59]. This analysis is therefore well suited for
identifying extended sources on the sky, but not pointlike
sources which require all the l modes with l → ∞. SHD
analyses of the previous two LIGO/Virgo observing runs
chose the maximum l value lmax based on the diffraction-
limited angular resolution θ on the sky. This is determined
by the distance D between detectors and the most sensitive
frequency f in the analysis band [54]

θ ¼ c

2Df
; lmax ¼

π

θ
: ð15Þ

As in the previous directional searches, this method gives
lmax values of 3, 4, and 16 for the spectral indices α of 0,
2=3, and 3, respectively, for the Hanford-Livingston
baseline. The most sensitive frequency in the analysis
changes with α and hence we get different lmax for different
α. The baseline sensitivity (∝ 1=½PIPJ�) appearing in
Eqs. (10) and (11) acts as a weighting factor multiplying
γlmIJ ðt; fÞ, and hence, the cutoff on l also depends on the
baseline’s sensitivity among the network. Since the LIGO
detectors are more sensitive than the Virgo detector, lmax
values are largely determined by the Hanford-Livingston
baseline. Therefore, in this search, we make the same
choices for lmax for all baselines in the Hanford-
Livingston-Virgo network.
We note that, as described in [71,76–78], one could also

start in a pixel basis and transform the resultant pixel-based
maps into spherical harmonic coefficients. Sampling the
full pixel space accounts for the correlations between small
and large angular scales induced by the noncompactness of
the sky response (for details see [77]).
In the SHD analysis we calculate P̂lm in the spherical

harmonics basis and express the final result in terms of Ĉl,
a measure of squared angular power in mode l, which is
given by [59]

Ĉl ¼
�

2π2f3ref
3H2

0

�

2 1

1þ 2l

X

l

m¼−l

½jP̂lmj2 − ðΓ−1
R Þ

lm;lm�;

ð16Þ

where H0 is the Hubble constant taken to be H0 ¼
67.9 km s−1Mpc−1 [79]. Ĉl has units of sr−2 and Ĉl ¼ 1

corresponds to sufficient energy density in mode l alone to
have a closed universe. In addition, we also transform P̂lm

to P̂Θ and produce Ω̂α;Θ given by [59]

Ω̂α;Θ ¼ 2π2

3H2
0

f3refP̂α;Θ; ð17Þ

which is the gravitational-wave energy density in solid
angle Θ normalized by the critical energy density needed to
close the Universe.
In the BBR analysis, we estimate PΘ in a pixel basis and

report the final result in terms of the gravitational-wave
energy flux from solid angle Θ given by

F̂ α;Θ ¼ c3π

4G
f2refP̂α;Θ; ð18Þ

where G is the gravitational constant.
In the NBR analysis we measure gravitational-wave

strain power ĤðfÞ as a function of frequency at specific
sky locations by setting α ¼ 3 for HðfÞ and not summing
over frequency in Eqs. (10) and (11) i.e., ĤðfÞ ¼ XIJ

ν ðfÞ.

SEARCH FOR ANISOTROPIC GRAVITATIONAL-WAVE … PHYS. REV. D 104, 022005 (2021)

022005-3



However, the NBR analysis must consider source-
dependent effects when performing a search. In the case
of Scorpius X-1, a low-mass x-ray binary system, gravi-
tational-wave frequencies are expected to be broadened
[62] due to the binary motion of the source and the orbital
motion of Earth during the observation time [80]. To
account for these Doppler shifts, we sum the contributions
in multiple frequency bins and create optimally-sized
combined bins at each frequency. For more details of
combining frequency bins for Scorpius X-1 see
Ref. [54]. In the directions of SN 1987A and the
Galactic Center, we combine 3 and 17 frequency bins
respectively to account for the spread of an expected
monochromatic signal due only to the rotation and orbital
motion of the Earth [54]. Since the Galactic Center is at a
lower declination, the effect of the Earth’s motion becomes
significant and hence we combine more frequency bins.
To perform these three analyses, cross-correlation data

from each baseline is folded into one sidereal day by taking
advantage of a temporal symmetry of the observations
induced by the Earth’s daily rotation about its axis. We
therefore reduce the computational cost of this search by a
factor equal to the total number of days of observation [69].
For the NBR and BBR analyses, the folded data are

analyzed by PYTHON-based pipeline, PyStoch [70], which
takes advantage of the compactness of the folded data and
the standardization and optimizations of the well-known
HEALPix (Hierarchical Equal Area isoLatitude Pixelation)
PYTHON package [81] to reduce the computational cost and
memory requirements by a factor of a few compared to past
analyses.

III. DATA

For the three analyses, we use data from the third
observing run (O3) of Advanced LIGO [52] and
Advanced Virgo [53]. The detectors took this data between
April 1, 2019 and March 27, 2020, with a one month pause
in data collection in October 2019 and had duty factors of
77%, 75% and 76% for LIGO Livingston (L), LIGO
Hanford (H), and Virgo (V), respectively [82].
Similarly to previous analyses [54,55], we first prepro-

cess the data. The raw time-series strain data are down-
sampled from 16 kHz to 4 kHz. Then, the data are divided
into 192-second, 50% overlapping, Hann-windowed seg-
ments and filtered through a 16th order Butterworth high-
pass filter with a knee frequency of 11 Hz. The 192-second
segment duration is chosen so that we can identify narrow
spectral features in the data and at the same time not be
significantly affected by the changes in the response
functions of the detectors due to the Earth’s rotation. We
then Fourier transform the data, cross-correlate it between
three detector pairs (HL, HV, and LV), and coarse-grain
the resulting spectra to a frequency resolution of 1=32 Hz.
The cross-correlated data from each detector pair is
then folded into one sidereal day. Finally, the folded

cross-correlated data in the frequency domain are combined
from different 192-second sidereal segments and detector
pairs using Eqs. (10) and (11) to produce an estimate of
GWB power Pμ [69,83].
The sensitivities of cross-correlation based GWB

searches are adversely affected by non-Gaussian features
in the data. So we apply data quality cuts in time domain as
well as in frequency domain to remove the non-Gaussian
features associated with instrumental artifacts. Since the
sensitivities of cross-correlation based searches are propor-
tional to the square root of the total duration of the data
analyzed and to the square root of total bandwidth used,
these data quality cuts are a trade-off between the decrease
in sensitivity due to non-Gaussian features and the decrease
in sensitivity due to less time-frequency data being used.
In our analysis we use the same time domain cuts that

were applied in the O3 isotropic analysis [84] and only
analyze data segments during which the detectors were in
“observing mode” [82]. We apply a nonstationarity cut to
exclude data segments whose power spectral densities vary
by more than 20% relative to their neighboring segments.
We remove the first twoweeks of Hanford detector data due
to nonstationarities around the calibration lines at ∼36 Hz.
Since we are interested in the GWB produced by events not
explicitly detected by the LIGO-Virgo detector network, in
addition to the above cuts, we also remove three segments
(3 × 192 seconds) worth of data around the published
gravitational-wave events in the first half of O3 [85].
Since there is no complete list of confirmed events for
the second half of O3 yet, we remove times around the
nonretracted gravitational-wave event candidates in the
second half of O3 [86].
During this observing run, the Livingston and Hanford

detectors exhibited a large number of short-duration
glitches [82]. When left unchecked, these glitches induced
non-Gaussian effects in the cross-correlation and autocor-
relation power spectral density estimates and hence the
nonstationarity data cuts employed vetoed a significant
fraction of the viable data (> 50%). Since sensitivities of
the cross-correlation based searches are proportional to
the square root of the total duration of the data analyzed,
these glitches significantly reduce the sensitivities of the
searches. This prompted the development of a gating
procedure [87,88] which excludes the glitches by applying
an inverse Tukey window to Livingston and Hanford data at
times when the root-mean-square value of the whitened
strain channel in the 25–50 Hz band or 70–110 Hz band
exceeds a certain threshold. Gating has proven effective;
more data remains after the nonstationarity cuts, and the
background power spectral density behaves as expected for
uncorrelated Gaussian noise [84]. Furthermore, because of
gating, the nonstationarity cuts only remove 10.7%, 14.3%,
and 14.7% of segments from HL, HV and LV baselines,
respectively. Consequently, we analyzed 169 days of live
time for the HL baseline, 146 days for the HV baseline, and
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153 days for the LV baseline (which are longer than the
129 days of live time for the first two observing runs
combined [55]).
For the analyses reported in this paper, we use the

frequency band between 20 and 1726 Hz. In addition to the
time-domain cuts, we also remove problematic frequencies
from the analysis band. These frequencies are typically
associated with known instrumental features such as
calibration lines, power lines and their harmonics, hardware
injections of continuous gravitational-wave signals, etc.
[89] These frequencies are identified through coherence
studies between detector strain data as well as data from
auxiliary channels from the detector sites. In our analysis,
we remove problematic frequencies identified for the O3
isotropic stochastic analysis [84].
Even though gating removes short-duration transients

from the data, it introduces spectral artifacts around strong
lines, such as calibration lines, in detector data that
significantly affect the NBR analysis. These spectral
artifacts behave similar to nonstationarities around those
strong lines (for example, as shown in Fig. 1). Hence we
apply a threshold cut on the nonstationarity level in
individual detector power spectral densities to remove
these frequency regions of spectral artifacts. We remove
frequencies when the standard deviation of the power
spectral density at those frequencies exceeds the median
power spectral density obtained from the entire run. The
final list of frequencies notched in our current analysis can
be found in Ref. [90]. We note here that the sensitivity
loss due to these additional frequency notches from using

gated-data is at the level of a few percent while the sensitivity
loss due to not using gated-data is at the level of > 40%.
Hence we use gated-data with the additional frequency
notching in our analysis. Removing all these frequencies
cut approximately 14.8%, 25.2% and 21.9% of usable
bandwidth from the HL, HV and LV baselines respectively.
We note here that although we use the frequency band
between 20 and 1726 Hz, 99% of sensitivity for broadband
analyses comes from ≈20–300 Hz band [84].

IV. RESULTS AND DISCUSSIONS

A. Broadband radiometer

The sky maps obtained by combining data Eqs. (12) and
(13) from LIGO-Virgo’s past three observing runs (O1, O2
and O3) and from all three baselines HL, HVand LV (note
that only O3 is used for HV and LV analysis) are shown in
Fig. 2, where each column refers to a different spectral
index. The top row shows the signal-to-noise ratio (SNR),
which is the ratio of PΘ to ½ΓΘΘ�−1=2 in each sky direction.
These SNR maps are consistent with Gaussian noise (see

the p-values in Table I) and hence we place Bayesian upper
limits, shown in the bottom row of Fig. 2, on the
gravitational-wave energy flux from different sky direc-
tions. Due to the covariance between different pixels on the
sky, the maximum SNR distribution is computed numeri-
cally by simulating many realizations of the dirty map Xν

Eq. (12) with the covariances described by the Fisher
matrix Γμν Eq. (13). This maximum SNR distribution is
then used to calculate the p-values for a given sky map with
certain maximum SNR.
To evaluate the upper limits, we have used the techniques

presented in [91], where a posteriori is built from the
multivariate likelihood of the point estimate P̂Θ after a
marginalization over the calibration uncertainties. For all
the analyses reported in this paper, we use amplitude
calibration uncertainties of 7.0% for Hanford, 6.4% for
Livingston and 5% for Virgo data [92].
In contrast to the past BBR analysis, where a Cartesian

grid was used to pixelate the sky, here we employ HEALPix

pixelization scheme with nside ¼ 32, which implies
12n2side ¼ 12288 pixels, each with an area of 3 deg2.
The maximum SNR values observed in the sky maps for
different α, their associated p-values, and 95% confidence
upper limits on the gravitational-wave flux are reported in
Table I. These limits improve upon the previous limits
from O1þ O2 data by a median factor (across the sky) of
3.3–3.5, depending on α. We note here that the O1þ O2
upper limits reported in the last column of Table I differ
from those available in [55]. This is because we found that
the list of frequencies notched in the O2 analysis was not
the optimal one and hence we regenerated the O1þ O2
results by applying the appropriate frequency notching
[93]. The differences between the new and old O1þ O2
upper limits are at the level of ∼5%.

FIG. 1. Power spectral density spectrogram of the Hanford
detector data around the 410.3 Hz calibration line using a short
stretch of gated data. Each vertical column in the above plot
corresponds to a power spectral density estimate using a
192 second long segment. The purple dotted lines show the
region of the standard frequency notch around the calibration
line and the orange dashed lines show the frequency region
notched based on the nonstationarity level. We see that the latter
removes a good portion of the nonstationarity region around the
calibration line.
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Fig. 7 in the Appendix shows sensitivity maps of
individual baselines for different values of α. From these
plots we see that the sensitivity of the HL baseline is ∼3–10
times better than that of the HV and LV baselines, depend-
ing on α. Hence the final combined upper limit results are
dominated by the HL baseline.

B. Spherical harmonics analysis

The skymaps obtained in the SHD analysis are presented
in Fig. 3, while a summary of the results is in Table II. The
maps presented in Fig. 3 are obtained by integrating over all
available datasets (O1, O2, and O3) and running a
combined analysis over the three baselines HL, HV, LV
(O1 and O2 analyze only the HL baseline). However,
sensitivity maps for the individual baselines are still useful
to show howmultiple baselines yield different anisotropy in

its sensitivity, and are shown in Fig. 8 in the Appendix.. In
Fig. 3, each column represents a different value of α and the
top row shows the SNR maps while the bottom row shows
95% confidence level upper limit maps. According to the
p-values in Table II, the SNR sky maps are consistent with
Gaussian noise; hence we place upper limits on the
normalized gravitational-wave energy density. Similar to
BBR, the p-values in Table II are calculated from the
maximum SNR distribution computed numerically by
simulating many realizations of the dirty map. Table II
also gives the range of upper limits in each sky map for
combined data from LIGO-Virgo’s three observing runs,
as well as that from LIGO’s O1þ O2 analysis alone for
comparison. The Bayesian upper limits on the energy
density spectrum have been derived based on posterior
samples of P̂lm after marginalizing over the calibration

FIG. 2. Top row: SNR maps from a BBR search for pointlike sources. Bottom row: upper limit (UL) sky maps of the gravitational-
wave energy flux. Both sets of maps, presented in equatorial coordinate system, are derived by combining all three LIGO observing runs
and the Virgo O3 data. α ¼ 0; 2=3, and 3 are represented from left to right.

TABLE I. The maximum SNR across all sky positions, its estimated p-value, and the range of the 95% upper limits on gravitational-
wave energy flux Fα;Θ [erg cm−2 s−1 Hz−1] set by the BBR search for each baseline and for the three baselines combined using data from
three LIGO observing runs and Virgo O3. The median improvement across the sky compared to limits from O2 analysis is a factor of
3.3–3.5, depending on α. O1þ O2 upper limits reported in the last column differ from the upper limits reported in [55] for the reasons
explained in the main text.

All-sky BBR Results
Max SNR (% p-value) Upper limit ranges ð10−8Þ

α ΩGW HðfÞ HL(O3) HV(O3) LV(O3) O1þ O2þ O3 (HLV) O1þ O2þ O3 (HLV) O1þ O2 (HL)

0 Constant ∝ f−3 2.3 (66) 3.4 (24) 3.1 (51) 2.6 (23) 1.7–7.6 4.4–21
2=3 ∝ f2=3 ∝ f−7=3 2.5 (59) 3.7 (14) 3.1 (62) 2.7 (24) 0.85–4.1 2.3–12
3 ∝ f3 Constant 3.7 (32) 3.6 (47) 4.1 (12) 3.6 (20) 0.013–0.11 0.046–0.32

R. ABBOTT et al. PHYS. REV. D 104, 022005 (2021)

022005-6



uncertainties (see Ref. [91] for more details on how we treat
calibration uncertainties).
Additionally, in Fig. 4 we present the upper limits on

C
1=2
l

at each angular scale l for different signal models.
The upper limits are improved by factors of 2.9–3.3 with
respect to the previous search [55]. In contrast to ΩGWðΘÞ,
the upper limits on Cl are computed by constructing the
Bayesian posteriors from the Monte Carlo sampling
because the analytic expression for the probability distri-
bution of Cl is not trivial [59]. Similarly, we marginalize
the posteriors over calibration uncertainties.
The impact of the new baselines on the SHD search

may be quantified by monitoring the conditioning of the
Fisher matrix, which is typically defined by the ratio of the
largest to smallest eigenvalue of the matrix. The normalized
eigenvalues of Γμν for the single LIGO baseline (HL) and

for the three-baseline configuration (HLV) are compared in
Fig. 5. The additional baselines have not had a significant
effect on the eigenvalue distribution, particularly at α ¼ 0

and α ¼ 2=3, and hence we maintain the traditional
regularization method of removing the lowest 1=3 of the
eigenvalues [59]. We expect that this is because the
sensitivity of the Virgo detector is not yet comparable to
that of its LIGO counterparts. However, the new network
has improved in the α ¼ 3 case, where the smallest
eigenvalue has increased by about two orders of magnitude.
As the overall network sensitivity improves, the Fisher
matrix will naturally regularize and higher modes will
potentially be included in the reconstruction, enabling
access to a higher resolution in the SHD search. This is
in line with the projected results for multibaseline networks
presented in Ref. [77].

FIG. 3. Top row: SNR maps from the SHD search for extended sources. Bottom row: sky maps representing 95% upper limit on the
normalized gravitational-wave energy density ΩαðΘÞ½sr−1�. Both sets of maps, presented in equatorial coordinate system, are derived by
combining all three observing runs of LIGO-Virgo data (Virgo was incorporated only for O3). α ¼ 0; 2=3, and 3 are represented from
left to right.

TABLE II. We present the maximum SNR across all sky positions with its estimated p-value for the three separate baselines in the O3
observing as well as all three observing runs combined. We also present the range of the 95% upper limits on the normalized
gravitational-wave energy density ΩαðΘÞ½sr−1� after combining data from LIGO-Virgo’s three observing runs. Note that for both the
p-values and the upper limits, Virgo-related baselines are incorporated only for O3. The median improvement across the sky compared
to limits set by the O1þ O2 analysis is 2.9–3.3 for the SHD search, depending on α.

SHD Results
Max SNR (% p-value) Upper limit range ð10−9Þ

α ΩGW HðfÞ HL(O3) HV(O3) LV(O3) O1þ O2þ O3 (HLV) O1þ O2þ O3 (HLV) O1þ O2 (HL)

0 Constant ∝ f−3 1.6 (78) 2.1 (40) 1.5 (83) 2.2 (43) 3.2–9.3 7.8–29
2=3 ∝ f2=3 ∝ f−7=3 3.0 (13) 3.9 (0.98) 1.9 (82) 2.9 (18) 2.4–9.3 6.4–25
3 ∝ f3 Constant 3.9 (12) 4.0 (10) 3.9 (11) 3.2 (60) 0.57–3.4 1.9–11
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Below we consider the implications of our results
for different astrophysical models. For α ¼ 2=3, the upper

limit found here for the corresponding l modes is C1=2
l

<

1.9 × 10−9 sr−1, whereas theoretical studies [37,43,49] set

C
1=2
l

∼ 10−12 sr−1 for 1 ≤ l ≤ 4, assuming the normalized
gravitational-wave energy density due to an isotropic GWB
of compact binaries is ∼10−9 [84]. It is important to note
that the finite sampling of the compact binary coalescences
event rate leads to a spectrally-white shot noise term
ðCshot

l
Þ1=2 ∼ 10−10 sr−1 which is orders of magnitude larger

than the anticipated true astrophysical power spectrum [38].

This term scales as ∝ 1=
ffiffiffiffiffiffiffiffi

Tobs
p

, where Tobs is the obser-
vation time, which is the same scaling expected for the
upper limits set by the SHD search. Shot noise may
therefore limit future SHD searches, if the SHD sensitivity
improves faster than 1=

ffiffiffiffiffiffiffiffi

Tobs
p

due to the improved
detector sensitivity or due to the increased number of
detectors. An optimal statistical method to estimate the true
angular spectrum in the presence of shot noise was
proposed in [39].
For α ¼ 0, we find the upper limit for the dipole (l ¼ 1)

component to be C
1=2
1 < 2.6 × 10−9 sr−1, whereas the

theoretical study on Nambu-Goto strings based on
model 3 in Ref. [48], combined with the most up to date
constraints on Gμ using the isotropic component of the
GWB [94], Gμ ≲ 4 × 10−15, sets C

1=2
1 ≲ 10−12 sr−1. This

dipole moment is kinematically caused by the Earth’s
peculiar motion, and other Cl modes resulting from the
intrinsic anisotropy are expected to be many orders of
magnitude smaller than the dipole moment. For both
choices of the power spectra (α ¼ 0 and α ¼ 2=3), we
conclude that the predictions of the theoretical models are
consistent with the search results presented here.

C. Narrow band radiometer

The gravitational-wave strain spectra obtained from the
NBR search for each sky direction considered are shown in
Fig. 6. For all three directions, we computed the SNR by
combining the appropriately sized frequency bins across
the three detectors. The maximum SNR across the fre-
quency band and an estimate of its significance are given in
Table III for each search direction. Our results are con-
sistent with Gaussian noise in all three directions. We don’t
see any significant frequency outlier with p-value less than
1%. Here the p-values are calculated from the maximum
SNR distribution obtained by simulating many realizations
of strain power consistent with Gaussian noise in each
frequency bin and then combining the bins the same way as
done in the actual analysis.
Since we do not find any compelling evidence for

narrow-band gravitational waves, we set 95% confidence

limits on the peak strain amplitude h0 (¼
ffiffiffiffiffiffiffiffiffiffiffi

ĤðfÞ
q

) for each

set of optimally combined frequency bins. When calculat-
ing this upper limit, we account for the Doppler modulation
of the signal and marginalize over the inclination angle and
polarization of the source. These limits, along with the 1σ
sensitivity on h0, are shown in Fig. 6. Since the limits
fluctuate significantly due to the use of narrow frequency
bins, we take a running median of them in a 1 Hz region
around each frequency bin and report the best among these
values as done in previous analyses [55]. These limits
correspond to an improvement by a factor of ≥ 2.0
compared to limits from previous such analyses [55].
The upper limits from individual baselines are shown in
Fig. 9 in the Appendix.

FIG. 4. 95% upper limits on Cl for different α using combined
O1þ O2þ O3 data.

FIG. 5. Comparison between the Fisher matrix condition
numbers for the HL and HLV networks for different values of
α. The vertical dashed lines mark the divisions between the two
thirds of eigenvalues that are included in the analysis and one
third that are excluded when inverting the Fisher matrix.
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It is meaningful to compare the upper limits in Fig. 6
with those derived in continuous-wave searches for neutron
stars in past observing runs. Gravitational waves from
Scorpius X-1 have been constrained using model-based
cross correlation and hidden Markov Models using data
from the first two Advanced LIGO/Virgo runs
[62,63,95,96]. The upper limits reported for Scorpius
X-1 from continuous-wave searches [62,95,96] using
LIGO/Virgo O1 and O2 data are comparable to or better
than the limits we obtained in our analysis. The limits from
continuous-wave searches are expected to further improve
with LIGO/Virgo O3 data. The improvements in the
modeled continuous-wave searches come at the expense
of higher computational cost. Compared to the continuous-
wave searches [62,95,96], the unmodeled radiometer
analysis reported in this paper is computationally in-
expensive and also covers a larger frequency band (20–
1726 Hz) than [95,96]. Regarding SN 1987A, a directed
search has also been performed [64] using data from the
second year of LIGO/Virgo’s fifth science run, which gave
upper limits of about a factor of two worse than those
presented here. However, searches on advanced detector
data would surely improve this upper limit. Additionally,
searches towards the Galactic Center for continuous waves
have been run on data from LIGO/Virgo’s previous
observing runs [67,97], and have derived limits in a smaller

frequency band that tend to be at least a factor of two better
than those quoted here. The difference in limits is expected
because the searches in [67,97] use much longer fast
Fourier transform times that are specifically tuned to the
frequency analyzed.
In the previous O2 NBR analysis reported in [55], an

outlier with an SNR of 5.3 at a frequency of 36.06 Hz was
found in the direction of SN 1987A. If this outlier were a
true signal and consistent with an asymmetrically rotating
neutron star slowly spinning down, we would expect to see
it again in our O1þ O2þ O3 analysis with an even greater
SNR because we have included the third observing run that
is longer and more sensitive than the previous two runs.
However, we do not find a similarly high SNR at that
frequency and hence conclude that the outlier present in the
previous run’s data is not consistent with a persistent
gravitational-wave signal.

V. CONCLUSIONS

We do not find evidence for gravitational-wave signals in
any of the three analyses using data from the three
observing runs of Advanced LIGO and Virgo. Hence,
we placed 95% confidence level upper limits on the
gravitational-wave energy density due to extended sources
on the sky, on gravitational-wave energy flux from different

FIG. 6. Upper limits on the dimensionless strain amplitude h0, using the data from three observing runs of LIGO-Virgo detectors, at
the 95% confidence level for the narrow-band radiometer search are indicated by the gray bands for Scorpius X-1 (left), SN 1987A
(middle) and the Galactic Center (right). The dark line shows the 1σ sensitivity of the search for each direction.

TABLE III. We show the maximum SNR, its estimated p-value, and the frequency bin of the maximum SNR for
each search direction. We also give the best 95% confidence level gravitational-wave strain upper limits achieved,
and the corresponding frequency band, for all three sky locations. The best upper limits are taken as the median of
the most sensitive 1 Hz band. All these results are derived from the three observing runs of LIGO-Virgo detectors.

Narrow band Radiometer Results

Direction Max SNR p-value (%)
Frequency

(Hz) (�0.016 Hz)
Best upper
limit ð10−25Þ

Frequency
band (Hz)

Scorpius X-1 4.1 65.7 630.31 2.1 189.31–190.31
SN 1987A 4.9 1.8 414.0 1.7 185.13–186.13
Galactic Center 4.1 62.3 927.25 2.1 202.56–203.56
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directions on the sky, and on the median strain amplitude
from possible sources in the directions of Scorpius X-1, the
Galactic Center, and SN 1987A. These limits improve upon
previous similar results by factors of 2.0–3.5. We attribute
this improvement partly to observing for twice as long as
before, ∼

ffiffiffi

2
p

, and partly to the improvement in the LIGO
detector sensitivities. As mentioned in Sec. IVA, the
inclusion of the Virgo detector only marginally improves
the upper limits due to its higher noise level compared to
the LIGO detectors. However, we expect the Virgo detector
to improve its noise performance in the next observing runs
[95]. Furthermore, as noted in Sec. IV B, the addition of
Virgo detector to the detector network acts as a natural
regularizer in the SHD analysis and would enable us to
probe finer structures in the gravitational-wave sky maps.
Currently we use flat, positive priors for the estimators P̂μ

and in future analyses we plan to use more informative
priors as done in Refs. [6,96,97].
As shown in [84], the current GWB analyses are not

affected by environmental effects, specifically magnetic
correlation between the detectors. However as detector
sensitivities improve, such environmental effects would
become important and their effects on anisotropic GWB
searches need to be studied. Additionally, by taking
advantage of folded data and new algorithms, we can
perform an all-sky, all-frequency (ASAF) extension to the
radiometer analysis for discovering persistent narrowband
point sources [98].
As mentioned in Sec. IV B, the current theoretical

predictions for the anisotropies due to merger of compact
objects, for example dipole component due to the Earth’s
peculiar motion, are more than an order magnitude below
the upper limits presented in this paper. However with the
planned enhancement of current generation of gravita-
tional-wave detectors [95], we might be able to measure
these anisotropies. With the enhanced detector network,
there is also possibility of detecting potential point sources
of narrowband and broadband gravitational waves.
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d’Innovació, Recerca i Turisme and the Conselleria
d’Educació i Universitat del Govern de les Illes Balears,
the Conselleria d’Innovació, Universitats, Ciència i Societat
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APPENDIX: INDIVIDUAL BASELINE MAPS

Since this is the first time the Virgo detector has been
used in the anisotropic GWB analysis, here we provide
sensitivity maps for all the three baselines for comparison.
However, because of the relative low sensitivity of the
Virgo detector compared to the LIGO detectors, the
Hanford-Livingston baseline dominates the final results
reported in the main part of the paper.

FIG. 7. Broadband radiometer maps illustrating search sensitivity for pointlike sources from O3 data only. Each row shows maps
of the 1σ sensitivity for HL, HVand LV baselines, from top to bottom, for three different power-law indices, α ¼ 0; 2=3 and 3, from
left to right.
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FIG. 8. The spherical harmonics 1σ sensitivity maps produced from O3 illustrating a search for extended sources using each of HL,
HV, LV baselines (top to bottom rows respectively). Three different power law indices, α ¼ 0; 2=3 and 3, are represented by columns
from left to right.

FIG. 9. The uncertainty associated with the NBR search estimator is shown. The uncertainty on the estimated gravitational-wave strain
as a function of frequency is plotted for three directions, Scorpius X-1, SN 1987 and Galactic Center from left to right using O3 data for
all the three baselines. HL baselines are indicated by the black lines, HV with sky blue lines and LV using orange.
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58University of Minnesota, Minneapolis, Minnesota 55455, USA
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96Université catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium
97Astronomical Observatory Warsaw University, 00-478 Warsaw, Poland

98VU University Amsterdam, 1081 HV Amsterdam, Netherlands
99University of Maryland, College Park, Maryland 20742, USA

100Max Planck Institute for Gravitational Physics (Albert Einstein Institute), D-14476 Potsdam, Germany
101School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
102Villanova University, 800 Lancaster Ave, Villanova, Pennsylvania 19085, USA

103Faculty of Science, Department of Physics, The Chinese University of Hong Kong,
Shatin, N.T., Hong Kong

104Stony Brook University, Stony Brook, New York 11794, USA
105Center for Computational Astrophysics, Flatiron Institute, New York, NY 10010, USA

106NASA Goddard Space Flight Center, Greenbelt, Maryland 20771, USA
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118Rochester Institute of Technology, Rochester, New York 14623, USA

119National Tsing Hua University, Hsinchu City, 30013 Taiwan, Republic of China
120Department of Applied Physics, Fukuoka University, Jonan, Fukuoka City, Fukuoka 814-0180, Japan

121OzGrav, Charles Sturt University, Wagga Wagga, New South Wales 2678, Australia
122Department of Physics, Tamkang University, Danshui Dist., New Taipei City 25137, Taiwan

123Department of Physics and Institute of Astronomy, National Tsing Hua University,
Hsinchu 30013, Taiwan

124University of Chicago, Chicago, Illinois 60637, USA
125Department of Physics, Center for High Energy and High Field Physics, National Central University,

Zhongli District, Taoyuan City 32001, Taiwan
126Dipartimento di Ingegneria Industriale (DIIN), Università di Salerno, I-84084 Fisciano, Salerno, Italy
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139Texas Tech University, Lubbock, Texas 79409, USA
140The Pennsylvania State University, University Park, Pennsylvania 16802, USA

141University of Rhode Island, Kingston, Rhode Island 02881, USA
142The University of Texas Rio Grande Valley, Brownsville, Texas 78520, USA

143Bellevue College, Bellevue, Washington 98007, USA

SEARCH FOR ANISOTROPIC GRAVITATIONAL-WAVE … PHYS. REV. D 104, 022005 (2021)

022005-21



144Scuola Normale Superiore, Piazza dei Cavalieri, 7—56126 Pisa, Italy
145MTA-ELTE Astrophysics Research Group, Institute of Physics, Eötvös University,

Budapest 1117, Hungary
146Maastricht University, 6200 MD, Maastricht, Netherlands

147Universität Hamburg, D-22761 Hamburg, Germany
148IGFAE, Campus Sur, Universidade de Santiago de Compostela, 15782 Spain

149University of Portsmouth, Portsmouth, PO1 3FX, United Kingdom
150The University of Sheffield, Sheffield S10 2TN, United Kingdom

151Laboratoire des Matériaux Avancés (LMA), Institut de Physique des 2 Infinis (IP2I) de Lyon, CNRS/
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