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Abstract 
 

In a previous work, we extended and benchmarked the MDM Monte Carlo code with available data 

for gold metallic media irradiated by electron beams. 

In this paper, we worked with the aim of improving the cross sections on which our Monte Carlo 

simulation is based, and which are essential for an accurate description of the transport of electrons 

in gold. The mesoscopic potential of solid gold has been predicted and its sensitivity toward electron 

emission has been evaluated. This potential was derived from the calculation of the electrostatic and 

atomistic potential by Density Functional Theory and used to calculate inelastic inverse mean free 

path for electron transport. After integrating these results into our Monte Carlo code, we evaluated 

the impact of these new cross sections on yields of electron emission from solid gold irradiated by 

monoenergetic electron beams.  

We obtained a mesoscopic potential value of -12.77 eV for our model of bulk metal gold, 27 % lower 

than the one commonly estimated from the Fermi energy. This result impacted on the inverse mean 

free path for plasmon excitations with a 10 % decrease for electrons in the range of 6 - 30 eV. 

Regarding electron emission yields, there was no impact of the new mesoscopic potential on the 

primary electron yields, but for secondary electrons, the emission yields were increased by a factor 

of up to two depending on the primary beam energy and thickness of the gold foil. 

 

1. Introduction 
 

Simulation of low-energy electron transport is a key factor in several scientific applications, such as 

the study of dose enhancement by gold nanoparticles in radiotherapy, where low energy electron flux 

is intimately related to the electron emission yields [1, 2]. Many Monte Carlo (MC) codes have been 

developed in order to perform simulations of electron transport through matter [3, 4]. However, most 

of these codes cannot be used when low energy electrons (< 100 eV) are considered, as the energy 

loss processes strongly depend on the electronic band structure of materials [5].  

In the last years, our group has been working on the implementation of a physical model for electron 

transport down to low energy in solid metallic media [6]. Recently, a benchmarking of our Monte 

Carlo simulations code MDM was presented, performing an extensive comparison with available 

experimental data for gold-foil irradiated by electron beams.  

In the model implemented in MDM, the potential in which kicked electrons evolve is decomposed in 

a mesoscopic part and a microscopic one. Like wave packets, such electrons evolve according to 

classical laws in the mesoscopic potential. Its total energy is, therefore, the sum of its kinetic energy 



and its mesoscopic potential energy [7, 8]. The interaction with the microscopic potential is described 

through a collisional approach, for which the collision probabilities are sampled by the Monte Carlo 

simulation. These probability laws are known as inverse mean free paths or cross sections [9, 10]. 

The mesoscopic potential impacts on the free evolution of the moving electrons, but also on their 

collisions through the energy conservation law. 

In absence of external forces (magnetic, electrostatic), the mesoscopic potential, 𝑉0(𝑥, 𝑦, 𝑧), 

corresponds to the “smooth” part of the electrostatic potential created by the electrons and the nuclei 

of the solid. It is estimated by a local average of the solid potential in its ground state.  For an infinite 

solid crystal, 𝑉0(𝑥, 𝑦, 𝑧) is uniform and characterized by the constant value 𝑉0. For a finite solid, the 

potential may be set to 𝑉0 inside the solid, vanishing to the vacuum level outside.  

MC calculations such as electron yields  depend on the cross sections on which these simulations are 

based. In our Monte Carlo models, the electron cross sections depend on the value of the mesoscopic 

potential that is used in the simulation [6]. In this context, the objective of this work was to improve 

the cross sections on which our MC code is based, some of which are still missing or imprecise. To 

do that, we calculated the three-dimensional electrostatic potential for a sample of bulk Au by using 

Density Functional Theory (DFT) calculations with VASP [11, 12, 13]. DFT and Kohn-Sham theory 

allows for an approximate resolution of the many-body electronic problem, in particular to determine 

the average electrostatic potential felt by one electron crossing a metallic bulk or a metallic surface. 

With the calculated electrostatic potential, we implemented a methodology to determine the 

mesoscopic potential 𝑉0 within the solid. Using the calculated value of 𝑉0, we generated inelastic 

electron cross sections, to study its sensitivity to the potential. Finally, we performed MC simulations 

with MDM in order to evaluate the influence of the mesoscopic potential on experimentally available 

quantities, i.e., the electron emission from a foil of gold irradiated by an electron beam.  

 

2. Materials and Methods 
 

A. Electrostatic and mesoscopic potential calculations 
 

A.1 Electrostatic potential calculation 

The electrostatic potential of gold bulk was calculated by performing Density-Functional Theory 

calculations with the VASP package, version 5.3.5 [11, 12, 13]. PBE [14] with Grimme’s D3 semi-

empirical dispersion corrected functional [15] (zero-damping formalism) was considered to describe 

the electronic exchange and correlation at the generalized gradient approximation (GGA) with van 

der Waals interactions (dispersion). The core-electrons were described by the projector-augmented 

wave [16] (PAW) pseudo-potentials (11 valence electrons per Au atom), and valence electrons were 

expanded in plane waves with a kinetic cut-off energy of 287 eV (HIGH precision in VASP). The 

FCC crystalline structure of gold bulk was described by using a k-point grid of 39×39×39 (1540 

irreducible k-points). The volume of the FCC bulk was relaxed completely with 10-7 eV for the 

convergence of the total electronic energy, leading to a lattice parameter (d) of 4.073 Å and a cohesion 

energy of -3.695 eV/at, in fair agreement with the experimental values (4.078 Å and -3.81 eV, 

respectively). A Methfessel-Paxton smearing was used for the calculation of the total electronic 

energy. 

 

A.2 Mesoscopic potential calculation 
In the model implemented in MDM, the total energy 𝑈(𝑥, 𝑦, 𝑧) of an excited electron is calculated by 

adding its kinetic energy and its mesoscopic potential energy, using the equation [6]: 

 

   𝑈(𝑥, 𝑦, 𝑧) =
1

2
𝑚𝑣2 + 𝑞𝑉0(𝑥, 𝑦, 𝑧)  (1) 



where 𝑉0(𝑥, 𝑦, 𝑧) is the mesoscopic potential at the position (𝑥, 𝑦, 𝑧), 𝑞 is the electron charge, 𝑣 is its 

velocity and 𝑚 is its mass.  

In this model, the mesoscopic potential, 𝑉0(𝑥, 𝑦, 𝑧), represents the attractive background potential of 

the solid experienced by an excited electron. It is uniform inside the solid (𝑉0(𝑥, 𝑦, 𝑧) = 𝑉0) and it 

vanishes outside. To simplify the simulation, the vanishing is represented by a step function set to the 

vacuum level outside the solid and the constant value 𝑉0 inside. 

In previous calculations with MDM, 𝑉0 was set according to the Sommerfeld model. Taking into 

account the energy of the Fermi level 𝑢Fermi with regards to the vacuum level, 𝑉0 verifies that 

𝑢Fermi = 𝐸Fermi  +  𝑉0, where 𝐸Fermi is the Fermi energy in the Sommerfeld model. For solid gold, 

we had 𝑉0 = -10.04 eV for 𝑢Fermi = -4.59 eV and 𝐸Fermi =5.45 eV.  

According to its definition, the mesoscopic potential can be calculated performing a convolution 

between the electrostatic potential 𝑉(𝑥, 𝑦, 𝑧) and a Gaussian function 𝑓(𝑥, 𝑦, 𝑧) [7,8]. This last 

function can be written as follow: 

 

𝑓(𝑥, 𝑦, 𝑧) =
1

(√2πσ)3 e
−(𝑥2+𝑦2+𝑧2)

2σ2   (2) 

 

 

where σ represents the standard deviation, a parameter controlling the definition of the mesoscopic 

scale. According to this equation, the result of 𝑉0(𝑥, 𝑦, 𝑧) will depend on the σ value used in the 

Gaussian function. 

In order to calculate the mesoscopic potential, we have used the results of the electrostatic potential 

performed at the PBE-D3 level with the DFT approach (see Figure 1). As described in the previous 

section, this electrostatic potential was calculated at any point (𝑥, 𝑦, 𝑧) of a 3D box of 

4.07 × 4.07 × 4.07 Å3 with a grid of points of 24 × 24 × 24, thus meaning a point density of 205 

points.Å-3. To calculate the 𝑉0 value, we built a bigger box by replicating the 4.07 Å side 3D box 16 

times in each of the 𝑥, 𝑦, 𝑧 directions. We obtained a 3D box of 6.5 × 6.5 × 6.5 nm3 with a point grid 

of 384 × 384 × 384. Considering different values for the mesoscopic parameter σ, we calculated the 

Gaussian convolution. For each σ value we obtained 384 × 384 × 384 values for the mesoscopic 

potential function. With these results, we selected the σ value taking into account that 𝑉0(𝑥, 𝑦, 𝑧) was 

constant inside the solid. Once defined the standard deviation value, we calculated a value of the 

mesoscopic potential, 𝑉0, averaging over the points (𝑥, 𝑦, 𝑧) of the grid where 𝑉0(𝑥, 𝑦, 𝑧) reached an 

approximately constant value.  

 

B. Cross section calculation 
 

In a previous work, all available models in MDM to generate elastic and inelastic electron cross 

section were described [6]. 

Concerning elastic interactions, two models were implemented in MDM. For high momentum 

transfer interactions, an atomic model was used. In this case, the cross sections were generated using 

the code ELSEPA [17], performing relativistic (Dirac) partial-wave calculations for scattering by a 

local central interaction potential. For low momentum transfer interactions, a phonon model was used.  

For inelastic interactions, two models were considered. For the deeply bound electrons (core 

electrons), the binary-encounter-Bethe (BEB) theory developed by Kim and coworkers [18, 19, 20] 

was used to calculate the core ionization cross section. For the weakly bound electrons (valence and 

conduction electrons), the model proposed by Ritchie and coworkers [21] was implemented to 

calculate the plasmon inverse mean free path.  

We first studied the impact of 𝑉0 on the cross section values, as inelastic cross sections directly depend 

on the mesoscopic potential value. In the BEB model, implemented in MDM to calculate the core 

ionization cross section, the binding energy of an electron is defined as 𝐵KIM = 𝐵 + 𝑉0, where 𝐵 is 



the energy necessary to promote an electron to vacuum. In the model used to calculate the plasmon 

inverse mean free path, the doubly differential inverse mean free path is integrated over the 

momentum transfer and the energy loss of the projectile, from 0 to 𝐸kin + 𝑞𝑉0 − 𝑢Fermi𝐹𝐸𝑅𝑀𝐼, 

where 𝐸kin is the kinetic energy of the projectile. Therefore, both core ionization cross section and 

plasmon inverse mean free path depend on the choice of the mesoscopic potential. 

Concerning elastic cross sections calculations with ELSEPA code [6], we used the muffin tin option 

to mimic the potential of neighboring atoms in solid state. We chose the radius of the Muffin-Tin 

model equal to one-half of the interatomic distance used in the electrostatic potential calculations.  

In order to evaluate the impact of the mesoscopic potential in the cross section, we calculated the core 

ionization cross section and the plasmon inverse mean free path using the value of 𝑉0 obtained in this 

work and we compared the results with previous calculations.  

Finally, we evaluated the impact of this variations in the total electron cross section. To do that, we 

compared the results calculating the relative difference in the total cross section, using the following 

equation: 

 

𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 (%) =
|σ0

′−σ0|∗100

σ0
   (3) 

 

where σ0' is the total cross section calculated with the potential 𝑉0′ and σ0 is the total cross section 

calculated with the potential 𝑉0. 
 

C. Monte Carlo simulations: electron emission yields 
 

With the objective of evaluating the impact of the generated cross sections in MC simulations, we 

performed a series of simulations of the electron emission following the irradiation of solid gold by 

electrons. Precisely, we repeated the simulations performed in a previous work [6] to compare MDM 

results with electron yields obtained experimentally by Reimer and coworkers [22], but using the 

cross sections for inelastic scattering calculated with the new value of 𝑉0. As in the previous work, 

we defined the electron yield of a material under electron irradiation as the number of emitted 

electrons per incident electron. The primary electrons were defined as electrons with energies greater 

than 50 eV, and the secondary electrons with energies lower than 50 eV. In the experiment considered, 

a gold layer was surrounded by vacuum. The foil was irradiated with an electronic beam normally to 

de surface. Different irradiations were performed considering various energies and foil thickness.  

In our simulations, 50000 electrons were sent in each irradiation. We calculated primary 

backscattered and transmitted electron yields, and secondary backward and forward electron yields. 

Finally, we compared the results with previous simulations and with experimental data.   

3. Results and discussions 
 

A. Electrostatic and mesoscopic potential calculation 
 

Figure 1 shows electrostatic and mesoscopic potential calculations along the axe defined by 

(𝑥, 𝑦)=(3.25 nm, 3.25 nm). Note that, 3.25 nm is equal to one-half of the box size used in the 

calculations and the position (𝑥, 𝑦, 𝑧)=(3.25 nm, 3.25 nm, 0) corresponds to the position of an atom. 

The σ value selected for the mesoscopic potential calculation in this figure corresponds approximately 

to two third of the lattice parameter (d). As it was expected, the peaks of the electrostatic potential 

disappeared after the Gaussian convolution and the mesoscopic potential tended to be constant within 

the solid. However, there were some small oscillations in 𝑉0 (coincident with the positions of the 

peaks in the electrostatic potential), which could be flattened using a different value of the σ 

parameter. 

Figure 2 presents the mesoscopic potential calculated for three σ values: 0.17 nm, 0.19 nm and 0.21 

nm. This figure shows that the oscillations in the mesoscopic potential were smaller when the σ value 



was increased. For σ equal to 0.21 nm, the mesoscopic potential reached a flattened form in the region 

inside of the solid.  

We calculated for each σ value showed in Figure 2, an average value for the mesoscopic potential 

taking into account the points (𝑥, 𝑦, 𝑧) of the grid where 𝑉0 was approximately constant. The 

calculated value for σ equal to 0.21 nm was equal to -12.77 eV. The choice of the σ value is a 

compromise. It has to be chosen large enough to reduce significantly the microscopic fluctuation of 

the potential, but small enough to take account for the geometry of the solid and in particular its 

interfaces. The value 0.21 nm seems to achieve this compromise. In parallel, we obtained the value 

of 𝑉0 calculating an average value of the electrostatic potential 3D matrix for 1 atom. This value was 

equal to -12.77 eV. Therefore, this result showed that the value obtained in the convolution 

represented the mean value of the electrostatic potential. As we mentioned in Section 2.A, the 

previous value used in MDM for the cross section calculations was equal to -10.04 eV. The relative 

difference between this value and our calculated V0 =-12.77 eV was approximately 27%.  

 

B. Cross section generation 
 

Figure 3 shows the core ionization cross section calculated for 𝑉0 = -10.04 eV and for 𝑉0′ = -12.77 

eV. The cross sections were represented as a function of the total energy of the electron, defined in 

equation 1. The results showed that, for 𝑉0′, the cross section was increased and there was a shift 

towards the region of lower energies.   

Figure 4 shows the plasmon inverse mean free path calculated for 𝑉0 = -10.04 eV and for 𝑉0′ = -12.77 

eV. The results showed differences in the energy range from 15.5 eV to 50 eV, where the values 

obtained for 𝑉0 = -10.04 eV were higher. This effect was related to the condition imposed in the 

model, 𝐸kin + 𝑞𝑉0 − 𝑢Fermi  >  0. This constrain is necessary to respect for the Pauli principle, which 

exclude for both the incident and secondary electrons after interaction the occupation states below 

the Fermi level. For 𝑉0 = -10.04 eV, 𝐸kin must be greater than 5.45 eV, and for 𝑉0′ = -12.77 eV, 𝐸kin 

must be greater than 8.18 eV.   

Figure 5 presents the relative difference in the total electron cross section as a function of the electron 

kinetic energy. This relative difference reached the value of 10% for the energy of 10 eV, due to the 

effect of the plasmon inverse mean free path. For energies lower than 6 eV or greater than 30 eV, the 

values of this relative difference remained lower than 1%. The change in core ionization cross section 

had a negligible impact on the calculation of the total cross section. The differences found for the 

plasmon inverse mean free path, could play an important role in the Monte Carlo simulations of low 

energy electrons. 

 

C. Monte Carlo simulations: electron emission yields 
 

We investigated the impact of the calculated cross sections on the electron emission yields 

calculations with MC simulations. Figure 6 shows the results obtained with MDM for the electron 

emission yields. Figures 6.a) and 6.b) present the primary backscattered and transmitted electron 

yields respectively. Figures 6.c) and 6.d) present the secondary backward and forward electron yields 

respectively.  

According to the results showed in figures 6.a and 6.b, the change in 𝑉0 does not have any influence 

on the primary electron emission yields. It was expected because, for high electron energy, the cross 

section was not impacted by the changes in 𝑉0.   

Figures 6.c and 6.d show that the backward and forward secondary yields were increased for 𝑉0= -

12.77 eV. Regarding the backward yields, our results were close to the experimental ones, for all the 

energies and thickness studied. For the case of forward yields, our results overestimated the previous 

ones. The increase in the secondary electron yields for 𝑉0=-12.77 eV can be explained analyzing the 

relative difference in total cross sections presented in Figure 5. For electron kinetic energies greater 

than 6 eV and lower than 30 eV, the cross section for 𝑉0=-10.04 eV was higher than that for 𝑉0=-



12.77 eV. For this reason, for 𝑉0= -12.77 eV, the interaction probability of secondary electrons was 

decreased, and consequently, the probability that one of those electrons leaves the foil was increased.  

Depending on the electron energy and the foil thickness, the secondary electron emission yields for 

𝑉0=-12.77 eV reached values that doubled the previous calculated ones. Therefore, the change of 𝑉0 

value had a significant impact in the Monte Carlo simulation results for the transport and the emission 

of low-energy electrons. 

4. Conclusion 
 

In this work, we evaluated the mesoscopic potential of solid gold and its influence on electron 

emission yields in order to improve Monte-Carlo simulation of electron transport in matter and 

improve the cross sections. We implemented a methodology to calculate the mesoscopic potential 

based on the electrostatic potential predicted by DFT calculations in gold bulk. This new value of V0 

was equal to -12.77 eV, which was 27% lower than the previous one. We calculated inelastic inverse 

mean free path considering our new value of 𝑉0 and observed a significant impact for plasmon 

excitation by electrons in the range from 6 to 30 eV (up to 10%). While the transport of fast electrons 

was found insensitive to 𝑉0 change, the secondary electron emission was increased by a factor up to 

two. Secondary backward yields were improved with regard to experimental data, but, secondary 

forward yields were overestimated for all the energies and thickness studied. 

The methodology implemented in this work to calculate the 𝑉0 value can be extended to other 

applications. In a future work, we will use these methods to generate the 𝑉0 value for gold 

nanoparticles, in order to generate the cross sections and to perform nanodosimetry calculations for 

the study of dose enhancement by gold nanoparticles in radiotherapy. 
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Figures 

 
Figure 1: electrostatic (DFT-D3 level) and mesoscopic potential as a function of the distance in z at 

(x,y)=(3.25 nm, 3.25 nm).  

 

 
Figure 2: mesoscopic potential for different σ values as a function of the distance in z at (x,y)=(3.25 nm, 

3.25 nm). 

 

 



 

 
Figure 3: core ionization electron cross section as a function of the projectile energy. 

 

 
Figure 4: Plasmon inverse mean free path as a function of the projectile energy.  



 
Figure 5: Relative difference in the total cross section as a function of the projectile kinetic energy.  

 

 

 
Figure 6.a: Primary transmitted electron yields for V0=-10.04 eV, V0' =-12.77 eV and experimental data. 



 
Figure 6.b: Primary backscattered electron yields for V0=-10.04 eV, V0' =-12.77 eV and experimental data.  

 

 
Figure 6.c: Secondary backward electron yields for V0=-10.04 eV, V0' =-12.77 eV and experimental data. 

 



 
Figure 6.d: Secondary Forward electron yields for V0=-10.04 eV, V0' =-12.77 eV and experimental data. 
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