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Temporal Logics on Strings with Prefix Relation

Stéphane Demri1 and Morgan Deters2

1 LSV, CNRS, France 2 New York University, USA

Abstract. We show that linear-time temporal logic over concrete domains made of finite strings and
the prefix relation admits a PSpace-complete satisfiability problem. Actually, we extend a known result
with the concrete domain made of the set of natural numbers and the greater than relation (correspond-
ing to the singleton alphabet case) and we solve an open problem mentioned in several publications.
Since the prefix relation is not a total ordering, it is not possible to take advantage of existing techniques
dedicated to temporal logics with concrete domains that are essentially linearly ordered structures. In-
stead, we introduce an adequate encoding of string constraints into length constraints that allows us
to reduce the problem on strings to the problem on natural numbers. To do so, we also propose an
extended version of the logic on strings that is able to compare lengths of longest common prefixes and
for which the satisfiability problem is shown in PSpace. Finally, we show how to lift the result for the
branching-time case in order to get decidability when the underlying temporal logic is CTL?.

1 Introduction

String theories in a temporal setting. Reasoning about strings is increasingly required in
program verification or in analysis of web applications and recently much effort has been
dedicated toward designing solvers that handle string theories (possibly in combination with
other theories), see e.g. [GKA+11,ZZG13,LRT+14,AAC+14,HL14,Lia14]. This also includes
works related to first-order theory of strings with order, see e.g. [Kus06]. The decidabil-
ity status of expressive string theories is not always known, see e.g. [LRT+14, Section 2.1]
or [AAC+14], but fortunately, decidability of word equations is known to be decidable thanks
to Makanin’s result [Mak77] and a PSpace algorithm has been designed by Plandowski
in [Pla04] (see also [DJP14]). By contrast, first-order theory on strings is undecidable by
Quine’s undecidability result [Qui46].

At the same time, many works have been dedicated to reasoning about temporal logics
on concrete domains, see e.g. [BC02,Lut04,BG06,BGL12,DHV14], so that temporal reason-
ing is done about the evolution of typed variables (for instance interpreted by integers or
by strings to cite a few examples). Hence, fibring a temporal logic with a concrete do-
main happens to be a very natural approach, see e.g. [Gab98], but this may easily lead to
undecidability, see e.g. [DD07, Section 10]. Even when decidability is preserved, computa-
tional complexity can be high. For instance, while ALC-LTL satisfiability with rigid names
is 2ExpTime-complete [BGL12], LTL over the concrete domain (N,≤) is only PSpace-
complete [DD07,DG08]. In this paper, we are interested in temporal logics when the concrete
domain contains finite strings.

Our motivation. Linear-time temporal logics on concrete domains have been shown de-
cidable mainly when the underlying concrete domain has the completion property, see
e.g. [Dec92,BC02,LM05,DD07,Gas09] or when it is a linearly ordered structure [DD07,ST11].
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Branching-time extensions have also been considered in [Čer94,BG06,Gas07,Gas09,CKL13]
and a remarkable breakthrough has been made recently in [CKL13] by showing that CTL?

over the domain (N,≤) is decidable by using the decidability of Boolean combinations of
formulae from MSO and from WMSO+U [BT12] where U is the unbounding second-order
quantifier (see also the follow-up work [CKL14] involving ECTL?). Unfortunately, none of
the known techniques has been able to handle LTL over concrete domain of the form (Σ∗,�)
where � is not a total ordering on Σ∗ such as the prefix relation �p or the subword relation
v. This is surprising since the prefix relation �p seems quite harmless whereas the subword
relation v is a well-quasi-ordering and therefore one could expect decidability by Higman’s
Lemma. Actually, the fact that the decidability status of the satisfiability problem for LTL
over ({0, 1}∗,�p) is open first appeared in [DG05] and it has been reformulated for the
branching-time version based on CTL? in [CKL13], see also [ST11]. Even worse, in [CKL14,
Section 9], it is stated that a new strategy is needed to solve the satisfiability problem for
LTL over ({0, 1}∗,�p). In this work, we aim to better understand how to solve the satisfia-
bility problem for temporal logics over concrete domains that are of the form (Σ∗,�) when
� is not necessarily linearly ordered. More specifically, we focus our attention on the prefix
relation.

Our contribution. In this paper, we write LTL(Σ∗,�p) to denote LTL over the concrete
domain (Σ∗,�p) (see a formal definition in Section 2). Our main result is that for every (finite
or infinite and countable) non-empty alphabet Σ, the satisfiability problem for LTL(Σ∗,�p)
is PSpace-complete. It is worth noting that the decidability status of these logics was open
until now for card(Σ) ≥ 2 (the case k = 1 naturally corresponds to LTL over the concrete
domain (N,≤), written LTL(N,≤)). We adopt an original approach since prefix constraints
are first generalized and then translated into numerical constraints so that we are able to
design a satisfiability-preserving reduction into LTL(N,≤), and then use the PSpace upper
bound from [DD07,DG08] (see also [ST11]). The PSpace upper bound also holds for many
extensions of LTL as soon as they behave as LTL for the translation of formulae into Büchi
automata (see Section 4.1). Solving string constraints by formulae in Presburger arithmetic
is not a new idea (see e.g. [Pla06]) but in the paper we provide a straightforward method
to deal with temporal logics on finite strings with the prefix relation. Moreover, in the
technical developments, we have considered a substantial extension of LTL(Σ∗,�p), namely
LTL(Σ∗, clen), for which our technique can be applied naturally.

As by-products of our method, we are also able to establish a small alphabet prop-
erty when Σ = N (see Corollary 1) and more importantly, the satisfiability problem for
CTL?(Σ∗, clen), the branching-time extension of LTL(Σ∗, clen) based on CTL?, is decidable
by taking advantage of the decidability of CTL?(N,≤) recently shown in [CKL13]. As for
the linear-time case, we provide a reduction from CTL?(Σ∗, clen) to CTL?(N,≤) by encoding
length constraints about longest common prefixes into counters. It is worth noting that the
decidability results in [CKL13] are based on the decidability of Boolean combinations of
formulae from MSO and from WMSO+U [BT12] where U is the unbounding second-order
quantifier, see e.g. [Boj04,BC06] (note that full MSO+U has been shown recently unde-
cidable in [BPT15]). Nevertheless, to get advantage of this result on monadic second-order
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logics, a property for (Z,≤) needs to be established, see e.g. [CKL13, Lemma 15] or an earlier
analogous formulation in [DD07, Lemma 6.1] or in [Čer94, Lemma 5.5] and therefore, our
result for CTL?(Σ∗, clen) requires the decidability results from [BT12,CKL13]. We wonder
whether the (complexity/decidability) results established in the present paper can be simply
explained by an approach using the definability of existence of homomorphisms in a monadic
second-order logic, as done in [CKL13,CKL14] (this would require to provide a variant to this
approach). Our translations have some flavor of the notion of interpretability from [CKL13],
but this does not fit completely, as far as we can judge.

At the time of completing this paper, we have been aware of the work [KW15] that
has been done independently and that answers similar questions by using techniques for
constraint automata.

2 Preliminaries

2.1 LTL on finite strings with the prefix relation

Let SVAR = {x1, x2, . . .} be a countably infinite set of string variables. Given a non-empty
alphabet Σ, we write LTL(Σ∗,�p) to denote the corresponding version of LTL over the con-
crete domain (Σ∗,�p) where �p is the prefix relation. Given two words w,w′ in Σ∗, we write
w �p w′ whenever w is a prefix of w′, i.e., there is w′′ ∈ Σ∗ such that w · w′′ = w′.

Terms in the logic LTL(Σ∗,�p) are defined as follows:

t ::= w | x | Xix

where w ∈ Σ∗, x ∈ SVAR and Xix is the sequence of i ≥ 1 occurrences of the symbol X
followed by the string variable x. We write ε to indicate the empty string. The term Xix is
interpreted as the value of x, ith position ahead of the current position.

Formulae in the logic LTL(Σ∗,�p) are defined as follows:

φ ::= t �p t′ | ¬φ | φ ∧ φ | Xφ | φ U φ

Hence, LTL(Σ∗,�p) contains the usual temporal connectives from LTL. The symbol X is
overloaded since it is used in terms of the form X · · · Xx and in formulae of the form Xφ.
This will not cause any confusion but we keep the current usage, since in both cases, the
presence of ‘X’ refers to future positions of bounded distance. Standard abbreviations related
to Boolean or temporal connectives are also used in the rest of this paper (for ∨, ⇒, ⇔, F,
G, etc.). Here is an example of a formula in LTL({0, 1}∗,�p):

GF((001 �p x) ∨ (x �p 1001)) ∧ G(¬(x �p Xx)).

A string valuation s is a map of the form s : SVAR→ Σ∗ (or a restriction to a subset
of SVAR), and a model for LTL(Σ∗,�p) is an ω-sequence σ of string valuations. For every
model σ and i ∈ N, the satisfaction relation |= is defined as follows (standard Boolean
clauses are omitted):
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– σ, i |= t �p t′
def⇔ JtKi �p Jt′Ki where

JwKi
def
= w for all w ∈ Σ∗

JxKi
def
= σ(i)(x) for all x ∈ SVAR

JXjxKi
def
= σ(i+ j)(x) for all x ∈ SVAR and j ≥ 1

– σ, i |= Xφ
def⇔ σ, i+ 1 |= φ,

– σ, i |= φ U ψ
def⇔ there exists j ≥ i such that σ, j |= ψ and for all i ≤ k < j, we have

σ, k |= φ.

Note that the temporal operators have their usual semantics and for a given formula φ built
over the finite set of string variables {x1, . . . , xq}, we can restrict ourselves to {x1, . . . , xq} to
evaluate the formula on a model. Similarly, in the sequel, we use the abbreviation t = t′

instead of (t �p t′) ∧ (t′ �p t) and the abbreviation t ≺p t′ instead of ¬(t = t′) ∧ t �p t′.
Unsurprisingly, we have that σ, i |= t = t′ iff JtKi = Jt′Ki.

An important feature of the semantics for LTL(Σ∗,�p) is the ability to state properties
for strings at the current state but also for strings at future positions, which may propagate
constraints all over the model with the help of the temporal operator G.

As usual, an instance of the satisfiability problem for LTL(Σ∗,�p) consists in checking
whether a formula φ in LTL(Σ∗,�p) admits a model σ such that σ, 0 |= φ. The validity
problem is defined dually, as usual. By way of example, the formula below is valid in
LTL({0, 1}∗,�p):

G(x �p 1001⇔ (x = ε ∨ x = 1 ∨ x = 10 ∨ x = 100 ∨ x = 1001)).

We write LTL(N,≤) to denote LTL(Σ∗,�p) when Σ is a singleton alphabet. Terms in the
logic LTL(N,≤) have one of the forms below: n ∈ N, x or Xix with i ≥ 1 and x ∈ SVAR.
For example, GF(Xx < x) is satisfiable in LTL(N,≤) whereas FG(Xx < x) is not satisfiable. By
contrast, both GFp and FGp are satisfiable in standard LTL.

Unlike (R,≤), the concrete domain (N,≤) does not satisfy the completion property
from [DD07] (see also similar properties in [Dec92,BC02,LM05]), which does not help to
decide LTL(N,≤). Indeed, LTL augmented with a concrete domain satisfying the comple-
tion property can be decided with Büchi automata, since the sets of satisfiable symbolic
models are ω-regular [DD07, Lemma 4.3]. However, the set of satisfiable symbolic models
in LTL(N,≤) is not ω-regular [DD07, Corollary 6.5] and therefore the automata-based ap-
proach to solve LTL(N,≤) is certainly not a routine exercise. Still, it is possible to decide
LTL(N,≤) with the help of Büchi automata, see details in [DD07] even though the proper
extension of MSO that can express satisfiable symbolic models is presented in [CKL13].

Proposition 1. [DD07,DG08] The satisfiability problem for LTL(N,≤) is PSpace-complete.

The way we define LTL(N,≤) from LTL(Σ∗,�p) implies a unary encoding of natural
numbers in the formulae but the PSpace upper bound also holds with a binary encoding,
as considered in [DG08].
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So far, we have not assumed much about the alphabet Σ. When card(Σ) = k for some
k ≥ 1, we can assume that Σ = [0, k − 1]. In the sequel, we assume that card(Σ) ≥ 2 since
the case k = 1 corresponds to the logic LTL(N,≤). When Σ is a countably infinite alphabet,
without any loss of generality, we can assume that N ⊆ Σ. However, it is sufficient to assume
that Σ = N thanks to the simple property below.

Lemma 1. Let Σ be a countably infinite alphabet. There is a logarithmic-space reduction from
the satisfiability problem for LTL(Σ∗,�p) into the satisfiability problem for LTL(N∗,�p).

Proof. Since Σ is countably infinite, there is a bijection f? : Σ → N. Let φ be a formula in
LTL(Σ∗,�p) built over words in Σ∗ such that the letters a1, . . . , ak occur in φ. Let φ′ be the
formula obtained from φ by replacing every occurrence of the letter ai by the natural number
i. This provides a reduction that can be easily implemented in logarithmic space. It remains
to show that φ is satisfiable in LTL(Σ∗,�p) iff φ′ is satisfiable in LTL(N∗,�p).

Let f be a bijection f : Σ → N. We write f(φ) to denote the formula obtained from
φ by substituting every letter a by f(a). Similarly, we write f(σ) to denote the model in
LTL(N∗,�p) such that for all i, j ≥ 0, f(σ)(i)(xj) is obtained from σ(i)(xj) by substituting
every letter a by f(a)

Given two bijections f : Σ → N and g : N → Σ, the following properties can be easily
shown:

1. for all LTL(Σ∗,�p) models σ, we have σ, 0 |= φ iff f(σ), 0 |= f(φ).
2. for all models LTL(N∗,�p) models σ, we have σ, 0 |= φ iff g(σ), 0 |= g(φ).

(⇒) Let σ be an LTL(Σ∗,�p) model σ such that σ, 0 |= φ. Let us build a bijection f : Σ→ N
such that for all i ∈ [1, k], we have f(ai) = i and f(σ), 0 |= f(φ). Let bi1 , . . . , bik′ be all the
letters in (Σ \ {a1, . . . , ak}) such that f?(bij) ∈ {1, . . . , k}. So, there are k′ letters aj1 , . . . , ajk′
whose image by f? is not in [1, k] since f? is a bijection.

f(ai)
def
= i for all i ∈ [1, k]

f(biα)
def
= f?(ajα) for all α ∈ [1, k′]

f(a)
def
= f?(a) otherwise

One can check that f is a bijection, φ′ = f(φ) and therefore f(σ), 0 |= φ′.

(⇐) Let σ be a LTL(N∗,�p) model σ such that σ, 0 |= φ′. Similarly, one can build a bijection
g : N→ Σ such that for all i ∈ [1, k], we have g(i) = ai and g(σ), 0 |= φ. Let i1, . . . , ik′ be all
the indices in N \ [1, k] such that (f?)−1(ij) ∈ {a1, . . . , ak}. So, there are k′ natural numbers
j1, . . . , jk′ in [1, k] whose image by (f?)−1 is not in {a1, . . . , ak}.

g(i)
def
= ai for all i ∈ [1, k]

g(iα)
def
= (f?)−1(jα) for all α ∈ [1, k′]

g(n)
def
= (f?)−1(n) otherwise

One can check that g is a bijection, φ = g(φ′) and therefore g(σ), 0 |= φ. ut
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As a consequence, in the sequel, either we consider that Σ is finite and non-empty, or we
consider that Σ = N. Similarly, we have the following property.

Lemma 2. Let Σ be a finite alphabet with cardinality k ≥ 2. There is a logarithmic-space
satisfiability-preserving reduction from LTL(Σ∗,�p) restricted to formulae without words in
Σ∗ to LTL({0, 1}∗,�p).

Note that Lemma 2 does not cover the case Σ = N but at the end of our investigation
(see Corollary 1), we will be able to deal with the infinite case too, by reduction to the case
with a finite alphabet.

Proof. Let Σ be a finite alphabet of cardinality k ≥ 2, say Σ = [0, k− 1], and φ be a formula
in LTL(Σ∗,�p) without words in Σ∗. For every n ∈ [0, k − 1], we write enc(n) to denote
the binary writing of n using dlog2(k)e bits and we extend enc homomorphically to any
finite word in Σ∗. One can show that φ is satisfiable in LTL(Σ∗,�p) iff φ is satisfiable in
LTL({0, 1}∗,�p). This is based on the property that for all w,w′ ∈ Σ∗, we have w �p w′ iff
enc(w) �p enc(w′). The other direction is by an easy verification since an LTL({0, 1}∗,�p)
model is an LTL(Σ∗,�p) model too. ut

In the paper, we shall characterize the computational complexity of the satisfiability
problem for any logic LTL(Σ∗,�p). The problem is already PSpace-hard by the PSpace-
hardness of the LTL satisfiability problem. Branching-time extension shall be considered
also.

2.2 LTL on finite strings with length constraints

In order to characterize the computational complexity for LTL(Σ∗,�p), we make a slight
detour by introducing an enriched version in which length constraints are allowed, instead
of the prefix relation only.

Given w ∈ Σ∗, we write len(w) to denote its length in N. When w is a word a1 · · · an of
length n ≥ 1, for every i ∈ [0, n−1], we write w(i) to denote the letter ai+1 (so, as usual, the
first index is zero). Similarly, given w,w′ ∈ Σ∗, we write clen(w,w′) to denote the length of
the longest common prefix between w and w′. More precisely, there are w0, w1, and w′1 such
that w = w0 ·w1, w

′ = w0 ·w′1 and, w1 and w′1 cannot start by the same first letter, if any. We

set clen(w,w′)
def
= len(w0). For instance clen(00100, 0011100) = 3. So, clen(w,w) = len(w),

and w is a prefix of w′ iff clen(w,w) = clen(w,w′).
The logic LTL(Σ∗, clen) is defined as LTL(Σ∗,�p) except that atomic formulae of the form

t �p t′ are replaced by atomic formulae of the form

clen(t0, t
′
0) ≤ clen(t1, t

′
1),

where t0, t
′
0, t1, t

′
1 are terms, defined exactly as in LTL(Σ∗,�p). The argument of clen(·)

should be viewed as a set and therefore the expressions clen(t, t′) and clen(t′, t) are con-
sidered as identical. Expressions of the form clen(t0, t

′
0) are called counters since they are

interpreted by natural numbers. Sometimes, we also write len(t) instead of clen(t, t). The
satisfaction relation is then adapted as follows (only the clause for atomic formulae needs to
be specified since the other clauses are identical):
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σ, i |= clen(t0, t
′
0) ≤ clen(t1, t

′
1)

def⇔ clen(Jt0Ki, Jt′0Ki) ≤ clen(Jt1Ki, Jt′1Ki).

So, the logic LTL(Σ∗, clen) allows us to express richer constraints than those from LTL(Σ∗,�p).
Roughly speaking, while atomic formulae in LTL(Σ∗,�p) can only speak about the prefix re-
lation, atomic formulae in LTL(Σ∗, clen) are more precise and can state relationships between
the lengths of longest common prefixes.

Lemma 3. Let Σ be either a finite non-empty alphabet or N. There is a logarithmic-space
reduction from the satisfiability problem for LTL(Σ∗,�p) to the satisfiability problem for
LTL(Σ∗, clen).

It is clear that the reduction is homomorphic for any Boolean or temporal connec-
tive, whereas t �p t′ is translated into clen(t, t) ≤ clen(t, t′). Not only is the reduction
satisfiability-preserving (which is sufficient to conclude upper bounds for LTL(Σ∗,�p) from
upper bounds from LTL(Σ∗, clen) but it preserves also the semantics, which is after all not
so surprising at this point.

The definition of clen(·) can be easily generalized to any (finite) number of strings. Given
w1, . . . , wn ∈ Σ∗, we write clen(w1, . . . , wn) to denote the length of the longest common prefix
for all wi’s. The logic LTL′(Σ∗, clen) is defined as LTL(Σ∗,�p) except that atomic formulae
of the form t �p t′ are replaced by atomic formulae of the form

clen(t1, . . . , tn) ≤ clen(t′1, . . . , t
′
n′),

where the terms are defined exactly as in LTL(Σ∗,�p) and n, n′ ≥ 1. The satisfaction relation
is then adapted as follows:

σ, i |= clen(t1, . . . , tn) ≤ clen(t′1, . . . , t
′
n′)

def⇔ clen(Jt1Ki, . . . , JtnKi) ≤ clen(Jt′1Ki, . . . , Jt′n′Ki).

So, apparently, the logic LTL′(Σ∗, clen) allows us to express even richer constraints than those
from LTL(Σ∗, clen). Nevertheless, by noting that

clen(w1, . . . , wn) = min{clen(wi, wj) : i 6= j ∈ [1, n]},

one can show that there is a logarithmic-space reduction from the satisfiability problem for
LTL′(Σ∗, clen) and the satisfiability problem for LTL(Σ∗, clen).

That is why, in the rest of the paper, we mainly focus our investigations on linear-time
temporal logics of the form LTL(Σ∗, clen) where Σ is either a finite alphabet or N. In the finite
case, we cannot restrict ourselves to a binary alphabet since the proof for Lemma 2 cannot be
used to show that LTL(Σ∗, clen) with finite alphabet Σ can be reduced to LTL({0, 1}∗,clen)
because the encoding used in the proof of Lemma 2 does not preserve the length of longest
common prefixes.

Here are three simple properties about clen(·) that play a special role in the sequel,
namely this is all that one needs to know about clen(·) (see Lemma 5 and Lemma 6 to
justify that claim).

Proposition 2. Let Σ be a finite alphabet of cardinality k ≥ 2.
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(I) For all w,w′ ∈ Σ∗, len(w) ≥ clen(w,w′).
(II) For all w0, w1, . . . , wk ∈ Σ∗ such that clen(w0, w1) = · · · = clen(w0, wk) and for all i ∈

[0, k], clen(w0, w1) < len(wi), we have that there are i 6= j ∈ [1, k] such that clen(w0, w1) <
clen(wi, wj).

(III) For all w0, w1, w2 ∈ Σ∗, if clen(w0, w1) < clen(w1, w2), then clen(w0, w1) = clen(w0, w2).

Similarly, if Σ = N, then the properties Proposition 2(I) and Proposition 2(III) hold true.
In Figure 1, we present the strings w0, . . . , wk so that assumptions of Proposition 2(II)
are satisfied. In particular, clen(w0, w1) = · · · = clen(w0, wk) = 3 and for all i ∈ [1, k],
wi(3) 6= w0(3) (here w0(3) = 1). Since for every i ∈ [1, k], the word wi has at least four
letters, by the Pigeonhole Principle, there are i 6= j ∈ [1, k] such that wi(3) = wj(3).

w0 : 0 0 0 1 0 2
w1 : 0 0 0 0 1 3 5 6
w2 : 0 0 0 2 1 4
. . .

wk : 0 0 0 3 1 3

Fig. 1. Strings satisfying assumptions of Proposition 2(II).

Proof. (I) Since the longest common prefix between w and w′ is clearly a prefix of w, its
length is necessarily bounded by the length of w, which is precisely the statement for (I).
(II) The proof is essentially based on the famous Pigeonhole Principle. Let w0, w1, . . . , wk
be words in Σ∗ satisfying the assumptions in statement (II). So, for every i ∈ [0, k], wi can
be written in the form w · w′i such that w is the longest common prefix between the words
w0, w1, . . . , wk and w′i ∈ Σ+. By the Pigeonhole Principle, since card(Σ \ w′0(0)) = k − 1,
there are j 6= j′ ∈ [1, k] such that w′j(0) = w′j′(0) ∈ (Σ \w′0(0)). Consequently, clen(w0, w1) <
clen(wj, wj′).
(III) Let w0, w1 and w2 be words such that clen(w0, w1) < clen(w1, w2). So, the words w0,
w1 and w2 can be decomposed in the following way

w0 = w1
0 · w2

0 w1 = w1
0 · w1

1 · w2
1 w2 = w1

0 · w1
1 · w1

2

for some w1
1 ∈ Σ+ and, w2

0 and w1
1 do not start by the same letter if any. It is immediate that

clen(w0, w1) = clen(w0, w2) = len(w1
0). ut

As a corollary, the formulae below are valid in LTL(Σ∗, clen) with card(Σ) = k:

φI
def
= len(x) ≥ clen(x, x′)

φkII
def
= ((

∧
i∈[0,k]

(clen(x0, x1) < len(xi))) ∧ clen(x0, x1) = · · · = clen(x0, xk))⇒
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(
∨

i 6=j∈[1,k]

(clen(x0, x1) < clen(xi, xj)))

φIII
def
= (clen(x, x′) < clen(x′, x′′))⇒ (clen(x, x′) = clen(x, x′′))

Note that φk
′

II is valid in LTL(Σ∗, clen) if card(Σ) ≤ k′.

Below, we introduce another syntactic restriction that is useful in the sequel without
sacrificing expressive power.

Lemma 4. Let Σ be a non-empty countable alphabet. There is a logarithmic-space reduction
from the LTL(Σ∗, clen) satisfiability problem into its restriction in which terms are restricted
to w ∈ Σ∗, x, and Xx, with x ∈ SVAR.

The proof is standard, and it is based on the renaming technique.

Proof. Given terms t and t′, we write t = t′ to denote the formula below:

(t = t′)
def
= (clen(t, t) ≤ clen(t, t′)) ∧ (clen(t′, t′) ≤ clen(t, t′)).

Obviously, (t = t′) holds true whenever t and t′ are interpreted by the same string. Now,
let φ be a formula in LTL(Σ∗, clen) with occurrences of the term Xjx for some j ≥ 2. Let
xnew1 , . . . , xnewj be new variables. One can show that φ is satisfiable iff the formula below is
satisfiable:

G(xnew1 = Xx) ∧
j∧

α=2

G(xnewα = Xxnewα−1) ∧ φ[Xjx← xnewj ],

where φ[Xjx← xnewj ] is the formula obtained from φ by replacing every occurrence of Xjx by

xnewj . Note that the first two conjuncts do not introduce terms of the form Xj
′
x′ with j′ > 1.

Therefore by applying such a transformation a number of times bounded by the size of φ,
we obtain a logarithmic-space reduction from the LTL(Σ∗, clen) satisfiability problem to its
adequate restriction. We use the facts that logarithmic-space reductions are closed under
composition and enumerating a polynomial amount of conjuncts, as done above, requires
only logarithmic-space thanks to a binary encoding for indices (the size of the outcome
formula is not part of the used space, as usual in complexity theory). ut

3 String-compatible counter valuations

This section contains the key result to transform string constraints with the prefix order into
counter constraints (Lemma 6). Before presenting such a result, first we explain why solving
word equations (see e.g. [Mak77]) allows to solve Boolean combinations of prefix constraints
in polynomial space thanks to the PSpace upper bound established in [Pla04]. Actually, at
the end of the section, we show that the problem can be solved in NP by taking advantage
of Lemma 6 and the NP upper bound for solving quantifier-free Presburger formulae.
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3.1 A remark on word equations

Given a finite alphabet Σ, a word equation E is an expression of the form w = w′ where
w,w′ ∈ (Σ]SVAR)∗. The equation E is satisfiable iff there is a valuation s : (Σ]SVAR)→ Σ∗

extended homomorphically to (Σ]SVAR)∗ and equal to the identity on Σ∗ such that s(w) =
s(w′). The satisfiability problem for word equations can be solved in PSpace [Pla04] (see
also Makanin’s contribution for decidability in [Mak77]). Thanks to this result, deciding the
Boolean combination of prefix constraints of the form t �p t′ (the terms are either words in
Σ∗ or string variables) can be decided in PSpace too, as briefly explained below. However,
prefix constraints are simple enough so that it is possible to design an ad-hoc but much
simpler decision procedure, as shown below. This happens to be very useful in Section 4.

Before introducing string-compatible counter valuations (thanks to constraints on the
lengths of the longest common prefixes that lead to genuine string valuations), let us briefly
explain first how to solve Boolean combinations of prefix constraints by solving word equa-
tions. This is indeed based on the following observations.

1. Simultaneous satisfiability for a finite set {w1 = w′1, . . . , wn = w′n} of word equations can
be done by checking the satisfiability of the single word equation below

w1 ]1 w2 ]2 · · · ]n−1 wn = w′1 ]1 w
′
2 ]2 · · · ]n−1 w′n,

where ]1, . . . , ]n−1 are new letters (separators) dedicated to synchronization.
2. t �p t′ can be reduced to the word equation t · xnew = t′ where xnew is a new string

variable.
3. ¬(t �p t′) can be reduced to the positive Boolean combination of word equations below:

(
∨

a6=b∈Σ

(t = x1new a x2new ∧ t′ = x1new b x
3
new)) ∨ (

∨
a∈Σ

(t = t′ a x4new)).

So, given a Boolean combination φ of prefix constraints, the reduction works as follows.
Without any loss of generality, the formula φ is in negation normal form. First, replace every
constraint t �p t′ or ¬(t �p t′) by its translation as a positive Boolean combination of
word equations; call this result φ′. Then, guess a finite set of word equations that makes φ′

true propositionally and, finally, apply the PSpace algorithm to the set of word equations
using the reduction in (1) above. A finite set of word equations makes true a propositional
formula in NNF that is built from word equations when replacing every word equation
from the set by > (truth constant) makes the formula true whatever the truth value of
the other word equations. By way of example, {x = a, z = c} makes true the formula
((x = a) ∨ (y = b)) ∧ (x = a) ∧ (z = c). This leads to an NPSpace algorithm, which can be
solved in PSpace thanks to Savitch’s Theorem [Sav70]. At this point, it is worth noting that
the above reduction does not work when Σ = N but adding suffix constraints to the prefix
constraints can be dealt with similarly. As a by-product of the developments below, solving
Boolean combinations of prefix constraints (whatever the cardinality of the fixed alphabet)
can be done in NP.
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3.2 The characterisation

Let Σ be either a finite alphabet of the form [0, k − 1] for some k ≥ 2 or N. Let SVAR′

be a finite subset of SVAR. As usual, a string valuation s with respect to SVAR′ is a map
s : SVAR′ → Σ∗. A counter valuation c with respect to SVAR′ is defined as a map

c : {clen(x, x′) : x, x′ ∈ SVAR′} → N.

When a counter valuation c satisfies the conjunction of the formulae below, we say that c is
string-compatible (with respect to SVAR′):

– Formula ψI related to condition (I) from Proposition 2:∧
x,x′∈SVAR′

(clen(x, x) ≥ clen(x, x′)).

– Formula ψII related to condition (II) from Proposition 2: either > if Σ = N or the formula
below if Σ = [0, k − 1]∧

x0,...,xk∈SVAR′

((
∧

i∈[0,k]

(clen(x0, x1) < clen(xi, xi))) ∧ clen(x0, x1) = · · · = clen(x0, xk)) ⇒

(
∨

i 6=j∈[1,k]

(clen(x0, x1) < clen(xi, xj))).

– Formula ψIII related to condition (III) from Proposition 2:∧
x,x′,x′′∈SVAR′

(clen(x, x′) < clen(x′, x′′))⇒ (clen(x, x′) = clen(x, x′′)).

The size of the above conjunction is in O(card(SVAR′)k+2), i.e. polynomial in card(SVAR′)
when the alphabet is fixed and finite. If Σ = N, then the size of the above conjunction is in
O(card(SVAR′)3). When X ⊆ SVAR′ and c is string-compatible with respect to SVAR′, the
restriction of c to X is also string-compatible with respect to X.

Let X be a non-empty subset of SVAR′, s be a string valuation and c be a counter
valuation, both with respect to SVAR′. We say that c agrees with s on X (written c ≈X s)
def⇔ c(clen(x, x′)) = clen(s(x), s(x′)) for all x, x′ ∈ X. So, if X ′ ⊆ X and c ≈X s, then c ≈X′ s

too. Moreover, note that the interpretation of s on SVAR′\X is useless for the binary relation
≈X and therefore the restriction of s to SVAR′ \X may be sometime omitted. Given a string
valuation s, there is a counter valuation c such that c ≈X s and c can be defined obviously
by: c(clen(x, x′))

def
= clen(s(x), s(x′)) for all x, x′ ∈ X.

Lemma 5. Let s be a string valuation and c be the counter valuation that agree on SVAR′.
Then, c is string-compatible with respect SVAR′.
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This is an immediate consequence of Proposition 2. Whereas Lemma 5 corresponds to a
correctness lemma (string valuations induce string-compatible counter valuations), Lemma 6
below states a completeness result: every string-compatible counter valuation can be indeed
obtained from a string valuation. The statement in Lemma 6 is just a bit more complex than
one might think at first because of the distinction between two sets of string variables, but this
is due to its forthcoming use in relationship with the logics LTL(Σ∗, clen) and CTL?(Σ∗, clen).

Lemma 6. Let X 6= ∅ and Y be finite and disjoint sets of string variables, c be a string-
compatible counter valuation with respect to X ] Y and s : Y → Σ∗ be such that c ≈Y s.
Then, there is a string valuation s′ that is a conservative extension of s, such that c ≈X]Y s′.

Assuming that Y = {y1, y2}, the string valuations s and s′ below are therefore equivalent
as far as the existence of a conservative extension is concerned since the lengths of longest
common prefixes are identical.

s(y1) = 0101
s(y2) = 01112

s′(y1) = 3456
s′(y2) = 34777

Proof. Below, we prove the result when card(X) = 1 (unary case) since this is sufficient
to conclude the proof of the lemma when card(X) > 1 by applying the construction below
exactly card(X) times. Indeed, let X = {x1, . . . , xr} with r ≥ 1. Here is how the general case
can be solved from the unary case.

— Compute s1 : Y ] {x1} → Σ∗ such that c ≈Y ]{x1} s1 by application of the lemma in the
unary case. (c is also string-compatible with respect to Y ] {x1})

— Let Y := Y ] {x1}. Compute s2 : Y ] {x2} → Σ∗ extending s1 such that c ≈Y ]{x2} s2 by
application of the lemma in the unary case. (c is also string-compatible with respect to
Y ] {x1, x2})
. . .

— Let Y := Y ] {xr−1}. Compute sr : Y ] {xr} → Σ∗ extending sr−1 such that c ≈Y ]{xr} sr
by application of the lemma in the unary case.

Let us therefore consider the unary case below with X = {x}. The construction of s′(x)
is done in at most four steps.

(Step 1) Let t1, . . . , tα be all the distinct variables in Y such that

c(clen(t1, x)) = · · · = c(clen(tα, x)) = max{c(clen(t, x)) : t ∈ Y } def
= M.

In a sense, the first c(clen(t1, x)) values of the string s′(x) are uniquely inherited from s.
The only situation for which t1, . . . , tα is void is when Y is empty. In that case, we omit
the steps (2), (3) and (4) below and for every j ∈ [0, c(clen(x, x))− 1], s′(x)(j)

def
= 0.

(Step 2) For every j ∈ [0, M− 1], s′(x)(j)
def
= s(t1)(j). If c(clen(x, x)) = M, then we are done,

otherwise go to Step (3).

(Step 3) Let β be min(N\{s(tj)(M) : j ∈ [1, α], c(clen(tj, tj)) > M}). We pose s′(x)(M)
def
= β.
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(Step 4) For every j ∈ [M + 1, c(clen(x, x))− 1], s′(x)(j)
def
= 0.

Above, it is remarkable that s′ can be defined deterministically once c and s are provided.
An alternative definition of s′ that allows nondeterminism consists of allowing in Step (4)
any value in Σ to define s′(x)(j). The same reasoning applies to the degenerate case in Step
(1). Furthermore, nondeterminism in Step (3) would also be possible (and the construction
would satisfy the same essential properties) by allowing any value in

(Σ \ {s(tj)(M) : j ∈ [1, α], c(clen(tj, tj)) > M})

for defining s′(x)(M). By contrast, the situation would be quite different if we had constraints
on suffixes or regularity constraints too. Note also that in (Step 2), β ≤ card(Y ) since there
are at most card(Y ) values that are removed from N.

It remains to show that s′ satisfies the required properties, which amounts to checking
the following three properties.

(a) len(s′(x)) = c(clen(x, x)).
(b) s′(x) ∈ Σ∗.
(c) For all x′, x′′ ∈ Y ∪ {x}, clen(s′(x′), s′(x′′)) = c(clen(x′, x′′)).

(a) The only reason for assigning a letter to the string s′(x) strictly after the index c(clen(x, x))−
1 would be if M > c(clen(x, x)). This cannot occur since c is string-compatible and more specif-
ically it satisfies the formula ∧

z,z′∈Y ∪{x}

(clen(z, z) ≥ clen(z, z′))

from condition (I) in Proposition 2. Moreover, the abort condition in (Step 2) rules out the
case M = c(clen(x, x)).

(b) The proof is ad absurdum. Let J ∈ [0, c(clen(x, x)) − 1], s′(x)(J) 6∈ Σ. When Σ = N this
leads to an immediate contradiction, so let us assume that Σ = [0, k − 1] for some k ≥ 2.
Since s has the profile Y → Σ∗, s′(x)(J) cannot be defined in (Step 1). Similarly, s′(x)(J)
cannot be defined in (Step 4) since (always) 0 ∈ Σ. So, s′(x)(J) can only be defined in (Step
3), M < c(clen(x, x)) and J = M. Since s′(x)(J) 6∈ Σ, this means that s′(x)(J) ≥ k and therefore

[0, k − 1] ⊆
{
s(tj)(M) : j ∈ [1, α], c(clen(tj, tj)) > M)

}
.

So, there are terms t′0, . . . , t
′
k−1 in {t1, . . . , tα} such that for every j ∈ [0, k−1], s(t′j)(M) = j.

The strings s′(x), s(t′0), . . . , s(t′k−1) satisfy the assumption in Proposition 2(II). Since c is
string-compatible, it satisfies the formula∧

z0,...,zk∈Y ∪{x}

((
∧

i∈[0,k]

(clen(z0, z1) < clen(zi, zi))) ∧ clen(z0, z1) = · · · = clen(z0, zk)) ⇒

(
∨

j 6=j′∈[1,k]

(clen(z0, z1) < clen(zj, zj′)))
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So, there are j 6= j′ ∈ [1, k] such that s(t′j)(M) = s(t′j′)(M), which leads to a contradiction
(since j 6= j′ implies that s(t′j)(M) is different from s(t′j′)(M)).

(c) The proof is ad absurdum. Let t in Y ] {x} with clen(s′(x), s′(t)) 6= c(clen(x, t)). Note
that by assumptions in the lemma, such a mismatch cannot be due to two terms from Y .
By Step (2), we have clen(s′(x), s(t1)) ≥ M. Now suppose that clen(s′(x), s(tj)) < M for
some j ∈ [2, α]. By Proposition 2(III), we get that clen(s′(x), s(tj)) = clen(s(t1), s(tj)).
Furthermore, we have clen(s(t1), s(tj)) = c(clen(t1, tj)) since c ≈Y s. So, c(clen(t1, tj)) < M

and therefore c(clen(t1, tj)) < c(clen(x, t1)). Since c is string-compatible, this implies that
c(clen(t1, tj)) = c(clen(x, tj)), which leads to a contradiction since c(clen(t1, tj)) < M and
c(clen(x, tj)) = M. So, by definition of t1, . . . , tα and by Step (2), for every j ∈ [1, α], we
have clen(s′(x), s(tj)) ≥ M.

If c(clen(x, x)) = M, then we are done with the definition of s′(x) and therefore we get
clen(s′(x), s(t′)) = c(clen(x, t′)) for all t′ ∈ {t1, . . . , tα}. Otherwise by definition of s′(x)(M),

s′(x)(M) 6∈
{
s(tj)(M) : j ∈ [1, α], c(clen(tj, tj)) > M

}
and therefore not clen(s′(x), s(tj)) > M, whence clen(s′(x), s(tj)) = M.

Consequently, t does not belong to t1, . . . , tα and therefore c(clen(t, x)) < M. Indeed
M = max{c(clen(t, x)) : t ∈ Y }. Remember that c is string-compatible and more specifically
it satisfies the formula∧

z,z′,z′′∈Y ]{x}

(clen(z, z′) < clen(z′, z′′))⇒ (clen(z, z′) = clen(z, z′′)),

from condition (III) in Proposition 2. So, c(clen(t, x)) = c(clen(t, t1)) and we obtain that
clen(s(t), s(t1)) = c(clen(t, t1)). So, for every j ∈ [0, L − 1] with L = clen(s(t), s(t1)),
s(t)(j) = s(t1)(j) = s′(x)(j).

If c(len(t)) = L, then obviously, clen(s(t), s′(x)) = c(clen(t, x)), which leads to a contra-
diction. Otherwise, we know that s(t)(L) 6= s(t1)(L) and s′(x)(L) = s(t1)(L) (by Step (2)
and the fact that L = c(clen(t, x)) < c(clen(t1, x))); whence s(t)(L) 6= s′(x)(L). So, we get
clen(s(t), s′(x)) = L and therefore clen(s(t), s′(x)) = c(clen(t, x)), which leads to a contra-
diction. ut

Lemma 7 below states a simple property about testing the satisfiability status of a
Boolean combination of atomic formulae expressing prefix relationships. The NP upper
bound can be obtained by reduction to the satisfiability problem for quantifier-free Pres-
burger formulae [BT76,Pap81,Pot91]. Its proof technique involving Lemma 6 is reused for
the full logic LTL(Σ∗, clen) and for the logic CTL?(Σ∗, clen).

Lemma 7. Let Σ be a non-empty alphabet equal to either [0, k−1] for some k ≥ 2 or N. The
satisfiability problem for Boolean combinations of atomic formulae from LTL(Σ∗,�p) [resp.
from LTL(Σ∗, clen)] is NP-complete.
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Proof. NP-hardness is proved by an easy logarithmic-space reduction from SAT where each
propositional variable pi is encoded by the atomic formula 0 �p xnewi and xnewi is a string
variable dedicated to pi.

Below, we establish the NP complexity upper bound for LTL(Σ∗, clen), the proof for
LTL(Σ∗,�p) being then a direct corollary. Let φ be a Boolean combination of atomic formulae
from LTL(Σ∗, clen). Without any loss of generality, we can assume that the terms are of the
form x ∈ SVAR or w ∈ Σ∗. Indeed, if a term Xix occurs in φ, we can substitute it by a new
variable ynew, leading to an equi-satisfiable formula in LTL(Σ∗, clen).

So, assume that φ contains the following terms only: the words w1, . . . , wq and the string
variables x1, . . . , xr. Let φ′ be the formula obtained from φ by replacing every occurrence
of wi by the new string variable yi. Let us show that φ is satisfiable iff the formula below is
satisfiable in quantifier-free Presburger arithmetic

φ′′
def
= φ′ ∧ ψI ∧ ψII ∧ ψIII ∧

∧
i,j∈[1,q]

clen(yi, yj) = clen(wi, wj),

where the formulae ψI, ψII and ψIII are those obtained from the conditions in Proposition 2
with the two disjoint sets of variables Y = {y1, . . . , yq} and X = {x1, . . . , xr}. We have seen
that ψI ∧ ψII ∧ ψIII is of size O((q + r)k+2) if Σ = [0, k− 1] or of size O((q + r)3) if Σ = N.
Similarly, size(φ′) is linear in size(φ) and the last generalized conjunction is of quadratic
size in size(φ). Hence, φ′′ is of polynomial size in size(φ). Since the satisfiability problem for
quantifier-free Presburger formulae is in NP, see e.g. [Pap81,BT76], we get the upper bound
NP for solving our initial problem.

It remains to show that φ is satisfiable in LTL(Σ∗, clen) iff φ′′ is satisfiable in Presburger
arithmetic.

First, let us suppose that there is a string valuation s such that s |= φ′ verifying for every
j ∈ [1, q], the equality s(yj) = wj (which is equivalent to state that φ is satisfiable). Let c be

the counter valuation such that for all x, x′ ∈ X ]Y , we have c(clen(x, x′))
def
= clen(s(x), s(x′)).

Obviously, c |= φ′ ∧ (
∧
i,j∈[1,q] clen(yi, yj) = clen(wi, wj)) where |= is the satisfaction relation

in Presburger arithmetic. Furthermore, by Lemma 5, we have that c |= ψI ∧ ψII ∧ ψIII.
Consequently, φ′′ is satisfiable in Presburger arithmetic.

Now suppose that there is a counter valuation c such that c |= φ′′ and let s be the
string valuation such that for every j ∈ [1, q], we have s(yj) = wj. In particular, c is string-
compatible, c ≈Y s, and by application of Lemma 6, there is a string valuation s′ that is a
conservative extension of s, such that clen(s′(x), s′(x′)) = c(clen(x, x′)) for all x, x′ ∈ X ∪ Y ,
i.e. c ≈X∪Y s′. Consequently, for all clen(t0, t

′
0) ≤ clen(t1, t

′
1) occurring in φ′ we have

c |= clen(t0, t
′
0) ≤ clen(t1, t

′
1) (in the sense of Presburger arithmetic) iff s′ |= clen(t0, t

′
0) ≤

clen(t1, t
′
1) (in the sense of LTL(Σ∗, clen)). Therefore, we get that s′ |= φ′ and φ is satisfiable

since s′(yj) = wj for all j ∈ [1, q]. ut
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4 Temporal logics on strings with prefix constraints

4.1 Linear-time temporal logics

Let Σ be a fixed non-empty (either finite, or infinite and countable) alphabet and φ be a
formula in LTL(Σ∗, clen). Without any loss of generality, we can assume that the words in
Σ∗ occurring in φ are w1, . . . , wq, the string variables occurring in φ are x1, . . . , xr and the
other terms are among Xx1, . . . , Xxr (see Lemma 4).

We build a formula φ′ in LTL(N,≤) such that φ is satisfiable in LTL(Σ∗, clen) iff φ′ is
satisfiable in LTL(N,≤) and size(φ′) is polynomial in size(φ). Before defining φ′, let us make
preliminary remarks and constructions.

1. For all i, j ∈ [1, q], we write ci,j to denote the constant value clen(wi, wj).
2. By convention, the counters in the formula φ′ from LTL(N,≤) are of the form clen(t, t′)

with t, t′ ∈ T and T
def
= {y1, . . . , yq} ∪ {xi, Xxi : i ∈ [1, r]}. So, the expression clen(t, t′)

is overloaded: it may occur in the formula φ in LTL(Σ∗, clen) or as a (symbolic) counter
in φ′, but no confusion will be possible. Moreover, note that we have introduced a new
set of variables {y1, . . . , yq} but each variable yi shall be interpreted rigidly by taking the
value wi.

3. Let φsubst be the formula in LTL(N,≤) obtained from φ by replacing every occurrence of
the word wi by yi. This formula can be also viewed as a formula in LTL(Σ∗, clen). More
generally, for every subformula ψ of φ, we write ψsubst to denote the formula obtained
from ψ by performing similar substitutions. Obviously, ψsubst is a subformula of φsubst

too.
4. Let φrig be the formula in LTL(N,≤) defined below:

G (
∧

i,j∈[1,q]

(clen(yi, yj) = ci,j)).

5. Let φnext be the formula in LTL(N,≤) defined below:

G (
∧

t,t′∈{y1,...,yq}∪{Xx1,...,Xxr}

clen(t, t′) = X clen(t \ X, t′ \ X)),

where (Xxi)\X
def
= xi and yj\X

def
= yj. For example, an instance of a conjunct is clen(Xx1, Xx2) =

X clen(x1, x2) where clen(Xx1, Xx2) and clen(x1, x2) are understood as counters in LTL(N,≤).

6. The formula ψI is defined as ψI
def
= G ψ′I with

ψ′I
def
=
∧

t,t′∈T

(clen(t, t) ≥ clen(t, t′)).

7. The formula ψII is defined as ψII
def
= G ψ′II with either ψ′II

def
= > if Σ = N or the formula

below if Σ = [0, k − 1]

ψ′II
def
=

∧
t0,...,tk∈T

((
∧

i∈[0,k]

(clen(t0, t1) < clen(ti, ti))) ∧ clen(t0, t1) = · · · = clen(t0, tk)) ⇒
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(
∨

i 6=j∈[1,k]

(clen(t0, t1) < clen(ti, tj))).

8. The formula ψIII is defined as ψIII
def
= G ψ′III with

ψ′III
def
=

∧
t,t′,t′′∈T

(clen(t, t′) < clen(t′, t′′))⇒ (clen(t, t′) = clen(t, t′′)).

The formula φ′ is defined as the following conjunction:

φ′
def
= φsubst ∧ φrig ∧ φnext ∧ ψI ∧ ψII ∧ ψIII.

When Σ = N, size(φ′) is in O(size(φ)3) whereas size(φ′) is in O(size(φ)k+2) when Σ = [0, k−1]
for some k ≥ 2.

Let us start by establishing the correctness of the reduction in one direction.

Lemma 8. If φ is satisfiable then φ′ is satisfiable.

Proof. Let σ : N→ ({x1, . . . , xr} → Σ∗) be a model for LTL(Σ∗, clen)—actually restricted to
the relevant string variables in {x1, . . . , xr}—such that σ, 0 |= φ. Let σ′ : N→ (({x1, . . . , xr}]
{y1, . . . , yq}) → Σ∗) be the conservative extension of σ such that each string variable yi
is always interpreted by the string wi. So, the formula φsubst understood as a formula in
LTL(Σ∗, clen) verifies that σ′, 0 |= φsubst.

Let σN be the model of LTL(N,≤) such that for all i ∈ N, for all counters clen(t, t′) (built

from terms in T), we have σN(i)(clen(t, t′))
def
= clen(JtKi, Jt′Ki) where JyjKi = σ′(i)(yj) = wj,

JxjKi = σ′(i)(xj) and JXxjKi = σ′(i + 1)(xj). It is quite immediate that σN, 0 |= φsubst ∧
φrig. In order to show that σN, 0 |= φnext, by way of example let us show that σN, 0 |=
G (clen(yj, Xxj′) = X clen(yj, xj′)). Given i ∈ N, we have

σN(i)(clen(yj, Xxj′)) = clen(JyjKi, JXxj′Ki) = clen(wj, σ
′(i+ 1)(xj′))

whereas

σN(i+ 1)(clen(yj, xj′)) = clen(JyjKi+1, Jxj′Ki+1) = clen(wj, σ
′(i+ 1)(xj′)).

This means precisely that σN, i |= clen(yj, Xxj′) = X clen(yj, xj′). A similar simple reasoning
can be performed for the other cases, and we conclude that σN, 0 |= φnext.

Let si be the string valuation with respect to the set T such that:

si(xj)
def
= σ′(i)(xj) for all j ∈ [1, r]

si(Xxj)
def
= σ′(i+ 1)(xj) for all j ∈ [1, r]

si(yj)
def
= wj for all j ∈ [1, q]

Note that si and σN(i) satisfy the hypotheses from Lemma 5 since σN(i) ≈T si, and therefore
σN(i) is string-compatible. By definition of string-compatibility, this means that σN, i |=
ψ′I ∧ ψ′II ∧ ψ′III. Since the position i above is arbitrary and G(ψ′I ∧ ψ′II ∧ ψ′III) is logically
equivalent to ψI ∧ ψII ∧ ψIII, we get that σN, 0 |= ψI ∧ ψII ∧ ψIII. As a conclusion,
σN, 0 |= φ′ and therefore φ′ is satisfiable. ut
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Let us now establish the correctness of the reduction in the other direction.

Lemma 9. If φ′ is satisfiable then φ is satisfiable.

Proof. Let σ : N → ({clen(t, t′) : t, t′ ∈ T} → N) be a model for the formula φ′, i.e.
σ, 0 |= φ′. For every i ∈ N, we can consider that σ(i) is a counter valuation with respect to
the set T. Let us define a model σΣ∗ for LTL(Σ∗, clen) such that σΣ∗ , 0 |= φ inductively on the
position i.
Base case (i = 0): We have seen that σ(0) is a counter valuation with respect to T. Let s

be a string valuation such that for every j ∈ [1, q], we have s(yj)
def
= wj. Since σ, 0 |= φ′,

this implies that σ, 0 |= ψ′I ∧ ψ′II ∧ ψ′III. So, by definition, σ(0) is string-compatible.
Moreover, clen(s(yi), s(yj)) = σ(0)(clen(yi, yj)) = ci,j (by satisfaction of the formula φrig)
for all i, j ∈ [1, q], i.e. σ(0) ≈Y0 s with Y0 = {y1, . . . , yq}. By application of Lemma 6, there
is a string valuation s′ that is a conservative extension of s, such that clen(s′(t), s′(t′)) =
σ(0)(clen(t, t′)) for all t, t′ ∈ T, i.e. σ(0) ≈T s′. Consequently, for all counters clen(t0, t

′
0),

clen(t1, t
′
1), we have σ, 0 |= clen(t0, t

′
0) ≤ clen(t1, t

′
1) iff s′ |= clen(t0, t

′
0) ≤ clen(t1, t

′
1). We

define σΣ∗(0) and σΣ∗(1) as follows:

σΣ∗(0)(yj)
def
= σΣ∗(1)(yj)

def
= wj for all j ∈ [1, q]

σΣ∗(0)(xj)
def
= s′(xj) for all j ∈ [1, r]

σΣ∗(1)(xj)
def
= s′(Xxj) for all j ∈ [1, r]

For all t, t′ in T, we have clen(JtK0, Jt′K0) in σΣ∗ is equal to σ(0)(clen(t, t′)).

Induction step: Suppose that σΣ∗ is defined until the position i ≥ 1, and let us define σΣ∗(i+1).
The induction hypothesis assumes that for all j ∈ [0, i − 1], for all terms t and t′ in T we
have that clen(JtKj, Jt′Kj) = σ(j)(clen(t, t′)). So, for all j < i, for all counters clen(t0, t

′
0),

clen(t1, t
′
1), we also have

σ, j |= clen(t0, t
′
0) ≤ clen(t1, t

′
1) iff σΣ∗ , j |= clen(t0, t

′
0) ≤ clen(t1, t

′
1) (1)

Let s be a string valuation such that for every j ∈ [1, q], we have s(yj) = wj and for
every j ∈ [1, r], s(xj) = σΣ∗(i)(xj). Since σ, 0 |= φ′, this implies that σ, i |= ψ′I ∧ ψ′II ∧ ψ′III
and therefore σ(i) is string-compatible with respect to X ∪ Y where Y = Y0 ∪ {x1, . . . , xr}
and X = {Xx1, . . . , Xxr}. Moreover, for all t, t′ ∈ Y , clen(s(t), s(t′)) = σ(i)(clen(t, t′)) by
the induction hypothesis, i.e. σ(i) ≈Y s. Indeed, by way of example, we have the following
equalities:

clen(s(xj), s(xj′)) = clen(σΣ∗(i)(xj), σΣ∗(i)(xj′)) (by definition of s)
= clen(JxjKi, Jxj′Ki) (by definition of J·K)
= clen(JXxjKi−1, JXxj′Ki−1) (by definition of J·K)
= σ(i− 1)(clen(Xxj, Xxj′)) (by IH)
= σ(i)(clen(xj, xj′)) (since σ, 0 |= φnext)

By application of Lemma 6, there is a string valuation s′ that is a conservative extension
of s, such that σ(i) ≈X∪Y s′. Let us define σΣ∗(i+ 1) as follows:
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σΣ∗(i+ 1)(yj)
def
= wj for all j ∈ [1, q]

σΣ∗(i+ 1)(xj)
def
= s′(Xxj) for all j ∈ [1, r]

Observe that for all j ∈ [0, i], for all terms t, t′, we have that clen(JtKj, Jt′Kj) = σ(j)(clen(t, t′)),
whence for all counters clen(t0, t

′
0), clen(t1, t

′
1), σ, i |= clen(t0, t

′
0) ≤ clen(t1, t

′
1) iff σΣ∗ , i |=

clen(t0, t
′
0) ≤ clen(t1, t

′
1), establishing (1).

Now that the construction of σΣ∗ is done, for all i ∈ N, we have σ, i |= clen(t0, t
′
0) ≤

clen(t1, t
′
1) iff σΣ∗ , i |= clen(t0, t

′
0) ≤ clen(t1, t

′
1) for all expressions clen(t0, t

′
0), clen(t1, t

′
1)

occurring in φsubst. By structural induction, one can show that for all i ∈ N, we get σ, i |=
ψsubst iff σΣ∗ , i |= ψsubst for all subformulae ψ of φ. The base case with atomic formulae of
the form clen(t0, t

′
0) ≤ clen(t1, t

′
1) is obtained by construction of σΣ∗ (see above) whereas

the cases for the Boolean connectives in the induction step are by an easy verification. By
way of example, below, we consider the case ψ = ϕ1Uϕ2.

σ, i |= (ϕ1Uϕ2)
subst iff σ, i |= (ϕ1)

subst U (ϕ2)
subst (by definition of (·)subst)

iff there is j ≥ i such that σ, j |= (ϕ2)
subst and for all i ≤ k < j,

we have σ, k |= (ϕ1)
subst (by definition of |=)

iff there is j ≥ i such that σΣ∗ , j |= (ϕ2)
subst and for all i ≤ k < j,

we have σΣ∗ , k |= (ϕ1)
subst (by induction hypothesis)

iff σΣ∗ , i |= (ϕ1)
subst U (ϕ2)

subst (by definition of |= in LTL(Σ∗, clen))
iff σΣ∗ , i |= (ϕ1Uϕ2)

subst (by definition of (·)subst)

So, since σ, 0 |= φsubst, we conclude that σΣ∗ , 0 |= φsubst (when φsubst is viewed as a formula in
LTL(Σ∗, clen)). Moreover, for all j ∈ [1, q] and for all i ∈ N, we have σΣ∗(i)(yj) = wj, whence
σΣ∗ , 0 |= φ too. ut

Theorem 1. For every non-empty countable alphabet Σ, the respective satisfiability problems
for LTL(Σ∗,�p) and LTL(Σ∗, clen) are PSpace-complete.

By Lemmas 8 and 9, there is a logarithmic-space reduction from the satisfiability prob-
lem for LTL(Σ∗, clen) to the satisfiability problem for LTL(N,≤) and we know that the
satisfiability problem for LTL(N,≤) is PSpace-complete.

As a nice corollary, we state below a small alphabet property for checking satisfiability
of formulae in LTL(N∗,�p)—i.e., the alphabet is countably infinite. This is due to the fact
that the construction of the value β in the proof of Lemma 6 is bounded by card(X ∪ Y )
which corresponds to a bound 3× size(φ) in the context of the proof of Lemma 9, where it
is invoked in an essential way. This assumes that no term of the form Xix with i > 1 occurs
in φ (see Lemma 4).

Corollary 1. Let φ be a satisfiable formula in LTL(N∗,�p) with maximal letter N and
with no term of the form Xix with i > 1. Then, φ has a model in which all the strings are
interpreted in the subalphabet [0,max(N, 3× size(φ))].

As a consequence, there is no formula φ in LTL(N∗,�p) that characterizes exactly the set of
models with an infinite number of letters from N to occur in it. Note that if terms of the form
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Xix with i > 1 occur in φ, a renaming is performed first, as shown in the proof of Lemma 4
(which, in the worst case, may cause a quadratic blow-up to the size of the subalphabet). We
also get the following consequence by noting that the satisfiability problem for LTL(N∗,�p)
is equivalent to the problem stated in the corollary below.

Corollary 2. The problem below is PSpace-complete:

input: a formula φ built over a finite set X of letters,

question: is there an alphabet Σ ⊇ X such that φ is satisfiable in LTL(Σ∗, clen)?

Indeed, given φ with maximal letter N , we first reduce it to an equi-satisfiable formula φ′ with
maximal letter bounded by size(φ) (by renaming of the letters) and then we take advantage
of the polynomial-space bound from Corollary 1.

The proof method from [DD07,DG08] for establishing that the satisfiability problem for
LTL(N,≤) is in PSpace can be applied to any extension L of LTL that uses Büchi automata
similarly to LTL. Nevertheless, the automata built in [DD07] to solve LTL(N,≤) satisfiability
problem are obtained as the product of a standard automaton (roughly speaking, following
the construction from [VW94]) and an automaton to deal with satisfiable symbolic models.
Any extension of LTL behaving as LTL for the first part of the product would provide a
PSpace upper bound too. Let us be a bit more precise. Let L be an extension of LTL
such that for every formula φ of L, we can construct a Büchi automaton Bφ of size at most
exponential in size(φ) such that:

1. Bφ accepts exactly the models of φ,

2. the size of each state of Bφ is polynomial in size(φ),

3. it can be checked if a state is initial [resp. accepting] in polynomial space in size(φ),

4. each transition of Bφ can be checked in polynomial space in size(φ).

Past LTL [Mar04], linear µ-calculus µLTL [Var88] or Extended Temporal Logic ETL [Wol83]
are well-known examples of such logics. It is then easy to design the extensions of the form
L(Σ∗,�p).

Corollary 3. Let L be an extension of LTL satisfying the above properties and Σ be a non-
empty and countable alphabet. Then, the satisfiability problem for L(Σ∗,�p) is PSpace-
complete.

Such results can be pushed a bit further either by noting that any extension of LTL(N,≤)
obtained by adding a finite amount of MSO-definable temporal operators remains in the
complexity class PSpace [DG08, Section 5] (see also [GK03]) or by considering a richer set
of relations on natural numbers, as those considered in the constrained language IPC* [DG08]
(see also the survey on LTL with Presburger constraints in [Dem06]). Typically, one could
add the past-time temporal operators X−1 and S while preserving the PSpace upper bounds
stated so far.

20



4.2 Branching-time temporal logics

Developments for LTL(Σ∗, clen) using Lemma 6 can be lifted to the branching-time case, even
though we can only establish decidability without providing an optimal complexity upper
bound as we did for LTL(Σ∗, clen).

First, let us define the branching-time temporal logic CTL?(Σ∗, clen) extending the linear-
time logic LTL(Σ∗, clen). Formulae in the logic CTL?(Σ∗, clen) are defined as follows:

φ ::= clen(t0, t
′
0) ≤ clen(t1, t

′
1) | ¬(clen(t0, t

′
0) ≤ clen(t1, t

′
1)) |

φ ∧ φ | φ ∨ φ | X φ | φ U φ | φ R φ | A φ | E φ

Negation appears only in front of atomic formulae, and each temporal operator occurs with
its dual operator. Nevertheless, we still have the full power of CTL? [EH86] in terms of path
quantifiers and linear-time temporal operators. This restriction on negation will simplify a
few developments in proofs. Below, we use the standard abbreviation AG φ

def
= A(⊥ R φ). For-

mulae in CTL?(Σ∗, clen) contain the constraints on the longest common prefixes while the ver-
sion with prefix constraints only, is easy to design and it can be translated to CTL?(Σ∗, clen)
similarly to the linear-time case.

A model for CTL?(Σ∗, clen) is a structure of the form M = (S,R, L) such that S is a
non-empty set of states, R ⊆ S×S is a total binary relation (totality means that every state
has at least one successor state) and L is a labelling function L : S → (SVAR→ Σ∗). For all
models M, infinite paths π in M and positions i ∈ N, the satisfaction relation |= is defined
as follows:

– π, i |= clen(t0, t
′
0) ≤ clen(t1, t

′
1)

def⇔ clen(Jt0Kπ,i, Jt′0Kπ,i) ≤ clen(Jt1Kπ,i, Jt′1Kπ,i) where

JwKπ,i
def
= w for all w ∈ Σ∗

JxKπ,i
def
= L(π(i))(x) for every x ∈ SVAR

JXjxKπ,i
def
= L(π(i+ j))(x) for all x ∈ SVAR and j ≥ 1

– π, i |= ¬clen(t0, t
′
0) ≤ clen(t1, t

′
1)

def⇔ clen(Jt0Kπ,i, Jt′0Kπ,i) > clen(Jt1Kπ,i, Jt′1Kπ,i).

π, i |= Xφ
def⇔ π, i+ 1 |= φ

π, i |= φ U ψ
def⇔ there is j ≥ i such that π, j |= ψ

and for all i ≤ k < j, we have π, k |= φ.

π, i |= φ R ψ
def⇔ either π, j |= ψ for all j ≥ i or,

there is j ≥ i such that π, j |= φ and
for all i ≤ k ≤ j, we have π, k |= ψ

π, i |= Eφ
def⇔ there is a path π′ that agrees with π on the positions

0, . . . , i such that π′, i |= φ

π, i |= Aφ
def⇔ for all paths π′ that agree with π on the positions

0, . . . , i, we have π′, i |= φ

21



An instance of the satisfiability problem for CTL?(Σ∗, clen) consists in checking whether
a formula φ in CTL?(Σ∗, clen) has a model M and a path π such that π, 0 |= φ.

We write CTL?(N,≤) to denote CTL?(Σ∗, clen) when Σ is a singleton alphabet and the
atomic formulae are restricted to inequalities between terms. In the sequel, we take advan-
tage of the recent result below, partly based on the decidability of Boolean combinations
of formulae from MSO and WMSO+U [BT12] where U is the unbounding second-order
quantifier.

Proposition 3. [CKL13] The satisfiability problem for CTL?(N,≤) is decidable.

As for LTL(Σ∗, clen), we state below a few properties about CTL?(Σ∗, clen) that will
simplify a bit the developments. The properties can either be proved as for LTL(Σ∗, clen) or
are easily inherited from CTL? [ES84,EH86].

(PROP1) There is a logarithmic-space reduction from CTL?(Σ∗, clen) satisfiability problem
into its restriction in which terms are restricted to w ∈ Σ∗, x or Xx with x ∈ SVAR.

(PROP2) A formula φ is satisfiable in CTL?(Σ∗, clen) iff φ has a model that is a (kφ + 1)-
branching tree where kφ is the number of existential path quantifiers occurring in φ (see
also [Gas09,CKL13] or [ES84, Theorem 3.2] for the classical argument on CTL?).

Let Σ be a fixed non-empty (either finite or infinite and countable) alphabet and φ be a
formula in CTL?(Σ∗, clen). Without any loss of generality, we can assume that the words in
Σ∗ occurring in φ are w1, . . . , wq, the string variables occurring in φ are x1, . . . , xr and the
other terms are among Xx1, . . . , Xxr (see (PROP1) above). Let d = kφ + 1. By (PROP2), we
can restrict ourselves to consider models of φ which are d-branching trees.

Below, we build a formula φ′ in CTL?(N,≤) such that φ is satisfiable in CTL?(Σ∗, clen)
iff φ′ is satisfiable in CTL?(N,≤) and size(φ′) is polynomial in size(φ). Before defining φ′, let
us make preliminary remarks and constructions.

1. For all i, j ∈ [1, q], we write ci,j to denote the constant value clen(wi, wj).
2. For every γ ∈ [1, d], we introduce a counter zγ and we write pγ (understood as a propo-

sitional variable) to denote the formula (zγ = 0).
Let φdtree be the formula stating that each reachable state satisfies a unique formula pj:

AG(
∨

γ∈[1,d]

(pγ ∧
∧

γ′ 6=γ∈[1,d]

¬pγ′)).

So, along a path, to identify the direction γ ∈ [1, d] for the next position, it is sufficient
to test Xpγ.

3. By convention, the counters in the formula φ′ from CTL?(N,≤) are of the form clen(t, t′)γ

with γ ∈ [1, d], t, t′ ∈ T and T
def
= {y1, . . . , yq} ∪ {xi, Xxi : i ∈ [1, r]}. There are also the

counters of the form zγ. This is the most substantial difference with the linear case since
each direction γ comes with its set of counters. We do not claim here a new idea since
this is just a relevant adaptation of arguments from [Gas09,CKL13] but at the logical
level. For instance, similar arguments are used at the level of tree automata in [Gas09],
which can be done even more explicitly for automata accepting d-branching trees only.
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4. Let φsubst be the formula in CTL?(N,≤) obtained from φ by replacing every occurrence
of the word wi by yi and then,
– by replacing every (positive) occurrence of clen(t0, t

′
0) ≤ clen(t1, t

′
1) by the formula

below: ∧
γ∈[1,d]

(
(Xpγ)⇒ clen(t0, t

′
0)
γ ≤ clen(t1, t

′
1)
γ
)
.

– by replacing every occurrence of ¬(clen(t0, t
′
0) ≤ clen(t1, t

′
1)) by the formula below:∧

γ∈[1,d]

(
(Xpγ)⇒ ¬(clen(t0, t

′
0)
γ ≤ clen(t1, t

′
1)
γ)
)
.

This is one of the places where it is convenient to have formulae in negation normal form
(at the minor cost of introducing dual operators). Again, for every subformula ψ of φ, we
write ψsubst to denote the formula obtained from ψ by performing similar substitutions.

5. Let φrig be the formula in CTL?(N,≤) defined below:

AG (
∧

γ∈[1,d],i,j∈[1,q]

(clen(yi, yj)
γ = ci,j)).

6. Let φnext be the formula in CTL?(N,≤) defined below:

AG (
∧

γ∈[1,d]

((Xpγ)⇒ (
∧

t,t′∈{y1,...,yq}∪{Xx1,...,Xxr}

clen(t, t′)γ = X clen(t \ X, t′ \ X)γ))).

7. φagree be the formula in CTL?(N,≤) defined below:

AG (
∧

γ,γ′∈[1,d]

∧
t,t′∈{y1,...,yq}∪{x1,...,xr}

clen(t, t′)γ = clen(t, t′)γ
′
).

This a new formula by comparison to the linear case, that states constraints related to
the lengths of the longest common prefixes for string variables interpreted at the current
position. The values do not depend on the directions of child nodes. The linear case
roughly corresponds to d = 1 and therefore the formula φagree with d = 1 is valid but
useless in the linear case.

8. The formula ψI is defined as ψI
def
= AG ψ′I with

ψ′I
def
=

∧
γ∈[1,d]

(
∧

t,t′∈T

(clen(t, t)γ ≥ clen(t, t′)γ)).

9. The formula ψII is defined as ψII
def
= AG ψ′II with either ψ′II

def
= > if Σ = N or the formula

below if Σ = [0, k − 1]

ψ′II
def
=

∧
γ∈[1,d]

(
∧

t0,...,tk∈T

((
∧

i∈[0,k]

(clen(t0, t1)
γ < clen(ti, ti)

γ)) ∧

clen(t0, t1)
γ = · · · = clen(t0, tk)

γ ⇒ (
∨

i 6=j∈[1,k]

(clen(t0, t1)
γ < clen(ti, tj)

γ)))).
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10. The formula ψIII is defined as ψIII
def
= AG ψ′III with

ψ′III
def
=

∧
γ∈[1,d]

(
∧

t,t′,t′′∈T

(clen(t, t′)γ < clen(t′, t′′)γ)⇒ (clen(t, t′)γ = clen(t, t′′)γ)).

The formulae ψI, ψII and ψIII are defined as in the linear case except that d distinct
directions have to be considered. The formula φ′ is equal to the following conjunction:

φdtree ∧ φsubst ∧ φrig ∧ φnext ∧ φagree ∧ ψI ∧ ψII ∧ ψIII.

Observe that some of subformulae in the conjunction above are not defined in negation
normal form but it is easy to get such a form (mainly by removing the occurrences of
material implication).

Correctness of the reduction is stated below.

Lemma 10. φ is satisfiable iff φ′ is satisfiable.

The proof is quite similar to the proofs for Lemma 8 and for Lemma 9 except that for
each direction γ in [1, d] for the next state in a path, we consider a distinct family of counters
of the form clen(t, t′)γ. Actually, these two lemmas can be viewed as Lemma 10 when d = 1
(a few adjustments would be necessary to have a formal correspondence). But when the
terms t and t′ only refer to values at the current position, clen(t, t′)γ and clen(t, t′)γ

′
have

to agree even if γ 6= γ′. Moreover, whether we consider a model for φ or for φ′, it is sufficient
to consider models that are infinite branching trees. Given X ⊆ T and γ ∈ [1, d], we write
c ≈γX s to denote the agreement between c and s with respect to X but restricted further to
the counters of the form clen(·, ·)γ.

Proof. (⇒) First, let us show that if φ is satisfiable, then φ′ is satisfiable. Let M = (S,R, L)
be a model and π0 be an infinite path in M such that π0, 0 |= φ. Without any loss of
generality, we can assume that

– M is a d-branching tree with d = kφ+1 where kφ is the number of occurrences of existential
path quantifiers in φ, i.e. S = [1, d]∗ and wRw′ iff w′ = w · γ for some γ ∈ [1, d].

– L is of the form [1, d]∗ → ({x1, . . . , xr} → Σ∗), assuming that the string variables in φ are
among {x1, . . . , xr}.

– π0 is an infinite path starting at the root ε ∈ [1, d]∗. Equivalently, π0 can be represented
by an ω-word in [1, d]ω.

Let M′ = (S,R, L′) be the conservative extension of M such that each string variable yi
is everywhere interpreted as the string wi. Let MN = (S,R, LN) be the model in CTL?(N,≤)
defined as follows:

– For all w ∈ S and γ, γ′ ∈ [1, d], LN(w · γ)(zγ′)
def
= 0 if γ = γ′, otherwise LN(w · γ)(zγ′)

def
= 1.

Moreover LN(ε)(z1)
def
= 0 and LN(ε)(zγ)

def
= 1 for all γ ∈ [2, d] (this is a convention since ε

has no parent). It is easy to show that π0, 0 |= φdtree.

– For all w ∈ S and for all γ ∈ [1, d], LN(w)(clen(t, t′)γ)
def
= clen(JtKw,wγ, Jt′Kw,wγ) where
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JyjKw,wγ
def
= wj

JxjKw,wγ
def
= L′(w)(xj)

JXxjKw,wγ
def
= L′(wγ)(xj)

Note that for all infinite paths π′ of the form π′0(w)(wγ)π′1, the value JtKw,wγ defined above
is equal to JtKπ′,len(w) in M′. So, for all γ ∈ [1, d], for all w ∈ [1, d]∗, LN(w) ≈γT J·Kw,wγ
where J·Kw,wγ is understood in the obvious way as a string valuation with respect to T.

It is now quite easy to show that π0, 0 |= φsubst ∧ φrig ∧ φagree, in particular π0, 0 |= φsubst

is proved by structural induction and by considering all paths in MN. Indeed, one can show
that for all paths π′ starting at ε, for all positions i and for all subformulae ψ of φ, we have
π′, i |= ψ in M′ implies π′, i |= ψsubst in MN.

Let us start by showing the base case. Suppose that π′, i |= (clen(t0, t
′
0) ≤ clen(t1, t

′
1))

with π′(i+ 1) = γ ∈ [1, d] and w = π′(0) · · · π(i)′ (π′(0) = ε). For each j ∈ {0, 1}, we have

LN(w)(clen(tj, t
′
j)
γ) = clen(JtjKw,wγ, Jt′jKw,wγ) (by definition of LN(w))

= clen(JtjKπ′,i, Jt′jKπ′,i) (in M′)

So, we get that π′, i |= (clen(t0, t
′
0)
γ ≤ clen(t1, t

′
1)
γ). In MN, we have π′, i |= Xpγ since

LN(wγ)(zγ) = 0 and by definition, pγ is equal to zγ = 0. So, in MN, we get π′, i |= Xpγ ⇒
(clen(t0, t

′
0)
γ ≤ clen(t1, t

′
1)
γ). By contrast, for all γ′ 6= γ, we have LN(wγ)(zγ′) = 1 and

therefore in MN, we obtain π′, i 6|= Xpγ′ , which “vacuously” guarantees that π′, i |= Xpγ′ ⇒
(clen(t0, t

′
0)
γ′ ≤ clen(t1, t

′
1)
γ′). So, π′, i |= (clen(t0, t

′
0) ≤ clen(t1, t

′
1))

subst. The proof for the
base case with ¬(clen(t0, t

′
0) ≤ clen(t1, t

′
1)) is very similar. By way of example, below we

deal with the induction step for the cases ψ = E ψ′ and ψ = ψ1Uψ2.
Case ψ = E ψ′:

π′, i |= E ψ′ implies there is π′′ such that π′′, i |= ψ′ and,
π′ and π′′ agree on the position 0, . . . , i (by definition of |=)

implies there is π′′ such that π′′, i |= (ψ′)subst in MN and,
π′ and π′′ agree on the position 0, . . . , i (by IH)

implies π′, i |= E (ψ′)subst in MN (by definition of |=)
implies π′, i |= (E ψ′)subst (by definition of (·)subst)

Case ψ = ψ1Uψ2:

π′, i |= ψ1Uψ2 implies there is j ≥ i such that π′, j |= ψ2 and
for all k ∈ [i, j − 1], we have π′, k |= ψ1 (by definition of |=)

implies there is j ≥ i such that π′, j |= (ψ2)
subst in MN and

for all k ∈ [i, j − 1], we have π′, k |= (ψ1)
subst in MN (by IH)

implies π′, i |= (ψ1)
subst U (ψ2)

subst in MN (by definition of |=)
implies π′, i |= (ψ1Uψ2)

subst (by definition of (·)subst)

For the satisfaction of φagree, it is sufficient to observe that the values JyjKw,wγ and JxjKw,wγ
do not depend on the direction γ. Moreover, the satisfaction of the conjunctive formula
φnext ∧ ψI ∧ ψII ∧ ψIII can be proved exactly as in the linear case (see the proof of
Lemma 8); in particular the property LN(w) ≈γT J·Kw,wγ for all w and γ, is crucial for the
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satisfaction of ψI ∧ ψII ∧ ψIII.

(⇐) Now, let us prove the other direction, namely, if φ′ is satisfiable, then φ is satisfiable.
Let M = (S,R, L) be a model and π0 be an infinite path in M such that π0, 0 |= φ′. Without
any loss of generality, we can assume that

– M is D-branching tree with D = kφ′ + 1, i.e. S = [1, D]∗ and wRw′ iff w′ = w ·γ for some
γ ∈ [1, D].

– L is of the form [1, D]∗ → ({clen(t, t′)γ : t, t′ ∈ T, γ ∈ [1, d]} ∪ {z1, . . . , zγ} → N).
– π0 is an infinite path starting at the root ε ∈ [1, D]∗.

Observe that size(φ′) is clearly strictly greater than size(φ) but no new existential path
quantifier is introduced in the reduction, so kφ′ = kφ. However, the proof below does not
depend on the value D since what really matters is the existence of a D-branching tree
model, for some D.

So, for all w ∈ S and for all γ ∈ [1, d], L(w) restricted to γ-counters (i.e., counters indexed
by γ), written below L(w)|γ, can be viewed as a counter valuation with respect to T. Let
us define a model MΣ∗ = (S,R, LΣ∗) in CTL?(Σ∗, clen) such that π0, 0 |= φ, where LΣ∗ is
inductively defined on the nodes w as follows. Below we use the following abbreviations for
the sake of clarity.

p≤
def
= clen(t0, t

′
0) ≤ clen(t1, t

′
1)

ps≤
def
= (clen(t0, t

′
0) ≤ clen(t1, t

′
1))

subst

¬p≤
def
= ¬(clen(t0, t

′
0) ≤ clen(t1, t

′
1))

¬ps≤
def
= (¬clen(t0, t

′
0) ≤ clen(t1, t

′
1))

subst

Base case (w = ε): Let γ ∈ [1, d]. We have seen that L(ε)|γ can be viewed as a counter
valuation over the γ-counters defined from the terms in T. Let sγ be a string valuation

such that for every j ∈ [1, q], we have sγ(yj)
def
= wj. Since π0, 0 |= φ′, this implies that

π0, 0 |= ψ′I ∧ ψ′II ∧ ψ′III. So, by definition, the restriction of L(ε)|γ is string-compatible.
Moreover, clen(sγ(yi), sγ(yj)) = L(ε)(clen(yi, yj)

γ) = ci,j for all i, j ∈ [1, q] (by satisfaction
of the formula φrig). Consequently, L(ε) ≈γY0 sγ with Y0 = {y1, . . . , yq}. By application
of Lemma 6, there is a string valuation s′γ that is a conservative extension of sγ, such
that clen(s′γ(t), s′γ(t

′)) = c(clen(t, t′)γ) for all t, t′ ∈ T, i.e. L(ε) ≈γT s′γ. Note that for
all t ∈ {x1, . . . , xr} ] {y1, . . . , yq}, for all γ, γ′ ∈ [1, d], s′γ(t) = s′γ′(t) since π0, 0 |= φagree

and the algorithm in the proof of Lemma 6 is deterministic (assuming that the first string
variables for which we assign a string are ordered as x1, . . . , xr).

We define LΣ∗(ε) as the string valuation s′1 (equivalently, any s′γ could be used here)
restricted to variables in {x1, . . . , xr} ] {y1, . . . , yq}. Moreover, for every γ ∈ [1, D] such that
LΣ∗(γ)(zγ′) = 0 for some γ′ ∈ [1, d], LΣ∗(γ) is defined as the restriction of the string valuation

s′γ′ such that for all j ∈ [1, r], we have LΣ∗(γ)(xj)
def
= s′γ′(Xxj). Of course, we also require

that for all j ∈ [1, q], we have LΣ∗(γ)(yj)
def
= wj. So, for all counters clen(t0, t

′
0), clen(t1, t

′
1),

π0, 0 |= ps≤ implies π0, 0 |= p≤ (in MΣ∗) and π0, 0 |= ¬ps≤ implies π0, 0 |= ¬p≤. These last
properties still hold for any path π′ starting from ε.
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Induction step: Suppose that MΣ∗ is defined until the state w 6= ε, for all its strict prefixes
and for all the extensions of the strict prefixes by adding exactly one more direction. Let us
define LΣ∗(wγ) for all γ ∈ [1, D]. The induction hypothesis also assumes that for all terms t,
t′ in T, for all j ∈ [1, i], for all infinite paths π with prefix w(−1) · · ·w(j− 2) (by convention
w(−1) = ε), for all γ′ ∈ [1, d] with L(w(−1) · · ·w(j − 2)π(j))(zγ′) = 0, we have

clen(JtKπ,j−1, Jt′Kπ,j−1) = L(w(−1) · · ·w(j − 2))(clen(t, t′)γ
′
).

So, for all paths π′ visiting w at the i = len(w)th position, for all j < i, for all counters
clen(t0, t

′
0), clen(t1, t

′
1), π

′, j |= ps≤ implies π′, j |= p≤ (in MΣ∗) and π′, j |= ¬ps≤ implies
π′, j |= ¬p≤. Observe that when len(w) = 1, we have indeed the satisfaction of the above
condition in the induction hypothesis since this amounts to check that for all terms t, t′

in T, for all γ′ ∈ [1, d], for all infinite paths π with L(π(1))(zγ′) = 0, clen(JtKπ,0, Jt′Kπ,0) =
L(ε)(clen(t, t′)γ

′
).

Let γ′ be the unique element of [1, d] such that L(wγ)(zγ′) = 0 (existence and unicity are
guaranteed by satisfaction of φdtree). We have seen that L(w)|γ′ can be viewed as a counter
valuation over the γ′-counters with respect to T. Let s be a string valuation such that for
every j ∈ [1, q], we have s(yj)

def
= wj and for every j ∈ [1, r], we have s(xj)

def
= LΣ∗(w)(xj).

Since π0, 0 |= φ′, this implies that π′, len(w) |= ψ′I ∧ ψ′II ∧ ψ′III for any path π′ starting
at ε and visiting w. So, by definition, the restriction of L(w)|γ′ is string-compatible with
respect to T = X ∪ Y where Y = Y0 ∪ {x1, . . . , xr} and X = {Xx1, . . . , Xxr}. Moreover,
clen(s(yi), s(yj)) = L(w)(clen(yi, yj)

γ′) = ci,j (by satisfaction of the formula φrig) for all
i, j ∈ [1, q]. Moreover, for all t, t′ ∈ Y , clen(s(t), s(t′)) = L(w)(clen(t, t′)γ

′
) by the induction

hypothesis, i.e. L(w) ≈γ
′

Y s. By application of Lemma 6, there is a string valuation s′ that is a
conservative extension of s, such that clen(s′(t), s′(t′)) = L(w)(clen(t, t′)γ

′
) for all t, t′ ∈ T,

i.e. L(w) ≈γ
′

T s′.

We define LΣ∗(wγ) such that for all j ∈ [1, r], we have LΣ∗(wγ)(xj)
def
= s′(Xxj). Of course,

we also require that for all j ∈ [1, q], we have LΣ∗(wγ)(yj)
def
= wj. Hence, assuming w′ = wγ, for

all terms t, t′ in T, for all j ∈ [1, i+1], for all infinite paths π with prefix w′(−1) · · ·w′(j−2)
for all γ′ ∈ [1, d] with L(w′(−1) · · ·w′(j − 2)π(j))(zγ′) = 0, we have

clen(JtKπ,j−1, Jt′Kπ,j−1) = L(w′(−1) · · ·w′(j − 2))(clen(t, t′)γ
′
).

This guarantees the propagation of the induction hypothesis. Only the case j = i+ 1 needs
to be newly established (which amounts to check that clen(s′(t), s′(t′)) = L(w)(clen(t, t′)γ

′
)

but s′ is precisely defined to satisfy such a property).
Now that the construction of MΣ∗ is done, we have that for all paths π′ starting at ε, for

all i ∈ N, π′, i |= ps≤ implies π′, i |= p≤ for all expressions clen(t0, t
′
0), clen(t1, t

′
1) occurring in

φ. Similarly, π′, i |= ¬ps≤ implies π′, i |= ¬p≤. Actually, by structural induction, one can show
that for all paths π′ starting at ε, for all i ∈ N, π′, i |= (ψ)subst implies π′, i |= ψ (in MΣ∗)
where ψ is a subformula of φ. We have seen that the base case of the induction is already
true and the cases in the induction step for Boolean connectives and for linear-time temporal
operators can be done as in the proof of Lemma 6. By way of example, let us consider the
case when ψ = A ϕ.
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π′, i |= (A ϕ)subst implies π′, i |= A ϕsubst (by definition of (·)subst)
implies for all paths π′′ that agree on π′ on the positions 0, . . . , i,

we have π′′, i |= ϕsubst (by definition of |=)
implies for all paths π′′ that agree on π′ on the positions 0, . . . , i,

we have π′′, i |= ϕ in MΣ∗ (by IH)
implies π′, i |= A ϕ in MΣ∗ (by definition of |=)

Since π0, 0 |= φsubst, we conclude that π0, 0 |= φ (in MΣ∗). ut

Theorem 2. For every non-empty countable alphabet Σ, the satisfiability problem for the
branching-time temporal logic CTL?(Σ∗, clen) is decidable.

By Lemma 10, there is a satisfiability-preserving reduction from CTL?(Σ∗, clen) to CTL?(N,≤)
and we know that the satisfiability problem for CTL?(N,≤) is decidable [CKL13]. Again, as
for the linear-time case, we can state a small alphabet property for checking satisfiability of
formulae in CTL?(N∗,�p).

Corollary 4. Let φ be a satisfiable formula in CTL?(N∗,�p) with maximal letter N and with
no occurrence of Xix with i > 1. Then, φ has a model in which all the strings are interpreted
in the subalphabet [0,max(N, 3× size(φ))].

5 Conclusion

We have shown that the logic LTL(Σ∗,�p) admits a PSpace-complete satisfiability problem
(by using the PSpace upper bound from [DD07,DG08] for the logic LTL(N,≤)) and that
CTL?(Σ∗, clen) is decidable by taking advantage of the decidability result on natural numbers
from [CKL13]. This solves open problems mentioned in [DG05,Dem07,Gas07,CKL13,CKL14]
and our proof technique allows us to get a PSpace upper bound for other extensions of LTL
such as linear µ-calculus or Past LTL. A similar result has been very recently shown inde-
pendently in [KW15] with a different proof technique based on constraint automata. Our
proof method is quite original, explicit and conceptually simple since prefix constraints are
transformed into length constraints about longest common prefixes, so that only constraints
on counters are ultimately considered. Since the prefix relation is not a total ordering (un-
like a lexicographical ordering on Σ∗ for example), it is not possible to take advantage of
techniques from [ST11] dedicated to temporal logics on concrete domains that are linearly
ordered structures. Moreover, our results imply an ExpSpace upper bound for the uniform
satisfiability problem defined below but it is open whether this is an optimal upper bound
(the alphabet is now part of the input):

input: alphabet Σ = [0, k − 1] (k in unary) or Σ = N, and a formula φ in LTL(Σ∗, clen)
question: is φ satisfiable in LTL(Σ∗, clen)?

The recent work [KW15] answers positively to this question.
By using the obvious symmetry between the prefix relation �p and the suffix relation �s,

we can also conclude that the satisfiability problem for LTL(Σ∗, �s) is PSpace-complete and
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CTL?(Σ∗, �s) is decidable. Interestingly enough, when both the prefix relation and the suffix
relation are in the concrete domain, the decidability status of LTL(Σ∗, �p, �s) remains open
and it is unclear whether the counter abstraction presented herein for the prefix relation
can be extended further with the additional presence of the suffix relation. This also applies
if we consider regularity constraints with the prefix constraints. By contrast, adding word
equations at the atomic level is a natural extension but this leads to undecidability since con-
catenation allows to simulate increments and decrements in Minsky machines. Considering
the subword relation v would be another direction to investigate as the decidability status
of LTL({0, 1}∗, v) is open too. It is obvious that the fact that v is a well-quasi-ordering by
Higman’s Lemma can be used to design a decision procedure.
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