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Separation Logics and Modalities: A Survey
Stéphane Demri∗ Morgan Deters†

Like modal logic, temporal logic, or description logic, separation logic has become a popular
class of logical formalisms in computer science, conceived as assertion languages for Hoare-
style proof systems with the goal to perform automatic program analysis. In a broad sense,
separation logic is often understood as a programming language, an assertion language and
a family of rules involving Hoare triples. In this survey, we present similarities between sep-
aration logic as an assertion language and modal and temporal logics. Moreover, we propose
a selection of landmark results about decidability, complexity and expressive power.

Keywords: Separation logic, decidability, computational complexity, expressive power,
temporal logic, modal logic, first-order logic, second-order logic.

1. Introduction

1.0.0.1 When separation logic joins the club. Introducing new logics is always an un-
certain enterprise since there must be sufficient interest to use new formalisms. In
spite of this hurdle, we know several recent success stories. For instance, even though
a pioneering work on symbolic modal logic by Lewis appeared in 1918 [Lew18],
the first monographs on symbolic modal logic appear about fifty years later, see
e.g. [HC68]. Nowadays, modal logic is divided into many distinct branches and
remains one of the most active research fields in logic and computer science, see
e.g. [BvBW06]. Additionally, the introduction of temporal logic to computer science,
due to Pnueli [Pnu77], has been a major step in the development of model-checking
techniques, see e.g. [CGP00, BBF+01]. This is now a well-established approach for
the formal verification of computer systems: one models the system to be verified
by a mathematical structure (typically a directed graph) and expresses behavioral
properties in a logical formalism (typically a temporal logic). Verification by model-
checking [CGP00] consists of developing algorithms whose goal is to verify whether
the logical properties are satisfied by the abstract model. The development of tools
is done in parallel with the design of techniques to optimize the verification process.
Apart from the development of model-checkers such as Cadence SMV, SPIN, or Up-
paal, the transfer towards industrial applications is also present in research and de-
velopment units. The development of description logics for knowledge representa-
tion has also followed a successful path, thanks to a permanent interaction between
theoretical works, pushing ever further the high complexity and undecidability bor-
ders, and more applied works dedicated to the design of new tools and the produc-
tion of more and more applications, especially in the realm of ontology languages.
The wealth of research on description logic is best illustrated by [BCM+03], in which
can be found many chapters on theory, implementations, and applications. By con-
trast, Chapter 1 of [BCM+03] provides a gentle introduction to description logics and
recalls that its roots can be traced back a few decades. It is well-known that modal
logic, temporal logic, and description logic have many similarities even though each
family has its own research agenda. For instance, models can be (finite or infinite)
graphs, the classes of models range from concrete ones to more abstract ones, and any
above-mentioned class includes a wide range of logics and fragments. In this paper,
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we deal with another class of logics, separation logic, that has been introduced quite
recently (see e.g. [IO01, Rey02]) and is the subject of tremendous interest, leading to
many works on theory, tools and applications (mainly for the automatic program anal-
ysis). Any resemblance to modal, temporal, or description logic is certainly not purely
coincidental—but separation logic also has its own assets.

In the possible-world semantics for modal logic, the modal operator 2 [resp. 3] cor-
responds to universal [resp. existential] quantification on successor worlds, and these
are essential properties to be stated, partly explaining the impact of Kripke’s discov-
ery [Kri59, Cop02]. Similarly, the ability to divide a model in two disjoint parts hap-
pens to be a very natural property and this might explain the success of separation
logic in which disjoint memory states can be considered, providing an elegant means
to perform local reasoning. Separation is a key concept that has been already intro-
duced in interval temporal logic ITL [Mos83] with the chop operator, and in many
other logical formalisms such as in graph logics [DGG07] or in extensions of PDL (see
e.g. [BdFV11, BT14a]). Moreover, dependence logic has also a built-in notion of sep-
aration, see e.g. [AV11, KMSV14, HLSV14]. Therefore, the development of separation
logic can be partly explained by the relevance of the separation concept. Its impressive
development can be also justified by the fact that separation logic extends Hoare logic
for reasoning about programs with dynamic data structures, meeting also industrial
needs as witnessed by the recent acquisition of Monoidics Ltd by Facebook.

1.0.0.2 Separation and composition. Separation logic has been introduced as an exten-
sion of Hoare logic [Hoa69] to verify programs with mutable data structures [IO01,
Rey02]. A major feature is to be able to reason locally in a modular way, which can
be performed thanks to the separating conjunction ∗ that allows one to state proper-
ties in disjoint parts of the memory. Moreover, the adjunct implication −∗ asserts that
whenever a fresh heap satisfies a property, its composition with the current heap satis-
fies another property. This is particularly useful when a piece of code mutates memory
locally, and we want to state some property of the entire memory (such as the preserva-
tion of data structure invariants). In a sense, if modal logic is made for reasoning about
necessity and possibility, separation logic is made for reasoning about separation and
composition. No doubt that this type of statement is an oversimplification (apart from
the fact that it may appear a bit old-fashioned to most modal logicians) but this may
help to get a first picture. As a taste of separation logic, it is worth observing that mod-
els can be finite graphs and the classes of models range from concrete ones (with heaps
for instance) to very abstract ones (see e.g. cancellative partial commutative monoids
in Section 2.4).

Smallfoot was the first implementation to use separation logic, its goal to verify the
extent to which proofs and specifications made by hand could be treated automati-
cally [BCO05]. The automatic part is related to the assertion checking, but the user has
to provide preconditions, postconditions, and loop invariants. A major step has been
then to show that the method is indeed scalable [YLB+08]. In a sense, the legitimate
question about the practical utility of separation logic was quickly answered, leading
to a new generation of tools such as Slayer developed by Microsoft Research, Space In-
vader [DOY06, YLB+08], and Infer [CD11] (see also [SC14] for another list of solvers).
Actually, nowadays, many tools support separation logic as an assertion language and,
more importantly, in order to produce interactive proofs with separation logic, several
proof assistants encode the logic, see e.g. [Tue11].

From the very beginning, the theory of separation logic has been an important re-
search thread even if not always related to automatic verification. This is not very
surprising since separation logic can be understood as a concretization of the logic
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BI of bunched implications which is a general logic of resource with a nice proof the-
ory [OP99]. More precisely, the logic BI exists in different flavours: its intuitionistic ver-
sion has additive and multiplicative connectives that behave intuitionistically whereas
its Boolean version admits Boolean additive connectives with intuitionistic multiplica-
tive connectives (∗ and −∗), see more details in [LG13]. So, separation logic is rather a
concretization of Boolean BI.

Besides, as for modal and temporal logics, the relationships between separation
logic, and first-order or second-order logics have been the source of many characteriza-
tions and works. This is particularly true since the separating connectives are second-
order in nature, see e.g. [Loz04a, KR04, CGH05, BDL12]. For instance, separation logic
is equivalent to a Boolean propositional logic [Loz04b, Loz04a] if first-order quanti-
fiers are disabled. Similarly, the complexity of satisfiability and model-checking prob-
lems for separation logic fragments have been quite studied [COY01, Rey02, CHO+11,
AGH+14, BFGN14]. In [COY01], the model-checking and satisfiability problems for
propositional separation logic are shown PSPACE-complete; this is done by proving a
small model property.

1.0.0.3 Content of the paper. The goal of this paper is twofold. First, we would like to
emphasize the similarities between separation logic and modal and temporal logics.
Our intention is to pinpoint the common features in terms of models, proof techniques,
motivations, and so forth. Second, we wish to present landmark results about decid-
ability, complexity, and expressive power, providing a survey on the theoretical side
of separation logic. These are standard themes for studying logics in computer sci-
ence and we deliberately focus on the logical aspects for separation logic, providing a
wealth of bibliographical references for untouched subjects in the paper, such as the
design of verification algorithms for tools using separation logic as an assertion lan-
guage or the presentation of applications. Because of time and space limitations, we
had to focus on core separation logic and for the presentation of the main results we
adopt a puristic point of view. Namely, most of the logics

• are without data values (by contrast, see e.g. [BDES09, BBL09, MPQ11]),
• use concrete models (by contrast to abstract models considered in [COY07, BK10,

LWG10, BV14]),
• are not multi-dimensional extensions of non-classical logics (by contrast, see

e.g. [YRSW03, BDL09, CG13]),
• do not provide general inductive predicates (lists, trees, etc.) (by contrast, see

e.g. [IRS13, BFGN14]).

However, these extensions shall be introduced and briefly discussed but we shall refer
to original articles or surveys for in-depth developments.

In Section 2.2, we introduce the plain version for separation logic and then in the
rest of Section 2, we present a few variants with abstract memory models or with data
values. Even though these logical formalisms provide a partial view on separation
logics, we stick to them in the rest of the paper to present all the results, from decid-
ability to expressive power. First-order separation logic 1SL with one record field plays
the role of basic separation logic as modal logic K could play the role of basic modal
logic [BdRV01]. Section 3 shows connections between separation logics and classical
logic augmented with second-order features, weak second-order logic, interval tempo-
ral logic ITL [Mos83], modal logic and multi-dimensional modal logics. The concept
of separation, made completely explicit in separation logic, happens to be very natu-
ral and already present in many logical formalisms such as in interval temporal logics
with the chop operator or more recently in separation logic for knowledge representa-
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tion [Her13]. Moreover, Section 3 recalls why 1SL and variants can be easily viewed as
fragments of weak dyadic second-order logic. Relationships with temporal logics with
freeze on data words (see e.g. [FS09]) are also presented in Section 4.1.4 whereas some
analogy with Presburger arithmetic can be found in Section 5.1 (see also in Section 5.2
the relationships between 1SL and first-order theory of natural numbers with addition
and multiplication).

Section 4 is dedicated to decidability and complexity results. We present the stan-
dard proof techniques for several undecidability results and provide the justification
for several decidability ones. Finally, we state several complexity results for tractable
fragments but also for fragments with non-recursive elementary complexity. Section 5
presents results about the expressive power for propositional separation logics (such
as 1SL0) and for first-order separation logics such as 1SL, known to be as expressive as
weak-second-order logic [BDL12]. Section 6 concludes the technical part of the paper
by providing several pointers about proof systems for separation logics, from sequent-
style calculi to decision procedures built on SMT solvers.

Even though our intention is to produce a self-contained document as far as the
definitions and results are concerned, we invite the reader to consult surveys on formal
verification and separation logic, see e.g., the primer on separation logic in [O’H12],
the lecture notes about Hoare logic and separation logic in [Gor14] or [Jen13a, Chapter
7] and [Jen13b].

2. Separation Logics

2.1 Basics on separation logic and formal verification

In this section, we provide a brief introduction to separation logic by showing how it
is related to formal verification. Nevertheless, later sections give a precise definition
and focus on the logical language rather than on the verification process. This means
that we adopt a restrictive use of the term ‘separation logic’ which is understood as
an assertion logic, rather than an understanding combining in some way the assertion
logic, the programming language and/or the specification logic.

2.1.1 Hoare logic

Hoare logic, proposed in 1969 by Tony Hoare [Hoa69] and inspired by the earlier
work of Floyd [Flo67], is a formal system used to show the correctness of programs.
Its hallmark, the Hoare triple, is composed of assertions φ and ψ and command C:

{φ} C {ψ}

Simply put, such a triple means that given a program state where the precondition φ
holds, the execution of C yields a state in which the postcondition ψ holds. Two com-
mands can be composed:

{φ} C1 {ψ} {ψ} C2 {ϕ}
{φ} C1; C2 {ϕ}

composition

Preconditions can be strengthened and postconditions can be weakened in a natural
fashion (this is used later in Section 4.3.1):

φ⇒ φ′ {φ′} C {ψ} ψ ⇒ ψ′

{φ} C {ψ′}
strengthen/weaken
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The expression φ ⇒ φ′ can be read as φ entails φ′, which amounts to state the logical
validity of the formula φ ⇒ φ′, when defined in a first-order dialect. An assignment
axiom schema is stated simply:

{φ[x/e]} x := e {φ}
assignment

However, this has a severe limitation when pointers are involved. Consider the fol-
lowing triple, an instance of the above schema:

{y = 1} x := 2 {y = 1}

This essentially states that an assignment of 2 to x does not affect the value of y (if it
is 1). With many popular imperative programming languages, this is not the case, as x
and y may in fact be aliased, i.e., they may refer to the same or a partially-overlapping
region of computer memory.

Naturally, this was understood early on as a limitation, and aliasing has continued
to plague program analysis in the decades since. However, the simplicity and com-
posability of Hoare’s proposal was appreciated, and various ways of overcoming this
limitation within Hoare’s formalism have been sought. Many of these approaches have
used some form of separation, by which distinct parts of memory can be reasoned about
distinctly.

2.1.2 Birth of separation logic

Burstall introduced distinct nonrepeating tree systems in 1972 [Bur72], implicitly
appealing to a notion of separation to be later enshrined in separation logic. There
were, however, limitations of Burstall’s approach (see [Rey00] for a full treatment).
Fragments of data structures could be asserted as separate, and this invention was
important; however, they were not permitted to have internal sharing. This has the
effect that the assertion language is limited in its ability to distinguish structures
with (unbounded) sharing. Further, the notion of composition was directional, so that
mutually-referential data posed a problem.

Recognizing these limitations, Reynolds introduced the notion of an “independent
conjunction” to Hoare logic, capable of speaking of disjoint structures and thus main-
taining some control in the face of the aliasing problem. Its first incarnation, inter-
preted classically, was flawed, as it assumed monotonicity of interpretations of asser-
tions in extensions of memory states but included an unsound proof rule. This was
quickly repaired by coopting an intuitionistic semantics [Rey00].

This intuitionistic version was discovered independently by Ishtiaq and
O’Hearn [IO01]. In fact, their efforts (together with Pym) on bunched implication (BI)
logics [OP99, Pym02] gave them a somewhat more general perspective, and they rec-
ognized Reynolds’ assertion language as being an instance of bunched implication
that reasons about pointers. Independently, working from Reynolds’ earlier classical
variant, they developed a version of BI that used Reynolds’ independent conjunction,
and gave it intuitionistic semantics. Afterward, they considered a classical version, but
ended up presenting these in reverse, the intuitionistic as a variant of the classical; this
as a result of the fact that the intuitionistic can be translated into the classical version,
and the classical version was useful in reasoning about pointer disposal.

Their paper made two further important contributions. First, they introduced sepa-
rating implication (the “magic wand”) to the logic (this quite naturally came from BI’s
multiplicative implication). This addition of the magic wand was not merely an af-
terthought or side effect of the instantiation of bunched implication in this “pointer
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logic” setting; indeed its addition was justified in its own right when first intro-
duced [IO01]. Despite this, many verification applications have made use of the sepa-
rating conjunction only and do not employ the magic wand. However, nowadays its
use in verification is more recognized; see [LP14, Section 1] and [HCGT14, Section 8]
for recent discussions on this topic (see also [TBR14]).

Second, they introduced the frame rule, important for local reasoning [IO01]. Given
a Hoare triple {φ} C {ψ} and reasoning about partial computer memories satisfying φ
and ψ, one can make conclusions about (disjoint) extensions of those partial memories
and, in particular, about how these extensions are unaltered by C. This is at the core
of the scalability of separation logic and its ability to handle aliasing. It will be made
precise later, after suitable formal definitions have been made.

In all these early versions of separation logic, memory locations were distinct from
the integers. Reynolds later offered an extension that takes memory locations to be
a (countably infinite) subset of the integers, and made fields of larger units indepen-
dently addressable. His goal was to adequately model the low-level operation of code
and, particularly, address arithmetic. In this paper, we adopt such a convention: mem-
ory locations are integers. We also adopt modern syntax; before 2002, Reynolds used
‘&’ for separating conjunction. The modern syntax is ‘∗’ for separating conjunction and
‘−∗’ for the separating implication, both taken from bunched implication logic.

2.2 Separation logic on concrete models

Let us start by defining separation logics on concrete models, namely on heaps. Let
PVAR = {x1, x2, . . .} be a countably infinite set of program variables and FVAR =
{u1,u2, . . .} be a countably infinite set of quantified variables. A memory state is a pair
(s, h) such that

• s is a variable valuation of the form s : PVAR→ N (the store),
• A heap with k ≥ 1 record fields is a partial function h : N⇁ Nk with finite domain.

We write dom(h) to denote its domain and ran(h) to denote its range.

Usually in models for separation logic(s), memory states have a heap and a store for
interpreting program variables, see e.g. [Rey02]. Herein, sometime, there is no need
for program variables (with a store) because we establish hardness results without the
help of such program variables. Moreover, for the sake of simplicity, we do not make
a distinction between the set of locations (domain of h) and the set of values (set of
elements from the range of h).

Two heaps h1 and h2 are said to be disjoint, noted h1⊥h2, if their domains are disjoint;
when this holds, we write h1]h2 to denote the heap corresponding to the disjoint union
of the graphs of h1 and h2, hence dom(h1 ] h2) = dom(h1) ] dom(h2). When the do-
mains of h1 and h2 are not disjoint, the composition h1 ] h2 is not defined even if h1

and h2 have the same values on dom(h1) ∩ dom(h2). Moreover, we can also define the
disjoint union of the memory states (s1, h1) and (s2, h2) when s1 = s2 and h1⊥h2 so
that (s1, h1) ] (s2, h2)

def
= (s1, h1 ] h2). In Figure 1, we illustrate how disjoint memory

states are built when there is a unique record field while recalling a standard graphical
representation. Each node represents a distinct natural number (the value is not speci-
fied in Figure 1) and each edge l→ l′ encodes the fact that h(l) = l′, assuming that h is
the heap graphically represented. A variable xi just above a node means that its value
by the store s is precisely that node. In Figure 1, the heap on the left of the equality
sign (say h) is equal to the disjoint union of the two heaps on the right of the equality
sign (say h1, h2 from left to right). For example, the self-loop on the node labelled by x3

encodes that (s, h) |= x3 ↪→ x3. Similarly, (s, h1) |= x3 ↪→ x3 but not (s, h2) |= x3 ↪→ x3.
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x1

x2x3

x4

=
x1

x2x3

x4

]
x1

x2x3

x4

Figure 1. Disjoint memory states with one record field

Each edge in the graphical representation of the heap h corresponds to a unique edge
in the graphical representation of either h1 or h2.

For every k ≥ 1, formulae of kSL are built from expressions of the form e ::= x | u
where x ∈ PVAR and u ∈ FVAR, and atomic formulae of the form

π ::= e = e′ | e ↪→ e1, . . . , ek | emp | ⊥

Formulae are defined by the grammar

φ, ψ ::= π | φ ∧ ψ | ¬φ | φ ∗ ψ | φ−∗ψ | ∃ u φ

where u ∈ FVAR. The connective ∗ is separating conjunction and −∗ is separating impli-
cation, usually called the magic wand. We make use of standard notations for derived
connectives for this and all logics defined in this paper. As in classical first-order logic,
an assignment is a map f : FVAR → N. The satisfaction relation |= is parameterized by
assignments (obvious clauses for Boolean connectives are omitted):

• (s, h) |=f emp iff dom(h) = ∅.
• (s, h) |=f e = e′ iff [e] = [e′], with [x]

def
= s(x) and [u]

def
= f(u).

• (s, h) |=f e ↪→ e1, . . . , ek iff [e] ∈ dom(h) and h([e]) = ([e1], . . . , [ek]).
• (s, h) |=f φ1 ∗ φ2 iff h = h1 ] h2, (s, h1) |=f φ1, (s, h2) |=f φ2 for some h1, h2.
• (s, h) |=f φ1−∗φ2 iff for all h′, if h ⊥ h′ and (s, h′) |=f φ1 then (s, h ] h′) |=f φ2.
• (s, h) |=f ∃ u φ iff there is l ∈ N such that (s, h) |=f[u 7→l] φ where f[u 7→ l] is the

assignment equal to f except that u takes the value l.

When φ has no program variables, we also write h |=f φ to mean that φ is satisfied
on the heap h under the assignment f.

It is worth noting that separating conjunction ∗ has an existential flavour whereas
separating implication −∗ has a universal flavour. Nonetheless, −∗ universally quanti-
fies over an infinite set, namely the set of disjoint heaps. In the literature, an alternative
syntax is used where e ↪→ e1, . . . , ek is represented by the conjunction below:

e
1
↪→ e1 ∧ · · · ∧ e

k
↪→ ek

When pointer arithmetic is allowed, e ↪→ e1, . . . , ek can be also understood as the con-
junction below

(e ↪→ e1) ∧ (e + 1 ↪→ e2) ∧ · · · (e + (k − 1) ↪→ ek),
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which requires some semantical adjustment. Nevertheless, in this paper, we stick to
e ↪→ e1, . . . , ek, as defined above.

Note also that it is possible to get rid of program variables by viewing them as free
quantified variables with rigid interpretation. However, it is sometime useful to dis-
tinguish syntactically program variables from quantified variables.

For k′ ≥ 0, we write kSLk′ to denote the fragment of kSL with at most k′ quanti-
fied variables. So, we write kSL1 to denote the fragment of kSL restricted to a single
quantified variable, say u. Moreover, kSLk′(−∗) [resp. kSLk′(∗)] denotes the fragment
of kSLk′ without separating conjunction [resp. wihout separating implication]. Note
also that kSL can be understood as a syntactic fragment of (k+ 1)SL by simply encod-
ing e ↪→ e1, . . . , ek by e ↪→ e1, e1, . . . , ek everywhere (the first expression is repeated
twice).

As noted earlier, we do not make a distinction between the (countably infinite) set of
locations and the set of values that includes the locations since only the set N is used
to define the stores and heaps.

Let L be a logic of the form kSLk′ or one of its fragments or extensions. As usual,
the satisfiability problem for L takes as input a formula φ from L and asks whether there
is a memory state (s, h) and an assignment f such that (s, h) |=f φ. The validity problem
is also defined as usual. The model-checking problem for L takes as input a formula φ
from L, a memory state (s, h) and a finite assignment f for free variables from φ and
asks whether (s, h) |=f φ (s is finitely encoded and it is restricted to the program vari-
ables occurring in φ). Note that the model-checking problem for first-order logic over
finite structures is known to be PSPACE-complete (see e.g. [Var82]) but we cannot con-
clude a similar statement for fragments of separation logic (even though s, h and f can
be finitely encoded) because separating implication quantifies over an infinite set of
disjoint heaps.

When k = 1, observe also that heaps are understood as Kripke frames of the form
(N,R) where R is a finite and functional binary relation. Indeed, R = {(l, h(l)) : l ∈
dom(h)} for some heap h. Furthermore, the locations l and l′ are in the same connected
component whenever (l, l′) ∈ (R∪R−1)∗. Usually, connected components are under-
stood as non-singleton components. A finite functional graph (N,R) can be made of
several maximal connected subgraphs so that each connected subgraph is made of a
cycle, possibly with trees attached to it.

Finally, it is well-known that there exists a formal relationship between ∗ and −∗
since −∗ is the adjunct of ∗. This means that (φ ∗ψ)⇒ ϕ is valid iff φ⇒ (ψ−∗ϕ) is valid.
Note that this does not imply that the formula ((φ ∗ ψ) ⇒ ϕ) ⇔ (φ ⇒ (ψ−∗ϕ)) is
valid (otherwise ∗ and −∗ would be inter-definable). However, sometimes, we are able
to show that we can get rid of one of the separating connectives, see e.g. Section 5.2,
without sacrificing the expressive power.

We also introduce so-called septraction operator ¬−∗: φ ¬−∗ ψ is defined as the formula
¬(φ−∗¬ψ). As far as we know, its first appearance was in [VP07]. So, (s, h) |=f φ

¬−∗ ψ
iff there is a heap h′ disjoint from h such that (s, h′) |=f φ and (s, h ] h′) |=f ψ. The
septraction operator states the existence of a disjoint heap satisfying a formula and for
which its addition to the original heap satisfies another formula.

2.3 A bunch of properties stated in 1SL

The logic 1SL allows one to express different types of properties on memory states.
The examples below indeed illustrate the expressivity of 1SL.

• The domain of the heap has at least α elements: ¬emp ∗ · · · ∗ ¬emp (α times).
• The variable x is allocated in the heap: alloc(x)

def
= (x ↪→ x)−∗ ⊥.
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• The variable x points to a location that is a self-loop:

∃ u (x ↪→ u) ∧ (u ↪→ u)

In the following, let u and u be the variables u1 and u2, in either order. Note that any
formula φ(u) with free variable u can be turned into an equivalent formula with free
variable u by permuting the two variables. Below, we define (standard) formulae and
explain which properties they express.

• The domain dom(h) has exactly one location:

size = 1
def
= ¬emp ∧ ¬(¬emp ∗ ¬emp)

• The domain dom(h) has exactly two locations:

size = 2
def
= (¬emp ∗ ¬emp) ∧ ¬(¬emp ∗ ¬emp ∗ ¬emp)

It is easy to see that one can also define in 1SL that the heap domain has at least
k ≥ 0 elements (written size ≥ k).
• u has a successor: alloc(u)

def
= ∃ u u ↪→ u

• u has at least α predecessors: ]u ≥ α def
=

α times︷ ︸︸ ︷
(∃ u (u ↪→ u)) ∗ · · · ∗ (∃ u (u ↪→ u))

• u has at most α predecessors: ]u ≤ α def
= ¬ (]u ≥ α+ 1)

• u has exactly α predecessors: ]u = α
def
= (]u ≥ α) ∧ ¬(]u ≥ α+ 1)

• There is a non-empty path from u to u and nothing else except loops that exclude
u:

reach′(u,u)
def
= ]u = 0 ∧ alloc(u) ∧ ¬alloc(u) ∧

∀ u ((alloc(u) ∧ ]u = 0)⇒ u = u) ∧

∀ u
[
(]u 6= 0 ∧ u 6= u)⇒ (]u = 1 ∧ alloc(u))

]
• There is a (possibly empty) path from u to u:

reach(u,u)
def
= u = u ∨

[
> ∗ reach′(u,u)

]
One can show that h |=f reach(u,u) iff there is i ∈ N such that hi(f(u)) = f(u). The
proof for this property can be found in [BDL12, Lemma 2.4] (a similar property
has been established for graph logics in [DGG07]).
• There is a (possibly empty) path from u to u and nothing else can be defined as

follows:

sreach(u, u)
def
= reach(u,u) ∧ ¬(¬emp ∗ reach(u, u))

sreach(u,u) can be understood as the ‘strict’ reachability predicate and it is usu-
ally written as the segment predicate ls(u, u).
• There is at most a single connected component (and nothing else):

1comp
def
= ¬emp ∧ ∃ u ∀ u alloc(u)⇒ reach(u, u)

9
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• There are exactly two components: 2comps
def
= 1comp ∗ 1comp

It is also worth noting that the separation logic 1SL is not necessarily minimal, see
obvious reasons below. A similar reasoning applies to any separation logic kSL. For in-
stance, in 1SL, the atomic formula emp is logically equivalent to the following formula
using only two quantified variables:

∀ u ¬(∃ u′ (u ↪→ u′))

Alternatively, it is equivalent to the following, which uses only one:

∀ u ¬((u ↪→ u)−∗⊥)

Note that (u ↪→ u)−∗⊥ is the way to express alloc(u) in 1SL1 (as shown at the top of
this section).

More interestingly, the atomic formula of the form e = e′ for some expressions e, e′

is logically equivalent to the following formula by using a new quantified variable u
that does not occur in e = e′:

∀ u ((u ↪→ e)−∗(u ↪→ e′))

The formula simply states that adding to the heap a memory cell pointing to the loca-
tion interpreted by e amounts to adding a memory cell pointing to the location inter-
preted by e′.

2.4 Abstract separation logics

Concrete models for separation logic are memory states or heaps as defined earlier, but
alternative models exist, for instance heaps with permissions, see e.g. [BCOP05, BK14].
It is also possible to introduce more abstract models with a partial operator for
gluing together models that are separate in some sense. This is the approach in-
troduced in [COY07] and investigated in great length in subsequent papers∗, see
e.g. [BK10, LWG10, BV14, HCGT14]. After all, such an abstraction should not come as
a surprise since separation logic is understood as an assertion language in a Hoare-
style framework that interprets BI in concrete heaps. Moreover, sometimes, prob-
lems can be easily solved on abstract models because more freedom is allowed (see
e.g. [BV14, HCGT14] or Theorem 4.2).

Let (HSk,],Uk) be the triple such that HSk is the set of memory states with k ≥ 1
record fields and Uk is the set of memory states of the form (s, ∅) where ∅ is the unique
heap with empty domain. The structure (HSk,],Uk) satisfies the following properties

(MONms) ] is a partial binary operation ] : HSk × HSk → HSk and Uk ⊆ HSk,
(ACms) ] is associative and commutative,
(CANms) ] is cancellative, i.e. if (s, h) ] (s′, h′) is defined and (s, h) ] (s′, h′) = (s, h) ]

(s′′, h′′), then (s′, h′) = (s′′, h′′),
(Ums) for all (s, h) ∈ HSk, we have {(s, h)} = {(s, h) ] (s′, h′) : (s′, h′) ∈ Uk, (s, h) ]

(s′, h′) is defined}.

A separation model defined below satisfies the above properties for (HSk,],Uk) by
abstracting the essential features and can be viewed as a Kripke frame for a multi-

∗See also the ANR project DYNRES at http://anr-dynres.loria.fr/ partly dedicated to abstract separation
logics to reason about resources.
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dimensional modal logic with binary modalities, see e.g. [MV97, HCGT14]. A separa-
tion model is a cancellative partial commutative monoid (M, ◦, U), i.e.

(MON) M is a non-empty set, ◦ is a partial binary operation ◦ : M ×M → M and
U ⊆M ,

(AC) ◦ is associative and commutative,
(CAN) ◦ is cancellative, i.e. if m ◦m′ is defined and m ◦m′ = m ◦m′′, then m′ = m′′,
(U) For all m ∈M , we have m ◦ U = {m}.

Obviously (HSk,],Uk) is a separation model but other memory models can be
found in the literature, see e.g. [BK10] for many more examples. For instance, the
RAM-domain model (Pfin(N),], {∅}) is a separation model where Pfin(N) is the set of fi-
nite subsets of N andX1]X2 is defined only ifX1∩X2 = ∅ and thenX1]X2

def
= X1∪X2

(disjoint union). This corresponds to the separation model (HSk,],Uk) with k equal
to zero.

Given a countably infinite set PROP = {p1, p2, . . .} of propositional variables, a val-
uation V is a map V : PROP → P(M). Semantical structures of the separation model
(M, ◦, U) are understood as the separation model itself augmented by a valuation.
Hence, the separation logic defined from the separation model (M, ◦, U) has models
that can be understood as Kripke models with underlying ternary relation induced by
the operation ◦ and interpretation of propositional variables done via V. The set of
formulae is then defined as follows (note that it is a propositional language):

φ, ψ ::= emp | p | φ ∧ ψ | ¬φ | φ ∗ ψ | φ−∗ψ

Let m ∈ M and V : PROP → P(M) be a valuation, the satisfaction relation |= is
defined as follows (we omit the obvious clauses for Boolean connectives):

• m |=V emp iff m ∈ U (we keep the constant emp in the abstract setting but
elements of U should be understood as units).
• m |=V p iff m ∈ V(p).
• m |=V φ1 ∗ φ2 iff for some m1,m2 ∈ M , we have m = m1 ◦m2, m1 |=V φ1 and
m2 |=V φ2.
• m |=V φ1−∗φ2 iff for all m′ ∈ M such that m ◦m′ is defined, if m′ |=V φ1 then
m ◦m′ |=V φ2.

In the above definition for the satisfaction relation, the model (M, ◦, U) is implicit
but we also sometimes use the notation (M, ◦, U),m |=V φ to emphasize the separation
model in use.

A formula φ is valid in the separation model (M, ◦, U)
def⇔ for all m ∈ M and for all

valuations V, we have m |=V φ. Similarly, a formula φ is satisfiable in the separation
model (M, ◦, U)

def⇔ there exist m ∈M and a valuation V such that m |=V φ. We write
SL(M, ◦, U ) to denote the propositional separation logic defined from the separation
model (M, ◦, U) with propositional variables. When C is a class of separation models,
we can also define the propositional separation logic SL(C) by admitting a family of
separation models instead of a single model. Satisfiability and validity problems are
defined accordingly. For instance, φ is satisfiable for SL(C) iff there exist (M, ◦, U) in C,
m ∈M and a valuation V such that (M, ◦, U),m |=V φ.

The satisfiability problem for kSL0 (i.e. kSL without any first-order quantification)
can be reformulated as the satisfiability problem in the separation model (HSk,],Uk)
in which propositional variables are of the form xi ↪→ xj or xi = xj and the valuations
V are constrained in such a way that (s, h) ∈ V(xi ↪→ xj) iff h(s(xi)) = s(xj). Similarly,
we require that (s, h) ∈ V(xi = xj) iff s(xi) = s(xj). Of course, this reformulation as-
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sumes that atomic formulae have some structure and it also requires restricting the set
of valuations. Note that the set of valuations can be restricted in many other ways, for
instance by imposing that a propositional variable holds true only for a finite number
of elements of M (see such restrictions in [BK10]).

2.5 Separation logic with data

In memory states defined in Section 2.2, heaps are of the form N ⇁ Nk when k record
fields are involved. No record field is really distinguished and the logic kSL mainly al-
lows to reason about the shape properties of the heap (and not so much on functional
correctness). However, it is often important to be able to reason about data values,
a typical example would be to consider programs that produce sorted lists. In that
case, we would like to specify that the values occurring in a list are linearly ordered.
Pointer arithmetic is another means to reason about data values when the set of loca-
tions (herein, represented by the set N) is equipped with relations other than equality.
Even though it is well-known that adding data domains easily leads to undecidable
logics, see e.g. [DD07, BMS+06], there exist several successful examples of logics able
to reason about heap structures and data values, while having decidable reasoning
tasks, see e.g. [BBL09, BDES09, MPQ11]. Reasoning about data values mainly means
to be able to distinguish at least one record field dedicated to data values and to ex-
press data constraints in the formulae. That is why, in full generality, data domains
need to be introduced in the semantics.

A data domain is a pair (D, (Ri)i∈I) where D is a non-empty set, I is an index set and
each Ri is a relation of arity a(i) on D, that is, it is a subset of Da(i). A typical example
of data domain is (Z, <,=). The index set I is not necessarily finite and below, we
assume that D is infinite and the family (Ri)i∈I contains the diagonal relation on D
so that equality tests between data values can be expressed in the logic. Indeed, this
makes the data domain all the more interesting and non-trivial. A memory state with
data (with respect to the data domain (D, (Ri)i∈I)) is a triple (s, h, d) such that (s, h)
is a memory state and d is a partial function N ⇁ D. Below, we also assume that
dom(h) = dom(d) in order to have correspondences between partial functions of the
form N⇁ D×Nk (the first record field is therefore dedicated to data values) and pairs
of the form (h, d) when h is a heap with k record fields. This is analogous to what is
defined in [BBL09], a pioneering work for separation logic with data values but other
options would be possible, even though not investigated below.

The logic kSL[D, (Ri)i∈I ] is defined as kSL except that atomic formulae of the form
Ri(e1, . . . , ea(i)) are added for each i ∈ I and the models are memory states with data
with respect to (D, (Ri)i∈I). In order to avoid confusion with equality between loca-
tions (by contrast to equality between their data values, if any), we write e ∼ e′ to
denote the equality formula between two data values, following a similar conven-
tion from [BMS+06]. For instance, linear ordered data domains have been consid-
ered in [DD07, ST11] with LTL-like logics or in [BBL09] with separation logic where
1SL[Z,≤,=] has been investigated. The satisfaction relation is extended in order to
cope with the new atomic formulae:

• (s, h, d) |=f Ri(e1, . . . , ea(i))
def⇔ d([e1]), . . . , d([ea(i)]) are defined and

Ri(d([e1]), . . . , d([ea(i))]).

Note that in kSL[D, (Ri)i∈I ], there is no quantification on data values but this would
be possible by defining a multi-sorted separation logic to distinguish locations from
data values, as done in [BBL09]. Similarly, the logics of the form kSL (see e.g., Sec-
tion 2.2) happen to be quite expressive (see forthcoming developments) and adding
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the ability to reason about data can only increase the computational complexity of the
reasoning tasks. That is why, most of the variants of separation logic with data con-
sidered in [BBL09] banish the magic wand operator and provide even further restric-
tions. Let 1SLsdc

< be the fragment of 1SL(∗)[Z,≤,=] (without magic wand) such that
the atomic formulae can only occur in subformulae of the form either e ↪→ e′ ∧ (e ≤ e′)
or e ↪→ e′ ∧ (e′ ≤ e). As noted in [BBL09], only short-distance comparisons are possible in
1SLsdc

< and this may allow to specify sorted lists. For example, the formula below spec-
ifies that the list between x1 and x2 (assuming that reach(x1, x2) ∧ alloc(x1) ∧ alloc(x2)
holds true) is sorted:

∀u,u′ ((reach(x1, u) ∧ reach(u,u′) ∧ reach(u′, x2))⇒ u ≤ u′)

where ≤ is “less than or equal relation” definable in the data domain (Z, <,=).
Other types of logics with data have been considered in the literature. One of the

most prominent ones is the logic STRAND introduced [MPQ11] that can state con-
straints on the heap structures but also on the data. Recursive structures are defined
thanks to monadic second-order logic whereas the use of data constraints is signif-
icantly limited. The very combination of the two types of properties allow to reason
with heap-manipulation programs using deductive verification and SMT solvers, such
as Z3 [dMB08]. Another related logic is the one introduced in [BDES09] for which a
quite general framework is proposed to reason about heap structures and data values.

3. Separation Logics and Friends

In this section, we present several logics that are closely related to some fragments
of kSL. For instance, 1SL(∗) can be also viewed as the spatial logic for graphs but re-
stricted to the graphs obtained from heaps with one record field [DGG07, Loz04a] (see
also context logic in [CGZ07, GZ07] or ambient logic [CG00]). More relationships shall
be established below.

3.1 First-order logic with second-order features

In this section, let us focus on 1SL without program variables. Models for 1SL can be
viewed as first-order structures of the form (N,R) where R is a finite and deterministic
binary relation. We have seen in Section 2.2 that there is a formula reach(u, u) in 1SL2(∗)
such that h |=f reach(u,u) iff f(u)R?f(u), where R? is the reflexive and transitive closure
of R with

R
def
= {(l, l′) : l ∈ dom(h), h(l) = l′}

Anyway, 1SL without the separation connectives is clearly a fragment of first-order
logic on structures of the form (N,R) where R is a finite and deterministic binary
relation. Adding the separating conjunction provides a little bit of second-order logic,
for instance by encoding the reachability relation. Given a binary relation R, we write
DTC(R) to denote the deterministic transitive closure of R defined as the transitive
closure of the relation

Rdet = {(l, l′) ∈ R : there is no l′′ 6= l′ such that (l, l′′) ∈ R}

So, when (N,R) is an 1SL model, DTC(R) can be defined in 1SL2(∗) itself.
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In fragments of classical logic, the presence of the deterministic transitive closure op-
erator can lead to undecidability where the operator on the binary relation R amounts
to consider the transitive closure of the deterministic restriction Rdet. In [GOR99], it
is shown that FO2 (i.e. first-order logic restricted to two quantified variables) aug-
mented with the deterministic transitive closure operator has an undecidable finitary
satisfiability problem. By contrast, FO2 has the finite model property and the satisfia-
bility problem is NEXPTIME-complete, see e.g. [GKV97]. Recently, FO2 augmented with
the deterministic transitive closure of a single binary relation is shown to have a de-
cidable and EXPSPACE-complete satisfiability problem [CKM14]. The works [GOR99]
and [CKM14] contain numerous undecidability results related to the deterministic
transitive closure operator but this involves more than one binary relation, whereas
the models for 1SL have a unique deterministic binary relation. However, several re-
sults presented in [CKM14] are quite optimal with respect to the syntactic resources.

Meanwhile, Yorsh et al. [YRS+06] study a decidable version of first-order logic with
reachability; they get decidability by making severe syntactic restrictions on the place-
ment of quantifiers and on the reachability constraints, although the resulting logic is
capable of describing useful linked data structures.

3.2 Weak second-order logic

Next we define weak second-order logic kWSOL, for k ≥ 1. The sets PVAR and FVAR
are defined as for kSL as well as the expressions e. We also consider a family SVAR =
(SVARi)i≥1 of second-order variables, denoted by P,Q,R, . . . that are interpreted as
finite relations over N. Each variable in SVARi is interpreted as an i-ary relation.

As for kSL, models are memory states with k ≥ 1 record fields. A second-order
assignment f is an interpretation of the second-order variables such that for every P ∈
SVARi, f(P) is a finite subset of Ni.

Atomic formulae take the form

π ::= e = e′ | e ↪→ e1, . . . , ek | P(e1, . . . , en) | emp | ⊥

Formulae of kWSOL are defined by the grammar

φ, ψ ::= π | φ ∧ ψ | ¬φ | ∃ u φ | ∃ P φ

where P ∈ SVARn for some n ≥ 1. We write kMSOL (monadic second-order logic)
to denote the restriction of kWSOL to second-order variables in SVAR1 and kDSOL
(dyadic second-order logic) to denote its restriction to SVAR2. Like kSL, models for
kWSOL are memory states and quantifications are done over all the possible locations.
The satisfaction relation |= is defined as follows (f is a hybrid valuation providing
interpretation for first-order and second-order variables):

• (s, h) |=f ∃ P φ iff there is a finite relation R ⊆ Nn such that (s, h) |=f[P7→R] φwhere
P ∈ SVARn.
• (s, h) |=f P(e1, . . . , en) iff ([e1], . . . , [en]) ∈ f(P).

The satisfiability problem for kWSOL takes as input a sentence φ in kWSOL and
asks whether there is a memory state (s, h) such that (s, h) |= φ. By Trakhtenbrot’s The-
orem [Tra63, BGG97], the satisfiability problem for kDSOL (and therefore for kWSOL)
is undecidable since finite satisfiability for first-order logic with a unique binary rela-
tion symbol is undecidable. Note that a monadic second-order variable can be simu-
lated by a binary second-order variable from SVAR2, and this can be used to relativize
a formula from DSOL in order to check finite satisfiability.
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Theorem 3.1. [BDL12] kWSOL and kDSOL have the same expressive power.

It has been recently shown in [DD14] that 1SL2(−∗) is as expressive as 1WSOL. The
proof hinges on the fact that that every sentence from 1DSOL has an equivalent sen-
tence in 1SL2(−∗), as discussed in Section 5.2.

Translation in the other direction concerns us in this section. Separation logic 1SL
can easily be translated into 1DSOL. The presentation given here is by a simple inter-
nalization.

First, some formula definitions useful for the translation.

• init(P)
def
= ∀ u v (P(u, v)⇔ u ↪→ v),

• heap(P)
def
= ∀ u v w ((P(u, v) ∧ P(u,w))⇒ v = w) (functionality),

• P = Q ] R
def
= ∀ u v ((P(u, v)⇔ (Q(u, v) ∨ R(u, v)) ∧ ¬(Q(u, v) ∧ R(u, v))).

The formula init initializes a binary relation P to be precisely the heap graph; this is a
notational convenience for the top level of the translation. heap requires that a relation
P is functional and is used to ensure that subheaps (as interpreted by second-order
variables) are in fact heaps. Finally, P = Q ] R composes two relations representing
subheaps (Q and R) into one—or alternatively, it can be seen as decomposing P into
two disjoint pieces; it is used in both “directions” in the translation.

Let the top-level translation t(φ)
def
= ∃ P (init(P) ∧ tP(φ)), where tP is the transla-

tion with respect to P as the “current” heap for interpretation. It is homomorphic for
Boolean connectives, and otherwise has this definition:

tP(u ↪→ v)
def
= P(u, v)

tP(φ ∗ ψ)
def
= ∃ Q Q′

(
P = Q ]Q′ ∧ tQ(φ) ∧ tQ′(ψ)

)
tP(φ−∗ψ)

def
= ∀ Q

(
((∃ Q′ heap(Q′) ∧Q′ = Q ] P) ∧ heap(Q) ∧ tQ(φ))

⇒ (∃ Q′ heap(Q′) ∧Q′ = Q ] P ∧ tQ′(ψ))
)

Theorem 3.2. (see e.g. [BDL12]) There exists a translation t such that for any 1SL sen-
tence φ and for any memory state (s, h), we have (s, h) |= φ in 1SL iff (s, h) |= t(φ) in
1DSOL.

Note that of course there must then also exist a translation from the smaller fragment
1SL2(−∗) into 1DSOL. This result (along with Theorem 3.1 above) will be useful later in
showing expressive power results of separation logic.

3.2.0.1 General inductive predicates. Using general inductive predicates provides an-
other means to define second-order properties on heaps and this is a very useful fea-
ture to describe the shape of data structures, such as linked lists for instance. Seman-
tics for general inductive predicates using least fixpoint operators can be naturally en-
coded in second-order logic, see e.g. [QGSM13]. Until very recently, such predicates are
hard-coded but new results on the satisfiability and entailment problems for general
inductive predicates have been obtained, see e.g. [IRS13, AGH+14, BFGN14]. Whereas,
it is shown in [BFGN14] that the satisfiability problem for many standard fragments of
separation logic augmented with general inductive predicates is decidable and com-
plexity is characterized (see also [IRS13] for bounded tree-width structures), other
fragments have been shown to admit decidable entailment problem [IRS13, AGH+14].
These are general results that are very promising for automatic verification of pro-
grams, despite the generality of the defined predicates.
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3.3 Interval temporal logics

Temporal logics are dedicated to temporal reasoning, see e.g. [MP92] and it is common
for such logics to reason about propositions that vary at different points in time, but it
is useful as well to consider intervals; an early and classical study for reasoning about
intervals can be found in [All83]. Interval-based temporal logics admit time intervals
as first-class objects. One of the most prominent interval-based logics is Propositional
Interval Temporal Logic (PITL), introduced in [Mos83] for the verification of hard-
ware components. It contains the so-called ‘chop’ operation that consists of chopping
an interval into two subintervals. Naturally, this is rather reminiscent of the separating
conjunction, and indeed the correspondence has recently been made precise in [DD15].
Below, we consider PITL in which propositional variables are interpreted under the lo-
cality condition (the truth of a propositional variable on an interval depends only on the
first letter of the interval) and for which decidability is guaranteed but computational
complexity is very high. This will allow us to derive similar bounds for 1SL2(∗).

It is typical in interval temporal logic to not cleave the model into two disjoint pieces,
but rather to permit overlap at one point. This gives nonempty models, and is one of
the two main issues in showing correspondence between 1SL(∗) and PITL, though it
is still possible. The other difficulty is in showing how to use 1SL(∗) to properly cut an
interval so that the data encoding is not split in an improper way.

Given α ≥ 1, we consider the finite alphabet Σ = [1, α] and we write PITLΣ to denote
propositional interval temporal logic in which the models are non-empty finite words
w ∈ Σ+. We write PITL instead of PITLΣ when the finite alphabet Σ is clear from the
context. Formulae for PITLΣ are defined according to the following abstract grammar:

φ, ψ ::= a | pt | ¬φ | φ ∧ ψ | φCψ

with a ∈ Σ. Roughly speaking, a holds true at a word w when a is the first letter of
w. Similarly, the atomic formula pt holds true at a word w when the word w is only a
single letter. The connective C is the chop operator, which chops a word.

Formally, we define a ternary relation chops on words:

chops
def
=
{

(w1,w2,w3) ∈ (Σ+)3 | ∃ a,w′,w′′ s.t. w1 = w′aw′′,w2 = w′a,w3 = aw′′
}

Then, let us define the satisfaction relation |= for PITLΣ between a word w ∈ Σ+ and a
formula φ:

• w |= a
def⇔ the first letter of w is a.

• w |= pt
def⇔ the length of w is 1.

• w |= ¬φ def⇔ w 6|= φ.
• w |= φ ∧ ψ def⇔ w |= φ and w |= ψ.
• w |= φCψ

def⇔ there exist w1,w2 such that chops (w,w1,w2), w1 |= φ and w2 |= ψ.

We then have the following results.

Lemma 3.3. Given α ≥ 1 and Σ = [1, α], there is a logarithmic-space translation t(·)
of PITL formulae to 1SL2(∗) formulae such that a PITLΣ formula φ is satisfiable if and
only if the 1SL2(∗) formula t(φ) is satisfiable.

There are two chief insights that permit this result. First, words may be represented
by memory states which can be described by 1SL2(∗) formulae. Briefly, these memory
states, called fishbone heaps in [DD15] and defined formally herein (see Section 4.1.4),
encode a word of length n over a finite alphabet of sizem by an acyclic path of length n
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where each successive memory location has a number of predecessors that precisely
encodes the element of the alphabet corresponding to its position within the word.
Care must be taken during the translation so as not to divide these fishbones improp-
erly, else the result may be interpreted as a different word. Second, there is a striking
correspondence between PITL’s chop and the separating conjunction. As PITL’s chop
conventionally separates an interval into two, duplicating the point of separation, the
translation must take care to translate with respect to the duplicated point.

This result leads directly to Theorem 4.14, shown later.

3.4 Modal logics

Separation logic is related to modal logics in many ways, and actually the full paper
is dedicated to put forward existing bridges. Nevertheless, below, we present several
modal readings for separation logic.

At first, the separating connectives ∗ and −∗ force the interpretation of subformulae
in alternative heaps, which is reminiscent to the destructive aspect of van Benthem’s
sabotage modal logic [vB05]. Indeed, sabotage modal logic (SML) defined in [vB05]
has the ability to remove states in a transition system. A variant of SML is introduced
in [LR03] with the possibility to withdraw transitions, a feature also shared with log-
ics from [PW04, Dem05, Göl07], see also logics of public announcements [Lut06]. The
satisfiability problem for that variant is shown undecidable in [LR03] (another variant
is shown undecidable in [Roh04] in which deletion of the transitions is done locally to
the current state). Other modal logics updating the model while evaluating formulae
have been considered in a systematic way in [ABdCH09].

Secondly, several logical formalisms have included modalities from modal or tem-
poral logics with separating connectives. Whereas a modal BI logic is introduced
in [CG13] for expressing dynamic resource properties, temporal reasoning about mem-
ory states has been performed in several ways, for instance in Navigation Temporal
Logic in [DKR04], in Evolution logic [YRSW03] or in some LTL extension with formu-
lae from separation logic at the atomic level [BDL09, Bro13].

3.4.1 A taste of multi-dimensional modal logics

Versions of separation logics with the connectives ∗ and −∗ can be also under-
stood as multi-dimensional modal logics, see e.g. [MV97, GKWZ03, HCGT14]. Multi-
dimensional modal logics are known as modal logics with n-ary modalities, n ≥ 1 and
models are of the form M = (W,R, V ) with non-empty set W , R ⊆ Wn+1, for some
n ≥ 1 and V : PROP→W . For each i ∈ [1, n+ 1], we can define the n-ary modality 3i

such that M, w |= 3i(φ1, . . . , φi−1, φi+1, . . . , φn+1) iff there is (w1, . . . , wn+1) ∈ R with
wi = w such that for all j ∈ [1, n + 1] \ {i}, we have M, wj |= φj . Note that when
n = 1, 31 corresponds to the standard modality 3 and 32 corresponds to the standard
backward modality 3−1. So, it is not difficult to observe that 1SL0 can be understood
as a multi-dimensional modal logic in the above sense with a unique Kripke model
and n = 2. Such a unique model M = (W,R, V ) is defined as follows:

• W def
= {(s, h) : s : PVAR→ N, h : N⇀fin N} (i.e., W def

= HS1).
• ((s1, h1), (s2, h2), (s3, h3)) ∈ R

def⇔ s1 = s2 = s3 and h1 = h2 ] h3.
• V (xi ↪→ xj)

def
= {(s, h) : h(s(xi)) = s(xj)}.

• V (xi = xj)
def
= {(s, h) : s(xi) = s(xj)}.

• V (emp)
def
= {(s, h) : dom(h) = ∅}.

With such a model, φ ∗ψ corresponds to 31(φ, ψ), φ ¬−∗ ψ corresponds to 32(ψ, φ) or to
33(ψ, φ) (] is commutative). Finally, φ−∗ψ corresponds to ¬32(¬ψ, φ). We invite the
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reader to consult [HCGT14] for an explicit presentation of Kripke relational frames for
abstract separation logics.

3.4.2 A modal logic for heaps

In order to conclude this section mainly dedicated to modal logics, we present a new
modal logic with such frames [DD15]. Modal Logic for Heaps (MLH) is a multimodal
logic in which models are exactly heap graphs and it does not contain propositional
variables (as 1SL does not contain unary predicate symbols). In a sense, it is similar
to Hennessy-Milner logic HML [HM80] in which the only atomic formulae are truth
constants. However, the language contains modal operators and separating connec-
tives, which is a feature shared with the logics defined in [CG13]. We define below the
formulae of the modal logic MLH.

φ, ψ ::= ⊥ | ¬ φ | φ ∧ ψ | 3 φ | 3−1 φ | 〈6=〉 φ | 〈?〉 φ | φ ∗ ψ | φ −∗ ψ

We write MLH(∗) to denote the fragment of MLH without the magic wand operator
−∗.

A model for MLH M is a pair (N,R) such that R is a binary relation on N that is finite
and functional. The satisfaction relation |= is defined below and it provides a standard
semantics for the modal operators and separating connectives (we omit the clauses for
Boolean connectives):

• M, l |= 3φ
def⇔ there is l′ such that (l, l′) ∈ R and M, l′ |= φ,

• M, l |= 3−1φ
def⇔ there is l′ such that (l′, l) ∈ R and M, l′ |= φ,

• M, l |= 〈?〉φ def⇔ there is l′ such that (l, l′) ∈ R∗ and M, l′ |= φ,
• M, l |= 〈6=〉φ def⇔ there is l′ 6= l such that M, l′ |= φ,
• M, l |= φ1 ∗φ2

def⇔ (N,R1), l |= φ1 and (N,R2), l |= φ2 for some partition {R1,R2}
of R,
• M, l |= φ1−∗φ2

def⇔ for all models M′ = (N,R′) such that R ∩R′ = ∅ and R ∪R′

is functional, M′, l |= φ1 implies (N,R ∪R′), l |= φ2.

A formula φ is satisfiable whenever there is a model M and a location l such that
M, l |= φ. The satisfiability problem for MLH is therefore defined as any such problem
for modal logics. Note that MLH has forward and backward modalities as in Prior’s
tense logic (see e.g. [Pri67]), the inequality modal operator (see e.g. [dR92]) and the
transitive closure operator as in PDL (see e.g. [HKT00]). The most non-standard fea-
ture of MLH is certainly the presence of the separating connectives. However, it is
possible to design a relational translation t from MLH formulae into 1SL2 formulae by
recycling variables. The proof is obtained as an obvious adaptation of the proof for the
relational translation from modal logic K into FO2, see e.g. [Mor76, vB76, BdRV01]. In-
deed, models for MLH are heap graphs. Modal logic MLH can be viewed as a fragment
of 1SL2. Any formula ψ1 ∗ ψ2 [resp. ψ1−∗ψ2] in t(φ,u1) has at most one free variable.
Note that because MLH has models with a deterministic relation, its restriction with-
out separating connectives is strongly related to Deterministic PDL [BAHP82] and to
Description Logic with functional roles, see e.g. [CG05].

4. Decidability and Computational Complexity

In this section, we present several results about the decidability status of separation
logics and their fragments. Most of the undecidability results are obtained by quite
simple reductions (only main ideas are presented below) whereas decidability is ob-
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tained by translation into a richer logical formalism, for example among decidable
monadic second-order logics. We state a few results about complexity also; these shall
be completed by a thorough discussion of expressive power in Section 5.

4.1 Undecidability results

We start by addressing the understanding, common to computer scientists, that “sep-
aration logic is undecidable”—although upon inspection, the proof does not in fact
involve any appeal to separation logic. After, we consider various undecidable restric-
tions which get more to the heart of what makes separation logic undecidable.

4.1.1 Undecidability of 2SL

A remarkable result about the decidability status of (first-order) separation logic is
stated below and is due to [COY01] (see also [Yan01, Section 8.1]).

Theorem 4.1. [COY01] The satisfiability problem for 2SL is undecidable.

The proof is based on the fact that finitary satisfiability for classical predicate logic
restricted to a single binary predicate symbol is undecidable [Tra63], see also [BGG97].
This means that given a first-order sentence φ built over the binary predicate symbol
R, checking whether there is a finite structure (D,R) (a finite directed graph) such that
(D,R) |= φ (in the first-order sense) is undecidable. Indeed, any such a structure can
be encoded (modulo isomorphism) by some heap h and some distinguished location
l0 such that:

• l0 6∈ dom(h),
• D = {l ∈ N : h(l) = (l0, l0)},
• R = {(l, l′) ∈ D2 : there is l′′ such that h(l′′) = (l, l′)}.

Roughly speaking, a pair in R is encoded by a memory cell in h. Let us define the
translation T such that φ has a finite model (D,R) iff T (φ) is satisfiable in 2SL with

T (φ)
def
= ∃u,nil

”non−empty domain”︷ ︸︸ ︷
(u ↪→ nil, nil) ∧

”nil not in domain”︷ ︸︸ ︷
(¬∃u′, u′′ nil ↪→ u′,u′′)∧t(φ)

where t(·) is defined below:

• t is homomorphic for Boolean connectives.
• t(ui = uj)

def
= (ui = uj) ∧ (ui ↪→ nil, nil) ∧ (uj ↪→ nil,nil),

• t(R(ui, uj))
def
= (ui ↪→ nil, nil) ∧ (uj ↪→ nil,nil) ∧ (∃u (u ↪→ ui, uj)),

• t(∃ u ψ)
def
= ∃u (u ↪→ nil,nil) ∧ t(ψ),

• t(∀ u ψ)
def
= ∀ u (u ↪→ nil, nil)⇒ t(ψ).

Observe that nil is understood as a distinguished variable whose interpretation is
not in the heap domain. It is also worth noting that T (φ) makes no use of program
variables, separating conjunction, or separating implication. In a sense, the undecid-
ability of 2SL, as explained above, is not very much related to separating connectives,
but rather to the fact that heaps with two record fields can encode finite binary rela-
tions.

Theorem 4.2. [COY01] The set of valid formulae for 2SL is not recursively enumer-
able.
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As a consequence, 2SL is not finitely axiomatizable. Indeed, φ is finitely valid iff
∀u, nil ((u ↪→ nil, nil) ∧ (¬∃u′, u′′ nil ↪→ u′,u′′)) ⇒ t(φ) is 2SL valid. Since this is
a logarithmic-space reduction and since the set of finitely valid formulae is not re-
cursively enumerable, this leads to Theorem 4.2. It seems that this fact is not so
well-known (this is of course mentioned in [COY01], and in a few other places
such as in [Web04, Section 5] or in [Qiu13, Chapter 2]) but it has unpleasant con-
sequences for defining proof systems for separation logics with concrete heaps (see
e.g., [GM10, LP14, HCGT14]). Note also that the result applies to any kSL since 2SL can
be viewed then as a syntactic fragment of kSL as soon as k ≥ 2. Moreover, it is worth
mentioning that the authors of the proof system in [LP14] have acknowledged in their
POPL’14 presentation that their system is actually unsound for Reynolds’ semantics
–we believe it might be worth mentioning such a fact to avoid a similar situation in
the future.

In Section 5.2, we are able to show a similar result with 1SL by using directly first-
order theory of natural numbers with addition and multiplication.

4.1.2 Undecidability of 1SL

We have seen that the satisfiability problem for 2SL is undecidable [COY01] with a
proof that does not require separating connectives and uses [Tra63] in an essential way;
a stronger statement is made in [BDL12] by showing that the satisfiability problem
for 1SL is undecidable as well. This is a consequence of the expressive equivalence
between 1SL and weak second-order logic 1WSOL on memory states with a single
record field.

Theorem 4.3. [BDL12] The satisfiability problem for 1SL is undecidable.

More recently, 1SL restricted to two variables (1SL2) has also been shown undecid-
able [DD15] (via a reduction from the halting problem for Minsky machines, briefly
recalled below) but without touching the central question of expressive completeness,
which is the purpose of [DD14]. By way of comparison with [GOR99, IRR+04] and
as discussed in Section 3.1, undecidability of 1SL2 cannot be derived from [GOR99,
IRR+04] since in 1SL models, we deal with a single functional binary relation, namely
the finite heap. By contrast, FO2 is known to admit a decidable and NEXPTIME-
complete satisfiability problem, see e.g. [GKV97].

4.1.3 Propositional separation logics

Whereas the satisfiability problem for any propositional fragment kSL0 is decidable
and indeed PSPACE-complete (see Section 4.3.2), propositional versions of abstract sep-
aration logic with propositional variables are easily shown undecidable.

Theorem 4.4. [BK10, LWG10] The satisfiability problems for SL(Pfin(N),], {∅}) and
for SL(HSk,],Uk) -k ≥ 1- are undecidable.

Actually, results in [BK10, LWG10] are much more general. Herein, we limit our-
selves to two separation models that are obviously related to concrete heaps. Below,
by way of example, we provide the undecidability proof for SL(Pfin(N),], {∅}) by sim-
ple semantical arguments (and without using any proof-theoretical arguments, unlike
what is done in [BK10, LWG10]). As far as we know, such a slightly alternative proof
has not been published elsewhere.

Before presenting the undecidability proof, let us mention the equivalence of the
statements below:

(1) φ is valid in SL(Pfin(N),], {∅}).
(2) ¬φ is not satisfiable in SL(Pfin(N),], {∅}).
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(3) ¬φ is not satisfiable in SL(HSk,],Uk) (for any k ≥ 1).
(4) φ is valid in SL(HSk,],Uk) (for any k ≥ 1).

Whereas the equivalences between instances for validity and satisfiability are stan-
dard, the equivalences related to distinct separation models are simply due to the fact,
in such logics, composition of heaps only requires that the domain are disjoint, inde-
pendently of the range of the heaps. Note also that SL(Pfin(N),], {∅}) can be under-
stood as the logic SL(HSk,],Uk) with k equal to zero.

Let M be a Minsky machine with α ≥ 1 instructions, 1 is the initial instruction and
α is the halting instruction [Min67]. Machine M has two counters c1 and c2 and the
instructions are of the following types (j ∈ [1, 2], I ∈ [1, α− 1], J, J1, J2 ∈ [1, α]):

(a) I : cj := cj + 1; goto J .
(b) I : if cj = 0 then goto J1 else (cj := cj − 1; goto J2).
(c) α: halt.

Machine M halts if there is a run of the form (I0, c
1
0, c

2
0), (I1, c

1
1, c

2
1), . . . , (IL, c

1
L, c

2
L)

such that (Ii, c
1
i , c

2
i ) ∈ [1, α] × N2 (i ∈ [1, L]), the succession of configurations respects

the instructions (in the obvious way), I0 = 1, IL = α, and c1
0 = c2

0 = 0. The halting
problem consists in checking whether a machine halts and it is known to be unde-
cidable, see e.g. [Min67]. We build a formula φM such that M halts iff φM is valid in
SL(Pfin(N),], {∅}), which entails the undecidability of the satisfiability problem for
SL(Pfin(N),], {∅}). The formula φM is built over the propositional variables q, q′, p1

and p2. Given a valuation V, a configuration (I, c1, c2) of M is encoded by some set
X ∈ Pfin(N) such that

• X ∈ V(q′) (meaning X encodes a configuration),
• X = X0 ]X1 ]X2 (X can be decomposed so that there are disjoint parts about

instruction counter, first counter and second counter),
• card(X0) = I , card(X1) = c1 and card(X2) = c2,
• for all ∅ 6= Y ⊆ X0, Y ∈ V(q) \ (V(p1) ∪V(p2)),
• for all ∅ 6= Y ⊆ X1, Y ∈ V(p1) \ (V(p2) ∪V(q)),
• for all ∅ 6= Y ⊆ X2, Y ∈ V(p2) \ (V(p1) ∪V(q)).

In that case, we write X ≈V (I, c1, c2). The formula φM has the following form:

((emp ∧ p1 ∧ p2 ∧ ¬q ∧ ¬q′) ∧ closure)⇒ (> ¬−∗ (q′ ∧ (p1 ∗ p2 ∗ (size = α ∧ q))))

The formula closure guarantees that for any configuration (I, c1, c2) reachable from the
initial configuration (1, 0, 0), there is some X ∈ Pfin(N) such that X ≈V (I, c1, c2) (in
that case, note that card(X) = I + c1 + c2).

The formula > ¬−∗ (q′ ∧ (p1 ∗ p2 ∗ (size = α ∧ q))) states that there is X ∈ Pfin(N) such
that X = X0 ] X1 ] X2, card(X0) = α, X1 encodes the first counter and X2 encodes
the second counter.

Let 〈U〉 ψ be an abbreviation for > ¬−∗ ψ and [U] ψ be an abbreviation for >−∗ψ,
following an obvious analogy with the universal modality in Kripke models, see
e.g. [GP92, Hem96]. The formula closure is defined as the conjunction of the follow-
ing formulae:

• 〈U〉 (size = 1 ∧ q ∧ q′). There is X encoding the configuration (1, 0, 0).
• [U](p1 ⇒ (¬((¬p1 ∧ ¬emp) ∗ >) ∧ (¬emp⇒ ¬p2) ∧ ¬q ∧ ¬q′).
• [U](p2 ⇒ (¬((¬p2 ∧ ¬emp) ∗ >) ∧ (¬emp⇒ ¬p1) ∧ ¬q ∧ ¬q′),
• [U](q ⇒ (¬((¬q ∧ ¬emp) ∗ >) ∧ ¬p1 ∧ ¬p2).

In the sequel, the modalities 〈U〉 and [U] are used at the outermost level only and there-
fore they are evaluated only on the empty set. More generally, the universal modality
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[U] can be defined as follows:

[U]φ
def
= (emp ∧ (>−∗φ)) ∗ >

Consequently, whenever X |=V (q ∧ size = I) ∗ p1 ∗ p2 for some I ∈ [1, α], there is no
I ′ 6= I such that X |=V (q ∧ size = I ′) ∗ p1 ∗ p2. Moreover, there are unique X0, X1 and
X2 such that X = X0 ]X1 ]X2, X0 |=V (q ∧ size = I), X1 |=V p1 and X2 |=V p2. We
add to closure the following formulae:

• For all instructions of the form I : c1 := c1 + 1; goto J , we consider

[U]((((q ∧ size = I) ∗ p1 ∗ p2) ∧ q′)⇒

(q ∧ size = I) ∗ (((q ∧ size = J) ∗ (size = 1 ∧ p1))
¬−∗

(((q ∧ size = J) ∗ p1 ∗ p2) ∧ q′)))

• Formulae for instructions of the form I : c2 := c2 + 1; goto J are defined similarly.
• For all instructions of the form I : if c1 = 0 then goto J1 else (c1 := c1 − 1; goto
J2), we consider

[U]((((q ∧ size = I) ∗ p2) ∧ q′)⇒ ((q ∧ size = I) ∗ ((q ∧ size = J1)
¬−∗ q′)))∧

[U]((((q ∧ size = I) ∗ (p1 ∧ ¬emp) ∗ p2) ∧ q′)⇒

(((q ∧ size = I) ∗ (p1 ∧ size = 1)) ∗ ((q ∧ size = J2)
¬−∗ q′)))

• Formulae for instructions of the form I : if c2 = 0 then goto J1 else (c2 := c2 − 1;
goto J2), are defined similarly.

The correctness proof works as follows. Suppose that the machine M halts. This
means that for any valuation V, if ∅ |=V (emp ∧ p1 ∧ p2 ∧ ¬q ∧ ¬q′) ∧ closure,
then there is some X ∈ Pfin(N) such that X ≈V (α, c1, c2) for some c1, c2 ∈ N, i.e. there
is some X ∈ Pfin(N) such that X |=V (p1 ∗ p2 ∗ (size = α ∧ q)) ∧ q′, which is equivalent
to ∅ |=V (> ¬−∗ ((p1 ∗ p2 ∗ (size = α ∧ q))) ∧ q′). Now suppose that the machine M does
not halt, this means that there is no configuration of the form (α, c1, c2) reachable from
the initial configuration (1, 0, 0). Let us define the following valuation V0:

• V0(q)
def
= Pfin([1, α− 1]) \ {∅},

• V0(p1)
def
= Pfin({α+ 2k + 1 : k ∈ N}), V0(p2)

def
= Pfin({α+ 2k : k ∈ N}),

• V0(q′) is equal to the set below:

{X ∈ Pfin(N) : (I, c1, c2) reachable from (1, 0, 0), X = X0 ]X1 ]X2,

card(X0) = I,X0 ∈ Pfin([1, α−1]), card(X1) = c1, X1 ∈ Pfin({α+2k+1 : k ∈ N}),

card(X2) = c2, X2 ∈ Pfin({α+ 2k : k ∈ N})}
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One can check that

(1) for every configuration (I, c1, c2), we have (I, c1, c2) is reachable from (1, 0, 0) iff
there is X such that X ≈V0

(I, c1, c2),
(2) ∅ |=V0

(emp ∧ p1 ∧ p2 ∧ ¬q ∧ ¬q′) ∧ closure,
(3) there is no X ∈ Pfin(N) such that X |=V0

(p1 ∗ p2 ∗ (size = α ∧ q)) ∧ q′.

Consequently, φM is not valid in SL(Pfin(N),], {∅}). This concludes the proof of The-
orem 4.4. It is worth noting that this undecidability proof uses only semantical argu-
ments.

4.1.4 Undecidability for separation logic with data

The logic 1SL(∗) happens to be decidable by reduction into 1MSOL (see forthcoming
Section 4.2). Below, we show that 1SL3(∗)[Z,=], i.e. 1SL3(∗) augmented with data val-
ues in which only equality tests are possible is undecidable. Definition of 1SL(∗)[Z,=]
can be found in Section 2.5. We provide a reduction from the satisfiability problem for
some temporal logic with the freeze operator, see e.g. [DL09, FS09] whereas the origi-
nal proof in [BBL09] uses a first-order logic on data words. This shift does not provide
any substantial new insights but this is more coherent with our intention to compare
separation logics with modal or temporal logics, in most occasions. Nevertheless, this
alternative proof remains an original feature of this document.

Finite data words [Bou02] are ubiquitous structures that include timed words, runs
of Minsky machines, and runs of concurrent programs with an unbounded number of
processes. These are finite words in which every position carries a label from a finite
alphabet and a finite tuple of data values from some infinite alphabet. Formally, a data
word of dimension β is a finite non-empty sequence in ([1, α]×Nβ)+ for some α ≥ 1 and
β ≥ 0. The set [1, α] is understood as a finite alphabet of cardinal α whereas N is the in-
finite data domain. Data words of dimension zero are simply finite words over a finite
alphabet whereas data words of dimension one correspond to data words in the sense
introduced in [Bou02]. A wealth of specification formalisms for data words (and slight
variants) has been introduced stemming from automata (see e.g. [KF94, NSV04, BL10])
to adequate logical languages such as first-order logic [BDM+11, Dav09, SZ12] and
temporal logics [Fig10]. In [DD15], a reduction is designed from an undecidable vari-
ant of first-order logic on data words into 1SL2. These results show interesting relation-
ships between first-order logics on data words and separation logics and in particular
this shows how data words can be encoded by heaps within 1SL2 (see below).

First, we need to explain how to encode data words by heaps and data maps, which
is quite easy. Let dw = (a1, v1) · · · (aL, vL) be a data word in ([1, α] × N)+. The data
word dw is encoded by the heap hdw containing a path l0 → l1 → · · · → lL → lL+1

where

• l0 has no predecessor, lL+1 6∈ dom(hdw) and lL+1 has a unique predecessor,
• for every i ∈ [1, L], li has ai predecessors and ai − 1 of them have themselves no

predecessors (the remaining predecessor is li−1),
• every location in dom(hdw) is either on that path or points to a location on that

path.

In order to encode the data values, we introduce some partial function ddw : N ⇁ Z
such that for every i ∈ [1, L], ddw(li) = vi.

Such a path from l1 to lL is called the main path. Other simple encodings are possible
but the current one is well-suited for the forthcoming developments. Note also that
hdw and ddw are not uniquely specified, and in particular we understand them modulo
isomorphism.

The heap hdw looks like a fishbone. Let us make this precise. A heap h is a fishbone def⇔
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(fb1) card(dom(h)) ≥ 2,
(fb2) there is a location reachable from all the locations of dom(h) that is not in

dom(h), it has exactly one predecessor and
(fb3) there are no distinct locations l1, l2, l3, l4, l5 such that l1 → l2 → l3 ← l4 ← l5 in

the heap h.

When h is a fishbone, it has a tree-like structure (when looking at the edges backward),
equipped with a root (the unique location from (fb2)), but additionally, one can rec-
ognize the locations on the main path as those locations with at least one predecessor
and in the heap domain. The existence of such a main path is guaranteed by (fb3). As
shown in [DD15], there is a formula φfb in 1SL2(∗) such that h |= φfb iff h is a fishbone.

Let us refine the notion of fishbone heap so that it takes into account constraints on
numbers of predecessors. An α-fishbone is a fishbone heap such that every location on
the main path has a number of predecessors in [1, α] Again, there is a formula φαfb such
that (s, h) |= φαfb iff h is an α-fishbone heap. There is also a formula mp(u) in 1SL2(∗)
such that for any α-fishbone heap h, (s, h) |=f mp(u) iff f(u) is on the main path (i.e.,
f(u) ∈ {l1, . . . , lL}).

Now, let us show that the satisfiability problem for 1SL3(∗)[Z,=] is undecidable by
designing a reduction from an undecidable logic whose models are data words. We
have already explained how 1SL3(∗)[Z,=] can encode data words. As mentioned ear-
lier, there exist many formalisms to specify properties about data words; among them
can be found temporal logics with the freeze operator [DL09, FS09]. Let LTLα↓ (F,F−1)
be the set of formulae defined as follows:

φ ::= a | ↑ | ↓ φ | ¬φ | φ ∧ φ | Fφ | F−1φ

with a ∈ [1, α]. The operators F and F−1 are the standard (non-strict) temporal op-
erators stating the existence of some future [resp. past] position satisfying a given
property. The atomic formula ↑ and the freeze operator ↓ are interpreted as in hybrid
logics [ABM01] except that instead of storing a node address, a data value is stored.
Formulae in LTLα↓ (F,F−1) are interpreted over data words dw = (a1, v1) · · · (aL, vL) in
([1, α]×N)+ via the satisfaction relation |=v (Boolean clauses are omitted and i ∈ [1, L]):

• dw, i |=v a
def⇔ ai = a,

• dw, i |=v↑
def⇔ vi = v,

• dw, i |=v↓ φ
def⇔ dw, i |=vi φ,

• dw, i |=v Fφ
def⇔ there is i′ ∈ [i, L] such that dw, i′ |=vi φ,

• dw, i |=v F−1φ
def⇔ there is i′ ∈ [1, i] such that dw, i′ |=vi φ.

A sentence is satisfiable def⇔ there is a data word dw in ([1, α]×N)+ such that dw, 1 |=
φ (no need to specify a data value since φ is closed). The satisfiability problem for
LTLα↓ (F,F−1) is known to be undecidable [FS09, Theorem 4].

Let us define T (φ) as follows:

T (φ)
def
= φαfb ∧ t(u0, φ) ∧mp(u0) ∧ ¬∃ u1 (u1 ↪→ u0 ∧mp(u1))

We aim at satisfying that φ is satisfiable iff T (φ) is satisfiable in 1SL3(∗)[Z,=]. The
map t takes two arguments: a quantified variable among {u0, u1} (variables are indeed
recycled, see e.g. [Gab81]) and a formula. A third variable u2 is used but its purpose
is to store a data value because of the presence of the freeze operator. We define the
logarithmic-space translation t as follows (i ∈ {0, 1}).
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• t is homomorphic for Boolean connectives,
• t(ui, ↑)

def
= (u2 ∼ ui) and t(ui, a)

def
= (]ui = a),

• t(ui, ↓ ψ)
def
= ∃ u2 ((u2 ∼ ui) ∧ t(ui, ψ)),

• t(ui,Fψ)
def
= ∃ u1−i (t(u1−i, ψ) ∧mp(u1−i) ∧ reach(ui, u1−i)),

• t(ui,F−1ψ)
def
= ∃ u1−i (t(u1−i, ψ) ∧mp(u1−i) ∧ reach(u1−i,ui)).

We recall that u2 ∼ ui holds true when u2 and ui are allocated and have the same data
value.

We have already seen how to define the formulae ]ui = a, reach(ui, u1−i), mp(u1−i)
and φαfb. It is easy to check that φ is satisfiable iff T (φ) is satisfiable in 1SL3(∗)[Z,=]
since the map t only internalizes the semantics of LTLα↓ (F,F−1) in 1SL3(∗)[Z,=].

Theorem 4.5. [BBL09, Theorem 3] The satisfiability problem for 1SL3(∗)[Z,=] is unde-
cidable.

Other undecidability results about separation logics with data values can be found
in [BBL09].

4.2 Decidability results

Having seen various undecidable fragments of separation logic, we now turn our at-
tention to fragments that admit a decidable satisfiability problem. As one may con-
jecture from the results above, the magic wand is quite powerful; its removal results
in a decidable logic. Alternatively, the magic wand can be retained at the cost of one
additional variable. These and other decidability results are discussed below.

4.2.1 Removing the wand

First we show that 1SL(∗) is decidable with non-elementary recursive complexity.
Actually, the complexity lower bound holds already when only two quantified vari-
ables are used whereas the problem for the full fragment 1SL2 happens to be unde-
cidable too [DD15]. First, note that 1MSOL on memory states with one record field is
decidable by taking advantage of [Rab69, BGG97]. Indeed, the weak monadic second-
order theory of unary functions is the theory over structures of the form (D, f,=) where
D is a countable domain, f is a unary function, and = is equality. This theory is decid-
able, see e.g. [BGG97, Corollary 7.2.11]. Since it is possible to express that D is infinite
and to simulate that f is a partial function with finite domain, one can specify that
(D, f,=) augmented with a first-order valuation is isomorphic to a heap. It is then pos-
sible to define a simple translation tP(.), computable in logarithmic space, such that a
1MSOL sentence φ is satisfiable iff

infinity︷ ︸︸ ︷
(¬∃ P ∀u P(u))∧∃ P tP(φ)

is satisfiable in the weak monadic second-order theory of one unary function. See
details in [BDL12]. Using a similar technique, it is possible to translate 1SL(∗) into
1MSOL. Any formula φ in 1SL(∗) is satisfiable iff

∃ P (∀u P(u)⇔ (∃u′ u ↪→ u′)) ∧ tP(φ)

is satisfiable where tP(·) is defined with the following clauses:

• tP(u ↪→ u′)
def
= P(u) ∧ u ↪→ u′,
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• tP(u = u′)
def
= u = u′,

• tP(φ ∗ ψ)
def
= ∃ Q,Q′ (P = Q ] Q′) ∧ tQ(φ) ∧ tQ′(ψ) where P = Q ] Q′ is an

abbreviation for ∀u (P(u)⇔ (Q(u) ∨Q′(u))) ∧ ¬(Q(u) ∧Q′(u)).

We leave out the Boolean connectives and first-order quantification, for which tP is
homomorphic.

Theorem 4.6. [BDL12, Corollary 3.3] The satisfiability problem for 1SL(∗) is decidable.

As conjectured in [BDL08], recently it has been shown that 1MSOL is strictly more
expressive than 1SL(∗) [AD09, Corollary 5.3]. 1SL(∗) is an important fragment to
consider—and an important one to show decidable—as some verification applications
do not require the use of the separating implication.

4.2.2 Removing a variable

On the other hand, the wand can be retained if one is willing to give up a vari-
able. A recent result [DGLWM14] establishes this and, coupled with the results
of [DD15, DD14], we now have a complete understanding of the decidability boundary
in fragments of separation logic that restrict the number of variables (see also Figure 4
in Section 7).

Theorem 4.7. [DGLWM14] Satisfiability for 1SL1 is decidable.

4.2.3 Other fragments

By taking advantage of the decidability of 1MSOL over memory states with one
record field, we can deduce the following results.

Corollary 4.8. [DD15] The satisfiability problem for MLH(∗) is decidable.

Non-elementary complexity of MLH(∗) is also established in [DD15]. So, solving the
satisfiability problem for MLH(∗) requires time bounded below by towers of exponen-
tials of height that depend on the formula size, see e.g. [Sch13].

In Section 2.5, we introduce an extension of 1SL(∗) in which data interpreted in Z are
added and can be compared only locally. The translation from 1SL(∗) to 1MSOL can
be extended to 1SLsdc

< , which provides a quite strong new decidability result.

Theorem 4.9. [BBL09, Corollary 1] The satisfiability problem for 1SLsdc
< is decidable.

It remains partly open to characterize a significant class of data domains for which
the extension of 1SL(∗) with data from those data domains would lead to decidability
too. Other decidability results about 1SL(∗) extended with data values can be found
in [BBL09, Section 5.2].

4.3 Computational complexity

In this section, we consider the computational complexity of decision problems for
separation logics (mainly satisfiability, validity and entailment) and we provide a few
characterizations ranging from problems that can be solved in polynomial time to
problems that are decidable with a non-elementary complexity. In order to guaran-
tee a reasonably fair variety of fragments we consider propositional fragments as well
as logics in which quantification is permitted, although such quantification is often
quite restricted.
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4.3.1 A well-known fragment in polynomial time

Even though performing reasoning in propositional logic kSL0 (with k ≥ 1) can
be computationally expensive, see below the PSPACE-completeness results for validity
and satisfiability, fragments have been designed that are useful for automatic program
analysis and hopefully less demanding computationally.

The fragment presented below, has been introduced in [BCO04] and shown de-
cidable by providing a complete proof system. More importantly, the tool Smallfoot
has been designed from it, see e.g. [BCO05], and decides the entailment problem for
such a fragment, which allows to verify automatically numerous properties. Strangely
enough, the precise computational complexity of the entailment problem for such a
fragment is not considered in [BCO04] and it is only in [CHO+11, HIOP13] that this
problem has been successfully solved.

Let SF (’Smallfoot fragment’) be the fragment of 1SL2 defined by the formula φ be-
low, where φp defines pure formulae and φs defines spatial formulae:

φp ::=⊥ | > | (xi = xj) | ¬(xi = xj) | φp ∧ φp

φs ::= emp | > | xi 7→ xj | sreach(xi, xj) | φs ∗ φs φ ::= φp ∧ φs

where xi, xj are program variables from PVAR. As usually, the formulae are inter-
preted on memory states with one record field. Obviously, xi 7→ xj is interpreted as
the exact points-to relation ((s, h) |= xi 7→ xj iff dom(h) = s(xi) and h(s(xi)) = s(xj))
whereas (s, h) |= sreach(xi, xj) holds true iff the heap contains exactly a path from s(xi)
to s(xj). As shown earlier, sreach(xi, xj) (and reach(xi, xj) too) can be specified in 1SL2.

The entailment problem for SF is defined as follows:

input: two formulae φ, ψ in SF.
question: is it the case that for all memory states (s, h), we have (s, h) |= φ implies

(s, h) |= ψ?

Obviously the validity problem is more general than the entailment problem and such
a problem makes sense because formulae in SF are not closed under negation. Never-
theless, it is clear that the entailment can be defined for many other versions of sepa-
ration logic. Note also that the rule for strengthening precedent (SP)

φ⇒ ψ′ {ψ′} C {ψ}
{φ} C {ψ}

involves entailment checking. This is a building block of the verification process and
in particular, proof checking requires that entailment problem is decidable, if not
tractable at all.

Whereas a coNP algorithm is provided in [BCO04], the optimal complexity is estab-
lished in [CHO+11] by using an original approach: to represent formulae as graphs
and to search for homomorphisms on these special graphs.

Theorem 4.10. [CHO+11, Theorems 16 & 24] The entailment and satisfiability prob-
lems for SF can be solved in polynomial time.

Indeed, it is quite surprising that the entailment problem is computationally
tractable. A slight extension may easily lead to untractability. For instance consider-
ing the variant clause φ ::= φp ∧ φs ∧ φ′s (i.e., allowing a bit of conjunction) already
leads to coNP-hardness [CHO+11]. The algorithm presented in [CHO+11] has been
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implemented and used for automatic verification, see [HIOP13].
In [PWZ13], an extension of SF is considered, called 1SLLB, in which formulae are

Boolean combinations of pure formulae and spatial formulae.

Corollary 4.11. The satisfiability problem for 1SLLB is NP-complete.

NP-hardness is an obvious consequence that 1SLLB contains equality constraints
and it is closed under Boolean connectives. The NP upper bound follows from the
linear-time reduction from 1SLLB to the logic of graph reachability and stratified sets
(GRASS) [PWZ13].

4.3.2 Fragments in polynomial space

Most probably, NP-completeness already implies non-tractability but actually,
propositional separation logic of the form kSL0 with k ≥ 1 can be potentially of even
worse complexity, see e.g. [COY01, Rey02].

Theorem 4.12. [COY01] For every k ≥ 1, the satisfiability problem for (propositional)
kSL0 is PSPACE-complete.

The proof for the PSPACE upper bound is sketched in Section 5.1 in which other
results about the expressive power of kSL0 are discussed. Meanwhile, below, we
show that 1SL0 is PSPACE-hard by reduction from QBF, following developments
from [COY01]. Let Q1 p1 · · · Qn pn φ be a QBF formula with {Q1, . . . ,Qn} ⊆ {∃,∀}
and φ is a propositional formula built over the proposition variables in {p1, . . . , pn}.
In the translation process, we consider n program variables, say x1, . . . , xn so that the
truth of pi is encoded by the satisfaction of alloc(xi). In order to encode independence
between the different variables, we enforce that all the program variables have distinct
values in the original heap (see also below). Moreover, existential quantification over
pi amounts to restrict the current heap either by the empty heap (in that case alloc(xi)
holds in the other heap) or by a unique memory cell so that alloc(xi) holds, which al-
lows to simulate quantification. However, it is necessary to enforce in the initial heap
that alloc(xi) holds for any program variable xi. Let us define the map t as follows:

• t(pi)
def
= alloc(xi).

• t is homomorphic for Boolean connectives.
• t(∃ pi ψ)

def
= (emp ∨ (alloc(xi) ∧ ¬(¬emp ∗ ¬emp))))) ∗ t(ψ).

• t(∀ pi ψ)
def
= ¬((emp ∨ (alloc(xi) ∧ ¬(¬emp ∗ ¬emp))))) ∗ ¬t(ψ)).

One can check that Q1 p1 · · · Qn pn φ is QBF satisfiable iff

(
∧
i 6=j

xi 6= xj) ∧ (
∧
i

alloc(xi)) ∧ t(Q1 p1 · · · Qn pn φ)

is 1SL0 satisfiable.
The above reduction implies that the satisfiability problem for kSL0(∗) is PSPACE-

hard too and other fragments have been considered in [COY01] by restricting further
the use of Boolean or separating connectives. For instance, the satisfiability problem
for kSL0(−∗) is PSPACE-hard too. PSPACE upper bound can be pushed a bit further by
allowing a unique quantified variable.

Theorem 4.13. [DGLWM14] The satisfiability problem for 1SL1 is PSPACE-complete.

PSPACE-hardness is inherited from the PSPACE-hardness of 1SL0 whereas the PSPACE
upper bound requires an adequate abstraction. It is open whether 1SL1 extended with
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reachability predicates can lead to decidable extensions (which would capture some
version of separation logic considered in [TBR14]).

4.3.3 Non-elementary fragments

Reduction from PITL satisfiability to 1SL2(∗) satisfiability leads to the following
lower bound since PITL satisfiability problem is known to have non-elementary com-
plexity (see definition of PITL in Section 3.3).

Theorem 4.14. [DD15] The satisfiability problem for 1SL2(∗) is decidable with non-
elementary complexity.

Again, solving the satisfiability problem for 1SL2(∗) requires time bounded below
by towers of exponentials of height that depend on the formula size, see e.g. [Sch13].

We have seen that 1SL(∗) is decidable whereas satisfiability for full 1SL is undecid-
able. However, 1SL(∗) is certainly not the largest decidable fragment of 1SL. Below,
we investigate another decidable extension of 1SL(∗) introduced in [BDL12, Section 4]
thanks to a restricted use of the magic wand; quantification over disjoint heaps is done
only for heaps whose domain has cardinality smaller than some fixed n.

Let us define 1SL(∗+
n
¬−∗) as an extension of 1SL(∗) by adding the binary operators

n
¬−∗

for every n ∈ N. Unlike −∗, a formula with outermost connective
n
¬−∗ states the existence

of a disjoint heap for which the cardinality of the domain is bounded by n. More for-

mally, we require that (s, h) |=f φ1

n
¬−∗ φ2 iff there is h′ ⊥ h such that card(dom(h′)) ≤ n,

(s, h′) |=f φ1 and (s, h ] h′) |=f φ2.

1SL(∗ +
n
¬−∗) allows to encode the restricted use of the magic wand in the Hoare-like

proof systems as in the backward-reasoning form rule (MUBR) recalled below (see
e.g. [Rey08]).

{(∃z x 7→ z) ∗ ((x 7→ y)−∗ φ)} [x] := y {φ}

Note that (x 7→ y)−∗ φ is logically equivalent to ¬((x 7→ y)
1
¬−∗ ¬φ).

Theorem 4.15. [BDL12, Theorem 4.9]

(I) There is a polynomial-time reduction from the 1SL(∗ +
n
¬−∗) satisfiability problem

to the 1SL(∗) satisfiability problem.

(II) 1SL(∗ +
n
¬−∗) satisfiability problem is decidable.

5. Expressive Power

In this section, we take care of the expressive power for propositional separation log-
ics but also for first-order separation logics (with different types of characterization).
It is worth recalling a few well-known results about expressive power of modal or
temporal logics. For instance, linear-time temporal logic LTL is known to be as ex-
pressive as first-order logic by Kamp’s Theorem [Kam68] (see also [HR05, Rab14]).
Monadic second-order logic (MSO) is another yardstick logic and, for instance, it is
well-known that ω-regular languages (those definable by Büchi automata) are exactly
those definable in MSO, see e.g. [Str94]. Similarly, extended temporal logic ETL, de-
fined in [Wol83] and extending LTL, is also known to be equally expressive with MSO.
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On non-linear structures, bisimulation invariant fragment of MSO and modal µ-
calculus have been shown equivalent [JW96]. For sets of nodes, XPath has been es-
tablished equally expressive as first-order logic with two quantified variables, see e.g.
an overview in [MdR05]. In the realm of interval temporal logics, we also know ex-
pressive completeness of metric propositional neighborhood logic with respect to the
two-variable fragment of first-order logic for linear orders with successor function,
interpreted over natural numbers [BDG+10].

5.1 Boolean formulae for propositional separation logics

In this section, we provide a characterization of the expressive power of propositional
separation logic 1SL0, and a similar analysis can be done for any kSL0 with k > 1.

Theorem 5.1. [Loz04a, Chapter 5] Any formula φ in 1SL0 built over the program vari-
ables in {x1, . . . , xq} is logically equivalent to a Boolean combination of atomic formu-
lae among size ≥ k, alloc(xi), xi ↪→ xj and xi = xj (k ∈ N, i, j ∈ {1, . . . , q}).

The formulae of the form size ≥ k and alloc(xi) are introduced in Section 2.2 and we
recall that alloc(xi) holds when s(xi) belongs to the heap domain and size ≥ k holds
when the cardinal of the heap domain is at least k. By way of example (¬emp ∗ (x1 ↪→
x2−∗ ⊥)) is equivalent to size ≥ 2 ∧ alloc(x1). Furthermore, the cardinal of the heap
domain without the interpretation of x1 and x2 (in the case it belongs to the domain) is
at least k ≥ 0, can be expressed as follows:

(alloc(x1) ∧ alloc(x2) ∧ size ≥ k + 2)∨

(((alloc(x1) ∧ ¬alloc(x2)) ∨ (¬alloc(x1) ∧ alloc(x2))) ∧ size ≥ k + 1)∨

(¬alloc(x1) ∧ ¬alloc(x2) ∧ size ≥ k)

It is clear that such a formula can be generalized to any finite set of program vari-
ables. We write sizeq ≥ k to denote the atomic formula such that (s, h) |= sizeq ≥ k iff
card(dom(h) \ {s(xi) : i ∈ [1, q]}) ≥ k. Note that size ≥ k can be expressed as follows:

(x1 6= x2 ∧ alloc(x1) ∧ alloc(x2) ∧ size2 ≥ k − 2)∨

(x1 = x2 ∧ alloc(x1) ∧ size2 ≥ k − 1)∨

(((alloc(x1) ∧ ¬alloc(x2)) ∨ (¬alloc(x1) ∧ alloc(x2))) ∧ size2 ≥ k − 1)∨

(¬alloc(x1) ∧ ¬alloc(x2) ∧ size2 ≥ k)

It is clear that such a formula can be generalized to any q ≥ 1. So using atomic formulae
of the form size ≥ k or sizeq ≥ k does not make a difference in terms of expressive
power.

Theorem 5.1 can be viewed as a means to eliminate separating connectives ∗ and
−∗ and this is analogous to quantifier elimination in Presburger arithmetic for which
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periodicity constraints need to be introduced in order to eliminate the quantifiers (see
e.g. [Coo72]). Similarly, the atomic formulae size ≥ k and alloc(xi) would require the
use of the separating connectives to be properly defined in 1SL0 but in the Boolean
combinations, these formulae are understood as primitive.

Even though Theorem 5.1 provides a nice characterization of the expressive power
for 1SL0, several features limit its application. First, Theorem 5.1 only deals with the
propositional case but we know that this is close to the best we can hope for. Indeed,
a similar result is established in [DGLWM14] for 1SL1 by enriching the set of atomic
formulae and by polishing and extending material from [Loz04a, BDL09] but the ex-
tension to 1SL2 is not possible (see developments below). Moreover, neither Theo-
rem 5.1 states how to compute the equivalent formula nor it provides a precise infor-
mation about the maximal bound k in atomic formulae size ≥ k that are used to build
a Boolean combination equivalent to φ in 1SL0. Actually, one can restrict k to be at
most polynomial in the size of φ, assuming that formulae are encoded as finite trees
(as opposed to a DAG encoding that would imply an exponential blow-up). This en-
tails a small model property in which the cardinal of the heap domain is bounded, see
e.g. [COY01, CGH05]. This feature is at the core of the translation into first-order logic
(with empty signature) designed in [CGH05] and it regains the PSPACE upper bound
for the satisfiability problem for 1SL0 (and for 2SL0 too), see e.g. [CGH05, Section 3.4].

Below, let us be a bit more precise about the way to prove Theorem 5.1 and to explain
the main steps to show the PSPACE upper bound, which is reminiscent to many proofs
showing PSPACE upper bound for modal logics by using Ladner-like algorithms, see
e.g. [Lad77, Spa93]. More details can be found in [DGLWM14]. Let q, α ≥ 1. We write
Testq,α to denote the following set of atomic formulae:

{xi = xj , xi ↪→ xj , alloc(xi) : i, j ∈ [1, q]} ∪ {sizeq ≥ k : k ∈ [0, α]}

We define an equivalence relation≈q,α on the class of memory states, so that two mod-
els are in the same equivalence class whenever they cannot be distinguished by any
formula in Testq,α: (s, h) ≈q,α (s′, h′) iff

for all ψ ∈ Testq,α, we have (s, h) |= ψ iff (s′, h′) |= ψ.

One can show that for any formula φ in 1SL0 with q ≥ 1 program variables and with
size |φ| (for some reasonably succinct encoding), for any α ≥ |φ|, if (s, h) ≈q,α (s′, h′),
then (s, h) |= φ iff (s′, h′) |= φ. This result or some of its variants established in [Loz04a,
BDL09, DGLWM14] entails that for checking the satisfaction of φ in some memory
state, what matters is really the satisfaction of atomic formulae in Testq,|φ|. Theorem 5.1
is then a direct consequence of this property.

Corollary 5.2. Let φ be a satisfiable formula in 1SL0 with q program variables. Then
there is memory state (s, h) such that (s, h) |= φ and ran(s) ∪ dom(h) ∪ ran(h) ⊆ [0, q +
|φ|+ 1].

Satisfaction of φ depends only on the satisfaction of formulae from Testq,|φ|. So, to
check satisfiability status of φ, only the truth value of formulae in Testq,|φ|matters. That
is why, instead of operating on memory states to check satisfiability, it is sufficient to
operate on its abstractions (with respect to the basic properties induced by Testq,|φ|),
whence the introduction of symbolic memory states. A symbolic memory state S over
(q, α) is a structure ((V,E), n) such that:

(1) There is a partition P of {x1, . . . , xq} such that P ⊆ V . This encodes the store.
(2) (V,E) is a functional directed graph and a node v in (V,E) is at distance at most

one of some set of variables X in P .
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1: if ψ is atomic then return AMC(S, ψ);
2: if ψ = ¬ψ1 then return not MC(S, ψ1);
3: if ψ = ψ1 ∧ ψ2 then return (MC(S, ψ1) and MC(S, ψ2));
4: if ψ = ψ1∗ψ2 then return> iff there are S1 and S2 such that ∗a(S,S1,S2)

and MC(S1, ψ1) = MC(S2, ψ2) = >;
5: if ψ = ψ1−∗ψ2 then return ⊥ iff for some S′ and S′′ such that
∗a(S′′,S′,S), MC(S′, ψ1) = > and MC(S′′, ψ2) = ⊥;

Figure 2. Function MC(S, ψ)

1: if ψ is emp then return > iff E = ∅ and n = 0;
2: if ψ is xi = xj then return > iff xi, xj ∈ X , for some X ∈ P ;
3: if ψ is xi ↪→ xj then return > iff (X,X ′) ∈ E where xi ∈ X ∈ P and

xj ∈ X ′ ∈ P ;

Figure 3. Function AMC(S, ψ)

(3) n ∈ [0, α] and this corresponds to the number of locations in the heap domain
that are not equal to the interpretation of some program variables in {x1, . . . , xq}.

Given q, α ≥ 1, the number of symbolic memory states over (q, α) is exponential in
q+α. Given a memory state (s, h), we define its abstraction Symb[s, h] over (q, α) as the
symbolic memory state ((V,E), n) such that

• n = min(α, card(dom(h) \ {s(xi) : i ∈ [1, q]})).
• P is a partition of {x1, . . . , xq} so that for all x, x′, we have s(x) = s(x′) iff x and x′

belong to the same set in P .
• V is made of elements from P as well as of locations from the set below:

{h(s(xi)) : s(xi) ∈ dom(h), i ∈ [1, q]} \ {s(xi) : i ∈ [1, q]}

• The graph (V,E) is defined as follows:
(1) (X,X ′) ∈ E if X,X ′ ∈ P and h(s(x)) = s(x′) for some x ∈ X , x′ ∈ X ′.
(2) (X, l) ∈ E if X ∈ P and h(s(x)) = l for some variable x in X and l 6∈ {s(xi) :

i ∈ [1, q]}.

We define symbolic memory states to be isomorphic if (1) the partition P is identical,
(2) the finite digraphs agrees on the atomic formulae of the form either xi ↪→ xj or
alloc(xi), and (3) the numerical values are identical. Note that given a symbolic mem-
ory state S over (q, α), there exists a memory state (s, h) such that Symb[s, h] and S
are isomorphic. Not only every symbolic memory state has always a concretization
but also symbolic memory states are the right way to abstract memory states when the
language 1SL0 is involved, which can be formally stated as follows: (s, h) ≈q,α (s′, h′)
iff Symb[s, h] and Symb[s′, h′] are isomorphic symbolic memory states.

Definition 5.1. Given symbolic memory states S, S1 and S2, we write ∗a(S,S1,S2)
if there exist a store s and disjoint heaps h1 and h2 such that Symb[s, h1 ] h2] = S,
Symb[s, h1] = S1 and Symb[s, h2] = S2. ∇

Given q, α ≥ 1, the ternary relation ∗a can be decided in polynomial time in q+log(α)
for all the symbolic memory states built over (q, α).

Figure 2 presents a procedure MC(S, ψ) returning a Boolean value in {⊥,>} and tak-
ing as arguments, a symbolic memory state over (q, α) and a formula ψ with |ψ| ≤ α.
All the quantifications over symbolic memory states are done over (q, α). A case analy-
sis is provided depending on the outermost connective of the input formula. Its struc-
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ture is standard and mimicks faithfully the semantics for 1SL0 except that we deal with
symbolic memory states. The auxiliary function AMC(S, ψ) also returns a Boolean
value in {⊥,>}, makes no recursive calls and is dedicated to atomic formulae (see Fig-
ure 3). The design of MC is similar to nondeterministic polynomial-space procedures,
see e.g. [Lad77, Spa93, COY01].

Lemma 5.3. Let q, α ≥ 1, S be a symbolic memory state over (q, α) and φ be in 1SL0
built over x1, . . . , xq such that |φ| ≤ α. We have MC(S, φ) returns> iff there exists (s, h)
such that Symb[s, h] = S and (s, h) |= φ.

Consequently, we get the following complexity characterization

Theorem 5.4. Model-checking and satisfiability problems for 1SL0 are PSPACE-com-
plete.

PSPACE-hardness is due of [COY01] and it is briefly explained in Section 4.3.2.
PSPACE upper bound is a consequence of Lemma 5.3 by recalling that φ is satisfiable
iff there is a memory state (s, h) such that (s, h) |= φ iff there is an symbolic memory
state S over (q, |φ|) such that MC(S, φ) = >. It is sufficient to guess S and then check
whether MC(S, φ) returns >. All of this can be done in nondeterministic polynomial-
space and by Savitch’s Theorem [Sav70], we get the PSPACE upper bound.

Corollary 5.5. Given a formula φ in 1SL0, computing a Boolean combination of atomic
formulae from Testq,|φ| logically equivalent to φ can be done in polynomial space.

5.2 Results for first-order separation logics

Recent results have provided some insight into the power of separation logic’s second-
order features. [BDL12] demonstrated expressive equivalence of 1DSOL and 1WSOL,
and showed a translation of 1WSOL into 1SL(−∗). Recently, [DD14] sharpens this result
by showing that a translation from 1DSOL into the two-variable restriction 1SL2(−∗) is
possible. The proofs in both of these works are constructive.

Theorem 5.6. [DD14, BDL12] There is a translation T from 1DSOL to 1SL2(−∗) such
that for every sentence φ in 1DSOL and for every memory state (s, h), we have (s, h) |=
φ in 1DSOL iff (s, h) |= T (φ) in 1SL2(−∗).

These translations can accommodate both program variables and additional record
fields (see discussion in [DD14, Section 5.5]). Note that the reverse is also true, as
shown earlier by Theorem 3.2. Since there exist translations in both directions between
1DSOL and 1SL, we have the following result.

Theorem 5.7. [DD14, BDL12] 1SL, 1SL2(−∗), 1DSOL, and 1WSOL have the same ex-
pressive power.

Such a comparison of equivalence of expressive power is commonly sought with
two-variable logics. There are a number of results comparing the expressive power
of FO2 to other logics. Some examples include equivalence between unary LTL and
FO2, see e.g. [EVW97, Wei11]. Boolean modal logic with converse and identity is as
expressive as FO2 [LSW01] (see also [HK14]).

Note also that, as shown in [Loz12], Theorem 5.7 is a key argument to show that
separation logic is complete for sequential mono-procedural programs, when separa-
tion logic is understood as a programming language, an assertion language and a set
of rules involving Hoare triples. Completeness means that every valid Hoare triple
(see Section 2.1.1) is derivable in a given proof system dealing with Hoare triples. Ob-
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viously, completeness depends on the programming language, on the assertion logic
and on the set of inference rules. More details can be found in [Loz12], see also related
results in [COY07, TCA09] or in [TC14].

Corollary 5.8. 1SL3(−∗) without the equality predicate is as expressive as 1SL2(−∗).

This is a consequence of the material presented at the end of Section 2.2 where u = u
can be shown equivalent to the formula below (u′ is a new quantified variable):

∀ u′ ((u′ ↪→ u)−∗(u′ ↪→ u))

Note also that the satisfiability problem for 1SL2 without program variables is shown
undecidable in [DD15]. This can be refined even further by banishing the equality
predicate in that fragment. Indeed, u = u can be shown equivalent to the formula
below:

>−∗¬(((∃ u (u ↪→ u)) ∧ ¬(∃ u (u ↪→ u))) ∗ >)

This follows a similar idea developed in [Loz04a, Section 5.1.1]. By contrast, the de-
cidability status of 1SL2(−∗) without program variables and without equality is open.
Similarly, the decidability status of 1SL(−∗) where ↪→ is replaced by 7→ (exact points-to
relation) is also open.

Using similar ideas, one can show that any formula in 1SL1 can be transformed into
an equivalent formula in 1SL1 but without the equality predicate. Indeed, xi = xj is
logically equivalent to ∀ u ((u ↪→ xi)−∗(u ↪→ xj)) and xi = u (in 1SL1, one quanti-
fied variable is allowed) can be eliminated by making a case analysis when first-order
quantification is performed on u.

Since 1SL2(−∗) and 1WSOL have the same expressive power, this implies the follow-
ing impossibility result.

Theorem 5.9. The set of valid formulae for 1SL is not recursively enumerable.

As a consequence, 1SL is not finitely axiomatizable and this refines Theorem 5.9. A
quick argument for proving Theorem 5.9 consists in noting that second-order logic is
not finitely axiomatizable and 1SL is equivalent to it, but this would be too sloppy since
there are so many variants of second-order logic, and some of them are indeed finitely
axiomatizable. In order to be more precise and to show Theorem 5.9, it is nevertheless
sufficient to combine the following arguments.

• First-order theory of natural numbers with addition and multiplication is not
recursively enumerable by Gödel’s first incompleteness theorem.
• There is a logarithmic-space reduction t1 such that for any formula φ from first-

order arithmetic, φ is valid iff t1(φ) is valid in 1WSOL. To show this, it is sufficient
to represent natural numbers by the cardinals of finite sets and to deal with addi-
tion and multiplication by performing equality tests between finite set cardinali-
ties. This can be done by using dyadic or ternary predicate symbols, for instance
to state the existence of some bijection between two finite sets. By way of exam-
ple, the atomic formula u1 × u2 = u3 amounts to check whether the product set
made of the interpretation of the monadic second-order variables P1 and P2 has
the same cardinality as the interpretation of the monadic second-order variable
P3. Obviously, this assumes that each variable ui has a unique corresponding
monadic second-order variable Pi. So the formula u1 × u2 = u3 can be encoded
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by:

∃ P PRODUCT(P,P1 × P2) ∧ EQCARD(P,P3)

where PRODUCT(P,P1 × P2)
def
= ∀ u, u′ P(u, u′) ⇔ P1(u) ∧ P2(u′). The formula

EQCARD(P,P3) stating that the interpretation of the binary second-order vari-
able has the same cardinality as the interpretation of the unary second-order
variable can be defined similarly, but this requires to introduce a ternary second-
order variable specified as a bijection between the two sets.
• As shown in [DD14], there is a logarithmic-space reduction t2 such that for any

formula φ from 1WSOL, φ is valid iff t2(φ) is valid in 1SL2(−∗). Actually, it is
sufficient to show the result for 1DSOL and then this can be extended to 1WSOL
by encoding n-ary finite relations with n finite binary relations. For example,
P(e1, . . . , en) can be encoded by the conjunction ∃ v

∧n
i=1 Pi(ei, v) where P1, . . . ,

Pn are new binary second-order variables attached uniquely to the n-ary second-
order variable P, see e.g. [BDL12, Proposition 2.6].

5.2.0.1 Allowing infinite domains. Let kSL∞ be the variant of kSL in which the heap
domain can be either finite or infinite (in kSL, the heap domain is necessarily finite). It
is easy to show that the set of valid formulae for kSL∞ without separating connectives
is recursively enumerable, which contrasts with Theorem 4.2. Indeed, the heap can
be encoded by a (k + 1)-ary relation that is functional on its first argument (no more
cardinality constraint). By contrast, 1SL∞ (with separating connectives) does not admit
a recursively enumerable set of valid formulae (and this holds for any kSL∞ with
k ≥ 1) since finiteness of the heap domain can be expressed in 1SL∞ itself. A heap
h is segmented whenever dom(h) ∩ ran(h) = ∅ and no location has strictly more than
one predecessor. There is a simple formula seg in 1SL2 that characterizes segmented
heaps, see e.g. [DD14]. Now, it is easy to show that infinite heaps can be characterized
by the formula seg

¬−∗ ∀ u alloc(u).

5.3 1SL(∗) versus 1MSOL

A standard tool to show non-expressibility in first-order logic or in second-order logic
is to use Ehrenfeucht-Fraı̈ssé games, see e.g. [Lib04] (called EF-games in the sequel).
These games have been adapted for some versions of separation logic, see e.g. [AD09,
Ant10] based on similar games on spatial logics [DGG04, Mar06, DGG07].

Theorem 5.10. [AD09, Ant10] 1SL(∗) is strictly less expressive than 1MSOL.

In [AD09, Ant10], using EF-games, it is shown that there is no formula in 1SL(∗)
that characterizes the forests of binary trees such that there is one binary tree whose
number of leaves is a multiple of 3. Even though the principle of the method with EF-
games is standard, the proof is quite complex and tedious, since it requires designing
two families of heaps, to define an adequate strategy for the Duplicator player and to
show that the strategy does the job, see e.g. [Ant10] for most of the details as well as for
additional bibliographical references. In particular, Duplicator has a winning strategy
for a game on (h1, h2) with rank r iff h1 and h2 agree on all formulae of 1SL(∗) of rank
r. See [Ant10] for more details about the notion of game and rank, for instance.

By way of example, we explain below why the above-mentioned property can be
expressed in 1MSOL. First, let us express in 1SL(∗) that the heap is a forest of binary
trees, which entails that this can be stated in 1MSOL too, see e.g. Section 4.2. It is
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sufficient to state that every location has at most two predecessors and every location
l can reach a non-allocated location (the root of the tree to which l belongs too if l is in
the domain of the heap):

∀ u (]u ≤ 2 ∧ ∃ u (reach(u,u) ∧ ¬alloc(u)))

Note that the quantification above is fine even when u is not in the heap domain
(take the value for u to witness the satisfaction of ∃ u (reach(u, u)∧¬alloc(u))). In order
to express in 1MSOL that there is a binary tree whose number of leaves is a multiple
of 3, we first identify the locations of the tree (via the second-order variable P), we
label each location of the tree by either P0, P1 and P2 (depending on the number of
leaves (modulo 3) below the location) and we state consistency constraints (obviously
simulating the behavior of some bottom-up three-state tree automaton) and finally we
require that the root of the tree is labelled by P0. The formula defined below assumes
that the heap is already known as a forest of binary trees.

∃ u (¬alloc(u) ∧ ]u ≥ 1) ∧

∃ P,P0,P1,P2 ((∀ u P(u)⇔ reach(u,u)) ∧ (P = P0 ] P1 ] P2) ∧ P0(u) ∧

(∀ u (P(u) ∧ ]u = 0)⇒ P1(u))∧

(∀ u, u′ ((u ↪→ u′) ∧ P(u) ∧ ]u′ = 1)⇒
2∧
i=0

(Pi(u)⇔ Pi(u
′)))∧

∧
i,j,k∈{0,1,2},i≡3j+k

(∀ u, u′,u′′(Pj(u
′)∧Pk(u

′′)∧(u′ 6= u′′)∧(u′ ↪→ u)∧(u′′ ↪→ u))⇒ Pi(u)))

Note that we used a shortcut formula (P = P0 ] P1 ] P2) to state that the inter-
pretation of P is the disjoint union of the interpretation of P0, P1 and P2, details are
omitted.

6. A Discussion about Decision Procedures and Calculi

In this section, mainly, we provide pointers about proof systems for separation logics,
from sequent-style calculi to decision procedures built on SMT solvers.

6.1 Analytic proof systems

In the previous sections, we have seen that for any k ≥ 1, the set of valid formulae for
kSL is not recursively enumerable and therefore there is no hope to design finite axiom-
atization for kSL and to design nice sequent-style proof systems. Nevertheless, calculi
exist for abstract separation logics, mostly because first-order conditions are involved
in separation models, see e.g. the conditions in [HCGT14]. Similarly, display calculi
for bunched logics can be found in [Bro12]. Hilbert-style axiomatizations can be also
found in [BV14] by using nominals but again this involves mainly abstract separation
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models and does not deal with concrete heaps as in kSL. Still, it is possible to design
complete proof systems for propositional logics, such as the tableaux-style calculus
for 2SL0 in [GM10] but completeness for full 2SL is not possible (see Theorem 4.2).
The literature contains also a few attempts to design complete proof systems for some
kSL. Graph-based decision procedures can be found in [HIOP13], which goes beyond
1SL0 (see also an NP-complete fragment of separation logic that can be decided using
a model-theoretical decision procedure [ESS13]). It is also possible to design Ladner-
like algorithm for kSL0 as witnessed by the works in [COY01, DGLWM14], see also
Section 5.1.

6.2 Satisfiability Modulo Theories for separation logics

6.2.0.2 Direct approach versus translation for modal logics. In order to mechanize modal
logics, there exist at least two main approaches with well-identified motivations. The
direct approach consists in building specialized proof systems for the logics and re-
quires building new theorem provers but, it has the advantage to design fine-tuned
tools and to propose plenty of optimizations. The development of tableaux-based
provers for modal logics following the seminal work [Fit83] perfectly illustrates this
trend. By contrast, the translation approach consists in reducing decision problems for
the original logics to similar problems for logics that have already well-established the-
orem provers. Its main advantage is to use existing tools and therefore to focus only on
the translations, that are usually much simpler to implement. For example, translation
of modal logics into first-order logic, with the explicit goal to mechanize such logics is
an approach that has been introduced in [Mor76] (see also [Fin75, vB76, Moo77]) and
it has been intensively developed over the years, see e.g. [ONdRG01] for an overview.

6.2.0.3 Translation versus specialized algorithms for separation logic. Despite its young
age, one can observe that the mechanization of separation logic follows a similar di-
chotomy. This is all the more obvious nowadays since there are a lot of activities
to develop verification methods with decision procedures for fragments of practical
use, see e.g. [CHO+11]. Many decision procedures have been designed for fragments
of separation logics or abstract variants, from analytic methods [GM10, HCGT14]
to translation to theories handled by SMT solvers [PWZ13], passing via graph-
based algorithms [HIOP13]. The translation approach has been already advocated
in [CGH05] in which propositional kSL0 is translated into a fragment of classical
logic that can be decided in polynomial space. However, the framework of satis-
fiability modulo theories (SMT) remains probably the most promising one to de-
velop decision procedures dedicated to reasoning tasks for separation logics, see
e.g [BPS09, RBHC07, PWZ13, DGLWM14]. It is worth noting that verification of pro-
grams that manipulate linked-list structures can be also done with a SAT solver, when
the assertions are written in some restricted logical formalism, see a remarkable exam-
ple in [IBI+13].

6.2.0.4 SMT solvers, program verification, and separation logic. Deciding logical formu-
lae within a given logical theory is ubiquitous in computer science and the works
around Satisfiability Modulo Theories (SMT) are dedicated to solve this problem by
providing methods, proof systems and solvers in order to be able to decide as much
theories as possible, as well as their combination (see e.g. [BT14b]). Nowadays, SMT
solvers are essential for most tools that formally verify programs, from bounded
model-checking to abstraction-based model-checking (actually the number of appli-
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cations seems unbounded). A nice feature of such solvers is their ability to combine
distinct theories allowing to express richer statements. As advocated in [PWZ13], be-
ing able to integrate decidable fragments of separation logic in some SMT solver not
only allows to decide satisfiability or entailment problems by taking advantage of the
technology behind SMT solvers but also it provides an efficient way to combine sep-
aration logics with other theories, such as linear arithmetic LIA. Actually, the seminal
paper [PWZ13] provides a translation of 1SLLB (see also Section 4.3.1) into a decid-
able fragment of first-order logic and a decision procedure has been implemented in
an SMT solver. This provides an important step to integrate reasoning about separa-
tion logic into SMT solvers. Some strongly related work can be also found in [PR13].
Besides, the first competition of solvers for several fragments of separation logic was
held recently, see e.g. [SC14], witnessing how promising appears this research direc-
tion. In the article [SC14] reporting the competition SL-COMP 2014, more can be found
about the list of solvers that competed as well as the fragments of separation logic that
have been considered (roughly, symbolic heaps with recursive definitions, see also
Sections 4.3.1 and 3.2).

7. Conclusion

In this paper, we have presented a wide range of results about separation logic as far
as decidability, complexity (see e.g., Section 4), and expressive power are concerned
while pinpointing several relationships with modal or temporal logics (see Section 3).
Figure 4 summarizes some of these results.

1SL
≡ 1DSOL ≡ 1WSOL ≡ 1SL(−∗), undec. [BDL12]

2SL
undec. [COY01]

1SL2
undec. [DD15]

1SL(∗ +
n
¬−∗)

dec., non-elem. [BDL12]

1SL2(−∗)
≡ 1DSOL, undec. [DD14]

1SL2(∗)
dec., non-elem. [DD15]

1SL1
PSPACE-C. [DGLWM14]

kSL0
PSPACE-C. [COY01]

MLH(∗)
dec., non-elem. [DD15]

1SLLB
NP-C. [PWZ13]

SF
in P [CHO+11]

1SL3(∗)[Z,=]
undec. [BBL09]

1SLsdc
<

dec. [BBL09]

Figure 4. A few results about decidability and complexity

Like the most popular classes of non-classical logics in computer science such as
description logic (see e.g. [BCM+03]) or temporal logic (see e.g. [GHR94]), separation
logic encompasses a large set of different logical formalisms. More importantly, the
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early works on separation logic or on BI, see e.g. [IO01, Rey02, POY04], have been the
source of many theoretical works and it led to the development of many tools, see
e.g. [BCO05, CDOY09, CD11, SC14]. This is a remarkable example of logical formal-
ism that has been developed so quickly in both directions, in a so short amount of
time. Even though it is not reasonable to expect to present all the research directions
about separation logic within a single paper (or even only its main theoretical results),
the research has been essentially driven towards the improvement of automatic pro-
gram analysis, extending significantly Hoare logic [Hoa69]. That is why promising re-
search directions include, for instance, a more extensive use of fine-tuned SMT solvers
(see e.g. [PWZ13]), the development of methods for general inductive predicates (see
e.g. [AGH+14]) or the design of generic proof systems (see e.g. [BV14]). In some other
respect, building new bridges between separation logics and, modal and temporal log-
ics can certainly be beneficial to transfer known results or proof techniques from modal
logic (see e.g. [BV14]).
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[BGG97] E. Börger, E. Grädel, and Y. Gurevich. The Classical Decision Problem.
Perspectives in Mathematical Logic. Springer, 1997.

[BK10] J. Brotherston and M. Kanovich. Undecidability of propositional sepa-
ration logic and its neighbours. In LICS’10, pages 130–139. IEEE, 2010.

[BK14] J. Brotherston and M. Kanovich. Undecidability of propositional sepa-
ration logic and its neighbours. Journal of the Association for Computing
Machinery, 61(2), 2014.

40



February 9, 2015 Journal of Applied Non-Classical Logics final-jancl15
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[GKV97] E. Grädel, Ph. Kolaitis, and M. Vardi. On the decision problem for two-
variable first-order logic. Bulletin of Symbolic Logic, 3(1):53–69, 1997.

[GKWZ03] D. Gabbay, A. Kurucz, F. Wolter, and M. Zakharyaschev. Many-
dimensional modal logics: theory and practice. Cambridge University Press,
2003.
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