
HAL Id: hal-03185848
https://hal.science/hal-03185848

Submitted on 30 Mar 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Formally verified speculation and deoptimization in a
JIT compiler

Aurèle Barrière, Sandrine Blazy, Olivier Flückiger, David Pichardie, Jan Vitek

To cite this version:
Aurèle Barrière, Sandrine Blazy, Olivier Flückiger, David Pichardie, Jan Vitek. Formally verified spec-
ulation and deoptimization in a JIT compiler. Proceedings of the ACM on Programming Languages,
2021, 5 (POPL), pp.26. �10.1145/3434327�. �hal-03185848�

https://hal.science/hal-03185848
https://hal.archives-ouvertes.fr

46

Formally Verified Speculation and Deoptimization in a JIT

Compiler

AURÈLE BARRIÈRE, Univ Rennes, Inria, CNRS, IRISA, France
SANDRINE BLAZY, Univ Rennes, Inria, CNRS, IRISA, France
OLIVIER FLÜCKIGER, Northeastern University, USA

DAVID PICHARDIE, Univ Rennes, Inria, CNRS, IRISA, France
JAN VITEK, Northeastern University, USA and Czech Technical University, Czechia

Just-in-time compilers for dynamic languages routinely generate code under assumptions that may be in-

validated at run-time, this allows for specialization of program code to the common case in order to avoid

unnecessary overheads due to uncommon cases. This form of software speculation requires support for

deoptimization when some of the assumptions fail to hold. This paper presents a model just-in-time compiler

with an intermediate representation that explicits the synchronization points used for deoptimization and the

assumptions made by the compiler’s speculation. We also present several common compiler optimizations

that can leverage speculation to generate improved code. The optimizations are proved correct with the help

of a proof assistant. While our work stops short of proving native code generation, we demonstrate how one

could use the verified optimization to obtain significant speed ups in an end-to-end setting.

CCS Concepts: • Software and its engineering→ Just-in-time compilers; • Theory of computation→

Program verification.

Additional Key Words and Phrases: verified compilation, just-in-time compilation, CompCert compiler

ACM Reference Format:

Aurèle Barrière, Sandrine Blazy, Olivier Flückiger, David Pichardie, and Jan Vitek. 2021. Formally Verified

Speculation and Deoptimization in a JIT Compiler. Proc. ACM Program. Lang. 5, POPL, Article 46 (January 2021),

26 pages. https://doi.org/10.1145/3434327

1 INTRODUCTION

The essence of just-in-time (JIT) compilation is the interleaving of execution and code generation. It
is this interleaving that allows JIT compilers to emit code specialized to the program’s computational
history. JIT compilers have been considered challenging targets for formal verification due to
a combination of features that include self-modifying code to patch previously generated call
instructions, mixed-mode execution to allow switching between interpretation and native execution,
and on-stack replacement to transfer control from one version of a function to another.
To make matters worse, much of what sets apart JITs from traditional batch compilers is of-

ten relegated to implementation details that are neither clearly abstracted nor documented, and
scattered around different levels in the compilers’ architecture. For instance an optimization such

Authors’ addresses: Aurèle Barrière, Univ Rennes, Inria, CNRS, IRISA, Rennes, France, aurele.barriere@irisa.fr; Sandrine

Blazy, Univ Rennes, Inria, CNRS, IRISA, Rennes, France, sandrine.blazy@irisa.fr; Olivier Flückiger, Northeastern University,

Boston, MA, USA, o@o1o.ch; David Pichardie, Univ Rennes, Inria, CNRS, IRISA, Rennes, France, david.pichardie@ens-rennes.

fr; Jan Vitek, Northeastern University, Boston, MA, USA, Czech Technical University, Prague, Czechia, j.vitek@neu.edu.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,

contact the owner/author(s).

© 2021 Copyright held by the owner/author(s).

2475-1421/2021/1-ART46

https://doi.org/10.1145/3434327

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 46. Publication date: January 2021.

This work is licensed under a Creative Commons Attribution 4.0 International License.

http://creativecommons.org/licenses/by/4.0/
https://www.acm.org/publications/policies/artifact-review-badging
https://doi.org/10.1145/3434327
https://doi.org/10.1145/3434327

46:2 A. Barrière, S. Blazy, O. Flückiger, D. Pichardie, and J. Vitek

as devirtualization might rely on the interplay of inline caches in the runtime, speculative opti-
mizations in the optimizer and deoptimization triggered by the class loader. JIT compilers differ in
their architecture and in the nature and extent of their reliance on the above mentioned features.
The seminal papers on SELF [Hölzle et al. 1992; Hölzle and Ungar 1994] describe a system that
limits self-modification to inline cache updates with a two-tiered compilation scheme. Compiled
code that can be deoptimized with on-stack replacement when debugging is requested. The Java
server compiler has both an interpreter and an optimizing compiler [Paleczny et al. 2001]. Jalapeño
features a three-tier architecture and sample based profiling instead of instrumentation [Burke et al.
1999]. The early V8 JavaScript engine lowered both baseline and optimized functions to native code,
and deoptimization toggled between the two; as of now the baseline is an interpreter [Chromium
2020]. The R compiler of Flückiger et al. [2019] performs speculation on a dedicated intermediate
representation (IR) and offloads code generation to LLVM, with write-only code segments.
This paper contends that a JIT compiler can be designed so that verification becomes, if not

easy, at least possible. To this end, we developed CoreJIT, a verified compiler that generates code at
run-time and is able to speculate on arbitrary predicates as well leverage on-stack-replacement
to deoptimize from optimized code back to an unoptimized base version. As in Graal [Duboscq
et al. 2013], deoptimization is specified at the IR level by dedicated instructions which have a
formally specified semantics. Without loss of generality, we restrict our attention to a uniform
execution model in which both the unoptimized and the optimized code are expressed in the same
intermediate language, similarly to the approach adopted by Béra et al. [2016] and Flückiger et al.
[2019]. Furthermore, we carefully separate mechanism, i.e., how code is generated, optimized and
deoptimized, from policy, i.e., when and what to optimize. This separation allows us to prove
correctness of the implementation without having to trust the heuristics that define the policy.

Unless noted otherwise, all results presented in this paper have been mechanically verified using
the Coq proof assistant. The complete Coq development is available as a supplementary material.
Specifically, we claim the following novel contributions:

JIT design: We introduce a JIT design, CoreJIT, that clearly separates heuristic-based optimiza-
tion policy decisions and profiling needed to inform these decisions from program execution
and the code generation mechanisms that are needed for speculation and optimization.

IR design: We present a new high-level intermediate representation, CoreIR, that makes deop-
timization and speculation explicit and separates the insertion of deoptimization points from
the subsequent speculation checks. CoreIR is inspired by CompCert’s RTL [Leroy 2006] and
Sourir [Flückiger et al. 2018], an earlier IR with support for speculation.

New proof techniques: We develop new proof techniques for proving the semantic preserva-
tion of CoreJIT. Our techniques reuse pre-existing proofs for compiler correctness and extend
them for JIT compilers. Concretely, we propose nested simulations and instantiate them on
CoreJIT passes, using advanced proof techniques such as loud instrumented semantics and
delay invariants.

Verified transformations: We prove the semantic preservation of all the passes of CoreJIT.
This includes a constant propagation pass, an inlining pass and a speculative optimization
pass: We show how to insert and maintain synchronization points to relate optimized and
unoptimized code and use them for optimizations.

Efficient compilation: To validate that our setting is realistic, we have extracted an executable
artifact from our verified compiler and report on the benefit of JIT optimizations for dynamic
languages on sample programs. We show how to combine the extracted artifact with an
unverified frontend for a subset of Lua and an unverified LLVM backend. We identify several
difficult open problems and report that performance is competitive in some cases.

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 46. Publication date: January 2021.

Formally Verified Speculation and Deoptimization in a JIT Compiler 46:3

Our work has limitations that we state here. We do not prove the native code generation that
is discussed in the experimental section as we use LLVM for a backend. What we prove is the
speculation and deoptimization happening in CoreIR. Ideally, the native code generation would be
a black box that is correct as long as it preserves the semantics of CoreIR. Formally proving this
is left for future work. We also do not prove the frontend that translates a minimal subset of Lua
to CoreIR. We do not expect this to be challenging as the translation is straightforward. Finally,
the optimizations that were proved correct are rather limited, a real compiler needs additional
optimizations such as unboxing to be performant; a production JIT would also support transfers
of control into optimized code, and non-local assumption checks. While these are limitations we
expect to address in follow up works, we believe the challenges that were met in the present paper
to be a significant step forward in the state of the art.

2 RELATED WORK

Mixing interpretation with run-time compilation goes back to the 60s. In his history of just-in-time,
Aycock [2003] describes the evolution of JIT techniques. At first, the goal was to keep the size
of program small while being able to generate efficient code for key functions. Nowadays, JIT
compilers aim to have both fast start-up times and high peak performance after warm up.
Previous work has made in-roads in demystifying JIT compilation. Myreen [2010] presents a

verified JIT compiler from a stack-based bytecode to x86. A challenge is being able to treat code
as data. Indeed, in batch compilers, code is in a disjoint memory space from the program’s data.
But, with a JIT, code is produced by the compiler at run-time and has to be put in memory and
instructions previously produced can be updated. Myreen defines an operational semantics for self-
modifying x86 code. Memory is modeled by a function𝑚 along with instruction cache 𝑖 . Instructions
to execute are fetched in 𝑖 , data is stored and read in𝑚, and 𝑖 can be updated with values of𝑚. A
Hoare Logic is defined to reason about these semantics. This logic includes a separating operator
to describe the memory contents. The author makes a few design choices that allow the frame rule
to be applied on both code and data. The correctness of the compiler is proved with the help of an
invariant, jit_inv, which relates a state of the bytecode semantics with an equivalent state of the
x86 semantics. jit_inv 𝑠 𝑎 is a separation logic predicate which means that an x86 semantic state,
corresponding to the bytecode semantic state 𝑠 , is correctly represented in the memory at address
𝑎. This allows to prove that any execution of the bytecode is computed by the x86 code hidden in
jit_inv. As the code invariant is ∅, the theorem holds for any content of the cache. In our work we
avoid self-modifying code and introduce an optimizing compiler with speculative optimizations
and dynamic deoptimization.
Dynamic languages are often highly polymorphic, at run-time this entails dynamic type tests

and boxed primitive types. To reduce both, compilers will speculate on the most likely case and
generate code specialized to that case. But there might come an execution where the speculation
fails and the compiler must fall back to a more general version of the code. This process is called
deoptimization and uses a technique called on-stack-replacement (OSR), where some stack frames
are rewritten to point to the deoptimized code. OSR raises many technical issues, as the system
must have full control over the layout of the internal state of the generated code. Lameed and
Hendren [2013] and D’Elia and Demetrescu [2016] gave a simple implementation of OSR for LLVM
that does not require self-modifying code. We follow their approach in this work.

One path towards specialization is trace-based compilation. Gal et al. [2009] introduce a JavaScript
compiler based on an interpreter. Frequently executed code paths, or traces, are turned into efficient
native code. Each trace is only correct under some assumptions about its environment. The compiler
adds guards to check these assumptions hold or exit back to the interpreter. Guo and Palsberg
[2011] discussed the soundness of trace-based compilers. When optimizing a trace, the rest of

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 46. Publication date: January 2021.

46:4 A. Barrière, S. Blazy, O. Flückiger, D. Pichardie, and J. Vitek

the program is not known to the optimizer, so optimizations such as dead-store elimination are
unsound: a store might seem useless in the trace itself, but actually impacts the semantics of the
rest of the program. On the other hand, free variables of the trace can be considered constant for
the entire trace. To characterize sound and unsound optimizations, the authors define semantics
for trace recording and the bail-out mechanism. Finally, they define a bisimulation-based criterion
for soundness. This work is not mechanically verified. The focus of our work is on a more general
notion of speculation and we present a verified compiler implementation.

Flückiger et al. [2018] investigate dynamic deoptimization and provide formal tools for speculative
optimization. One of their key ideas that we adopt is the direct representation of assumptions in
the compiler’s IR. They add an Assume instruction for speculation which contains a condition (the
assumption) and a deoptimization target. If the condition evaluates to true, the program proceeds to
the next instruction. Otherwise, it deoptimizes to a more general version of the same function. The
instruction contains information on how to synthesize missing stack frames and update registers.
Also, the deoptimization target is invisible to the optimizer, any analysis can be local to the version
being optimized. The authors prove the correctness of various optimizations, some standard and
some specific to speculation, like moving or composing assume instructions. The correctness
proof relies on invariants about different versions of the same function: all versions should be
observationally equivalent, and adding assumptions to a version should not alter its semantics.
The equivalence is maintained by means of weak bisimulations. This IR called Sourir seems well
adapted to a JIT setting, speculative optimization is possible and can be reasoned on. An interpreter
for Sourir has been implemented, but this is still far from being an actual JIT. In our work we
designed a new IR that abstracts deoptimization and assumption checking into two instructions
which are designed to embed some of the aforementioned invariants in their semantic. We use Coq
to provide a verified implementation of key optimizations.

3 A VERIFIED JIT COMPILER

The key elements of most JIT compiled systems include one or more compilers that generate code
at various degrees of optimization, a monitoring subsystem that gathers information about likely
program invariants and provides them to the compiler as hints and a deoptimization mechanism
that allows code to toggle between optimized and unoptimized versions. In this paper, we focus on
the interplay between speculative optimizations and deoptimizations and the machinery needed for
these in the compiler’s intermediate language as well as its run-time support. To this end we have
designed a compiler infrastructure, CoreJIT, that can directly execute programs in an intermediate
representation, CoreIR. This intermediate representation can be optimized by the JIT and either
executed as is, or translated to native. To obtain a complete system, we add a frontend that can take
source code, written in a subset of Lua, and translate it to CoreIR. The overall system is illustrated
by Figure 1.

The novelty of our work lies in the design of CoreIR and the optimizations performed by CoreJIT,
which we express as CoreIR transformations1. These are the part that have been formalized and
verified. The profiler and the heuristics chosen to decide what to recompile and what to specialize
need not to be trusted, our development ensures that even when these are wrong, the generated
code remains correct. Correspondingly, the profiler in our development is written in OCaml and
untrusted. The frontend and backend portions of the system are more łstandardž, they are presently
unverified and must be trusted (they are further described in Section 5).

Figure 1 illustrates the compilation steps of a single function. The source function is compiled to
a Base CoreIR version by the frontend (0). As it executes, the profiler will observe some run-time

1This compiler architecture follows [Flückiger et al. 2019] where R programs are JIT compiled by IR rewriting.

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 46. Publication date: January 2021.

Formally Verified Speculation and Deoptimization in a JIT Compiler 46:5

f_base
CoreIR

f_opt
CoreIR

f_nat
x86

CoreJIT
compiler

profiler

observe

deoptimize

compile

compile

hint

1

2

5

4

Backend
compiler

3

f_src
Lua Lite

0

Frontend
compiler

Trusted
(OCaml)

Verified
(Coq)

Trusted
(OCaml/C++)

Untrusted
(OCaml)

0 A trusted external OCaml frontend
parses source code and generates
unoptimized CoreIR

1 During execution the unoptimized
CoreIR program generates profiling
information

2 An untrusted OCaml profiler generates
compilation hints for CoreJIT, these
hints do not need to be trusted

3 A verified Coq CoreJIT optimizes the
program and generates optimized
CoreIR code

4 An external trusted compiler generates
native code from the optimized CoreIR

5 A deoptimization takes optimized code
(or native) back to unoptimized CoreIR

Fig. 1. CoreJIT architecture

invariant such as the type of values stored in particular variables (1). Based on heuristics, the profiler
will forward some of those observations to the compiler in the form of hints (2). The compiler
will optimize Base into an optimized Opt variant (3). At that point, Opt co-exists with Base, and
can be executed directly or it can be compiled to native code by the trusted backend (4). At any
point during execution, one of the profiler hints can be invalidated, this leads to deoptimization
and transfer of control from optimized (or native) code back to the base version of the function
(5). Further optimizations can replace Opt with more efficient versions, our development does not
garbage collect compiled code, nor is compiled code ever modified.

Speculation. Two CoreIR instructions are related to speculation, Anchor and Assume. The Anchor
instruction represents a potential deoptimization point, i.e., a location in an Opt function where the
correspondence with its Base version is known to the compiler and thus deoptimization can occur.
For instance, in Anchor F.l [r ← r+1] the target F .l specifies the function (F) and label (l) to
jump to, the mapping [r ← r+1], called a varmap describes how to create the state of the baseline
version from the optimized state. Namely, how to reconstruct the value of each register that is live
at the target instruction label. As we will see later, this mapping becomes more elaborate with
inlining as multiple stack frames must be synthesized, which complexifies our proof invariants.
Anchors are inserted first in the optimization pipeline, before any changes are made to the

program. Choosing where to insert them is important as they determine where speculation can

happen. Speculation itself is performed by inserting Assume instructions. To illustrate this second
instruction, consider Assume x=1 F .l [r ← r'+1] which expresses the expectation that register x
has value 1. When the instruction is executed, if x has any other value, we say that the assumption
failed and deoptimization is triggered. If this occurs, the currently executing function is discarded
and control is transferred to the Base version of F at label l, furthermore register r in that function
is given the value r '+1 where r ' is looked in Opt. Unlike anchors, assumes are inserted at any time
during compilation. To add an Assume, the compiler finds the dominating Anchor and copies its
deoptimization metadata. If there is no anchor, then the assumption cannot be made.
The role of anchors is subtle. Maintaining the mapping between a Base and Opt versions is far

from trivial as the optimized code gradually drifts away from its base, one transformation at a time.
For the compiler, an anchor marks a point where it knows how to reconstruct the state needed
by Base given the currently live registers in Opt. To be able to reconstruct that state, the anchor

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 46. Publication date: January 2021.

46:6 A. Barrière, S. Blazy, O. Flückiger, D. Pichardie, and J. Vitek

keeps portions of the state alive longer than needed in Opt, and, as the compiler optimizes code,
the varmap is updated to track relevant changes in the code. Thus, the cost of an Anchor is that
it acts as a barrier to some optimizations. Once the compiler has finished inserting assumes, all
anchors can be deleted. They will not be used in the final version of the function.

For our proofs, anchors have yet another role. They justify the insertion of Assume instructions.
For this, we give the Anchor instruction a non-deterministic semantics, an anchor can randomly
choose to deoptimize from Opt to Base. Crucially, deoptimization is always semantically correct,
nothing is lost by returning to the baseline code eagerly other than performance. An inserted
Assume is thus correct if it follows an Anchor and the observable behavior of the program is
unchanged regardless which instruction deoptimizes. The benefit of having anchors is that the
assumes they dominate can be placed further down the instruction stream. The compiler must make
sure that the intervening instructions do not affect deoptimization. This separation is important in
practice as it allows a single Anchor to justify speculation at a range of different program points.
Initially the varmap of an Assume instruction will be identical to its dominating Anchor, but, as
we will show shortly, this can change through subsequent program transformations. To sum up,
in CoreJIT, the Anchor instruction is a helper for speculation and reasoning about correctness of
speculation that is removed in the last step of the optimization pipeline.

Illustrative Example. All examples in the paper use a simplified concrete syntax for CoreIR. We
omit labels when they refer to the next line and assume versions to start with the instruction
on the first line. Moreover, we use the shorthand ‘Anchor F.l [a ,b]’ to represent the varmap
‘Anchor F.l [a ← a, b ← b]’, and ‘Assume ... l’ to denote an Assume instruction with identical
metadata as the Anchor instruction at label l.

Function F (x , y , z) :

Version Base :

d← 1

l1 : a← x ∗ y

Cond (z == 7) l2 l3

l2 : b← x ∗ x

c← y ∗ y

Return b+c+d

l3 : Return a

(a) Baseline

Function F (x , y , z) :

Version Base :

. . .

Version Opt :

l4 : Anchor F . l1 [x , y , z , d←1]

c← y ∗ y

Assume [z =7 , x =75] l4

Return 5626+ c

(b) Optimized

Fig. 2. Example of speculation

Assume that, for the program in Figure 2(a), a profiler detected that at label l2 of function F

registers z and x always have values 7 and 75. Function F can thus be specialized. Figure 2(b)
adds an Opt version to F where an anchor has been added at l4. In order to deoptimize to the
baseline, the anchor must capture all of the arguments of the function (x, y, z) as well as the local
register d. The compiler is able to constant propagate d, so the anchor remembers its value. The
speculation is done by Assume [z=7, x=75] l4 which specifies what is expected from the state
of the program and the dominating anchor. The optimized version has eliminated dead code and
propagated constants. If the speculation holds, then this version is equivalent to Base. Despite the
overhead of checking validity of the speculation, the new version should be faster: the irrelevant
computation of a has been removed and x∗x is speculatively constant folded. If the speculation fails,
then the execution should return to Base, at label l1 where the closest Anchor is available, and

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 46. Publication date: January 2021.

Formally Verified Speculation and Deoptimization in a JIT Compiler 46:7

F_Base F_Base F_Base F_Opt F_Base

F_Base: F_Opt:

…

…

Assume

PF_Base:

…

…

P

JIT

compilaton

F_Opt

d
e
o
p
tim

iz
a
tio

n

Fig. 3. Timeline

reconstruct the original environment. This involves for instance materializing the constant folded
variable d. As we see here, Assume does not have to be placed right after an Anchor instruction. This
will cause deoptimization to appear to jump back in time and some instructions will be executed
twice. It is up to the compiler to ensure these re-executed instructions are idempotent.

Semantic Preservation Theorem. Imagine a program that consists of five invocations of the function
F, the first four calls have the same arguments and the last one differs. Figure 3 shows a possible
execution with a JIT that generates an optimized version of F after three invocations and then
deoptimizes in the last call. For the JIT to be correct, the observable behavior of that execution
should line up with an execution where we ran the base version five times in a row and with no
occurrence of speculation instructions.
The semantic state of CoreJIT consists of the program being executed and the state of that

program. Each execution step then consists in either calling the compiler, and thus extending the
current program with new versions, or executing the next instructions. Defining CoreJIT execution
as a sequence of such steps allows us to define a small-step semantics for the execution of a program.
The observable behaviors of a program are to terminate, to diverge or to err. Moreover, the trace of
input/output actions is also observed during execution (and it belongs to behaviors). The correctness
of CoreJIT is stated as follows: For any optimization heuristics ℎ and any source program 𝑝 , let
B(𝑝) be the set of behaviors of 𝑝 . Let B𝐽 𝐼𝑇 (𝑝,ℎ) be the set of behaviors of CoreJIT with its initial
current program set to 𝑝 . If we have B(𝑝) ≠ ∅, then B𝐽 𝐼𝑇 (𝑝,ℎ) ⊂ B(𝑝), where B(𝑝) ≠ ∅ means
that 𝑝 is a safe program (i.e., with no error behavior). Restricting the theorem to safe programs and
stating a backward property (i.e., every behavior of the compiled program is also a behavior of the
source program) a standard technique to ensure overall behavior preservation [Leroy 2009]. This
theorem guarantees that using any heuristics, if the source program is safe, then the execution of
CoreJIT matches one of its behaviors.

3.1 CoreIR: an Intermediate Language for Speculation

CoreIR is inspired by CompCert’s RTL [Leroy 2009]. Its formal syntax is given in Figure 4. Code
is represented by control-flow graphs with explicit program labels 𝑙 . Each instruction 𝑖 explicitly
lists its successor(s). The instructions operate over an unbounded number of pseudo-registers, 𝑟 ,
holding scalar values 𝑣 (we use 𝑎 for values used as addresses). A program is a map from function
identifier to functions. Each function 𝑓 has a default Base version V , its original version, and one
optional optimized version Opt. This version may deoptimize back to its baseline if speculation
fails. Versions contain code and an entry label. Base versions do not use the Anchor and Assume
instructions. The deoptimization metadata in those operations consists of the function identifier
and label where to jump to (𝐹 .𝑙) along with a varmap ((𝑟 ← 𝑒)∗) that specifies the value 𝑒 of every

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 46. Publication date: January 2021.

46:8 A. Barrière, S. Blazy, O. Flückiger, D. Pichardie, and J. Vitek

Operands:
op :: = 𝑟 Register

| 𝑣 Value

Expressions:
e :: = op + op | op − op | op ∗ op Arithmetic

| op < op | op = op Relational
| op Register or value

Instructions:
𝑖 :: = Nop 𝑙 Noop

| (𝑟 ← e)∗ 𝑙 Operations
| Cond e 𝑙𝑡 𝑙𝑓 Branch
| 𝑟 ← Call 𝑓 e∗ 𝑙 Call
| Return e Return
| 𝑟 ← Load e 𝑙 Memory load
| e← Store e 𝑙 Memory store
| Print e 𝑙 Output value
| Anchor deop 𝑙 Deoptimization anchor
| Assume e∗ deop 𝑙 Speculation

Metadata:
vm :: = (𝑟 ← e)∗ Varmap
syn :: = 𝑓 .l 𝑟 vm Stack frame
deop :: = 𝑓 .l vm syn∗ Deopt metadata

Programs:
V :: = 𝑙 ↦→ 𝑖 Code
F :: = {𝑟 ∗, 𝑙,V , option V } Function
P :: = 𝑓 ↦→ F Program

Fig. 4. Syntax of CoreIR

target register 𝑟 . The metadata can contain information to synthesize multiple frames, in which
case we also specify the register that will hold the result. Some simplifications have been made to
avoid tying the development to any particular language; these include the memory model and the
arithmetic operations.

The small-step semantics of CoreIR instructions is detailed in Figure 5. We define its judgement

as 𝑆 𝑉 𝑙 𝑅 𝑀
𝑡
−→ 𝑆 ′𝑉 ′ 𝑙 ′ 𝑅′𝑀 ′, where 𝑡 is a trace of observable events, and a semantic state consists

of a stack 𝑆 , the current version 𝑉 , the current label 𝑙 , registers 𝑅 and a memory 𝑀 . A stack is a
sequence of frames (𝑟,𝑉 , 𝑙, 𝑅) containing the register 𝑟 where the result will be stored, the caller
𝑉 , the label in the caller 𝑙 , and the registers to restore 𝑅. States can also be final (Final(𝑣,M)), in
case the main function has returned, and then only contain a value and a memory. The memory is
abstract and incomplete: an abstract type mem_state, a constant representing the initial memory
state and two operations over memory states provided as partial functions for accessing values
(𝑀 [𝑎]) and updating them (𝑀 [𝑎 ← 𝑣]). Option types are used to represent potential failures. When

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 46. Publication date: January 2021.

Formally Verified Speculation and Deoptimization in a JIT Compiler 46:9

Nop
V [𝑙pc] = Nop 𝑙next

𝑆 V 𝑙pc R M → 𝑆 V 𝑙next R M

Op
V [𝑙pc] = 𝑟1 ← e1, . . . , 𝑟𝑛 ← e𝑛 𝑙next (e1, R) ↓ 𝑣1, . . . , (e𝑛, R) ↓ 𝑣𝑛

𝑆 V 𝑙pc R M → 𝑆 V 𝑙next R [𝑟1 ← 𝑣1 . . . 𝑟𝑛 ← 𝑣𝑛] M

ConT
V [𝑙pc] = Cond e 𝑙𝑡 𝑙𝑓 (e, R) ↓ true

𝑆 V 𝑙pc R M → 𝑆 V 𝑙𝑡 R M

ConF
V [𝑙pc] = Cond e 𝑙𝑡 𝑙𝑓 (e, R) ↓ false

𝑆 V 𝑙pc R M → 𝑆 V 𝑙𝑓 R M

Call

V [𝑙pc] = 𝑟 ← Call 𝑓 e∗ 𝑙next
current_version𝑃 𝑓 = V ′ init_regs e∗ R 𝑓 = R′

𝑆 V 𝑙pc R M → (𝑟, 𝑓 , 𝑙next , R ++ 𝑆) V
′ entry (V ′) R′ M

Ret
V [𝑙pc] = Return e (e, R) ↓ 𝑣

(𝑟,V ′, 𝑙next , R
′ ++ 𝑆) V 𝑙pc R M → 𝑆 V ′ 𝑙next R

′ [𝑟 ← 𝑣] M

RetFinal
V [𝑙pc] = Return e (e, R) ↓ 𝑣

[] V 𝑙pc R M → Final(𝑣,M)

Print
V [𝑙pc] = Print e 𝑙next (e, R) ↓ 𝑣

𝑆 V 𝑙pc R M
𝑣
−→ 𝑆 V 𝑙next R M

Store

V [𝑙pc] = e1 ← Store e2 𝑙next (e2, R) ↓ 𝑣

(e1, R) ↓ a M ′ = M [a← 𝑣]

𝑆 V 𝑙pc R M → 𝑆 V 𝑙next R M ′

Load
V [𝑙pc] = 𝑟 ← Load e 𝑙next (e, R) ↓ a M [a] = 𝑣

𝑆 V 𝑙pc R M → 𝑆 V 𝑙next R [𝑟 ← 𝑣] M

Ignore

V [𝑙pc] = Anchor 𝑓 .l vm st∗ 𝑙next
deopt_regmap vm R = R′ synthesize_frame R st∗ = 𝑆 ′

𝑆 V 𝑙pc R M → 𝑆 V 𝑙next R M

Deopt

V [𝑙pc] = Anchor 𝑓 .l vm st∗ 𝑙next
deopt_regmap vm R = R′ synthesize_frame R st∗ = 𝑆 ′

𝑆 V 𝑙pc R M → (𝑆 ′++ 𝑆) (base_version𝑃 𝑓) l R′ M

AssumePass
V [𝑙pc] = Assume e∗ 𝑓 .l vm st∗ 𝑙next (e∗, R) ⇓ true

𝑆 V 𝑙pc R M → 𝑆 V 𝑙next R M

AssumeFail

V [𝑙pc] = Assume e∗ 𝑓 .l vm st∗ 𝑙next (e∗, R) ⇓ false

deopt_regmap vm R = R′ synthesize_frame R st∗ = 𝑆 ′

𝑆 V 𝑙pc R M → (𝑆 ′++ 𝑆) (base_version𝑃 𝑓) l R′ M

Fig. 5. CoreIR semantics

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 46. Publication date: January 2021.

46:10 A. Barrière, S. Blazy, O. Flückiger, D. Pichardie, and J. Vitek

a rule does not emit any event, the trace is omitted. The judgement for evaluating an expression e

with registers R is (e, R) ↓ 𝑣 . Similarly, lists of expressions can be evaluated as true or false, noted
(e∗, R) ⇓ 𝑏.
For readability, we use identifiers to name functions. In the semantics, a function has to be found

in the program. V [𝑙pc] denotes the instruction at label 𝑙pc of version V , and R[𝑟 ← 𝑣] is the update
to register map R where 𝑟 has value 𝑣 . The function called current_version returns the current
version of a function (the optimized version if it exists, the base otherwise). entry returns the entry
label. To initialize registers of function 𝑓 , we write init_regs e∗ R 𝑓 , where e∗ is a list of expressions
to be evaluated under R. When deoptimizing, we need to reconstruct a register state with the
mapping of the instructions. This is done with function deopt_regmap. Finally, synthesize_frame
creates the stack frames to synthesize during deoptimization.
If R contains value 17 for register 𝑟1 and value 3 for 𝑟3, then deopt_regmap [r1, r2 ← r3 + 2] R

will create a new register mapping R′ where 𝑟1 has value 17, 𝑟2 has value 5 and all other registers
are undefined. To create additional frames, synthesize_frame R [F. l retreg vm]will create the stack
frame (retreg, 𝐹 , 𝑙, R′) if deopt_regmap vm returns R′. At the next Return instruction, this will tell
the execution to return to function 𝐹 , at label 𝑙 , with registers R′ where retreg has been set to the
return value of the function. Additionally, synthesize_frame can create multiple stack frames if
given multiple synth metadata.

Most instructions have an unsurprising semantics. Anchor is the only non-deterministic instruc-
tion of CoreIR. The semantics of an Anchor is such that execution proceeds either with the next
label (Ignore), or with a transition (i.e., a deoptimization) to unoptimized code (Deopt). This is a
helper instruction used during optimizations such as the speculation insertion pass and all Anchor
instructions are removed at the end of optimizations. The role of this instruction is to capture
what Flückiger et al. [2018] referred to as transparency invariant: Given an Anchor instruction it is
always correct to add more assumptions, since the Anchor ensures matching states at both ends of
deoptimization for all executions. Assume behaves deterministically, only deoptimizing if the guard
fails (AssumeFail).

3.2 CoreJIT, a JIT Compiler

The main iteration loop of JIT compilation is implemented as a jit_step function that chooses
between executing an instruction to make some progress in the execution, or calling the compiler
to update its current program. This jit_step modifies JIT states (of type jit_state), where a JIT
state holds the data needed to go forward in a JIT execution, namely the current program being
executed and its state. jit_step is typed jit_state→ (jit_state ∗ trace).

A jit_state is a record (jp, ps,M, 𝑆, synchro,Nopt). jp is the current program of the JIT. As the
optimizer gets called, jp will get modified. ps represents the current state of the profiler that is
used by the optimization heuristics. M is the current memory state and 𝑆 is the current stack of
the execution as in the semantic states of CoreIR. synchro is called a synchronization state, and
contains some information about the current position in the program. With the addition of 𝑆 and
M , it is equivalent to a semantic state of CoreIR. Last, Nopt represents the maximum number of
optimizations that the JIT can still perform.

The profiler is called at each step. It updates the profiler state, and suggests to either optimize or
execute an instruction. The program gets modified only during optimization steps. The memory
state may get modified during execution. Nopt decreases monotonically during optimization steps.
When the profiler suggests to optimize, we check that Nopt is still strictly positive. This ensures
that execution does not get stuck if the profiler keeps suggesting optimizations.
To verify the deoptimization mechanism, we need control over the execution stack to perform

on-stack replacement. Using the Coq extraction mechanism comes with limitations. Coq code is

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 46. Publication date: January 2021.

Formally Verified Speculation and Deoptimization in a JIT Compiler 46:11

Algorithm 1: The jit_step function

input :jit_state js = (jp, ps,M, 𝑆, synchro,Nopt)

output :Next jit_state and the output trace
let new_ps = profiler ps synchro;

match (next_status new_ps Nopt) with

case Exe⇒

let (int_state, newS) = forge_int_state jp 𝑆 synchro;

let (newsynchro, newM, output) = interpreter jp int_state M;

let newjs = (jp, new_ps, newM, newS, newsynchro,Nopt);
Return (newjs, output)

case Opt ⇒

let newp = safe_optimize new_ps jp;

let newjs = (newp, new_ps,M, 𝑆, synchro,Nopt − 1);
Return (newjs, [])

end

extracted to a functional subset of OCaml that does not allow to read and write from the machine
stack as we please. We decide to model the execution stack as a Coq object, and implement a
synchronization interface.We define synchronization states (synchro) to be states wherewewant the
execution to return to the JIT. This happens at function calls, function return, and deoptimizations.
Instruction execution with an interpreter can then be defined as a function that evaluates the
instructions of the current program, and returns with the next encountered synchronization state.
Its specification guarantees that if a synchronization state is returned, then there existed a sequence
of equivalent steps in the semantics that led to a matching semantic state. Finally, the JIT state is
said to be final if its synchronization state is a return state, and its stack is empty.

The jit_step function is described in Algorithm 1. The next_status function returns Exe if Nopt

is down to 0, and otherwise listens to the profiler heuristics suggestion. The profiler function
is the external parameter that updates the profiler state. The forge_int_state function is used
when executing an instruction. It constructs the program state needed to resume execution. It also
modifies the stack model and thus performs on-stack replacement if the current synchronization
state is a deoptimization. Instruction execution may modify the program state and may return
some observable behavior that is then output. When optimizing, we use the information from the
profiler state that suggests which optimization to perform (e.g., what to speculate on).

Since the JIT must be correct regardless of the implementation of the profiler, we must account
for bugs in the heuristics. For instance, the profiler may suggest to inline a call that does not exist.
Our correctness theorem states that if compilation succeeded, the optimized program matches the
base version. In a JIT, if some optimization passes were to fail, this should not crash the entire JIT
execution, otherwise the behavior of the programwould not be preserved.We use the safe_optimize
function that simply does not modify the program in case an optimization fails. This ensures that
in a adversarial setting where the profiler is deliberately trying to suggest incorrect optimization to
the dynamic optimizer, our JIT would still produce a behavior that matches the source program.

3.3 CoreJIT Optimizations

As discussed in the previous section, CoreJIT is defined in terms of a jit_step relation interfacing
between optimization, execution and profiling. The optimizations happen at run-time, for instance
before calling a function, the function might be optimized first. The profiling part of CoreJIT is

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 46. Publication date: January 2021.

46:12 A. Barrière, S. Blazy, O. Flückiger, D. Pichardie, and J. Vitek

separate and does not need to be trusted. As such the optimizer takes optimization requests from
the profiler which it may honor or not, the importance is that under any kind of optimization
request the optimizer only performs correct transformations to the program. Naturally a reasonable
profiler is expected to suggest optimizing hot functions and provide speculations based on the
most likely future behavior. To model this, our dynamic optimizer expects the profiler to provide a
list of optimization wishes for each optimization step. The optimizer tries to execute all of them in
sequence and update the program accordingly. In the following sections we present all the verified
optimization passes implemented at the time of writing, that can be requested. The proofs for those
passes are described in the later Section 4.

3.3.1 Anchor Insertion. Anchor insertion must be run as the first pass in the optimization pipeline
as it is the only pass that relies on a fresh copy of the base version, before any changes are made by
other optimizations. Given a function and a list of labels, this pass creates a copy of the base version
of the function, and inserts Anchor instructions at every label in the list. The Anchor instructions
are a prerequisite for the later speculation pass, called assume insertion. The profiler can suggest
to insert Anchor instructions anywhere in a function. Selecting good locations for the insertion is
the role of the profiler, and is out of scope of this work.

The following sections feature a running example with a Function F and its two versions. The
second version was obtained by inserting an Anchor instruction after the Call instruction. The
two versions do not differ except for that instruction.

Function F (a) :

Version Base :

t← Call G (a , 0)

l1 : Return a ∗ t

Version Opt :

t← Call G (a , 0)

l2 : Anchor F . l1 [a , t]

Return a ∗ t

The deoptimization target of the Anchor points to the base version of F, at l1, where the instruction
was inserted. The deoptimization metadata includes everything needed to reconstruct the original
environment. This is done according to the varmap [a ,t], which is sugar for [a ← a, t ← t] and
denotes that expression a is evaluated in Opt’s environment and bound to a in Base’s environment;
the same applies to t. Since the rest of the code is unchanged, it suffices to reconstruct the values of
each defined register with its current values. Further optimization passes that would want to modify
these values should also modify them in the deoptimization metadata to keep the synchronization
between the two versions. The metadata is constructed using an analysis of defined registers in
the current environment. In this example, the analysis sees that after the Call, register t has been
assigned a value, and register a is also part of the environment as a parameter to the function.

3.3.2 Immediate Assume Insertion. Using these Anchor instructions, the dynamic optimizer is
able to insert Assume instructions. The profiler may provide the label of an Anchor, and a guard
expression, and the optimizer will try to insert an Assume with that guard right after that Anchor
instruction. In our example a request that can be satisfied would be to add the guard t=0 at label l2.

Version Opt :

t← Call G (a , 0)

l2 : Anchor F . l1 [a , t]

Assume t=0 l2

Return a ∗ t

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 46. Publication date: January 2021.

Formally Verified Speculation and Deoptimization in a JIT Compiler 46:13

The required metadata is copied from the Anchor instruction. As syntactic sugar to avoid repetition
we just refer to the Anchor by l2, to denote that the metadata is identical.

Since the profiler can suggest any guard to insert in an Assume instruction, the dynamic optimizer
must ensure that this guard may not introduce bugs in the program. The semantics of the Anchor
justifies that the execution will be equivalent to the original one whether the Assume deoptimizes
or succeeds. The guard must however evaluate successfully, without errors. The Assume insertion
pass thus includes an analysis to make sure that the guard will evaluate to some value. In this case,
checking that register t has a value is enough. We reuse the same analysis as used in the previous
Anchor insertion pass.

3.3.3 Constant Propagation. This next optimization pass is a standard dataflow analysis seen in
many compilers. It closely resembles the constant propagation pass from CompCert, and reuses its
Kildall fixpoint solver library. If a register can be statically known to contain a value, it will get
replaced. Expressions and instructions can be simplified.

Its interaction with the Assume instruction turns it into a speculative optimization.When constant
propagation analyses an optimized version containing Assume instructions, it knows that the control
flow will remain in that version only if the guard holds. Our previous example can thus be further
optimized by transforming the return expression using the speculation.

Version Opt :

t← Call G (a , 0)

l2 : Anchor F . l1 [a , t]

Assume t=0 l2

Return 0

Another feature of constant propagation in CoreIR is its ability to simplify deoptimization metadata.
For instance, an instruction Anchor F.l [x] could be simplified to Anchor F.l [x ← 3] if the
analysis shows that register x will hold value 3 at that point.

3.3.4 Lowering. Anchor instructions are used to justify Assume insertion, but should not be exe-
cuted. After all optimization wishes have been treated by the dynamic optimizer the lowering pass
removes all Anchor instructions, and replaces them with Nop instructions.

Function F (a) :

Version Base :

t← Call G (a , 0)

l1 : Return a ∗ t

Version Opt :

t← Call G (a , 0)

Assume t=0 F . l1 [a , t]

Return 0

In that new function, the original version has been kept intact, and a new optimized version has
been inserted.

3.3.5 Delayed Assume Insertion. So far we have not used the full flexibility of Assume insertion
provided by Anchor instructions. For that we need to extend our running example slightly.

Version Base :

t← Call G (a , 0)

l1 : Cond a=0 l2 l3

l2 : Return a ∗ t

l3 : Return 1

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 46. Publication date: January 2021.

46:14 A. Barrière, S. Blazy, O. Flückiger, D. Pichardie, and J. Vitek

In this variant there is an additional condition on register a, influencing the result value. We would
like the profiler to have as much freedom as possible for inserting assumptions. This means for
example being able to insert assumptions at l1,l2, and l3. As seen in Section 3.3.2 this could be
achieved by preprocessing this version to include an Anchor at each of those labels. But, such an
approach would have downsides, since additional deoptimization points constrain optimizations
and unnecessarily bloat the code. Instead it is sufficient to place an Anchor at L1, and show that we
can use it to justify Assume instructions at l2 and l3. As a concrete example, the following is a
valid use of the Anchor by a delayed Assume.

Version Opt :

t← Call G (a , 0)

Anchor F . l1 [a , t]

Cond a=0 L4 L5

l4 : Assume t=0 F . l1 [a← 0 , t]

Return 0

l5 : Return 1

In case this assumption fails, the execution travels back in time to F .l1 executing the condition
at l1 a second time. Since the condition is a silent operation and does not alter any registers
referenced later, the behavior is preserved. Therefore a single Anchor instruction can serve all
possible locations for Assume instructions in this example. The delayed Assume insertion pass
allows the profiler to suggest arbitrary locations for an assumption. It features a verification step
that rejects all requests where the in-between instructions cannot be proved to be non-interfering.

3.3.6 Inlining. The optimizer also features an inliner, a standard compiler optimization. However,
inlining Assume and Anchor has to be done with caution. Consider the following program, where
inlining replaces the Call instruction with the code of G. If the Assume instruction in G fails and
deoptimizes, it returns to the original version of G. But if the Assume of G inlined into F fails, the
execution would returns to the original version of G, which upon returning skips the rest of the
execution of F.

Function F (a , b) :

Version Base :

a← a ∗ 3

a← Call G (a , b)

. . .

l1 : Return a

Version Opt :

a← a ∗ 3

a← Call G (a , b)

Anchor F . l1 [a , b]

. . .

Return a

Function G (c , d) :

Version Base :

l2 : Return 2 ∗ c

Version Opt :

Assume c=12 G . l2 [c]

Return 24

The solution is to use the Anchor instruction right after the call in Opt. This is where the
deoptimization metadata of CoreIR really shines: we can copy the metadata from the Anchor

to synthesize a stack frame for the original version of F. The parallel assignment instructions
initializes the parameters of the inlined call. The Return instruction of G is now replaced by a
simple assignment to the return register of the Call. If the Assume fails, we deoptimize to the
original version of G.

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 46. Publication date: January 2021.

Formally Verified Speculation and Deoptimization in a JIT Compiler 46:15

Function F (a , b) :

Version Opt :

a← a ∗ 3

c← a , d← b

Assume c=12 G . l2 [c] , F . l1 a [a , b]

a← 24

Anchor F . l1 [a , b]

. . .

Return a

The interesting part is the rest of the metadata F .l1 a [a ,b] allowing deoptimization to reconstruct
an additional stack-frame that returns to F at label l1, return register a, and using a varmap [a ,b].

4 PROVING THE CORRECTNESS OF COREJIT

In this section we show how to prove CoreJIT correct. At first Section 4.1 introduces the relevant
background from CompCert’s library for proving simulations between program executions. Then,
Section 4.2 and Section 4.3 explain our main two changes in these simulations so that they can
be used to prove the correctness of CoreJIT: firstly we define a new simulation relation where the
matching relation is another simulation relation, and secondly we adapt the notion of initial state
of a program in our simulations. Last, in Section 4.4 we prove the correctness of our optimizations
using our new simulations.

4.1 Simulation Relations Between Program Executions

In CompCert, a small-step semantics defines an execution relation between semantic states and
associates to each program the set of its possible behaviors, including its trace of observable actions.
There are numerous intermediate languages in CompCert and a generic notion of transition
semantics is defined in a library devoted to semantic preservation. A semantics consists of a type of
program states, a step relation over these states, and two predicates representing the initial state of
a program and the final state of a terminating execution. In the remainder of this paper, for the sake
of brevity, we omit other minor features and denote (Semantics step init_state final_state)
such a semantics. CompCert defines several transition relations (e.g., star and plus transitive
closures) from the generic step relation, together with their properties.
The main correctness theorem of CompCert is a backward simulation that is proved to imply

a property similar to the behavior preservation theorem introduced in Section 3. As a compiler,
CompCert is naturally decomposed into several passes, and the main correctness theorem results
from the correctness of each compiler pass. The standard technique to prove the correctness of
a pass is to prove a backward simulation (i.e., every behavior of a transformed program 𝐶 is a
behavior of the original program 𝑆).
In general, it is hard to prove a backward simulation relation, especially in the frequent case

where a step in the original program is implemented by several steps in the compiled program. For
passes that preserve nondeterminism, it is easier to reason on forward simulations (i.e., stating that
every behavior of 𝑆 is also a behavior of 𝐶). A backward simulation from 𝐶 to 𝑆 can be constructed
from a forward simulation from 𝑆 to𝐶 when 𝑆 is receptive and𝐶 is determinate [Sevcík et al. 2013].
𝑆 is receptive when each step produces at most one action in the observed trace, and when two
matching traces 𝑡1 and 𝑡2 (i.e., they represent the same actions in the same order) are such that any

step 𝑠
𝑡1
−→ 𝑠1 implies that there exists a state 𝑠2 such that we have 𝑠

𝑡2
−→ 𝑠2.𝐶 is determinate (a weaker

version of determinism) when states are only allowed to take several different steps if these steps
produce different observable actions.

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 46. Publication date: January 2021.

46:16 A. Barrière, S. Blazy, O. Flückiger, D. Pichardie, and J. Vitek

𝑠1 𝑠2

𝑠 ′1 𝑠 ′2

∨

𝑠1 𝑠2

𝑠 ′2
with𝑚(𝑠 ′2) < 𝑚(𝑠2)

≈

t+ t

≈

≈

no event≈

Fig. 7. A backward simulation diagram. Solid lines are hypotheses and dashed lines are conclusions. On the
left of each diagram are the source program and its current state 𝑠1; the target program and its current state
𝑠2 are on the right. Horizontal lines represent the matching relation ≈, and vertical lines the semantic steps.

The most general backward-simulation diagram is defined in CompCert as follows. The correct-
ness proof of a compiler pass from language 𝐿1 to language 𝐿2 relies on a backward simulation
diagram shown in Figure 7 and expressed in the following theorem. Given a program 𝑃1 and its
transformed program 𝑃2, each transition step in 𝑃2 with trace 𝑡 must correspond to transitions in 𝑃1
with the same trace 𝑡 and preserve as an invariant a relation ≈ between states of 𝑃1 and 𝑃2. In order
to handle diverging execution steps and rule out the infinite stuttering problem (that may happen
when infinitely many consecutive steps in 𝑃2 are simulated by no step at all in 𝑃1), the theorem uses
a measure over the states of 𝐿2 that strictly decreases in cases where stuttering could occur. It is
generically noted𝑚(·) and is specific to each compiler pass. In CompCert’s parlance, this diagram
is denoted by backward_simulation (sem1 P1) (sem2 P2), where semi defines the semantics of 𝐿𝑖 .
As explained previously, the main correctness theorem corresponds to a backward simulation

and is stated in Coq as follows.

Lemma compiler_correct:

∀ p_src p_opt,

compile p_src = p_opt→

backward_simulation (source_sem p_src) (opt_sem p_opt).

As illustrated by many tricky published proofs conducted within CompCert, the gist of proving a
simulation for an optimization pass relies on designing a suitable matching relation ≈ and measure,
specific to this pass, then proving the preservation of the relation ≈ for each possible step.

4.2 A New Simulation Relation for JIT Correctness

The backward simulations of CompCert need to be adapted in the context of dynamically evolving
programs that change during their execution. Making the program part of the semantic states of the
JIT (i.e., the jp field of the jit_state record defined in Section 3.2) allows us to prove a backward
simulation detailed in Figure 8, where the JIT semantics jit_sem goes from jit_state to jit_state.
In Figure 8a, jit_sem is defined as a semantics (in CompCert’s parlance) from the jit_step function
defined in Section 3.2. What is called (jit_sem p) is then the small-step semantics associated to
the JIT initialized with program p, in which the program included in the jit_state will change
during execution as it gets optimized. We can prove the simulation theorem of Figure 8a, where
(core_sem p) is the CoreIR semantics of p, defined in Figure 5, where the program is not part of the
semantic states and remains the same during execution. This theorem states a simulation diagram,
hence implying semantics preservation as in CompCert.

To prove such a simulation theorem, one needs to define a simulation invariant. Such an invariant
must be adapted to our JIT setting, where the JIT states include the current state of the dynamically
optimized program. Figure 8b shows the matching relation we define to prove this backward
simulation. The relation ≈𝑒𝑥𝑡 is a simulation invariant of the JIT execution, relating semantics
states 𝑠 of the original program p to JIT states js (consisting in the current JIT program jp and

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 46. Publication date: January 2021.

Formally Verified Speculation and Deoptimization in a JIT Compiler 46:17

Definition jit_sem (p:program) : semantics :=

Semantics jit_step (init_jit_state p) (final_jit_state).

Theorem jit_simulation:

∀ (p: program),

backward_simulation (core_sem p) (jit_sem p).

(a) Simulation theorem written in Coq

p

𝑠

Original Program

jp

𝑠 ′

. . .

JIT state js

≈𝑖𝑛𝑡

Internal sim ≈𝑖𝑛𝑡

(b) In the external simulation relation, 𝑠 ≈𝑒𝑥𝑡 js iff 1) there exists an (internal) backward
simulation between jp and p using relation ≈𝑖𝑛𝑡 and 2) 𝑠 is matched with 𝑠 ′ using ≈𝑖𝑛𝑡 .

Fig. 8. Main simulation theorem and corresponding simulation relation

synchronization state s'). To match progress in jp to progress in p, this invariant should express
that executing jp, possibly optimized, is equivalent to executing p. This is best described by another
simulation called in the figure (internal sim ≈𝑖𝑛𝑡). As the program jp gets optimized during JIT
execution, the internal simulation ≈𝑖𝑛𝑡 changes to reflect that. As a result, our proof uses an internal

backward simulation (with a matching relation ≈𝑖𝑛𝑡), as an invariant to prove the main external

backward simulation, that is used to get the correctness theorem. Our invariant also includes
that the current synchronization state 𝑠 ′ is matched using ≈𝑖𝑛𝑡 , to some semantic state 𝑠 of the
original program. In other words, 𝑠 ≈𝑒𝑥𝑡 𝑗𝑠 iff there exists a simulation between p and jp using
some invariant ≈𝑖𝑛𝑡 (both programs behave the same), and 𝑠 ≈𝑖𝑛𝑡 𝑠

′.
As a result, if a JIT step consists in calling the interpreter to update the current synchronization

state 𝑠 ′, we can use the internal simulation to deduce that this behavior matches some behavior 𝑠
of p, and that the new synchronization state 𝑠 ′

1
is also matched with the same simulation relation

≈𝑖𝑛𝑡 to a new semantic state 𝑠1 of p. This case is depicted on the left of Figure 9, where the dashed
lines are deduced from the invariant, and interpreter correctness is required to exhibit state 𝑠1.
If the JIT step is an optimizing one, calling the dynamic optimizer to update the current JIT

program jp, then we prove that this corresponds to a stuttering step in our external backward
simulation. Since the number of optimizations left decreases by one in the JIT step, this ensures
that the JIT execution can not get stuck in such stuttering steps. Proving preservation of the
≈𝑒𝑥𝑡 invariant amounts to proving that the new program jp' is also related to p with an internal
backward simulation, as seen on the right of Figure 9. Since backward simulations compose, and jp

is simulated with p from the invariant, it suffices to show that the dynamic optimizer will produce
a program jp' that is itself simulated with jp with an internal backward simulation. We compose
this new simulation with ≈𝑖𝑛𝑡 and get a new internal backward simulation ≈′𝑖𝑛𝑡 relating jp' to p.
Last, proving our dynamic optimizer correct then amounts to proving the following theorem,

where ps is any profiler state. This specification is designed to bear a striking resemblance with the

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 46. Publication date: January 2021.

46:18 A. Barrière, S. Blazy, O. Flückiger, D. Pichardie, and J. Vitek

p

𝑠

Original Program

jp

𝑠 ′

. . .

JIT state 𝑗𝑠

jp

𝑠 ′
1

. . .

JIT state 𝑗𝑠 ′

p

𝑠1

Original Program

Execution step

≈𝑖𝑛𝑡

Internal sim ≈𝑖𝑛𝑡

𝑡

≈𝑖𝑛𝑡

Internal sim ≈𝑖𝑛𝑡

★ 𝑡

p

𝑠

Original Program

jp

𝑠 ′

. . .

JIT state 𝑗𝑠

jp'

𝑠 ′

. . .

JIT state 𝑗𝑠 ′

Optimization step

≈𝑖𝑛𝑡

Internal sim ≈𝑖𝑛𝑡

silent

≈′𝑖𝑛𝑡

Internal sim
≈ ′
𝑖𝑛𝑡

Fig. 9. The external simulation diagram

static compiler_correct theorem presented earlier, allowing us to reuse most of the methodology
used to prove static optimization passes. In this theorem, the JIT-specific issue of dynamic opti-
mization has been removed as the backward simulation is proved using CoreIR semantics, and not
the more complex JIT semantics.

Theorem safe_optimize_correct:

∀ jp ps jp',

safe_optimize ps jp = jp' →

backward_internal_simulation jp jp'.

4.3 Internal Simulation Relations for Dynamic Optimizations

Proving the dynamic optimizer correct is then proving an internal backward simulation, between
the new current JIT program, and the previous JIT program. At this point in the proof, one does
not have to consider the original unoptimized program anymore, but simply the correctness of a
single optimization step. Such simulations are almost identical to CompCert backward simulations,
with one difference: in CompCert, the simulation relation is required to match initial states of
the program. This is used to initialize the invariant when calling the optimized program. In our
dynamic optimizer case, the program obtained after an optimizing step can be accessed from any
synchronization state. For instance, if the interpreter comes back to the JIT with a Call state
(meaning just before calling a function), and the called function gets optimized by the JIT, then the
invariant should hold moving into that new function. As a result, we require our internal simulation
relations to match all synchronization states. In practice, proving this for each pass did not require
a substantial proof effort.

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 46. Publication date: January 2021.

Formally Verified Speculation and Deoptimization in a JIT Compiler 46:19

Function F_base

l1: instr1

l2: instr2

Function F_opt

l1: Anchor F_base.l1 vm [] fresh

fresh: instr1

l2: instr2

Function F_base

l1: instr1

l2: instr2

≈

≈

≈

≈

≈ de
op
tim

iz
at
io
n
ta
rg
et

Fig. 10. Example of ≈ relation for Anchor insertion

While the proofs of internal simulations closely resemble those of a static compiler, some
complexity is added by the dynamicity of optimizations. In the static case, optimizing the entire
program ahead-of-time means that in the optimized execution, any call to any function f will
be replaced by a call to a function f_opt. In the dynamic case, maybe function f is part of the
execution stack before its optimization. Optimizations change the program, but not the stack. In
that case, executing f in the source program can be both related to executing f_opt (when doing a
new call), or f (when returning from the stack) in the new program. In practice, this means adding
a single case to our matching inductive relations ≈ in our optimization proofs.

Internal backward simulations can also be composed. Our optimization passes can thus be proved
independently, each with a backward simulation. This allows for modular correctness arguments:
inserting an Anchor is correct for other reasons than inserting an Assume. The next section presents
the simulation proofs for our six optimization passes.

4.4 Proving the Correctness of CoreJIT Optimizations

Finally, as all the surrounding infrastructure is in place, we are now able to present our correct-
ness arguments for the individual optimization passes mentioned in Section 3.3, following the
chronological order of this section.

4.4.1 Anchor Insertion. This pass (see Section 3.3.1) is proved with an internal backward simulation.
Since the pass adds new instructions, an optimized program execution will take additional steps.
These additional steps are stuttering steps of the simulation, meaning that the invariant≈ sometimes
relates two consecutive states of the original execution. This invariant ≈ is depicted on an example
in Figure 10, where the optimization inserted an Anchor at label l1. The original program on the
left has a single version for function f, while the program after the Anchor insertion pass now
has an optimized version F_opt of f. The new Anchor instruction can either go on or deoptimize,
and in both cases, the invariant is preserved. Moreover, the deoptimization metadata includes the
varmap vm, that assigns to each defined register its current value. To show preservation of the
invariant, we prove that deoptimizing using this metadata preserves the contents of the registers,
as expected. The non-determinism of the Anchor semantics allows to capture the synchronization
between versions needed in a speculative optimizer and this invariant shows that it is adapted to a
simulation methodology.

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 46. Publication date: January 2021.

46:20 A. Barrière, S. Blazy, O. Flückiger, D. Pichardie, and J. Vitek

V [𝑙pc] = Anchor 𝑓 .l vm st∗ 𝑙next
deopt_regmap vm R = R′ synthesize_frame R st∗ = 𝑆 ′

𝑆 V 𝑙pc R M
GoOn
−−−−→ 𝑆 V 𝑙next R M

V [𝑙pc] = Anchor 𝑓 .l vm st∗ 𝑙next
deopt_regmap vm R = R′ synthesize_frame R st∗ = 𝑆 ′

𝑆 V 𝑙pc R M
Deopt
−−−−−→ (𝑆 ′++ 𝑆) (base_version𝑃 𝑓) l R′ M

Fig. 11. Loud semantic rules for Anchor instructions

4.4.2 Immediate Assume Insertion. This pass (see Section 3.3.2) is also proved with an internal
backward simulation. The profiler suggests a guard (a list of expressions speculated to be true) and
the location of an Anchor instruction. As the dynamic optimizer should not have to trust the profiler,
it checks that the suggested label actually corresponds to an Anchor, and runs an analysis to ensure
that the guard will evaluate without errors. If the analysis succeeds, the Assume is inserted right
after the Anchor. Inserting an Assume instruction next to an Anchor means adding a speculation
check in the optimized execution, also represented by a stuttering step in the proof.
This proof uses the non-determinism of the Anchor insertion as a way to guarantee behavior

equivalence regardless of the validity of the guard. For instance, if the speculation check fails in
the optimized execution and the inserted Assume deoptimizes, then this behavior is related to the
source behavior where the Anchor deoptimizes. Since the inserted Assume and the Anchor used for
the insertion share the same deoptimization metadata, they deoptimize to the same semantic state.

4.4.3 Constant Propagation. This pass (see Section 3.3.3) closely resembles the CompCert constant
propagation, but with some added interaction with the speculative instructions. For this proof,
we decided to reuse the forward to backward methodology that is used extensively in CompCert.
However, the CoreIR semantics (see Figure 5) is not determinate (see Section 4.1): the Anchor
instruction can take two different steps that both produce a silent trace (outputting no event).
For many optimization passes, it is important for the Anchor steps to be silent, as the behavior
of Anchor should not be observable. For instance, a pass such as Anchor insertion would not be
correct otherwise: it inserts new Anchor steps into the optimized execution but should not change
the observable behavior of the program.
To circumvent this issue, we define a new temporary semantics called loud semantics for the

Anchor instructions. The Anchor rules are simply augmented with a visible distinct event, as shown
in Figure 11. Intuitively, an optimization pass such as constant propagation does not change the
behavior ofAnchor instructions: any behavior of anAnchor in the source programwill behave just as
the same Anchor in the optimized program. Making these behaviors explicit in the semantics allows
us to comply with determinacy and still preserve a program behavior. On these new semantics,
we can use the forward to backward methodology. Finally, we show that a backward simulation
on loud semantics implies a backward simulation on silent semantics. In the end, we prove the
following theorem.

Theorem fwd_loud_bwd:

∀ psrc popt,

forward_internal_loud_simulation psrc popt→

backward_internal_simulation psrc popt.

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 46. Publication date: January 2021.

Formally Verified Speculation and Deoptimization in a JIT Compiler 46:21

Source Function

l1: Anchor tgt vm sl

l2: Cond e ltrue lfalse

ltrue: instr

Optimized Function

l1: Anchor tgt vm sl

l2: Cond e fresh lfalse

fresh: Assume guard tgt vm sl

ltrue: instr

Fig. 12. The ≈ relation for delayed Assume insertion

Using this methodology, the correctness proof for constant propagation closely resembles its
proof in CompCert. The other optimization passes we implemented have to be proved in a backward
manner as they do not always preserve all the source Anchor behaviors or insert new ones. However,
this proof suggests that most standard optimization passes could be implemented in our setting
and proved just as in a static compiler.

4.4.4 Lowering. This pass (see Section 3.3.4) is also proved with an internal backward simulation.
As it simply replaces Anchor instructions with Nop instructions, its correctness comes from the fact
that the behavior of one such Nop instruction matches one of the possible behaviors of the Anchor:
the one that goes on in the execution of the optimized version.

4.4.5 Delayed Assume Insertion. This pass (see Section 3.3.5) is similar to the previous Assume
insertion pass in its proof. However, an execution of the optimized program where the inserted
Assume deoptimizes should be related to an execution of the source where the Anchor deoptimized
earlier. To this end, it is essential that no side-effect occurs between an Assume and its Anchor. Our
development, for instance, proves that it is safe to insert a branch between the two speculative
instructions. In our simulation invariant ≈ presented in Figure 12, the optimized function stays
matched to the Anchor until the guard of the Assume is evaluated. But to be able to catch up if the
guard of the Assume succeeds, we also include in our invariant that for any step taken between the
Anchor and the Assume in the optimized version, there exists a corresponding step in the source
version that ends up in a matching state. In the example in Figure 12, the Cond instruction of the
optimized program is matched to both Anchor and Cond instructions of the source program. In the
in-between states, we are then proving two simulation diagrams at once: each of these states is
related both to the Anchor (in dashed lines), and to a corresponding state that has executed the
same instructions. That way, if the Assume fails, then we deoptimize to the exact same semantic
state in both the source and optimized versions, and the in-between instructions did not emit any
observable event. And if the Assume succeeds, then the preservation of the invariant has been
constructed in a way to catch up in the source version. This technique is reminiscent of simulation
relations used in CompCertTSO [Sevcík et al. 2013].

In addition, the dynamic optimizer checks that the Cond instruction used for the delay is strictly
dominated by the Anchor, so that every execution going through the new Assume has seen the
Anchor. To show that deoptimizing from the new Assume instruction goes to the same state as if
the execution deoptimized at the Anchor instruction, we show that the Cond instruction does not
have any observable behavior, and does not change the evaluation of the deoptimization metadata.
This part would need to be adapted if we were to extend this optimization pass to other instructions

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 46. Publication date: January 2021.

46:22 A. Barrière, S. Blazy, O. Flückiger, D. Pichardie, and J. Vitek

Function F:

l1: instr0
l2: retreg ← Call G args

Function G:

l1: instr1
l2: Assume gd G.l2 vmg slg

Original Function Gbase:

Stack: (retreg, F , l3, R)
l2: instr2
l3: Return e

Function F:

l3: Anchor F.l3 vm []

Original Function Fbase:

l3: instr3

New Function F with G inlined:

l1: instr0
l2: Assign args

l1 ': instr1'
l2 ': Assume gd' G .l2 vmg' slg '+(F .l3,retreg,vm)

Original Function Gbase:

Stack: (retreg, Fbase, l3, Rdeopt)
l2: instr2
l3: Return e

Original Function Fbase:

l3: instr3

caller

ca
lle
e

refl

refl

Deopt

Deopt

Deopt

Fig. 13. Matching a deoptimization in the inlined code

(delaying the Assume after an Op instruction for instance). As in the previous proof, the optimizer
also checks that the inserted guard in the Assume will evaluate without errors.

4.4.6 Inlining. This pass (see Section 3.3.6) must check that the inlined call is followed by an
Anchor instruction, and use its metadata to synthesize an additional stack frame in the optimized
program. Such a manipulation of the speculative instructions requires complex invariants. This
pass is proved with an internal backward simulation. Our ≈ invariant comes in three shapes. The
semantic states might represent the execution of the same version (refl). The target state might be
in the new inlined version while the source one is in the caller function (caller). And the target
state might be in the new version while the source one is in the function that we inlined (callee). In
the last two cases, we design invariants to represent that the environment of the new version with
inlining holds the environments of both the caller and the callee functions.

Consider Figure 13, where we show on a simplified example how this invariant can be preserved.
We abbreviate Assign args the instruction that assigns each parameter of G to the corresponding
expression of the list args. On the left, the source execution starts in the caller function F. As
the execution progresses in F, we use the caller invariant. When the source calls into the callee
function G, we show that the callee invariant holds: the new Assign args instruction successfully
updates the optimized environment, which now contains the register mappings of both F and G. If
a speculative instruction deoptimizes in the inlined code, it also deoptimizes in G. The optimized
execution now deoptimizes back to the original version Gbase. The new metadata that has been
inserted synthesizes a new stack frame, pointing to Fbase. When the execution of Gbase finishes,
we prove that returning into that synthesized stack frame matches the behavior of the source where
we return to function F, and use the Anchor after the call to deoptimize once more into Fbase.
This example only focuses on deoptimization, but many other behaviors must be matched. For
instance if the Assume succeeded, then one needs to prove that stepping out of the inlined called

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 46. Publication date: January 2021.

Formally Verified Speculation and Deoptimization in a JIT Compiler 46:23

local function fib(n)

if n<2 then return n end

return fib(n-1)+ fib(n-2)

end

(a) Fibonacci in Lua Lite

Function fib (n_val , n_tag)

Version Opt :

Assume (n_tag =3)

F . L [n_tag , n_val]

Cond n_tag=3 L2 L1

L1 : Call DynamicTypeError (. . .)

L2 : . . .

(b) Speculating that n is an integer in CoreIR

Fig. 14. Speculating on the type of Lua Lite variables

ensures a new caller invariant. Or if another Call happens during the inlined part, the optimized
version now has one less stack-frame than the source in its stack. While being the most complex
correctness proof in our current development, this optimization allows us to inline speculations,
but also to inline Anchor instructions and use them later to insert new speculations.

5 EXPERIMENTAL RESULTS

This section discusses the size of our Coq development, and then answers how well CoreJITmodels
an actual JIT. It is set out to investigate a series of increasingly more advanced aspects of this main
questions: Is CoreIR a realistic compile target for a dynamic language? Can we observe speculative
optimizations in the executable artifact? Is the CoreJIT design compatible with native compilation?

5.1 Coq Development

Our Coq development reuses several Coq libraries from CompCert: data structures such as Patricia
Trees, Kildall fixpoint solver for resolution of dataflow inequations by fixpoint iteration and the
simulations for small-step semantics. These simulation definitions and proofs are also copied and
slightly adapted to fit the internal backward simulations of Section 4. Finally, we reuse the behaviors
definition and the proof that a backward simulation implies the behavior preservation theorem.
The rest of our development has been developed specifically for our setting. The different

optimization passes, the CoreIR execution semantics and the JIT step have all been implemented
and verified in Coq. This represents more than 12k lines of Coq code and proofs. Once the executable
part extracted, the CoreJIT represents around 5k lines of OCaml. This extracted JIT is augmented
with basic implementations of the abstract and incomplete specifications: profiling heuristics, a
main OCaml function and a parser for the CoreIR language to run the JIT on user-defined programs.

5.2 A JIT for Lua Lite

CoreIR is minimal by design, but it can be a target for high-level languages, in a way that is similar
to WebAssembly [Haas et al. 2017]. To evaluate the practicality of CoreIR, we implemented an
unverified frontend for Lua Lite, an ad hoc subset of Lua. This subset includes a subset of values (nil,
booleans, integers, tables with integer indices), no closures, no methods, and only programs where
function call targets can be statically resolved. These choices are not fundamental. The frontend
models Lua values as tuples of integers, where the first value holds a type tag and the second value
the actual value. In our experiments, we hand-craft profiler hints to speculate on the types of Lua
Lite variables.
In the example of Figure 14, we show the beginning of the CoreIR function after inserting

speculation. Later, the assumption n_tag=3 (speculating that n is an integer) allows the subsequent

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 46. Publication date: January 2021.

46:24 A. Barrière, S. Blazy, O. Flückiger, D. Pichardie, and J. Vitek

1

3

10

jit jit_static lua luajit

fib2

3

10

30

jit jit_static lua luajit

gnome_sort

Fig. 15. Performance comparison, runtime in seconds

constant propagation pass to remove all typechecks from n<2, as well as n-1 and n-2. We therefore
observe a three-fold reduction of executed condition instructions in optimized code.

The final ingredient for our experiment is a native backend. We implemented a translation pass
from CoreIR to LLVM IR. For the most part the translation is straightforward, however the points
where the execution interfaces with the jit_step function of CoreJIT are the crux. This part of
our experiments are purely to gauge feasibility. jit_step is designed such that there is a simple
interface manifested by the synchronization state. The native backend interfaces with jit_step by
synthesizing a synchronization state. The jit_step does not model the native backend, instead we
add a four line patch to the extracted function that upon encountering a Call synchronization state
hands control to the native backend instead of the interpreter. Another open issue is the memory
which is modified in-place during native execution. Additional verification would need to show
that this conforms how CoreIR semantics modify the memory.

By essence, the benefits of inserting speculative instructions are better observed in synergy with
other optimizations. Equipped with the native backend and the powerful optimizer from LLVM we
are now able to measure the impact of speculative optimizations on overall code quality for our
dynamic Lua subset. We measure the runtime for two benchmarks, the first one being fibonacci
from Figure 14a and the second one being an implementation of gnome sort. This implementation
of the sorting algorithm is able to sort arrays where the contents are nil, booleans, or integers. In
the benchmark we only pass arrays of integers and we make the profiler speculate on this type.

We ran those benchmarks each in the following configurations: (jit) CoreJIT with the unverified
Lua frontend, the verified speculative and non-speculative optimizations, and the unverified native
backend; (jit_static) the same as the former, but disabling speculative optimizations; (lua) the official
Lua interpreter version 5.3.5; (luajit) the JIT compiler for the Lua language version 2.1.0. We ran
the programs 10 times on a Laptop with a i7-7600U CPU at 2.80GHz, stepping 6, microcode version
0xc6 and 16 GB of RAM. The reported run times in seconds are measuring one execution of the
whole process, including startup, compilation, and so on. In the case of fib2 it consists of one call
to fib(39), in the case of gnome_sort sorting an array of length 46, 20000 times.

For fibonacci (Figure 14a) we observe that the speculative optimizations do not yield large gains,
despite removing all but a third of all type checks in the optimized version. The reason is that those
type checks can be removed by common subexpression elimination as well, which in fact LLVM
does, therefore the similarity in performance is as expected.

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 46. Publication date: January 2021.

Formally Verified Speculation and Deoptimization in a JIT Compiler 46:25

For gnome sort, we observe a large gain by speculative optimizations. Here the speculation
happens in a loop on values loaded from the heap and the data shows that a non-speculating
compiler such as our LLVM backend cannot optimize this code well without the speculation. In
this light, we can see how our design for speculation in synergy with the LLVM optimizer can lead
to speedups. We observed a performance overhead of speculation due to the metadata captured
by the Assume instruction in CoreIR, which sometimes can prolong the liveness of registers. If we
(unsoundly) elide all metadata in the deoptimization points in this example we observe another
two fold speed up. Finally, if CoreJIT outperforms luajit in this example, this is expected since we
do not have support for actual lua tables, but instead only for the subset that uses integer keys and
can therefore be represented as arrays.

6 CONCLUSION

We have proved the correctness of CoreJIT, a JIT compiler for CoreIR that performs speculative
optimizations and deoptimizations. Speculative optimizations and deoptimizations are used in
industrial practice, and CoreJIT can be used as as correct reference description for demystifying
the interplay between them. Moreover, our proofs reuse the simulation framework of CompCert,
thus showing that verification techniques for traditional static compilation can be adapted to JIT
compilation.

In the future, it would be interesting to prove more optimizations and extend CoreIR and CoreJIT
to a more realistic language such as RTL. For instance, inserting and proving a liveness analysis in
our Anchor insertion pass would prevent the speculation instructions from extending the liveness
of registers. Extending our Assume insertion with delay to insert over other instructions could also
increase performance by reducing the number of Anchor to insert in a program. We believe that
our current proof methodology fits to support these simple extensions. We also intend to extend
our proof methodology to establish the correctness of a translation to a native code backend. This
raises the challenge of modular verification and CoreIR-assembly linking. A promising step toward
this direction would be to study the RUSC refinement technique of CompCertM [Song et al. 2019].

ACKNOWLEDGMENTS

This work supported by a European Research Council (ERC) Consolidator Grant for the project
VESTA, funded under the European Union’s Horizon 2020 Framework Programme (grant agreement
772568), the National Science Foundation awards 1544542 and 1618732, the Czech Ministry of
Education from the Czech Operational Programme Research, Development, and Education, under
agreement CZ.02.1.01/0.0/0.0/15_003/0000421, and the European Research Council under grant
agreement 695412.

REFERENCES

John Aycock. 2003. A brief history of just-in-time. ACM Comput. Surv. (2003). https://doi.org/10.1145/857076.857077

Clément Béra, Eliot Miranda, Marcus Denker, and Stéphane Ducasse. 2016. Practical validation of bytecode to bytecode JIT

compiler dynamic deoptimization. Journal of Object Technology (JOT) 15, 2 (2016). https://doi.org/10.5381/jot.2016.15.2.a1

Michael G. Burke, Jong-Deok Choi, Stephen Fink, David Grove, Michael Hind, Vivek Sarkar, Mauricio J. Serrano, V. C.

Sreedhar, Harini Srinivasan, and John Whaley. 1999. The Jalapeño Dynamic Optimizing Compiler for Java. In ACM

Conference on Java Grande (JAVA). https://doi.org/10.1145/304065.304113

Project Chromium. 2020. V8 JavaScript Engine. https://chromium.googlesource.com/v8/v8.git.

Daniele Cono D’Elia and Camil Demetrescu. 2016. Flexible on-stack replacement in LLVM. In Code Generation and

Optimization (CGO). https://doi.org/10.1145/2854038.2854061

Gilles Duboscq, Thomas Würthinger, Lukas Stadler, Christian Wimmer, Doug Simon, and Hanspeter Mössenböck. 2013. An

Intermediate Representation for Speculative Optimizations in a Dynamic Compiler. In Virtual Machines and Intermediate

Languages (VMIL). https://doi.org/10.1145/2542142.2542143

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 46. Publication date: January 2021.

https://doi.org/10.1145/857076.857077
https://doi.org/10.5381/jot.2016.15.2.a1
https://doi.org/10.1145/304065.304113
https://chromium.googlesource.com/v8/v8.git
https://doi.org/10.1145/2854038.2854061
https://doi.org/10.1145/2542142.2542143

46:26 A. Barrière, S. Blazy, O. Flückiger, D. Pichardie, and J. Vitek

Olivier Flückiger, Guido Chari, Jan Jecmen, Ming-Ho Yee, Jakob Hain, and Jan Vitek. 2019. R melts brains: an IR for

first-class environments and lazy effectful arguments. In International Symposium on Dynamic Languages (DLS). https:

//doi.org/10.1145/3359619.3359744

Olivier Flückiger, Gabriel Scherer, Ming-Ho Yee, Aviral Goel, Amal Ahmed, and Jan Vitek. 2018. Correctness of speculative

optimizations with dynamic deoptimization. 2, POPL (2018). https://doi.org/10.1145/3158137

A. Gal, B. Eich, M. Shaver, D. Anderson, D. Mandelin, M. R. Haghighat, B. Kaplan, G. Hoare, B. Zbarsky, J. Orendorff,

J. Ruderman, E. W. Smith, R. Reitmaier, M. Bebenita, M. Chang, and M. Franz. 2009. Trace-based just-in-time type

specialization for dynamic languages. In Programming Language Design and Implementation (PLDI). https://doi.org/10.

1145/1542476.1542528

Shu-yu Guo and Jens Palsberg. 2011. The essence of compiling with traces. In Proceedings of the Symposium on Principles of

Programming Languages, POPL. https://doi.org/10.1145/1926385.1926450

Andreas Haas, Andreas Rossberg, Derek L Schuff, Ben L Titzer, Michael Holman, Dan Gohman, LukeWagner, Alon Zakai, and

JF Bastien. 2017. Bringing the web up to speed with WebAssembly. In Programming Language Design and Implementation

(PLDI). https://doi.org/10.1145/3062341.3062363

Urs Hölzle, Craig Chambers, and David Ungar. 1992. Debugging Optimized Code with Dynamic Deoptimization. In

Programming Language Design and Implementation (PLDI). https://doi.org/10.1145/143095.143114

Urs Hölzle and David Ungar. 1994. A Third-generation SELF Implementation: Reconciling Responsiveness with Performance.

In Object-oriented Programming Systems, Language, and Applications (OOPSLA). https://doi.org/10.1145/191080.191116

Nurudeen A. Lameed and Laurie J. Hendren. 2013. A Modular Approach to On-stack Replacement in LLVM. In Virtual

Execution Environments (VEE). https://doi.org/10.1145/2451512.2451541

Xavier Leroy. 2006. Formal certification of a compiler back-end, or: programming a compiler with a proof assistant. In

Principles of Programming Languages (POPL). https://doi.org/10.1145/1111037.1111042

Xavier Leroy. 2009. A formally verified compiler back-end. Journal of Automated Reasoning 43, 4 (2009), 363ś446.

Magnus Myreen. 2010. Verified Just-in-time Compiler on x86. In Principles of Programming Languages (POPL). https:

//doi.org/10.1145/1706299.1706313

Michael Paleczny, Christopher Vick, and Cliff Click. 2001. The Java Hotspot Server Compiler. In Java Virtual Machine

Research and Technology (JVM). http://www.usenix.org/events/jvm01/full_papers/paleczny/paleczny.pdf

Jaroslav Sevcík, Viktor Vafeiadis, Francesco Zappa Nardelli, Suresh Jagannathan, and Peter Sewell. 2013. CompCertTSO: A

Verified Compiler for Relaxed-Memory Concurrency. J. ACM 60, 3 (2013), 22:1ś22:50. https://doi.org/10.1145/2487241.

2487248

Youngju Song, Minki Cho, Dongjoo Kim, Yonghyun Kim, Jeehoon Kang, and Chung-Kil Hur. 2019. CompCertM: CompCert

with C-Assembly Linking and Lightweight Modular Verification. Proc. ACM Program. Lang. 4, POPL, Article 23 (Dec.

2019), 31 pages. https://doi.org/10.1145/3371091

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 46. Publication date: January 2021.

https://doi.org/10.1145/3359619.3359744
https://doi.org/10.1145/3359619.3359744
https://doi.org/10.1145/3158137
https://doi.org/10.1145/1542476.1542528
https://doi.org/10.1145/1542476.1542528
https://doi.org/10.1145/1926385.1926450
https://doi.org/10.1145/3062341.3062363
https://doi.org/10.1145/143095.143114
https://doi.org/10.1145/191080.191116
https://doi.org/10.1145/2451512.2451541
https://doi.org/10.1145/1111037.1111042
https://doi.org/10.1145/1706299.1706313
https://doi.org/10.1145/1706299.1706313
http://www.usenix.org/events/jvm01/full_papers/paleczny/paleczny.pdf
https://doi.org/10.1145/2487241.2487248
https://doi.org/10.1145/2487241.2487248
https://doi.org/10.1145/3371091

	Abstract
	1 Introduction
	2 Related Work
	3 A Verified JIT Compiler
	3.1 CoreIR: an Intermediate Language for Speculation
	3.2 CoreJIT, a JIT Compiler
	3.3 CoreJIT Optimizations

	4 Proving the Correctness of CoreJIT
	4.1 Simulation Relations Between Program Executions
	4.2 A New Simulation Relation for JIT Correctness
	4.3 Internal Simulation Relations for Dynamic Optimizations
	4.4 Proving the Correctness of CoreJIT Optimizations

	5 Experimental Results
	5.1 Coq Development
	5.2 A JIT for Lua Lite

	6 Conclusion
	Acknowledgments
	References

