
HAL Id: hal-03185800
https://hal.science/hal-03185800

Submitted on 30 Mar 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A study of predictable execution models implementation
for industrial data-flow applications on a multi-core

platform with shared banked memory
Matheus Schuh, Claire Maïza, Joël Goossens, Pascal Raymond, Benoît

Dupont de Dinechin

To cite this version:
Matheus Schuh, Claire Maïza, Joël Goossens, Pascal Raymond, Benoît Dupont de Dinechin. A study
of predictable execution models implementation for industrial data-flow applications on a multi-core
platform with shared banked memory. 2020 IEEE Real-Time Systems Symposium (RTSS), Dec 2020,
Houston, TX, United States. �10.1109/RTSS49844.2020.00034�. �hal-03185800�

https://hal.science/hal-03185800
https://hal.archives-ouvertes.fr


A study of predictable execution models
implementation for industrial data-flow applications

on a multi-core platform with shared banked
memory

Matheus Schuh∗,†∗Univ. Grenoble Alpes
CNRS, Grenoble INP, VERIMAG

38000 Grenoble, France
matheus.schuh@univ-grenoble-alpes.fr

Claire Maiza
Univ. Grenoble Alpes

CNRS, Grenoble INP, VERIMAG
38000 Grenoble, France

claire.maiza@univ-grenoble-alpes.fr

Joël Goossens
Univ. libre de Bruxelles
Faculté des Sciences

1050 Bruxelles, Belgique
joel.goossens@ulb.be

Pascal Raymond
Univ. Grenoble Alpes

CNRS, Grenoble INP, VERIMAG
38000 Grenoble, France

pascal.raymond@univ-grenoble-alpes.fr

Benoît Dupont de Dinechin†
†Kalray S.A.

Montbonnot-Saint-Martin, France
benoit.dinechin@kalray.eu

Abstract—We study the implementation of data-
flow applications on multi-core processor with on-chip
shared multi-banked memory. Specifically, we consider
the Kalray MPPA2 processor and three applications
coded using the industrial toolchain SCADE Suite.
We focus on the runtime environment assuming global
static scheduling, time-triggered and non-preemptive
execution of tasks. Our contributions include (i) a
technique to implement SCADE applications compli-
ant with execution models inspired by PREMs (PRe-
dictable Execution Models), (ii) an exhaustive com-
parison of three execution models with and without
isolation, and finally (iii) guidelines for predictable
implementation of a data-flow application on multi-core
processors with shared on-chip memory.

I. Introduction

The implementation of critical applications must satisfy
timing constraints, specifically bounded execution times of
tasks and bounded communication delays for any poten-
tial interference. Implementation on multi-core processors
classically uses spatial and temporal isolation to ensure the
absence of interference. Any interference causes a potential
delay that requires bounding. Ten years ago, this was seen
as a main issue for time-predictability [1]. However, recent
work has shown that such interference could be taken into
account without scalability issues [2].

In this work, we implement PRedictable Execution
Models (PREMs) [3] on a multi-core processor for data-
flow applications developed with the industrial toolchain
SCADE Suite [4]. SCADE applications are intrinsically
phased with a data read phase before a local execution
and a final write phase of processed data. On a multi-

core processor, this limits the potential interference due
to shared memory accesses to the data access phases
(read and write). We target a multi-core processor with
shared multi-banked on-chip memory. Furthermore, each
memory bank is accessed through a dedicated memory bus
arbiter with service guarantees. Taking advantage of these
features enables higher performance while enforcing time-
predictability through software-defined privatization of the
local memory banks. Specifically, we compare PREMs by
varying the following parameters: (i) a timing analysis that
includes the delays of shared memory interference, versus
an implementation with isolated phases to avoid any
memory access interference; and (ii) the mapping of the
inter-task communication buffers into the on-chip shared
memory either distributed to memory banks assigned to
the cores, or centralized into a dedicated memory bank.
PREMs were introduced to enable time-predictable ex-

ecution of applications on COTS-based embedded sys-
tems. They are characterized by: division of jobs into a
sequence of non-preemptive scheduling intervals; and time-
predictable execution of some of these scheduling intervals
by splitting them into shared memory access phases and
local execution phases. The original PREM was motivated
by the issue of distant and long-latency shared memory
accesses with a lot of potential interferences. Further work
has applied the PREM ideas to multi-core processors that
include multiple on-chip local memories, in particular the
Acquisition Execution Restitution (AER) model [5], which
is a variant of 3-Phased execution models, also known as
Read Execute Write (REW).
In this work, we are interested in the end-to-end execu-



tion time of data-flow applications. We propose scheduling
algorithms that take into account the application con-
straints and the target multi-core architecture: a com-
pute cluster of the Kalray MPPA2 processor, which is
composed of multiple cores sharing a multi-banked local
memory. We study the implementation of the different
execution models on the MPPA2 processor for three case-
studies: a simple data-flow example, an open-source avion-
ics flight controller, and an industrial automotive control
unit program. All three applications are developed using
the industrial toolchain SCADE Suite. As discussed later,
using SCADE gives additional constraints on the mem-
ory phases. We assume a time-triggered implementation
with non-preemptive global static scheduling of tasks. A
time-triggered implementation means that the tasks are
initiated by their release dates (in opposition to event-
triggered, where an event causes the release of a task). We
focus on applications that fit into the multi-banked mem-
ory within a cluster: as observed by [5], this hypothesis is
realistic for most highly-critical applications.

Our contributions are:
• a method to implement SCADE applications, inspired

by PREM, on a multi-core processor with multi-
banked memory, including new scheduling algorithms
to isolate memory phases;

• a detailed comparison of studied execution models
with and without memory temporal isolation;

• a discussion of predictable implementation for data-
flow applications on multi-core processors with shared
memory compliant with the proposed execution mod-
els.

The paper is organized as follows. Section II details the
context of our work: data-flow applications, SCADE fea-
tures, and a description of the Kalray MPPA2 processor.
Section III introduces the execution models under study
and illustrate them with examples. Section IV provides an
overview of the existing methods we use for interference
and Worst-Case Response Time (WCRT) analyzes. We
survey related work and position our contributions in
Section V. Section VI details our implementation of each
execution model and the associated scheduling algorithms.
Section VII presents the three case-studies and show ex-
perimental results. In the last section, we discuss what
we learned from our experiments with guidelines, open
questions and opportunities for future work.

II. Context

A. Data-flow application

Critical real-time applications are commonly developed
using high-level data-flow languages, such as Simulink or
SCADE. In such languages, programs are oriented graphs
where nodes are computational units, and directed wires
represent data transfers between nodes. We specifically
consider here SCADE from the SCADE Suite toolchain,

which is used for industrial critical applications, for in-
stance in avionics or automotive. Sequential code gener-
ation for SCADE was developed in the 90s, and can be
considered as state-of-the-art. The generated code intrinsi-
cally expose a REW structure, similar to the more recently
defined AER model [5]. However, the data-flow semantics
of SCADE is intrinsically parallel: nodes can be executed
concurrently, as far as the scheduling constraints induced
by data dependencies (wires) are fulfilled. In this paper, we
consider the parallel implementation of SCADE programs:
nodes are compiled into classical sequential tasks, and our
goal is to map and schedule those tasks on a multi-core
architecture.
The main features of SCADE Suite and its Multi-Core

Code Generator (MCG) that are used in this paper are:
• a data-flow graph where each arrow represents a

precedence constraint and a communication from a
task to another, i.e. data-transfer;

• an intrinsic phased execution model that prepares the
read/write phases to be executed sequentially with
the execution phase (REW). Note that these memory-
phases are filled with a sequence of read/write ac-
cesses subsequently referred to as “memory transac-
tions”. In this paper, we consider a memory phase as
a sequence of memory transaction tasks that may be
released independently;

• a mapping and scheduling of a set of tasks to each
core: this mapping is an ordered set of tasks assigned
to each core (ordered by chronological execution);

• a description of the data-structures used to commu-
nicate between tasks.

SCADE applications are periodic. In case of applica-
tions that are composed of tasks with different harmonic
periods, we expand the application into a hyper-period to
apply our framework. This ensures that even with a multi-
rate initial program, a common denominator is found and,
after this expansion, each period will follow the same
implementation scheme and static schedule.

B. Multi-core processor with multi-banked local memory
The Kalray MPPA2 (Bostan) is a many-core processor

whose architecture connects a set of multi-core entities
named Compute Clusters (CCs). Each cluster contains
16 Processing Engines (PEs) cores for general purpose
computing. These cores share access to a Shared MEMory
(SMEM) of 2 MB, split into 16 independently arbitrated
banks of 128 KB each. This SMEM is local to a cluster,
physically close to the PEs, which enables low latency
access.
The SMEM address mapping can be configured in an

interleaved mode or a blocked mode. The first distributes
sequential memory addresses across memory banks at a 64-
byte granularity, which is optimal for an average use-case.
The second allows contiguous blocks of memory addresses
(up to 128 KB) to be directed to a single memory bank.
As each bank has its own arbiter, spatial isolation can be



PE0

PE1

PE15 bus arbiter

bus arbiter

bus arbiter

memory bank
b15

memory bank
b1

memory bank
b0

... ... ...

Figure 1. MPPA2 Cluster memory arbitration system

achieved if code and data are carefully placed. Figure 1
presents the cluster memory arbiters introduced here.

In this paper, we use one cluster of the MPPA2 processor
and leverage its architectural features to facilitate the
implementation of several execution models. All studied
applications (see Section VII) fit into the SMEM, which
avoids using the high latency distant global DDR memory.
The SMEM is configured in blocked mode, and we man-
ually place shared data according to the execution model
(see Section VI) to better control memory interferences.

In a MPPA2 cluster, interference when accessing the
SMEM is due to a sequence of bus arbiters. Note that
there are instruction and data caches, but they are private
to a core: there is a potential interference only in case of
a miss of one of these cache memories. The Worst Case
number of memory Accesses is referred to as WCA in this
paper. Each memory access passes through 3 arbiters (2
Round-Robins and 1 Fixed-Priority). In this paper we use
the interference analysis developed in [2] and explained in
Section IV.

III. The studied execution models

In this section we present the execution models, inspired
by PREMs, that we selected for our study. We compare
their implementation according to two criteria:

• Memory partitioning
1) a 2-Phased model with execute-write phases, see

Figure 2. The memory is partitioned such that
each partition is local to a core and the tasks
may access another partition only during the
write phases, to send the shared data. This way
any read of shared data is done in the local
memory during the execute phase.

Core Bank
(Local Memory)

Core Bank
(Local Memory)

Figure 2. 2-Phased: Execute-Write

2) a 3-Phased model with a local partition for each
core accessed during the execution phase and
one global shared partition accessed by each task
during read and write phases, see Figure 3.

Core

Bank
(Shared Memory)

Bank
(Local Memory)

Core Bank
(Local Memory)

Figure 3. 3-Phased: Read-Execute-Write with Shared Bank

3) a Memory-Centric 3-Phased model with a local
partition for each core accessed during the exe-
cute phase and a global shared partition man-
aged by a dedicated core that orchestrates the
read and write phases for all tasks, see Figure 4.

Core

Bank
(Shared Memory)

Bank
(Local Memory)

Core Bank
(Local Memory)

Master
Core

Figure 4. Memory-Centric 3-Phased with Master Core

• Memory interference
a- no interference: the mapping and scheduling

ensures no interference by a software isolation
between memory phases;

b- analyzed interference: an architecture model is
used to estimate the interference delay and take
it into account as part of the WCRT.

We use a simple data-flow application example to illus-
trate the implementation of the execution models under
study. Figure 5 gives the Data-Flow Graph (DFG): each
square represents a task (Ni for Node in data-flow ter-
minology); each edge represents a communication (data
transfer) and thus a precedence constraint.

N0

N1

N2

N3

N4

PE0

PE1

Figure 5. Example DFG



ExN0 WN0

ExN2 WN2

PE0

PE1 InterN1

ExN1 WN1 InterN2

ExN3 WN3 ExN4 WN4

Figure 6. Example of scheduling for the 2-Phased model with
interference cost

ExN0 WN0

ExN2 WN2

ExN1 WN1

ExN3 WN3 ExN4 WN4

PE0

PE1

Figure 7. Example of scheduling for the isolated 2-Phased model

Figures 6 to 10 give a final schedule for the 5 execution
model implementations: in white are the execute phases,
in green the write phases, in yellow the read phases, and
in red the delays due to interference. Figures 6 and 7
represent two final schedules for the 2-Phased model where
each task reads data locally and writes data to the reader
memory. We observe that when interference is considered
(Figure 6) there may be additional delay to take into
account. Here, the write phase of task N1 and N2 interfere
due to the fact that they both write in the local memory
of task N4. In the isolated implementation model these
two write phases cannot occur simultaneously, to prevent
any interference. In Figure 7 we see that WN2 starts once
WN1 is done.
For the 3-Phased execution models (Figures 8 and 9),

there are the additional read phases as each task reads
from the shared memory. We observe that there is ad-
ditional interference in the read phases of tasks N1 and
N2. We also see that a scheduling algorithm is required to
achieve temporal isolation: here a priority is given to task
N1 to start its read phase RN1 before task N2.
For the Memory-Centric execution model implementa-

tion, there is no possibility of interference due to the fact
that each memory transaction is done by the same core.
Thus, there is only the isolated schedule given in Figure 10.
Here we also observe that a scheduler is required: for
instance, the read phase of task N2 (RN2) is scheduled

ExN0 WN0

ExN2 WN2

PE0

PE1 InterN2

ExN1 WN1 InterN2

ExN3 WN3

RN0 RN1 InterN2

RN2 InterN1 RN3 ExN4 WN4RN4

Figure 8. Example of scheduling for the 3-Phased model with
interference cost

ExN0 WN0

ExN2 WN2

PE0

PE1

ExN1 WN1

ExN3 WN3

RN0 RN1

RN2 RN3 ExN4 WN4RN4

Figure 9. Example of scheduling for the isolated 3-Phased model

ExN0

WN0

ExN3

WN3

PE0

PE1

WN1RN0 RN1 RN3 RN4

ExN4

WN4Master
(PE2)

RN2

ExN2

WN2

ExN1

Figure 10. Example of scheduling for the isolated Memory-Centric
model

before the read phase of task N1 (RN1).
In all schedules we observe that there is the same

sequence of execute tasks on core PE0 and on core PE1:
this is to illustrate that we work from an initial schedule
given by SCADE that must be preserved. The freedom
in the schedule is only between the memory phases. Note
that these new schedules (isolated 3-Phased and Memory-
Centric) are global because they must take into account
the global data-dependencies and they are constrained by
what is executed on other cores. For instance, in Figure 9
tasks RN1 and RN2 are executed on two distinct cores but
must be executed in isolation nevertheless.

IV. Multi-Core Interference Analysis (MIA)
For the interference analysis we need a model of the

MPPA2 memory system, a computation step to bound the
interference and take it into account in the Worst-Case
Response Time (WCRT). While there exists previous work
on the interference sources on the MPPA2 processor [6]–
[8], MIA1 is, as far as we know, the only free and open-
source tool that meets all our requirements.
MIA combines [2]:
• a model of the MPPA2 memory system: the idea is

to analyze the interference sources using a model for
each one of the bus arbiters before reaching the cluster
memory;

• a WCRT analysis: it uses given Worst-Case Execution
Time (WCET) and the WCA to estimate a global
WCRT including interference bounds;

• a release date analysis for time-triggered implementa-
tion: from an initial schedule, a data-flow graph that
gives precedence constraints and the WCRT analysis,
MIA gives a release date for each task that preserves
precedence constraints and the initial schedule.

There is still one open question about how to enforce
isolation between memory tasks in MIA. The method we
adopted from [2], [9] is to add dependencies in the data-
flow graph so they do not overlap. For instance, on Figure 7
we see that adding a precedence constraint between tasks
WN1 and WN2, enforces the latter to start only after the
completion of the former, thus ensuring temporal isolation.

V. State of the art
In this section we present a short survey on research

work according to our previously defined criteria: memory
1Available at https://gricad-gitlab.univ-grenoble-

alpes.fr/verimag/synchrone/mia



partitioning and interference models. The PREM model
has been introduced and extensively studied on mono-core
in [3], [10], [11].

Regarding the memory partitioning, related work can
be classified as:

• 2-Phased model: This implementation model is
only used in some works [2], [12] and is a specificity
of architectures that provide bank or memory priva-
tization features, such as the MPPA2 processor.

• 3-Phased model: This model is the most used in
related work. The shared resource to read/write is
not always a memory and the PREM model may
be used for I/O access [13]. The shared memory
may be DRAM main memory [14]–[16] or scratchpad
local memory [5], [7], [17]–[19]. It may also take into
account the DMA load/unload [20]. In some articles,
the architecture is not realistic but the focus is on the
bus access model [21], [22].

• Memory-Centric 3-Phased model: This model is
studied/used in [14], [16], [23], [24].

Concerning the memory interference, related work can
be classified as:

• no interference: In [14], [19], [24], the map-
ping/scheduling ensures no interference by isolating
memory phases. The isolation may be enforced by
scheduling the task phases and may be combined
to partitioning. This partitioning is used to isolate
execution phases from memory access phases. The
partitions may be based on time-division [13], [17],
[20], [25] or round-robin software partitions. Also,
the partition may be preemptive and combined with
priority promotion technique.

• analyzed interference: The interference delay is es-
timated and taken into account as part of the WCRT
in [21], [22]. In some related work, the interference
is taken into account as a parameter to improve the
scheduling on each core or the global mapping of tasks
onto cores [15], [18], [23], [24]. In [7], the memory
phases are even fragmented to improve the precision
of the interference analysis. The scheduling may use
a software partitioning to get a preciser interference
analysis (less interfering tasks) [16], [26], [27].

In our work, we also focus on the orchestration of
SCADE code. A few works also address the challenge
of producing phased code as part of the code genera-
tion/compilation step [17], [20], [28] or in the operating
system [14]. A distinct approach is to provide predictable
execution using different models, such as the Logical Ex-
ecution Time (LET) in [29] where synchronization points
are used for write phases and the read phases are always
executed at the beginning of a task’s period.

In this paper, we consider applications described by a
data-flow graph as in related work [7], [17], [18], [23].

Another characteristic of the PREM is that execute
phases occur in memory isolation. Isolation is typically

achieved by using the memory cache as a private memory
[24], [30], [31]. In this work and some others, the target
architecture provides a multi-banked local memory that
allows to enforce isolation in a more straightforward way
[19], [20], [23], [25].
In Section VI-B we present scheduling algorithms for

the memory phases of tasks when they run in isolation. A
comparison of the efficiency of such algorithms is presented
in [30] but in a dynamic runtime and without precedence
constraints between the tasks. [18] presents a forward list
scheduling algorithm but their REW task model is said to
be contiguous, limiting the flexibility of the schedule. In
our study, we consider the impact of this contiguous REW,
as it is similar to the SCADE intrinsic notion of PREM.
Implementation of data-flow industrial applications to

multi-core platforms were presented in [5], [17]. These
papers target different platforms, but with similar lo-
cal shared memory. In both of them, isolation between
memory access phases is implemented through hardware
isolation (TDMA bus [17]) or software isolation [5]. Our
work is complementary and our methodology could be
applied to these hardware targets (TMS320C6678 in [5]
and ARM based multi-core in [17]).
Our work is inspired by all the previous papers listed

in this section and aims to give a comparison of execution
models while providing new methods for their implemen-
tation.

VI. Our implementation

We study the implementation of phased execution mod-
els for SCADE applications on a multi-core processor
with multi-banked local memory, specifically a compute
cluster of MPPA2 processor. This avoids any resource
contention that may arise when accessing the DRAM
through the NoC or DMA components. Thus, the only
memory contention model required for this study is of the
cluster shared memory, which is already available in MIA.
More details are given in Sections IV and VII.

A. Data-flow to PREM
First, we summarize our choices on how to implement

the execution models onto the MPPA2 processor. For the
implementation of the 2-Phased model with execute-write
phases, each core accesses its local bank and may access
the other banks during the write phase to communicate
with tasks mapped onto other cores, as in [2]. For the
3-Phased model, each core accesses its local bank and
one bank is used as shared memory. For the Memory-
Centric 3-Phased model, each core access its local bank
and a dedicated core is assigned a shared memory bank
and runs the orchestration task. To implement our isolated
model, the mapping/scheduling ensures no interference by
a software isolation between memory phases. We introduce
new scheduling algorithms for the 3-Phased and Memory-
Centric cases. These algorithms are detailed in the next



MCG

Code
Execute Phase

Mapping + 
Scheduling

Memory
Transaction
Definition

initial DFG

Step 1: Memory Phases Generation

Code
Memory Phases

Timing Analyser

WCET WCA

Step 2: Memory Mapping and Global Scheduling (isolation)

Annotated
DFG

Memory
Mapping

Global
Scheduling

MIA

Release dates

Step 3: Orchestration Code Generation

Code
Orchestration

Our tool

External tool

Intermediate data

Code

Used by

Produces

Memory
Partitioning
Model

Memory
Interference
Model

Execution model

Figure 11. Implementation workflow

subsection. For the implementation of our execution mod-
els including interference, this delay is estimated and taken
into account as part of the worst-case response time. To
achieve this we use the MIA tool (see Section II).

The global workflow of our implementation is given in
Figure 11 with a legend that identifies where external tools
are used, the intermediate data and code produced, as well
as the steps of our own tool.

The first input is provided by the SCADE MCG: a
data-flow graph with precedence constraints, an initial
mapping and scheduling from tasks to cores, the code
for the execute phase and the data structures for the
communication (size and type).

The Step 1 of our tool consists in generating the code
for the memory transactions. Based on the description
of the data structures used for communication (named
channels in SCADE documentation), the communication
graph and the execution model, the code for each memory
transaction is produced. The kind of execution model
influences this step due to the number of phases: 2-Phased
only has a write phase, while 3-Phased and Memory-
Centric have read and write phases.

At this point all purely functional code related to
SCADE has been generated. Then, for each phase of
each task, a timing analyzer provides its WCET and the
associated WCA. The WCA corresponds to the memory
accesses generated by data and instruction cache misses,
which will be later incorporated into the WCRT by MIA.

In Step 2, we generate:
• a global scheduling: required if the implementation

model is without interference. The schedule is used to
enforce the isolation for the 3-Phased and Memory-
Centric models. The algorithms are explained with

details in Section VI-B;
• a memory mapping: this mapping script realizes the

placement of data and code from each task in specific
banks, according to the execution model, as explained
in Section III;

• an annotated DFG: a file that summarizes all nec-
essary information to be given to MIA. It incor-
porates all components tagged with a star in Fig-
ure 11: the initial DFG for precedence constraints,
the mapping that provides task to core awareness, the
initial or global scheduling and the timing bounds.
The global scheduling adds additional dependencies
between memory transactions to enforce isolation.

MIA is then used exclusively at this point to generate
release dates that respect the information contained in
this annotated DFG: the mapping, the scheduling and the
dependencies.
In Step 3 we generate the platform-specific code to

orchestrate the application. The release dates are incor-
porated in this code with one orchestration function per
core. Note that a cluster in the MPPA2 processor is
mesochronous, thus we use a global barrier synchroniza-
tion during an initialization phase to ensure that after-
wards the execution flow and timings are respected.

B. Scheduling algorithms

This section presents 3 global scheduling algorithms to
isolate the memory transactions of the memory phases.
The general goal of these algorithms is to anchor the order
between these transactions across all cores. This execution
order is then given to MIA in the form of additional
dependencies and priority in the data-flow graph, as ex-
plained in Section II, so that the computed release dates
ensure temporal isolation between any task that access the
memory of the system.
1) Background concepts: Before introducing the general

intuition of the algorithms and their listings, we want to
recall and properly define some terms that will be used
onward.
In Section II memory transactions and phases have been

introduced and it is important to clarify their difference:
a transaction is an indivisible task that access the mem-
ory, while a phase can be composed of multiple distinct
transactions. The algorithms here presented perform the
schedule at the transaction level but must respect prece-
dence constraints at the phase level.
The definition of a dependent memory transaction is

strongly related to a typical data-flow task dependency,
with some small particularities. A memory transaction
m is constituted of a memory operation: either read or
write, respectively mr and mw. It also has two compute
transactions associated with it here called c1 and c2.
Each transaction has an associated release (rel) and end
(end) date. The definition then depends on the memory
partitioning model:



• For the 2-Phased model: there are only write opera-
tions, so given a memory transaction mw from c1 to
c2, it is dependent on c1 being finished, which imposes
that relmw

≥ endc1 . There is no algorithm for this
model as the scheduling is trivial.

• For the 3-Phased and Memory-Centric models: there
are read and write operations. Given a memory trans-
action mw from c1 to c2, it is dependent on c1
being finished, which imposes that relmw ≥ endc1 .
Given a memory transaction mr from c2 to c1, it is
dependent on its mirror write transaction, e.g. mw,
which imposes that relmw

≥ endmr
.

2) Overview and shared utilities: All algorithms have
the same input and output. The starting point is a set `
composed of read and write phases, ordered in the scope of
a core, following the initial mapping and scheduling. The
general idea is to pick transactions from ` and put them
in the set g, which is the globally ordered set of memory
transactions across all the cores. We start with the first
transaction from the first phase of the first core, which
always perform a write operation, meaning that the data-
flow applications are either closed (they do not require
external inputs) or already initialized. Then, according to
the execution model and the algorithm, we either continue
scheduling the other transactions from this phase or start
looking for other transactions that can be scheduled be-
cause their dependencies are satisfied. The algorithms end
as soon as all memory transactions are scheduled: either if
` and g have the same number of elements, or if we have
already iterated through all memory transactions in `.
In the algorithms we assume the existence of certain

utility functions used in the listings and that have their
core functionality explained here:

• DepOk(t) — checks if all the dependencies of a trans-
action t are already in g;

• AreOnSameCore(t1, t2) — returns true if t1 and t2 are
mapped to the same core;

• GetWrPhase(t) — returns the write phase associated
with the execute task t;

• GetRdPhase(t) — returns the read phase associated
with the execute task t;

• GetMirror(t) — returns the mirrored t transaction,
i.e. for a write transaction between N1 and N0, its
mirror transaction is a read transaction between N0
and N1. Note that in case of a mirror transaction
the read is only subject to the precedence of the
corresponding write. Thus, it is eligible for scheduling
as soon as the write transaction ends.

3) Algorithms: For the 3-Phased execution, the memory
phases belonging to a task are run on the same core
as the execute phase. This restricts the algorithm, as
they must be sequentially placed in this core due to the
intrinsic SCADE execution model. Any memory transac-
tions belonging to other tasks of the same core cannot be
interleaved as they would violate the initial mapping and

scheduling. To explore the impact of this restriction, while
also proposing a solution, we introduce two variants of an
algorithm for this 3-Phased model.

Algorithm 1 shows the first variant. As in [7], [18], the
3 phases (REW) are considered as a contiguous entity,
without any idle time between the memory or execute
transactions. The algorithm works as explained in the
overview but it always schedules the remainder of a write
phase after placing a write transaction on g (Line 5). Each
write transaction unblocks its mirror read, which will only
be scheduled if all other read transactions of the same
phase are also unblocked. Otherwise, this read transaction
waits in a leftover set.

Algorithm 1: 3-Phased contiguous memory
phases, referred to as Cont in Section VII

1 w_sched = list(); r_leftover = list();
2 foreach t in ` do
3 if ‘write’ in t and t not in g then
4 g.append(t); w_sched.append(t);
5 foreach t2 in GetWrPhase(t) do
6 g.append(t2); w_sched.append(t2);
7 foreach t2 in w_sched do
8 if DepOk(t2) then
9 foreach t3 in GetRdPhase(t2) do

10 g.append(t3);
11 if t3 in r_leftover then

r_leftover.remove(t3);
12 foreach t3 in GetWrPhase(t2) do
13 g.append(t3);

14 else r_leftover.append(t2) ;
15 w_sched.clear();
16 foreach t2 in r_leftover do
17 if DepOk(t2) and t2 not in g then
18 g.append(t2);
19 if t2 in r_leftover then

r_leftover.remove(t2);

Example 1: To illustrate the difference of behavior
between the 3 algorithms we will use the program in
Figure 5. We consider that the scheduling algorithm is
at the point of deciding about the schedule of the write
phase of the task N0. This phase is composed of two
transactions: N0_write_N1 and N0_write_N2. We also
know that N0 and N1 are mapped to the same core (PE0)
and N2 is mapped to a distinct core (PE1). Algorithm 1
would globally schedule the transactions: N0_write_N1 →
N0_write_N2 → N1_read_N0 → N2_read_N0. Note that
with Algorithm 1 the PE1 remains stuck until N1_read_N0
finishes, even though the data dependency has already
been satisfied.



Algorithm 2 shows the second 3-Phased variant. We
remove the contiguous schedule constraint and add the
possibility of introducing idle time between memory trans-
actions of the same task and give priority to scheduling
read transactions. This allows to unblock execute phases
earlier than the previous algorithm and have a smaller
response time. We use a double-ended queue (abbreviated
here as deque) for the scheduling candidates that are
popped at each iteration. Intuitively, once a transaction
is scheduled, its mirror transaction may be:

• A read or write that needs to be placed contiguously
with the transactions of the same phase;

• A read transaction belonging to another core that
may be scheduled directly and unblocks this other
core from an idle state.

Thus, according to the mirror transaction operation and
mapping, it is placed at different positions in the deque to
be scheduled in the next iterations.

Algorithm 2: 3-Phased with idle memory phases,
referred to as Opt in Section VII

1 sched_cand = deque(first_task_write_transactions);
2 while `.size() 6= g.size() do
3 c← sched_cand.popleft();
4 if c not in g then
5 if DepOk(c) then
6 g.append(c);
7 m← GetMirror(c);
8 if ‘write’ in c then
9 tr ← GetWrPhase(c) +

GetRdPhase(c);
10 idx ← −1 ;
11 foreach c2 in sched_cand do
12 if c2 in tr then idx ← c2.idx();
13 if idx 6= −1 then

sched_cand.insert(idx + 1, m);
14 else
15 if AreOnSameCore(c,m) then

sched_cand.append(m);
16 else sched_cand.appendleft(m);

17 else if ‘read’ in c then
18 foreach t in ` do
19 if m in t then

sched_cand.append(t);

20 else sched_cand.append(c);

Example 2: For our illustrative program in Figure 5
and the moment of scheduling the write phase of the
task N0, Algorithm 2, instead of blindly sequentially
scheduling all write transactions, searches for unblocked
read transactions (mirror) mapped to another core. Due to
SCADE code generation restrictions the algorithm cannot

break the initial ordering between the transactions and
interleave them if they belong to the same core. However,
it introduces idle time and give priority to scheduling read
tasks of other cores. Therefore, the global schedule given
here is N0_write_N1 → N0_write_N2 → N2_read_N0 →
N1_read_N0. This allows PE1 to start running the execute
phase of node N2 earlier, which gives an overall shorter
response time.
Remember that both scheduling algorithms presented

respect the SCADE semantics and preserve the DFG order
as well as other constraints. The only optimization done
in Algorithm 2 is to allow idle slots between memory and
execute transactions.
For the Memory-Centric execution model, the sequential

constraint of SCADE is loosened as memory transactions
are mapped to a different core. Thus, there is room for a
lot more flexibility when scheduling these memory transac-
tions: we have the possibility to arrange them in any order
as the execute phase will not happen on the same core. We
can freely add idle intervals or not, interleave read/write
transactions from other tasks and the execute phases will
naturally follow the master core local scheduling due to
the data-flow dependencies.
Algorithm 3 presents the method used. It follows the

overview methodology but uses the mirror searching as in
the Algorithm 2 to schedule read transactions as they are
ready (Line 8), accelerating the parallelism deployment
throughout all cores. If the dependencies for the read
transactions are not satisfied they are placed in a leftover
list that is revised in Line 13 before searching for the next
write transaction in `.

Algorithm 3: Memory-Centric isolation schedul-
ing

1 sched_leftover = list();
2 foreach t in ` do
3 if ‘write’ in t and t not in g then
4 if DepOk(t) then
5 g.append(t);
6 m← GetMirror(t);
7 if DepOk(m) then
8 foreach t2 in GetRdPhase(m) do
9 g.append(t2);

10 if t2 in sched_leftover then
sched_leftover.remove(t2);

11 else sched_leftover.append(m) ;
12 else sched_leftover.append(t) ;
13 foreach t in sched_leftover do
14 if DepOk(t) then
15 g.append(t);
16 if t in sched_leftover then

sched_leftover.remove(t);



Example 3: Coming back at the program in Figure 5
and the moment of scheduling the write phase of the
task N0, Algorithm 3, after scheduling a write transac-
tion, searches for unblocked read transactions (mirror)
mapped initially to any core (due to the dedicated core
for memory transactions, the SCADE code generation
restrictions are no longer applicable). Therefore, the global
schedule is N0_write_N1 → N1_read_N0 → N0_write_N2
→ N2_read_N0. As the memory operations are mapped to
a single core, this algorithm tends to behave worse than
Algorithm 2.
4) Termination proofs:
• Algorithm 1: terminates because its main loop iterates

over the elements of the finite set `, which contains
the memory transactions.

• Algorithm 2: terminates when g equals the size of
`, the initial set of memory transactions, meaning
that it has successfully defined a global schedule for
all tasks. There is also an auxiliary structure c that
contains schedule candidates. At each iteration we
pop one candidate from c and it is either added to
g or put back into c. If it is added to g one or more
transactions from ` are then added to c as candidates.
The insertion process avoids any duplication. As the
number of transactions is finite, once all candidates
in c have been scheduled, the termination point is
reached.

• Algorithm 3: same intuition as Algorithm 1.
5) Complexity Analysis: The complexity is given in

terms of n which is the number of transactions to be
scheduled.

• Algorithm 1: O(n3), as there are up to three nested
loops (Line 2, Line 7 and Line 9)

• Algorithm 2: O(n2), as there are up to two nested
loops (Line 2 and Lines 11;18)

• Algorithm 3: O(n2), as there are up to two nested
loops (Line 2 and Lines 8;13)

To provide a comparison baseline we looked at the
complexity of algorithms developed or referenced by [32]
and [33]. Our three algorithms stay under O(n3) which
is reasonable for an offline scheduling method. Moreover,
similar algorithms found in these two references range be-
tween linear and cubic complexity, which reinforces for the
NP-hardness nature of the mapping/scheduling problem
on multi-core architectures. In terms of scalability, [34]
has showed that thousands of tasks can be scheduled in
a reasonable time with an O(n2) complexity, which is the
case for the majority of our algorithms.

VII. Experiments

We evaluate our implementation of the execution mod-
els proposed in Section III with three SCADE applications:
1) the simple example used to explain our method in

Section I;

2) the ROSACE avionics case-study2;
3) an industrial automotive Electronic Control Unit

(ECU) program.
As the starting programming language of our implemen-

tation is SCADE, which is widely used in the industrial
context, our goal with these applications is to evaluate
the final schedule response time with real world scenarios.
In particular, we are interested in comparing the possible
timing improvements when taking interference into ac-
count against safe execution models that provide temporal
isolation.
The implementation of the code generation steps of the

workflow described in Figure 11 was done in Python with
the Mako template library3. A bash script then ties to-
gether all the necessary steps of the workflow. The WCET
and WCA of the execute and memory phases are measured
after multiple runs on the processor. Timing analyzers
such as OTAWA [35], Heptane [36] or aiT [37] can also
be used here to estimate the WCET. For the interference
estimation, it is important to know that on the MPPA2
processor, a blocking memory access requires 10 cycles
to be completed and the multi-level arbitration system
makes the maximal cost to be

∑
1≤i≤15(min(I(P0, Pi)) +

min((Y ), (X)) + (Rx), where I gives the interference be-
tween specific cores, Y is the interference generated by
any core, X is the interference between other initiators
(Tx, RM , DSU) and Rx is the high priority initiator at
the third and final level. Section IV contains more details
about how the interference cost function is used.

The offline scheduling algorithms presented in Sec-
tion VI-B have no significant runtime overhead in com-
parison with the time spent executing the whole workflow
in the experiments conducted. For reference, the runtime
ranges from 239ms to 525ms in the explored programs,
while the complete workflow execution can take from
46s to 1m17s. In this section we will focus exclusively
on the global WCRT computed by MIA and measured
on the MPPA2, for each proposed execution model and
application. The algorithms’ runtimes show that their
computational cost is reasonable, appropriate for our sce-
nario and does not significantly impact the performance
of the whole workflow.

A. Case-studies
1) Simple Data-Flow: This example application4 was

used to validate our methodology in terms of scheduling
and implementation. As shown in Figure 5 the 5 task nodes
are mapped to 2 cores, with N0 and N3 having no initial
dependencies, while the others are connected to the data-
flow that derives from them. The execute tasks perform
basic arithmetic operations. Profiling information of this
application for the 3-Phased partitioning model is:

2Available at https://forge.onera.fr/projects/rosace-case-study
3Documentation available at https://docs.makotemplates.org/
4Available at https://gricad-gitlab.univ-grenoble-alpes.fr/

verimag/reproducible-research/simple-dflow-rtss-2020/

https://gricad-gitlab.univ-grenoble-alpes.fr/verimag/reproducible-research/simple-dflow-rtss-2020/
https://gricad-gitlab.univ-grenoble-alpes.fr/verimag/reproducible-research/simple-dflow-rtss-2020/


• Compute phases — WCET: from 260 to 326 cycles,
WCA: from 2 to 7 accesses;

• Read phases —WCET: from 183 to 198 cycles, WCA:
from 0 to 3 accesses;

• Write phases — WCET: from 183 to 202 cycles,
WCA: from 0 to 3 accesses;

• Computation-Communication Ratio (CCR) — 1732
compute cycles to 3 041 communication cycles.

2) ROSACE: This is an avionics open-source case-
study developed by ONERA [38]. It contains a multi-
periodic flight controller program that aims to be easily ex-
ecuted on a multi/many-core processor. The original code
has been expanded into a hyper-period that normalizes
the multi-periodic nature of the program. The application
contains 10 nodes (execute tasks) and is mapped to 8 cores.
The corresponding data-flow graph is given in Figure 12.

az_filter_1

V_filter_Vz

Rosace_Simul_1

Rosace_Simul_2

V_filter_Va Vz_control_1

Va_control_1

Rosace_Simul_3

h_filter_1

q_filter_1

PE0

PE0

PE0

PE1

PE2

PE3

PE4

PE6

PE5

PE7

Figure 12. ROSACE data-flow graph and preliminary mapping

Profiling information of this application for the 3-
Phased partitioning model is:

• Compute phases — WCET: from 624 to 74 343 741
cycles, WCA: from 7 to 195 accesses;

• Read phases —WCET: from 170 to 185 cycles, WCA:
from 1 to 2 accesses;

• Write phases — WCET: from 170 to 187 cycles,
WCA: from 1 to 3 accesses;

• CCR — 260 214 753 compute cycles to 5 972 commu-
nication cycles.

3) Automotive ECU: The third case-study is an indus-
trial automotive program with 4 765 lines of functional
code (not including the orchestration code). The 9 nodes
are mapped to 6 cores. There is one initial task and one
final task, the other 7 tasks depend only on the data
produced by the initial task. This is a common structure
with highly parallel periodic applications.

Profiling information of this application for the 3-
Phased partitioning model is:

• Compute phases — WCET: from 465 to 2 653 cycles,
WCA: from 10 to 68 accesses;

• Read phases —WCET: from 187 to 202 cycles, WCA:
from 1 to 3 accesses;

• Write phases — WCET: from 187 to 202 cycles,
WCA: from 1 to 3 accesses;

• CCR — 12 548 compute cycles to 5 416 communica-
tion cycles.

B. Experimental results
Experimental results are displayed in Figures 13, 14

and 15. For each case-study and each implementation we
give the estimated WCRT computed by MIA for the code
generated by our workflow and the corresponding Mea-
sured execution time (both in number of processor clock
cycles). For the 2-Phased and 3-Phased implementation
we give the results with Interference and in all cases
the results for the implementation in Isolation are given.
Remember that for the Memory-Centric implementation
there is no interference between memory phases as they
are all scheduled on the same core. Furthermore, we
give the results using both isolated 3-Phased scheduling
algorithms: Cont for the contiguous implementation of the
three phases (see Algorithm 1) and Opt for the optimized
version with potential idle time slots (see Algorithm 2).
We observe that the WCRT is always close to the

measured one. This is due to the fact that we use a time-
triggered implementation: the difference may only come
from the difference between the WCET and the effective
execution time of the last task, as the release date of the
last task is identical to the one computed by MIA. Note
that in case of interference, the release date of the last task
is not the same as in the case of isolation. Furthermore,
the difference between the measured and the bound on the
WCRT may be larger due to potential interference taken
into account during the execution of the last task.
From the Interference and Isolation WCRT values in all

3 figures we observe that taking into account delays
due to interference leads to shorter WCRT than
isolating the memory phases. This is attributable to
the memory partitioning model limiting the interference
during memory phases and also to the structure of the
MPPA2 processor bus arbiter. The size of shared data
is also small for all case-studies, usually less than the
bus size: in this case a potential interference between

2-Phased 3-Phased 2-Phased 3-Phased
(Cont.)

3-Phased
(Opt.)

Memory
Centric

0

2

4

6
103 Processor Clock Cycles

2
48

4 3
56

6

3
14

4

4
91

9

3
96

2

4
10

6

2
60

8 3
72

9

3
26

4

5
05

7

4
12

4

4
22

9

Measured

WCRT

Interference Isolation

Figure 13. Simple Data Flow Results



2-Phased 3-Phased 2-Phased 3-Phased
(Cont.)

3-Phased
(Opt.)

Memory
Centric

0

100

200

106 Processor Clock Cycles

99
13

5
88

0

99
13

6
40

8

99
13

6
41

3

26
0

22
0

49
6

99
13

8
16

6

14
8

70
2

52
4

99
13

6
06

6

99
13

6
55

8

99
13

6
60

6

26
0

22
0

64
8

99
13

8
36

8

14
8

70
2

69
7

Measured

WCRT

Interference Isolation

Figure 14. ROSACE Results

2-Phased 3-Phased 2-Phased 3-Phased
(Cont.)

3-Phased
(Opt.)

Memory
Centric

0

5

10

15

20
103 Processor Clock Cycles

8
64

4

10
50

8

9
63

4

17
68

0

12
07

3

10
98

8

9
08

0

10
88

8

10
04

5

18
07

3

12
24

0

11
47

6

Measured

WCRT

Interference Isolation

Figure 15. Automotive Use Case Results

two cores is accounted as only one additional cycle as
it is simply a one-cycle wait for the round-robin arbiter.
For the simple data-flow case-study, the additional cost
of interference is of 2 cycles in the 2-Phased case and 3
cycles in the 3-Phased case. This happens because there
are few potential interference points and only 2 cores
are used. For ROSACE, in the 2-Phased implementation
there is no additional cost due to interference. Note that
ROSACE case-study has long execute phases and very
small memory phases: this limits the probability of inter-
ference. For the 3-Phased implementation, the additional
cost for ROSACE is of 2 cycles: here at least one of
the additional read phases causes an interference. For the
automotive case-study, the additional cost is of 2 cycles
for the 2-Phased implementation and 10 cycles for the 3-
Phased one. These low interference costs explains why the
WCRT with interference is shorter: the cost of isolation is
much heavier than the cost of interference.

Similarly, reducing the number of phases, limits the
number of interference and the number of tasks to iso-
late with the global scheduling algorithms: a 2-Phased

implementation is always more efficient than a 3-
Phased one. Note that this is also a specificity of the
multi-banked memory that allows to execute locally with
a predictable shared data memory (in contrast to a shared
cache memory). The difference between the 2-Phased and
3-Phased is not only due to the number of phases, but also
due to the distributed shared memory among the banks
vs. one shared memory bank. The shared memory bank
seems to be a good idea for better isolation of shared
memory access. Nevertheless, our experiments show that
a distribution of the shared memory on all banks is more
efficient for the applications and target processor we use.
Therefore, a 2-phase model with execute-write operations
is preferable when it can be applied to the program, the
architecture contains a multi-banked shared memory and
the number of generated memory phases can be controlled.
The Memory-Centric implementation behaves most of

the time worse than the 3-Phased Opt. The reason for
this is the mapping of all memory phases to the same
core, which forbids any concurrency between the memory
phases. Note that the Memory-Centric implementation of
PREM has been introduced for external shared memory
where the memory access time is significantly longer.
Our optimized algorithm that introduces idle

intervals instead of enforcing contiguous REW
phases, yields the best results among the 3-Phased
models, except for the automotive use case. This
is a result of read phases being scheduled earlier by this
algorithm and as consequence the execute phase may also
start sooner. This is at a price of inserting idle times
between memory transactions, but it is important to rein-
force that the semantics of SCADE are still preserved. The
exception on the automotive use case is a small difference
(less than 1 000 cycles) and probably comes from its CCR
profile. Another possible reason is a good timing in the
scheduling between memory and execution phases that
does not degrade the global execution time, even if the
memory transaction are serialized on one core.

VIII. Discussion
In this section we discuss the results of our study and

indicate open questions or potential future work that may
extend this work.
Among our results, the first point we highlight is the

interest of the 2-Phased model. This solution is easy to
implement on any processor that provides multi-banked
shared memory. The question raised by this is why the use
of these 2-Phased method is so scarce, even if it appears
to be efficient in providing good execution time. We see
here two main reasons. The code may be intrinsically 3-
Phased and the 2-Phased implementation would require
changes in the way the code is generated. Similarly, in
the real-time community, the theory usually works with 3
phases independently of the target processor. In case of the
MPPA2 processor, our study shows that even for SCADE
code, a 2-Phased implementation is more efficient.



A second point is about the interferences. We observed
that the potential of interference is quite low in
our study, so why are they generally avoided instead
of analyzed? Likely, the answer is the hypothesis of a
timing compositional processor5. With this hypothesis, the
additional cost due to interference may be added with a
guaranteed final estimated bound. The MPPA2 processor
is assumed to be timing compositional [39]. Unfortunately,
for this processor and all other industrial ones, there exists
yet no proof of such compositionality. This leads to an
important open question: is it possible to write such a
proof and guarantee that the compositionality is ensured?
A formal proof would be largely beneficial for certification
and thus industrial use of the interference analysis.

What we observed about SCADE intrinsically phased
execution is that enforcing a sequence of REW for each
task may have a cost and it is better to introduce idle
slots between phases or memory transactions to improve
the global response time. Furthermore, the initial mapping
and scheduling may not be optimal in some cases, as we
observed for our simple program (see Figure 5) where node
N3 could be scheduled before node N2 without losing any
precedence constraints nor functional property.

The Memory-Centric implementation is beneficial
mainly when an external memory with longer memory
transactions is used. However, we included it in our study
as it seems as a good solution to separate memory phases
and execute phases. Even though this seems to be a reason-
able argument for predictability, our experiments shows
that a good mapping of a 2- or 3-Phased implementation
delivers better efficiency even in isolation.

Our work may be generalized out of the SCADE con-
text. As you can see in our workflow from Figure 11, it
may be applied to any data-flow application, as Simulink
ones for example. The minimal initial information for
our method is a data-flow graph, a definition of the
communication data (the structure size and which task
access what) and an initial mapping/scheduling. For the
initial scheduling/mapping, we could use any state-of-the-
art method if it is not supplied with the code. Finally,
a difference with minor impact is that the generated C
code from SCADE is not identical to the generated C
code by other data-flow languages, which may require
modifications on the generated orchestration code.

The Kalray MPPA2 processor appears as a friendly
target for time-critical systems, and in particular for
PREM implementation, as the multi-banked memory of
a compute cluster is large enough for the applications
studied. Using more than one cluster is possible and has
been exploited in [40]. However, it introduces additional
latency for NoC data transfers and leads to longer memory
transactions. Inside a cluster, the memory transactions are
similar to the ones exploited in our study, but each inter-

5No timing anomaly or with bounded effects such that any delay
may be added without any loss of a guaranteed global bound.

cluster data transfer may enlarge the memory transaction
and lead to different results. It may be interesting to use
a large external memory. With this configuration, further
work is needed as the memory phases may last significantly
longer than the execute phases, unlike in our study.
Another approach to improve the methodology pre-

sented here is to incorporate runtime adaptation of the
generated time-triggered schedule, as proposed in [41].
Such mechanism can reduce the pessimism introduced by
computing bound WCRT looking at the Actual Execution
Time (AET) of tasks, regardless of their phases.
To conclude, on our experiments we have shown that,

in a timing-compositional architecture and for the appli-
cations we have studied, the 2-phased model combined
with analyzed interference yields the shortest end-to-end
WCRT that guarantees a time-predictable execution.

Acknowledgment
This work was performed in the scope of the ES3CAP

research project, under the Bpifrance Invest for the Future
Program (Programme d’Investissements d’Avenir – PIA).

References
[1] C. Cullmann, C. Ferdinand, G. Gebhard, D. Grund, C. Maiza,

J. Reineke, B. Triquet, and R. Wilhelm, “Predictability con-
siderations in the design of multi-core embedded systems,” in
Proceedings of Embedded Real Time Software and Systems, May
2010.

[2] H. Rihani, M. Moy, C. Maiza, R. I. Davis, and S. Altmeyer,
“Response time analysis of synchronous data flow programs on
a many-core processor,” in RTNS. ACM, 2016, pp. 67–76.

[3] R. Pellizzoni, E. Betti, S. Bak, G. Yao, J. Criswell, M. Caccamo,
and R. Kegley, “A Predictable Execution Model for COTS-
Based Embedded Systems,” in Proceedings of the IEEE Real-
Time and Embedded Technology and Applications Symposium
(RTAS), 2011, pp. 269–279.

[4] J.-L. Colaço, B. Pagano, and M. Pouzet, “Scade 6: A formal
language for embedded critical software development,” in 2017
International Symposium on Theoretical Aspects of Software
Engineering (TASE). IEEE, 2017, pp. 1–11.

[5] G. Durrieu, M. Faugère, S. Girbal, D. Gracia Pérez, C. Pagetti,
and W. Puffitsch, “Predictable Flight Management System
Implementation on a Multicore Processor,” in Embedded
Real Time Software (ERTS’14), TOULOUSE, France, Feb.
2014. [Online]. Available: https://hal.archives-ouvertes.fr/hal-
01121700

[6] S. Skalistis and A. Simalatsar, “Worst-case execution time
analysis for many-core architectures with noc,” in International
Conference on Formal Modeling and Analysis of Timed Systems,
08 2016, pp. 211–227.

[7] B. Rouxel, S. Skalistis, S. Derrien, and I. Puaut, “Hiding
communication delays in contention-free execution for spm-
based multi-core architectures,” in 31st Euromicro Conference
on Real-Time Systems (ECRTS 2019). Leibniz International
Proceedings in Informatics, 2019.

[8] Q. Perret, P. Maurere, E. Noulard, C. Pagetti, P. Sainrat, and
B. Triquet, “Predictable composition of memory accesses on
many-core processors,” in 8th European Congress on Embedded
Real Time Software and Systems (ERTS 2016), 2016.

[9] S. Skalistis and A. Simalatsar, “Near-optimal deployment of
dataflow applications on many-core platforms with real-time
guarantees,” in Proceedings of the Conference on Design, Au-
tomation and Test in Europe (DATE), 2017, pp. 752–757.

[10] S. Wasly and R. Pellizzoni, “Hiding memory latency using fixed
priority scheduling,” in Proceedings of the IEEE Real-Time and
Embedded Technology and Applications Symposium (RTAS),
2014, pp. 75–86.

https://hal.archives-ouvertes.fr/hal-01121700
https://hal.archives-ouvertes.fr/hal-01121700


[11] A. Melani, M. Bertogna, V. Bonifaci, A. Marchetti-Spaccamela,
and G. Buttazzo, “Memory-Processor Co-Scheduling in Fixed
Priority Systems,” in Proceedings of the International Confer-
ence on Real-Time Networks and Systems (RTNS), 2015, pp.
87–96.

[12] A. Graillat, M. Moy, P. Raymond, and B. D. De Dinechin, “Par-
allel code generation of synchronous programs for a many-core
architecture,” in 2018 Design, Automation & Test in Europe
Conference & Exhibition (DATE). IEEE, 2018, pp. 1139–1142.

[13] J. Kim, M. Yoon, R. Bradford, and L. Sha, “Integrated Modular
Avionics (IMA) partition scheduling with conflict-free I/O for
multicore avionics systems,” Proceedings - International Com-
puter Software and Applications Conference, pp. 321–331, 2014.

[14] J. M. Rivas, J. Goossens, X. Poczekajlo, and A. Paolillo, “Im-
plementation of memory centric scheduling for cots multi-core
real-time systems,” in 31st Euromicro Conference on Real-Time
Systems. Leibniz International Proceedings in Informatics,
2019.

[15] A. Alhammad and R. Pellizzoni, “Schedulability analysis of
global memory-predictable scheduling,” in Proceedings of the
IEEE & ACM International Conference on Embedded Software
(EMSOFT), Oct 2014, pp. 1–10.

[16] G. Yao, R. Pellizzoni, S. Bak, E. Betti, and M. Caccamo,
“Memory-centric scheduling for multicore hard real-time
systems,” Real-Time Systems, vol. 48, no. 6, pp. 681–715, nov
2012. [Online]. Available: http://link.springer.com/10.1007/
s11241-012-9158-9

[17] C. Pagetti, J. Forget, H. Falk, D. Oehlert, and A. Luppold,
“Automated generation of time-predictable executables on mul-
ticore,” in Proceedings of the International Conference on Real-
Time Networks and Systems (RTNS). ACM, 2018, pp. 104–113.

[18] B. Rouxel, S. Derrien, and I. Puaut, “Tightening contention
delays while scheduling parallel applications on multi-core archi-
tectures,” ACM Transactions on Embedded Computing Systems
(TECS), vol. 16, no. 5s, p. 164, 2017.

[19] M. Becker, D. Dasari, B. Nicolic, B. Åkesson, V. Nélis, and
T. Nolte, “Contention-Free Execution of Automotive Applica-
tions on a Clustered Many-Core Platform,” in Proceedings of the
Euromicro Conference on Real-Time Systems (ECRTS), 2016,
pp. 14–24.

[20] M. R. Soliman and R. Pellizzoni, “Prem-based optimal task
segmentation under fixed priority scheduling,” in 2019 31st
Euromicro Conference on Real-Time Systems, 2019, pp. 1–24.

[21] G. Giannopoulou, K. Lampka, N. Stoimenov, and L. Thiele,
“Timed model checking with abstractions: Towards worst-case
response time analysis in resource-sharing manycore systems,”
in Proceedings of the tenth ACM international conference on
Embedded software. ACM, 2012, pp. 63–72.

[22] K. Lampka, G. Giannopoulou, R. Pellizzoni, Z. Wu, and
N. Stoimenov, “A formal approach to the wcrt analysis
of multicore systems with memory contention under phase-
structured task sets,” Real-Time Systems, vol. 50, no. 5, pp.
736–773, 2014. [Online]. Available: https://doi.org/10.1007/
s11241-014-9211-y

[23] M. Becker, S. Mubeen, D. Dasari, M. Behnam, and T. Nolte,
“Scheduling multi-rate real-time applications on clustered
many-core architectures with memory constraints,” in Proceed-
ings of the 23rd Asia and South Pacific Design Automation
Conference. IEEE Press, 2018, pp. 560–567.

[24] G. Yao, R. Pellizzoni, S. Bak, H. Yun, and M. Caccamo,
“Global Real-Time Memory-Centric Scheduling for Multicore
Systems,” IEEE Transactions on Computers, vol. 65, no. 9,
pp. 2739–2751, sep 2016. [Online]. Available: http://ieeexplore.
ieee.org/document/7328709/

[25] T. Carle, D. Potop-Butucaru, Y. Sorel, and D. Lesens, “From
Dataflow Specification to Multiprocessor Partitioned Time-
triggered Real-time Implementation,” Leibniz Transactions on
Embedded Systems (LITES), vol. 2, no. 2, pp. 01:1—-01:30,
2015.

[26] G. Giannopoulou, N. Stoimenov, P. Huang, and L. Thiele,
“Scheduling of mixed-criticality applications on resource-
sharing multicore systems,” in Proceedings of the IEEE & ACM
International Conference on Embedded Software (EMSOFT),
Sept 2013, pp. 1–15.

[27] S. Altmeyer, R. I. Davis, L. Indrusiak, C. Maiza, V. Nelis,
and J. Reineke, “A Generic and Compositional Framework
for Multicore Response Time Analysis,” in Proceedings of
the International Conference on Real-Time Networks and
Systems (RTNS), 2015, pp. 129–138. [Online]. Available:
http://doi.acm.org/10.1145/2834848.2834862

[28] B. Forsberg, M. Mattheeuws, A. Kurth, A. Marongiu, and
L. Benini, “A synergistic approach to predictable compilation
and scheduling on commodity multi-cores,” in The 21st ACM
SIGPLAN/SIGBED Conference on Languages, Compilers, and
Tools for Embedded Systems, 2020, pp. 108–118.

[29] P. Pazzaglia, A. Biondi, and M. Di Natale, “Optimizing the
functional deployment on multicore platforms with logical ex-
ecution time,” in 2019 IEEE Real-Time Systems Symposium
(RTSS). IEEE, 2019, pp. 207–219.

[30] S. Bak, G. Yao, R. Pellizzoni, and M. Caccamo, “Memory-Aware
Scheduling of Multicore Task Sets for Real-Time Systems,”
in Proceedings of the IEEE International Conference on
Embedded and Real-Time Computing Systems and Applications
(RTCSA), aug 2012, pp. 300–309. [Online]. Available: http:
//ieeexplore.ieee.org/document/6300162/

[31] A. Alhammad and R. Pellizzoni, “Time-predictable execution
of multithreaded applications on multicore systems,” in
Proceedings of the Conference on Design, Automation and Test
in Europe (DATE), 2014, pp. 1–6. [Online]. Available: http:
//ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6800243

[32] M. Bertogna, M. Cirinei, and G. Lipari, “Schedulability analysis
of global scheduling algorithms on multiprocessor platforms,”
IEEE Transactions on parallel and distributed systems, vol. 20,
no. 4, pp. 553–566, 2008.

[33] J. Goossens, S. Funk, and S. Baruah, “Priority-driven schedul-
ing of periodic task systems on multiprocessors,” Real-time
systems, vol. 25, no. 2-3, pp. 187–205, 2003.

[34] M. D. de Dinechin, M. Schuh, M. Moy, and C. Maïza, “Scaling
up the memory interference analysis for hard real-time many-
core systems,” in Design, Automation and Test in Europe Con-
ference (DATE), 2020.

[35] C. Ballabriga, H. Cassé, C. Rochange, and P. Sainrat, “Otawa:
an open toolbox for adaptive wcet analysis,” in IFIP Inter-
national Workshop on Software Technolgies for Embedded and
Ubiquitous Systems. Springer, 2010, pp. 35–46.

[36] D. Hardy, B. Rouxel, and I. Puaut, “The heptane static worst-
case execution time estimation tool,” in 17th International
Workshop on Worst-Case Execution Time Analysis (WCET
2017). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik,
2017.

[37] C. Ferdinand and R. Heckmann, “ait: Worst-case execution
time prediction by static program analysis,” in Building the
Information Society. Springer, 2004, pp. 377–383.

[38] C. Pagetti, D. Saussie, R. Gratia, E. Noulard, and P. Siron,
“The ROSACE case study: From simulink specification to
multi/many-core execution,” in Real-Time and Embedded Tech-
nology and Applications Symposium, 2014 IEEE 20th, ser.
RTAS 2014, 2014, pp. 309–318.

[39] S. Saidi, R. Ernst, S. Uhrig, H. Theiling, and B. D. de Dinechin,
“The shift to multicores in real-time and safety-critical sys-
tems,” in 2015 International Conference on Hardware/Software
Codesign and System Synthesis, CODES+ISSS 2015, Amster-
dam, Netherlands, October 4-9, 2015, G. Nicolescu and A. Ger-
stlauer, Eds. IEEE, 2015, pp. 220–229.

[40] A. Graillat, C. Maiza, M. Moy, P. Raymond, and B. D.
de Dinechin, “Response time analysis of dataflow applications
on a many-core processor with shared-memory and network-on-
chip,” in Proceedings of the 27th International Conference on
Real-Time Networks and Systems, 2019, pp. 61–69.

[41] S. Skalistis and A. Kritikakou, “Timely fine-grained
interference-sensitive run-time adaptation of time-triggered
schedules,” in 2019 IEEE Real-Time Systems Symposium
(RTSS). IEEE, 2019, pp. 233–245.

http://link.springer.com/10.1007/s11241-012-9158-9
http://link.springer.com/10.1007/s11241-012-9158-9
https://doi.org/10.1007/s11241-014-9211-y
https://doi.org/10.1007/s11241-014-9211-y
http://ieeexplore.ieee.org/document/7328709/
http://ieeexplore.ieee.org/document/7328709/
http://doi.acm.org/10.1145/2834848.2834862
http://ieeexplore.ieee.org/document/6300162/
http://ieeexplore.ieee.org/document/6300162/
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6800243
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6800243

	Introduction
	Context
	Data-flow application
	Multi-core processor with multi-banked local memory

	The studied execution models
	Multi-Core Interference Analysis (MIA)
	State of the art
	Our implementation
	Data-flow to PREM
	Scheduling algorithms
	Background concepts
	Overview and shared utilities
	Algorithms
	Termination proofs
	Complexity Analysis


	Experiments
	Case-studies
	Simple Data-Flow
	ROSACE
	Automotive ECU

	Experimental results

	Discussion
	References

