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We study the shear-thinning mediation of elasto-inertial transitions in Taylor-Couette9

flow of viscoelastic polymer solutions. Two types of high molecular weight polymers are10

used at various concentrations and in water-glycerol solvents of various viscosities. This11

allows us to access a wide range of elastic numbers and effective shear-thinning indices.12

Conservative ramp up (slow acceleration of the inner cylinder and subsequent increase in13

Reynolds number) and steady state (constant rotation speed) experiments are performed,14

in which the flow is monitored continuously using flow visualisation. Depending on the15

shear-thinning and elastic properties of the working fluid, very different behaviours are16

observed. In almost constant-viscosity fluids (Boger fluids), or shear-thinning fluids with17

significant elasticity, the flow transitions from purely azimuthal Couette flow (CF) to a18

highly chaotic flow state referred to as elasto-inertial turbulence (EIT) via Taylor Vortex19

Flow (TVF) and elasto-inertial waves (RSW). When the degree of shear-thinning is20

increased and elasticity reduced, elastic waves or EIT may fade to a Wavy Taylor Vortex21

Flow (WTVF) with increasing inertia. Significant shear-thinning leads to a delay in the22

onset of EIT. Remarkably, in some highly shear-thinning cases, even with a significant23

elasticity, elastic flow features (EIT, RSW) are completely suppressed, and the flow24

exhibit a “Newtonian-like” transition sequence (CF-TVF-WTVF). Shear-thinning acts25

to modify, delay, or even completely suppress elasto-inertial behaviours (RSW, EIT),26

that would otherwise have existed in the absence of shear-thinning. It is, thus, possible27

to induce various hydrodynamic regimes by tuning the relative degrees of shear-thinning,28

elasticity, and inertia.29
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1. Introduction and background31

Taylor-Couette flow (TCF) occurs in the gap between two concentric cylinders with32

one or both rotating. It has been of sustained interest to the fluid mechanics community,33

rheologists, process engineers and mathematicians over the past century (Taylor 1923).34

Despite its simple geometrical configuration, Taylor-Couette flow of Newtonian fluids35

displays a vast array of complex dynamics. This includes a wide variety of steady,36

unsteady, chaotic or turbulent flow states (Andereck et al. 1986; Coles 1965; Dutcher &37
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Muller 2009; Akonur & Lueptow 2003; Grossmann et al. 2016; Gul et al. 2018), occurring38

when either one or two cylinders rotate, in contra- or co-rotation. In the most common39

case in which only the inner cylinder rotates and the outer cylinder is fixed, the flow can40

be characterised using a single Reynolds number:41

Re = ρΩrid/µ, (1.1)

where ρ is the fluid density, µ the dynamic viscosity, Ω the inner cylinder rotation speed42

and d= ro − ri the gap width, i.e. the difference between the inner and outer cylinder43

radii, ri and ro respectively. The system geometry can be characterised using two non-44

dimensional parameters: the radius ratio η = ri/ro and the aspect ratio AR = L/d where45

L is the cylinder length. The first parameter describes the gap width and streamline46

curvature in a simple shear flow, both having an influence on the stability threshold for47

Newtonian (Taylor 1923) but also non-Newtonian fluids (Larson et al. 1990; Pakdel &48

McKinley 1996).49

At low Re in Newtonian fluids, a purely azimuthal and uniform shear flow exists in the50

gap, known as the circular Couette flow (CF). This flow becomes unstable once a critical51

Re is reached, and a series of toroidal counter-rotating vortices form in the annulus: this52

is known as the Taylor vortex flow (TVF). The number of counter rotating vortices along53

the gap corresponds to the spatial wavelength of the instability, λ. A further increase in54

Re causes this state to become unstable and undergo sinusoidal axial oscillations (Wavy55

Tayor Vortex Flow, WTVF), making it non-axisymmetric. Additional frequencies appear56

as Re is further increased, leading to a more complex wavy flow (Coughlin & Marcus57

1992a,b) which ultimately becomes turbulent (Grossmann et al. 2016).58

Because of this rich set of dynamic states in simple fluids, Taylor-Couette flow has59

been widely used as a means to study flow transitions and instabilities in more complex60

systems, such as non-Newtonian fluids (Fardin et al. 2014), frequently encountered in61

industrial applications (Chhabra & Richardson 1999). Polymer solutions (Larson & Desai62

2015) or Wormilke Micellar Solutions (WMS) (Divoux et al. 2016) are useful model fluids63

to describe the behaviour of such systems. The latter have received increased attention64

in recent years (Fardin et al. 2010, 2012; Perge et al. 2014; Mohammadigoushki & Muller65

2017; Hopkins et al. 2020; Haward et al. 2020) while the former have been extensively66

used in the literature for several decades (see remainder of section 1), and will also be67

employed in this study. Two of their most common non-Newtonian properties are shear-68

thinning and viscoelasticity. The former leads to a dynamic viscosity µ that depends69

on the shear rate γ̇ (e.g. in a power law fashion, µ ∼ γ̇n−1 with n the flow index).70

Elasticity confers a “solid-like” behaviour to the fluid, with a complex shear modulus71

G∗ that comprises an elastic part G′ and a viscous part G” such as G∗ = G′ + iG”.72

This property is characterized by the existence of an elastic/relaxation time-scale of the73

fluid, te. Such properties are influenced by many factors including the molecular weight,74

polymer concentration, conformation of the polymer chains, and entanglement (Larson75

& Desai 2015). By using low concentrations of high molecular weight linear polymers in76

a sufficiently viscous solvent, one may produce “Boger” fluids (Boger 1977; James 2009),77

i.e. elastic fluids for which the polymer contribution to the viscosity is small compared to78

the solvent viscosity, and for which the apparent viscosity is thus constant (Newtonian).79

Equally, by selecting different polymers and solvent viscosities, one can vary elasticity and80

shear-thinning almost independently, exploring the relative influence of these parameters81

on TCF over a broad parameter space.82



3

1.1. Elastic and elasto-inertial Taylor-Couette flows83

The degree to which a fluid has an elastic response to the flow is expressed by the84

Weissenberg number, Wi. In a Taylor-Couette system, this number can be defined as85

Wi = te/γ̇, where γ̇ = Ωri/d is the nominal shear-rate in the gap. The competition86

between elastic and viscous effects is then expressed by the elastic number:87

El =
Wi

Re
=
te
tv

=
teµ

ρd2
, (1.2)

where tv = ρd2/µ is the viscous time-scale. El only depends on the fluid and geometric88

properties. Based on its value, the fluid can be classified as weakly elastic (El < 10−2),89

moderately elastic (10−2 < El < 1), or highly elastic (El > 1) (Latrache et al. 2016;90

Dutcher & Muller 2011, 2013). In the range of low elasticity (i.e., El � 1) and with91

increasing Re, transitions similar to Newtonian fluids have been recovered (Crumeyrolle92

et al. 2002; Dutcher & Muller 2011).93

At vanishing Re but moderate or high El, a purely elastic CF-TVF transition exists94

(Larson et al. 1990), and flows may even exhibit a chaotic behaviour (Groisman &95

Steinberg 2004; Fardin et al. 2010, 2012; Mohammadigoushki & Muller 2017), which96

is called elastic “turbulence”, despite the relative absence of inertia (Larson 2000), as97

it shows chaotic and disordered features usually attributed to turbulence (Groisman &98

Steinberg 2000; Varshney & Steinberg 2019; Steinberg 2019).99

At both non-negligible Re and El values, elasto-inertial instabilities (primary or sec-100

ondary) occur (Steinberg & Groisman 1998). They involve non-axisymmetric flow states101

and standing or travelling elastic waves such as ribbons (RIB) (Baumert & Muller102

1999; Latrache et al. 2016), spiral vortex flow (SVF) (Avgousti & Beris 1993; Moham-103

madigoushki & Muller 2017) and rotating spiral waves (RSW) (Groisman & Steinberg104

1996; Thomas et al. 2006; Dutcher & Muller 2013; Lacassagne et al. 2020). Upon105

increasing Re or El, such pre-chaotic states are replaced by unsteady, chaotic flow states,106

that have been called disordered oscillations (DO) (Groisman & Steinberg 1996), defect107

mediated turbulence (DMT) or spatio-temporal intermittency (STI) (Latrache et al.108

2012, 2016). They all consist in a gradual transition to elasto-inertial turbulence (EIT)109

(Dutcher & Muller 2013; Liu & Khomami 2013; Perge et al. 2014; Lacassagne et al. 2020).110

Elasto-inertial (and elastic) turbulence induces spatial and temporal chaos in fluids that111

would otherwise have been flowing in laminar states without elasticity, promoting mixing112

and momentum transfer (Groisman & Steinberg 2004).113

1.2. Shear-thinning Taylor-Couette flows with negligible elasticity114

In shear-thinning fluids with negligible elasticity, the typical transition pattern is115

“Newtonian-like”: CF-TVF-WTVF (Escudier et al. 1995; Bahrani et al. 2015; Topayev116

et al. 2019; Cagney & Balabani 2019b). In the small gap limit, a decrease in the critical117

Reynolds number for the formation of Taylor vortices ReTV Fc (destabilisation) occurs118

with increased shear-thinning. This has been observed both experimentally (Cagney et al.119

2020; Cagney & Balabani 2019a; Escudier et al. 1995) and numerically (Ashrafi & Khayat120

2000; Caton 2006). In the large gap limit, shear-thinning has a non-monotonic effect on121

ReTV Fc , (Sinevic et al. 1986; Lockett et al. 1992; Cagney & Balabani 2019a; Alibenyahia122

et al. 2012).123

The spatial wavelength of the TVF has been found to increase with increased shear-124

thinning, as observed in experiments and the linear stability analysis by Bahrani et al.125

(2015) (in a large gap flow cell), laser-Doppler velocimetry measurements by Escudier126

et al. (1995), or particle image velocimetry (PIV) in Cagney & Balabani (2019b). From127
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the two later works and recent numerical simulations by Topayev et al. (2019) and128

Alibenyahia et al. (2012), shear-thinning was found to modify the structure of the Taylor129

vortices, by making individual vortices asymmetric, and increasing the amplitudes of the130

travelling waves at the inward and outward jets. Sparse data on the critical Re value131

for the TVF to WTVF (Bahrani et al. 2015; Cagney et al. 2020) suggest that the TVF132

to WTVF transition happens at lower Re values with increased shear-thinning. Shear-133

thinning also alters the structure of the wavy vortices (Cagney & Balabani 2019b; Cagney134

et al. 2020).135

1.3. Combined shear-thinning and elasticity136

The effects of shear-thinning and elasticity have been studied separately in the liter-137

ature, with elastic fluids having received more attention to date. There is still a lack of138

experimental work on fluids combining the two properties. In studies focused on elastic139

fluids, shear-thinning, when reported, is generally mild and typically neglected. However,140

even moderate shear-thinning can have a significant impact on the base flow structure,141

and thus on the development of elastic instabilities. The onset of the primary instability142

is found at lower critical Re values than in Newtonian fluids, regardless of shear-thinning143

(Larson et al. 1994; Crumeyrolle et al. 2002; Dutcher & Muller 2011, 2013; Schaefer144

et al. 2018; Cagney & Balabani 2019b; Cagney et al. 2020). The main challenge resides145

in describing higher order, higher Re flow transitions.146

Latrache and co-workers performed a series of experimental works using shear-thinning147

and viscoelastic PolyEthylene Oxide (PEO) solutions in low viscosity solvents. They148

reported several types of transition patterns, from Newtonian-like (Crumeyrolle et al.149

2002) at El < 0.03, to “elastic-like” with RIB (Crumeyrolle et al. 2002, 2005) and EIT150

states (Latrache et al. 2012, 2016; Abcha et al. 2018). In Crumeyrolle et al. (2005)151

and Latrache et al. (2016), defect mediated turbulence was reported, entailing a local152

collision of RIB waves leading to a spatio-temporal heterogeneity of the RIB map. The153

multiplication of such features ultimately leads to a fully disordered flow that can be154

labelled DO or EIT. In a recent work (Lacassagne et al. 2020), we reported an analog155

behaviour of elasticity promoting local anomalies in the flow, this time in a non-shear-156

thinning Boger fluid. The mechanism was yet different from DMT, as it consisted in157

merging and splitting of base Taylor vortices crossed by axial RSW waves, instead of158

defects in RIB amplitude. It thus appears that the mechanisms for transition to EIT are159

greatly affected by the shear-thinning behaviour of the fluid.160

Dutcher & Muller (2009, 2011, 2013) also used shear-thinning and elastic PEO solu-161

tions, to study the effects of weak and intermediate elasticity. Comparing their results162

with those of Crumeyrolle et al. (2002), the authors argued that the difference in the163

ratio of polymer and solvent viscosity may explain the different flow transitions observed164

at similar El values. This polymer-to-solvent viscosity ratio is intrinsically related to the165

shear-thinning property: the higher this ratio, the more the polymer contributes to the166

overall viscosity and the stronger the shear-thinning level is likely to become.167

In our recent work (Cagney et al. 2020), xanthan gum (XG) solutions with systemati-168

cally increasing concentration were produced, yielding fluids with both increasing shear-169

thinning and elastic properties. Even at high El values, the Newtonian-like transition170

pattern associated with shear-thinning fluids was retrieved, and no typical features of171

elastic behaviours (RSW, RIB, EIT) were reported. In this study, as in those of Latrache172

and co-workers, disentangling the effects of shear-thinning and elasticity was difficult, as173

both properties were varied simultaneously with the polymer concentration. Moreover,174

many previous studies examining TC flow of XG solutions did not fully characterise the175

rheology and assumed negligible elasticity, making it challenging to distinguish the effects176
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of either phenomenon on the flow (Elçiçek & Güzel 2020a,b; Bahrani et al. 2015; Masuda177

et al. 2017).178

Finally, in TC flows of shear-thinning and elastic WMS, travelling vortices (SVF),179

standing waves (RIB) and transition to EIT have been reported. In Perge et al. (2014) the180

typical transition pattern is CF-RIB-EIT in a significantly shear-thinning fluid (n = 0.45)181

at El ∼ 1. In Mohammadigoushki & Muller (2017), travelling vortices that could be SVF182

were reported, as well as a transition to EIT.183

Experimental data on Taylor-Couette flow of fluids that are both shear-thinning and184

viscoelastic is inconclusive regarding how shear-thinning affects elastic instabilities and185

transitions. It appears that elastic fluids may exhibit a Newtonian-like transition pattern,186

in the low elasticity limit (Dutcher & Muller 2011; Crumeyrolle et al. 2002), but also187

at high El when they are also shear-thinning (Cagney et al. 2020), suggesting that188

shear-thinning may act to reduce or suppress elastic instabilities. Such a shear-thinning189

modification of elastic effects has also been observed in other types of flows (PEO in190

serpentine micro-channel, Casanellas et al. (2016), WMS flow past micro-pins, Haward191

et al. (2020)). On the other hand, shear-thinning is known to be conditional for some192

elastic instabilities to develop, for example in viscoelastic (pressure driven) channel flows193

(Bodiguel et al. 2015; Barlow et al. 2019).194

In this work, we thus aim at disentangling the effects of shear-thinning and elasticity195

on TCF transitions and patterns in polymer solutions. We present flow visualisation196

measurements of TCF for polymer solutions with variable degrees of elasticity and shear-197

thinning. The remainder of the paper is structured as follows. Firstly, the experimental198

system is described in section 2. The results of flow visualisation experiments are then199

reported in section 3. In section 4, the combined effects of shear-thinning and elasticity200

on transitions to TVF and WTVF and EIT, including potential suppression of the latter,201

are discussed, and some concluding remarks can be found in section 5.202

2. Experiments203

2.1. Taylor-Couette cell204

The experiments were performed in a custom made Taylor-Couette flow cell. It com-205

prised an outer cylinder made of an acrylic pipe, mounted vertically between two acrylic206

plates, and a black PTFE inner cylinder. The latter had a conical tip complementary to207

a dent in a bottom plate which allowed to reduce bottom friction while, together with208

a ball bearing at the top lid, ensuring alignment between inner and outer cylinder. The209

top and bottom lids were stationary, with a ∼ 3 mm gap between lid and cylinder at210

both ends. The cylinder was driven from the top using a stepper motor (SmartDrive Ltd,211

Cambridge, U.K.), the rotation of which could be controlled to a high degree of precision212

by a 52 000 microstep/revolution controller (SmartDrive Ltd, Cambridge, U.K.). The213

inner chamber, which was completely filled with working fluid, had an axial length of214

L = 135 mm. The inner and outer radii of the flow cell were 21.66 mm and 27.92 mm,215

respectively. The radius ratio was thus η = 0.77, the gap width was d= 6.26 mm, and216

the aspect ratio was AR = 21.56. The geometric parameters are sketched on figure 1.217

The flow section was enclosed in a rectangular chamber in which water was recirculated218

via a temperature bath to ensure that the temperature remained constant and close219

to 20°C throughout experiments. The temperature within the flow cell was measured220

immediately before and after each experiment, and it was found to vary by less than221

0.2°C.222
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Figure 1: Sketch of the test-section and flow visualisation system.

2.2. Polymer solutions and rheological characterisation223

Optically clear shear-thinning and viscoelastic polymer solutions were prepared by224

dissolving XG (Sigma Aldrich) into a mixture of glycerol and deionized water. The weight-225

averaged molecular mass Mw was measured by size exclusion chromatography and found226

equal to 1.76× 106 g.mol−1 (Cagney et al. 2020).227

Various degrees of elasticity and shear-thinning of the XG solutions were achieved by228

varying solution composition (polymer concentration and glycerol volume fractions). For229

comparison, a Boger fluid was prepared by dissolving small concentrations of PolyAcry-230

lamide (PAAM, Mw = 5.5 × 106 g.mol−1, Sigma Aldrich) into deionized water-glycerol231

mixtures. Polymers were progressively added to the solvent, left to dissolve overnight232

without any agitation, to prevent polymer chain destruction in the preparation process,233

and the mixture was finally homogenised by gentle shaking. Polymer type, concentration,234

and solvent composition and viscosity for each working fluid used in this work are listed235

in table 1. The sample naming convention used throughout the paper is the following:236

letters correspond to the polymer used (XG for xanthan gum, P for polyacrylamide, N237

for none), the last two digits after the “-” sign to the glycerol volume fraction (e.g. -72238

for 72%) and the middle number, if present, to the polymer concentration in ppm (parts239

per million in weight).240

The steady-shear rheology of all working fluids was measured using a rotational241

rheometer (ARES, TA Instruments) equipped with a Couette geometry (inner radius242

32 mm, outer radius 34 mm) in steady shear mode. All XG samples exhibit shear-243

thinning. The shear viscosity of PAAM sample remains almost constant for a wide range244

of shear rates. Flow curves (viscosity versus shear rate) for all working fluids are shown245

in figure 2. The shear-thinning data can be described using a Carreau model246

µ(γ̇) = µ∞ + (µ0 − µ∞)
(

1 + (tcγ̇)
2
)(nc−1)/2

, (2.1)



7

Figure 2: Viscosity as a function of shear rate for polymer solutions (filled symbols for
XG, open symbols for PAAM) at various concentrations and in solvents of three different
glycerol volume fractions, 25% (triangles), 50% (circles) and 72% (squares). Expected
solvent constant viscosities µs are derived from Volk & Kähler (2018) and plotted as
dotted lines. The measured viscosity for the reference Newtonian case (72% glycerol in
water) is represented by black crosses.

ID Pol. C Gly. ρ µs µ0 µ∞ nc tc
µ0

µ∞
te

ppm %v Kg.m−3 Pa.s Pa.s Pa.s s s

N-72 - 0 0.72 1198 0.0363 - - - - 1.0 -
P500-72 PAAM 500 0.72 1198 0.0363 0.0573 0.0425 0.6622 0.2268 1.35 0.1939
XG200-72 XG 200 0.72 1198 0.0363 0.5027 0.0419 0.5734 6.949 12.0 0.1257
XG200-50 XG 200 0.50 1142 0.0083 0.1291 0.0084 0.5860 2.895 15.3 0.2194
XG1000-72 XG 1000 0.72 1198 0.0363 3.674 0.0419 0.5009 16.48 87.7 11.46
XG1000-25 XG 1000 0.25 1072 0.0024 0.5199 0.0024 0.5386 6.9133 214 2.536
XG2000-50 XG 2000 0.50 1142 0.0083 8.090 0.0084 0.3709 22.20 967 50.24

Table 1: Polymer solutions and their rheological properties at 20 °C. The sample labelling
scheme is the following (ID column): XXiii-jj where XX is the polymer molecule used (N
if no polymer), iii is the polymer concentration in ppm (empty if no polymer), and jj is
the glycerol volume fraction in the solvent in volume %.

where µ∞ and µ0 are viscosity plateau values at infinite and zero shear respectively, tc247

is the characteristic Carreau time scale, and nc is the Carreau flow index. The fitted248

expressions are plotted on figure 2 as full lines. The estimated parameters for each fluid249

are also displayed in table 1. The ratio µ0/µ∞ (reported in the last column of table 1)250

indicates the difference between so called Boger fluids, for which the viscosity can be251

assumed constant with µ0/µ∞ ∼ 1, and shear-thinning fluids for which µ0/µ∞ � 1. For252

a given fluid, the degree of shear-thinning (slope of the curve) was shear-rate dependent.253

This means that the effective shear-thinning behaviour varied as the rotation speed was254

varied. It is thus convenient to define a shear rate dependent, “effective” flow index from255

the local slope of the flow curve in a log-log space (sketched on figure 2, see Coronado-256

Matutti et al. (2004); Cagney & Balabani (2019b); Cagney et al. (2020)):257
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Figure 3: G’ (open symbols) and G” (filled symbols) moduli for XG and PAAM solutions
at various concentrations and in various glycerol water solvents.

ne =
∂log(µ)

∂log(γ̇)
+ 1, (2.2)

where ne is equivalent to the previously defined flow index n, but accounts for the non-258

power-law behaviour via shear-rate dependency. An effective flow index close to unity259

means that the fluid behaves as a Newtonian fluid, and the effective flow index decreases260

with increasing shear-thinning behaviour. While nc may vary non-monotonically with261

polymer concentration, ne always decreases with increasing polymer concentration at262

a given shear-rate and for a given solvent, and is a better indication of the degree of263

shear-thinning in each fluid (Cagney et al. 2020).264

The elastic properties of the samples were quantified by oscillatory shear experiments265

on the same rheometer and geometry. The evolution of G′ and G” with oscillation266

frequency were measured for γ = 5%. G′ and G” frequency sweeps are shown in figure 3.267

For this study, a common way to estimate elastic time-scales for the various types of268

fluids used and compare them, regardless of the solvent contribution to viscosity, was269

needed. To do so, the loss modulus curves from figure 3 were corrected by removing the270

contribution of the solvent viscosity (Zirnsak et al. 1999), such that271

G̃” = G”− µsω. (2.3)

The elastic time scale could then be obtained from the crossover frequency ω̃c between272

G’ and G̃” curves (not shown in figure 3 for the sake of readability), such that te = 2π/ω̃c.273

Doing so, one could access the polymer time-scale regardless of the solvent used (even274

in fluids for which the solvent contribution to the overall viscosity is large compared to275

the polymer one, and for which no crossover between G’ and G” can be observed in276

figure 3). Estimated time scales agreed with those estimated from Zimm approximation277

or multi-mode Maxwell fitting on G’ and G” curves (Öztekin et al. 1994).278

2.3. Flow visualisation experiments279

The flow was visualized by adding reflective mica flakes to the fluid (Cornelissen & Son,280

Pearl Lustre Pigments), at a volume fraction of the order of 10−4, similar to previous281

studies (Cagney & Balabani 2019b; Cagney et al. 2020). Images of a vertical strip along282

the cylinder’s axial dimension were acquired by a Phantom Miro 340 camera (see figure283

1). The frame rate fs was adjusted throughout the experiments in order to achieve high284

temporal resolution of the Reynolds number range studied. For ramp up and steady285
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Sample Test fs 1/∆Re Ωmax ne El dΩ/dt Γ0 Transition sequence
Hz s−1 s−2

N72 1 75 224.32 66.96 1.0 0 0.07463 0.4338
CF-TVF-WTVF

N72 2 30 201.88 66.96 1.0 0 0.03317 0.1928

P500-72 1 200 225.56 99.23 0.96 0.19 0.2911 0.7705

CF-TVF-RSW-
EIT

P500-72 2 200 225.56 99.23 0.96 0.19 0.2911 0.7705
P500-72 3 90 253.77 99.23 0.96 0.19 0.1164 0.3082
P500-72 4 90 255.43 87.64 0.97 0.21 0.1023 0.3473
P500-72 5 90 255.43 87.64 0.97 0.21 0.1023 0.3473

XG200-72 1 62 236.4 108.0 0.85 0.88 0.09161 0.2047 CF-TVF-(RSW)-
EIT-WTVFXG200-72 2 90 258.4 107.1 0.85 0.17 0.1208 0.2743

XG200-50 1 42 178.9 36.80 0.75 0.080 0.02770 0.5330
CF-TVF-RSW-
WTVF

XG200-50 2 42 178.9 36.80 0.75 0.080 0.02770 0.5330
XG200-50 3 62 281.1 36.18 0.73 0.14 0.02549 0.5078

XG1000-72 1 250 157.5 147.5 0.72 35 0.7448 0.8924

CF-EIT
XG1000-72 2 250 150.1 153.3 0.71 13 0.8125 0.9013
XG1000-72 3 50 157.5 147.5 0.72 35 0.14895 0.1785
XG1000-72 4 90 270.1 153.3 0.71 13 0.1625 0.1803

XG1000-25 1 30 199.9 46.84 0.58 1.2 0.02229 0.2648 CF-TVF-WTVF

XG2000-50 1 94 162.2 76.50 0.46 67 0.1385 0.6168

CF-TVF-SVF-
RSW-EIT

XG2000-50 2 42 212.5 95.02 0.56 74 0.05875 0.1696
XG2000-50 3 200 235.5 82.75 0.46 67 0.2198 0.8366
XG2000-50 4 200 235.5 82.75 0.46 67 0.2198 0.8366

Table 2: Experimental conditions for ramp up experiments, and transition sequence
reported. Samples rheological characterisation is reported in table 1. CF: Couette Flow,
TVF: Taylor Vortex Flow, WTVF: Wavy Taylor Vortex Flow, RSW: Rotating Spiral
Waves, SVF: Spiral Vortex Flow, EIT: Elasto-Inertial Turbulence.

Sample Test fs Ω Re ne El Γ0 State
Hz s−1

XG200-50 S1 620 12.22 76 0.73 0.14 0.5078 RSW
XG200-50 S2 620 16.80 114 0.73 0.14 0.5078 WTVF
XG200-50 S3 620 25.96 198 0.73 0.14 0.5078 WTVF
XG2000-50 S1 600 26.44 52 0.47 72 0.2216 SVF
XG2000-50 S2 600 31.73 69 0.47 72 0.2216 RSW
XG2000-50 S3 600 34.37 79 0.47 72 0.2216 RSW-EIT
XG2000-50 S4 600 52.88 152 0.47 72 0.2216 EIT

Table 3: Experimental conditions: Steady state experiments. Γ0 specifies the maximum
non-dimensional acceleration rate used in the ramp up leading to the recorded steady
state.
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state experiments, the frame rates used allowed all temporal frequencies in the flow to286

be resolved.287

The 2176×16 pixel2 images were horizontally averaged to form an axial intensity profile288

for each instance. All such profiles were compiled into a matrix, or flow map, showing289

the evolution of the intensity profile over time or any time dependent parameter, such290

as Re (see e.g figure 6 b). In a second step, the flow maps were divided into segments291

of Nc = 256 columns (successive snapshots), with a 50% overlap, in order to calculate292

the average Fast Fourier Transform (FFT) for each row (i.e. each axial location) in each293

segment. All the averaged spectra were subsequently compiled to form a frequency map294

(see e.g. figure 6 c, (Cagney & Balabani 2019b)). This map shows the evolution of the295

temporal frequencies of the flow as a function of time or Re. On frequency maps, a clear296

ridge may appear for regions with f = fΩ/2π (see figure figure 6 c), with fainter additional297

ridges at f = k × fΩ/2π. These ridges arise from the ability of the visualisation method298

to detect the rigid body rotation frequency of the inner cylinder and its harmonics, and299

should not be interpreted as fluid flow frequencies.300

In this work, the focus is on ramp up experiments: Ω was increased at a constant301

rate, dΩ/dt, up to a maximum rotation speed Ωmax, which led to an increase in the302

Reynolds number up to Remax ' 300. For shear-thinning fluids, Re was computed using303

an effective viscosity µ(γ̇) derived from Carreau fittings, and thus increases non-linearly304

with Ω. The flow maps resolution in terms of Reynolds number is quantified by the305

ratio 1/∆Re, reported in table 2, where ∆Re is the average Reynolds number variation306

between two successive images. The (Newtonian) non-dimensional acceleration rate is307

defined as308

Γ0 =
dRe

dt∗
=
ρ2rid

3

µ2

dΩ

dt
, (2.4)

where t∗ = t/tv is the time divided by the viscous time-scale. This acceleration rate must309

be kept low (typically Γ0 < 1) to ensure that flow states are independent of the cylinder310

acceleration, i.e. that the ramp up can be treated as a quasi-static process (Dutcher &311

Muller 2009). In appendix A of the present work, we present an investigation of the312

effects of acceleration on our experimental conditions, achieved by performing specific313

experiments in which the acceleration rate was varied over three decades. Based on the314

results of this investigation, the acceleration rates used for the main set of experiments315

(section 3) were selected. Values of ramp up parameters are reported in table 2. Values of316

the Nahme-Griffith number (see definition in supplementary information) were estimated317

to be of order 10−1 at most for all working fluids at all shear rates, thus indicating that318

viscous heating effects are negligible (White & Muller 2002b,a).319

For shear-thinning fluids, El and Γ0 were not exactly constant during the ramp up320

process as the viscous time scale depends on the rotation speed in a non-linear fashion321

(Dutcher & Muller 2013; Cagney et al. 2020). In a Carreau fluid, ne also varies with322

the shear rate, which depends on the rotation speed. Thus reference values for each run,323

taken as the average over the Reynolds range from 20 to Remax are also displayed in table324

2. Such run-averaged values are noted by overbar symbols (e.g. ne or El). The reference325

value for Γ0 was chosen as the maximum one and simply noted Γ0 hereafter for the sake326

of simplicity.327

Additionally, some “steady state” experiments were performed in order to visualise328

specific flow states for longer times. For this type of experiment, the cylinder was first329

accelerated at dΩ/dt corresponding to a maximum acceleration rate Γ0 until the targeted330

rotation speed/Reynolds number was reached, and the acquisition started. Details of such331
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experiments are provided in table 3. The absence of polymer degradation was verified for332

all fluids by comparing the steady and oscillatory shear rheological characterisation made333

before and after the flow visualisation experiments. An example of such a comparison334

between pre-experiment and post-experiment rheological characterisations is available in335

the supplementary information for the XG2000-50 case (chosen as the most critical in336

terms of degradation probability, with its high polymer contribution to the viscosity and337

the strong shear-rate at which it is employed during experiments).338

3. Results339

3.1. Overview of flow transitions340

An overview of all flow states and ramp up experiments is first presented. Each341

experiment starts from Re = 0 and Re is progressively increased. Flakes align with342

dominant flow structures, reflecting light more or less intensely depending on their343

orientation, allowing to capture various transitions to CF, TVF, WTVF, RSW, EIT,344

and SVF. A time-space diagram, at constant Re, is provided for each flow state in figure345

4 a to f. In TVF, SVF or WTVF, the flakes align with the (wavy/spiraling) Taylor346

vortices, giving rise to a band like structure (figure 4 a) that may be seen oscillating347

(figure 4 b) or travelling 4 e) for WTVF and SVF, respectively. In RSW, the base TVF348

structure is still visible but additional patterns appear due to the local alignment of the349

flakes with axial elastic waves 4 c). In EIT, the random alignment of flakes with a set of350

various spatial flow structures translates into a chaotic intensity signal and space-time351

plot (figure 4 d). Note that in CF, flakes are all aligned in the azimuthal direction, and352

the resulting time-space diagram is homogeneously gray (figure 4 f).353

Examples of spatial and temporal FFT (denoted as FFTs and FFTt) of the space-354

time plots are shown in figure 4 g and h, as a function of the spatial wavelength and355

temporal frequency, respectively. These are computed along vertical and horizontal lines356

of subplots from figure 4, respectively. The location of the peak(s) in these spectra,357

if present, can be used to determine the major spatial wavelength(s) λ and temporal358

frequency frequencie(s) of the flow.359

Figure 5 a) shows the succession of flow states encountered during several ramp up360

processes (only one experiment per working fluid is shown for the sake of readability), in361

a 3D space of elasticity, shear-thinning (1-ne) and reduced Reynolds number (Re/Re0),362

where Re0 = 107 is the critical ReTV Fc Reynolds number for the CF to TVF transition for363

Newtonian fluids in the present setup. A table summarizing all critical Reynolds numbers364

for flow transitions is available in the supplementary information file. The results of365

Cagney et al. (2020) have also been rescaled and added to the graph as dashed lines with366

the same colour code. Figures 5 b and 5 c are projections of figure 5 a in (El,Re) and367

(1-ne,Re) planes, respectively. The transition patterns are also summarized in table 2.368

No clear trend appears from the 2D projections: several regimes may co-exist in some369

regions of the plots. For example at Re = 2×Re0 and El ∼ 0.1, the P500-72 experiment370

features EIT while the XG200-50 experiment is in the WTVF state for similar inertia371

and elasticity (figure 5 b). Similarly, at Re = 2 × Re0 and for 1 − ne ∼ 0.3, XG1000-72372

experiments feature EIT while XG200-50 is in the WTVF state, while at equivalent levels373

of inertia and shear-thinning(figure 5 c). It is therefore necessary to consider all three374

parameters to distinguish preferential regions for each flow state in the three dimensional375

parameter space, as done in figure 5 a). WTVF can be found at high Re/Re0, but only376

for intermediate elasticity. Conversely, EIT requires either strong elasticity or negligible377
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Figure 4: Illustrative panel of observed flow maps and flow states. (a-f) are time-space
diagrams on ∆t intervals of 3 to 15 s spanning the 10 < z/d < 15 vertical region. a)
N72, Re=120 b) N72, Re=250 c) P500-72, Re=110 d) P500-72, Re=150 e) XG2000-50,
Re=52 f) P500-72, Re=50. g) and h) illustrate typical spatial and temporal spectra,
FFTs andFFTt, obtained by FFT processing along the vertical and horizontal dashed
lines in (a-e), respectively.

shear-thinning to develop. The existing conditions of different flow states based on the378

rheological and inertial parameters are detailed and discussed in the rest of section 3.379

3.2. Non shear-thinning cases380

3.2.1. Newtonian fluid381

In the Newtonian reference case, the expected CF-TVF-WTVF transition pattern is382

retrieved, as illustrated in figure 6 with the N72-1 experiment. Prior to the onset of any383
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Figure 5: Summary of experiments in (Re/Re0, 1− ne, El) (a), (Re/Re0, El) (b) and
(Re/Re0, 1− ne) (c) parameter spaces. Each path corresponds to a single ramp up
experiment. Each flow state is associated with a line colour according to the legend
(colours online). Full lines report experiments from the present work, and dashed lines
experiments from Cagney et al. (2020), performed in similar conditions (polymer batch,
geometry, ramp up protocol, flow visualisation method) on xanthan gum samples at
various concentrations dissolved in a 25% glycerol in water solvent.

instability, Ekman vortices (Cole 1976) develop at the top and bottom of the cylinder (see384

e.g. figure 6 b), top and bottom). The transition from CF to a band-like TVF structure385

can be clearly seen by a jump in the rms value of the z-intensity profile 6 a, denoted386

i∗. The CF to TVF transition occurs at ReTV Fc = 107 = Re0 and the transition from387

TVF to WTVF occurs at ReWTV F
c = 218 = 2.03 × Re0. The latter, while difficult to388

observe on the flow map (figure 6 b) due to a weak spatial amplitude, is clearly seen on389

the frequency map (6 c) when an additional frequency ridge appears. Both results are390

consistent with the values reported in the literature (see for example Dutcher & Muller391

(2009); Cagney & Balabani (2019b); Ramesh et al. (2019)), ranging from 80 to 120 and392

170 to 450 respectively. The wavelength of TVF is λ = 0.89d. The critical wavy frequency393

at the onset of the WTVF is fw = 1.02× fmax = 1.40× Ω
2π .394
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Figure 6: Intensity signal (a), flow map (b) and frequency map (c) for the N72-1
experiment (El=0, ne=1). In a) and all subsequent similar figures, i∗ is the root mean
square gray level intensity of sub-plot b) along the z/d dimension, scaled by its maximum
value on the Re range. The dashed line on sub-figure c denotes the inner cylinder rotation
frequency fΩ . fmax is the rotation frequency corresponding to Remax. Vertical dotted
lines shows the transitions between flow regimes.

3.2.2. Boger fluid395

In the Boger fluid case (P500-72), the transition pattern observed is CF-TVF-RSW-396

EIT (see figure 7). It is consistent with transitions reported in the literature for moderate397

or high elasticity fluids (Groisman & Steinberg 1996; Schaefer et al. 2018). The onset of398

TVF happens at lower Re than in the Newtonian case, ReTV Fc = 97 = 0.90×Re0. Elastic399

waves (RSW) appear soon and abruptly after the onset of the TVF state, at ReRSWc =400

103 = 0.96 × Re0, as several horizontal ridges become visible in the frequency map401

(figure 7 c). These correspond to elastic waves, the frequency of which is not correlated402

to the Reynolds number but rather to the constant elastic number, through the elastic403

time scale (see Gillissen (2019); Lacassagne et al. (2020)). As a point of comparison,404

Dutcher & Muller (2013) reports transition to TVF at ReTV Fc /Re0 = 1.07 and to RSW405

at ReRSWc /Re0c = 1.13 in moderately elastic Boger fluids (El = 0.1− 0.2). The apparent406

spatial wavelengths are λ = 0.82d and λ = 0.89d in TVF and RSW states, respectively,407

while Dutcher & Muller (2013) reported λ ≈ 1.6d in both states. The flow finally becomes408

increasingly disordered with Re, and quickly transitions to EIT at Re values for which it409

would be laminar under purely inertial conditions.410

3.3. Shear-thinning dominated fluids411

In the highly shear-thinning (ne = 0.5766) XG1000-25-1 case, a Newtonian-like tran-412

sition pattern is observed: CF-TVF-WTVF (figure 8). A similar behaviour has been413

reported in several other studies where the fluid exhibited a non-negligible shear-thinning414
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Figure 7: Intensity signal (a), flow map (b) and frequency map (c) for the P500-72-
3 experiment (El=0.19, ne=0.96). The dashed line on sub-figure c denotes the inner
cylinder rotation frequency. Vertical dotted lines denote the transitions between flow
regimes.

behaviour and negligible to moderate elasticity (Crumeyrolle et al. 2002; Cagney &415

Balabani 2019b,a; Cagney et al. 2020). Here it occurs despite the elastic number (El =416

1.2) being approximately five times that of the fluid discussed in the previous section.417

Boger fluids of equivalent elastic number in the present experimental set-up are expected418

to exhibit elastic flow features such as RSW or transition to EIT, as suggested by419

experiment reported above (section 3.2.2). The absence of these in the flow map of420

figure 8 suggests that elastic effects are suppressed by shear-thinning. The CF to TVF421

transition occurs at ReTV Fc = 72 = 0.67×Re0. The flow is thus destabilised by combined422

shear-thinning and elasticity. The spatial wavelength of TVF is λ = 0.99, which is, as423

expected, slightly larger than that for the Newtonian case (Escudier et al. 1995; Cagney424

& Balabani 2019b). The WTVF arises at ReWTV F
c = 109 = 1.01 × Re0, again much425

sooner than in the Newtonian case. Moreover, at the onset of WTVF, the wave frequency426

is lower than the inner rotation frequency (fw = 0.432 × Ω
2π ) while it is higher in the427

Newtonian case. Finally, the complexity of the WTVF is enhanced, with ridges appearing428

and disappearing as Re increases.429

3.4. Elasticity dominated fluids430

By keeping the same polymer at the same concentration (XG 1000 ppm) but simply431

increasing the solvent viscosity (XG1000-72-2 experiment), it is possible to produce a432

fluid of much higher elasticity (El = 13) and weaker shear-thinning (ne = 0.71). This433

fluid exhibits strikingly different patterns (figure 9). The flow abruptly transitions from434

CF to EIT, which is the typical behaviour of highly elastic fluids (Groisman & Steinberg435

1996). This transition is easily detected from the abrupt jump in intensity rms signal436
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Figure 8: Intensity signal (a), flow map (b) and frequency map (c) for the XG1000-
25-1 experiment (El=1.2, ne=0.58). The dashed line on sub-figure c denotes the inner
cylinder rotation frequency. Vertical dotted lines denote the transitions between flow
regimes. Note that the rotation frequency detected varies non-linearly with Re, due to
the shear-thinning behaviour (Cagney & Balabani 2019b).

(figure 9 a). No specific frequency can be identified in the flow map, as was also the437

case in the Boger fluid (figure 7) in the EIT state. The CF-EIT transition occurs at438

ReEITc = 47 = 0.44 × Re0, which is in line with the results reported by Groisman &439

Steinberg (1996): elasticity strongly destabilizes the base Couette flow. While the latter440

is a well known result, the very different transition sequences in figures 8 and 9 constitute441

an interesting novelty of this study. Depending on the relative degrees of shear-thinning442

and elasticity dictated by the solvent properties, the flow of the same polymer at the same443

concentration may exhibit completely different hydrodynamic behaviours. Observations444

thus suggest that not only elasticity destabilises the flow, but it can also induce various445

hydrodynamic regimes by tuning the relative degrees of shear thinning and elasticity.446

3.5. Moderate shear-thinning and elasticity447

Through changes in both solvent viscosity and polymer concentration, we can then448

keep a similar flow index (ne ≈ 0.8) and adjust the elasticity to be equivalent to that449

in the Boger fluid (El ≈ 0.1, figure 7, sub-section 3.2.2)), in order to probe the flow450

transitions in the moderate elasticity, moderate shear thinning regime of the parameter451

space (figure 5).452

The behaviour (illustrated in figure 10, XG200-50-3 ramp up experiment) approaches453

that of a fluid dominated by shear-thinning, with a Newtonian-like transition pattern,454

as shown in figure 8. The only notable difference is the existence of an intermediate455

RSW state between the TVF and WTVF states. The CF to TVF transition occurs at456

ReTV Fc /Re0 = 0.62. RSW waves appear at ReRSWc /Re0 = 0.67 and completely disappear457
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Figure 9: Intensity signal (a), flow map (b) and frequency map (c) for the XG1000-72-2
experiment (El=13, ne=0.71). The dashed line on sub-figure c denotes the inner cylinder
rotation frequency. Vertical dotted lines denote the transition from CF to EIT. Note that
the rotation frequency detected varies non-linearly with Re, due to the shear-thinning
behaviour, but this non-linear trend is weaker than in figure 8 c), the shear-thinning
index being here closer to 1.

after ReWTV F
c /Re0 = 0.83. This RSW pattern bears some similarities with that exhibited458

by the Boger fluid (figure 7). However, shear-thinning seems to modify the nature of the459

RSW waves by enhancing their dependency on inertia, since the ridges are not completely460

Re-independent (figure 10 c).461

Instead of EIT (as occurs for a Boger or elasticity dominated fluid), the flow transitions462

back to WTVF with increasing Re. The WTVF state exists at Re values lower than463

in the Newtonian case (Re ' 100), in line with the results for Newtonian-like shear-464

thinning fluids described in section 3.3. In order to investigate this specific RSW to465

WTVF transition further, steady state experiments were performed on this fluid at three466

different Re values: Re = 76 (S1), Re = 114 (S2) and Re = 198 (S3) (see table 3). These467

are described in figure 11.468

The S1 case (figure 11 a and d) displays a RSW pattern in which the base TVF469

structure is still visible, but periodic patterns are very pronounced. The frequency470

spectrum (figure 11 h) clearly shows multiple peaks, with the highest energy peak found471

at f = 0.33 × Ω
2π . The S2 case (figure 11 b and e) lies between S1 and S3, with an472

evident WTVF structure; however, darker and whiter spots can be detected along given473

horizontal lines (figure 11 e), indicating persisting RSW waves. The S3 case (figure 11474

c and f) shows a WTVF pattern similar to other reported shear-thinning WTVF states475

(figure 8, Cagney & Balabani (2019b)). The wavy frequency is lower than the inner476

cylinder frequency (fw = 0.750 × Ω
2π at Re = 198, or fw = 0.689 × Ω

2π at Re = 150 in477

figure 10 c). Multiple secondary peaks are visible, indicating a complex wavy behaviour.478
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Figure 10: Intensity signal (a), flow map (b) and frequency map (c) for the XG200-
50-3 experiment (El=0.14, ne=0.73). The dashed line on sub-figure c denotes the inner
cylinder rotation frequency. Vertical dotted lines denote the transitions between flow
states. Note that the rotation frequency detected varies non-linearly with Re, due to the
shear-thinning behaviour (Cagney & Balabani 2019b).

S2 and S3 share a common peak at the same fw value when the frequency is scaled by Ω479

(figure 11 h). This peak is thus characteristic of an inertial flow feature, namely, WTVF.480

On the other hand, the lower frequency peak found in S1 at f = 0.33× Ω
2π is retrieved on481

S2 and S3 but progressively drifts towards higher frequencies with increasing Re when the482

same scaling is used. This suggests that this other peak is not associated with inertia, but483

rather correlates with the elastic wave frequency (see figure 7, Lacassagne et al. (2020)).484

This elastic feature (fw scaling with t−1e ) progressively yields to inertia (fw scaling with485

Ω), as the flow gradually transitions from RSW to WTVF. The fact that the RSW ridges486

are not perfectly horizontal in the frequency maps suggests that, in shear-thinning fluids,487

both inertial and elastic effects are involved in the RSW pattern.488

Further insight is brought by slightly shifting the fluids properties towards a more489

elastic, less shear-tinning case (XG200-72, El=0.88, ne=0.85). The transition pattern is490

then CF-TVF-RSW-EIT-WTVF, with an additional EIT state appearing between RSW491

and WTVF. The CF to TVF transition occurs at ReTV Fc /Re0 = 0.43. RSW develops492

over a very limited Re range, from ReRSWc /Re0 = 0.48, quickly transitioning to EIT,493

and then smoothly to WTVF at ReWTV F
c /Re0 = 1.0. At Re = 150 = 1.4 × Re0 where494

the wavy frequency ridge is clearly visible on the frequency map (figure 12 c), the wavy495

frequency is fw = 0.451× Ω
2π .496

This other fluid thus displays an elastic transition sequence(CF-TVF-RSW-EIT) until497

a sufficient amount of inertia (Re) is reached, and the flow re-transitions to a Newtonian-498

like behaviour, yet marked by shear-thinning. It is thus an extension of the previous case499

(XG200-50, figure 10) where elasticity plays a greater role in determining the nature500
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Figure 11: Steady state recordings at constant Re of successive RIB and WTVF states
for the XG200-50 case (El=0.14, ne=0.73). (a-c) Time-space diagrams over 50 s time
spans. (d-f) Close-ups of the same flow maps on the first 5 seconds and in the central
region (dashed rectangles). g) Spatial spectrum and h) temporal spectrum of the three
steady state experiments.

of the transitions, as expected from the variations in rheological properties between501

the two fluids. It also leads to a counter-intuitive observation: the complexity of the502

flow and degree of chaos, induced by elasticity, can be reduced when increasing inertia503

together with shear-thinning. This intriguing behaviour cannot be attributed to polymer504

degradation, as rheological characterisation before and after confirmed the integrity of505

the polymer solutions. A possible explanation is the existence of an underlying damping506

mechanism of elastic waves with increasing inertia (Re).507

Shear-thinning may compete with elasticity to condition the existence of elastic waves508

of flow patterns in the fluid (as previously observed by comparing figures 8 and 9), even to509

the point of re-laminarising the flow (figures 10, 12). Mild shear-thinning with moderate510

inertia allows elastic waves to exist, but high shear-thinning with moderate inertia (see511

XG1000-25 case), or mild shear-thinning with higher inertia (XG200-50, XG200-72) do512

not.513

3.6. Highly shear-thinning, highly elastic fluids514

Experiments with a highly elastic and shear-thinning fluid (XG2000-50-2, El = 74,515

ne = 0.56) are reported in figure 13. The flow transition pattern is mostly elastic-like,516

with the final state being EIT (for Re < 300). It is yet different from that of a Boger517

fluid, with an additional SVF (Spiral Vortex Flow) pattern appearing between TVF and518
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Figure 12: Intensity signal (a), flow map (b) and frequency map (c) for the XG200-
72-1 experiment (El=0.88, ne=0.85). The dashed line on sub-figure c denotes the inner
cylinder rotation frequency. Vertical dotted lines denote the transitions between flow
states. Note that the rotation frequency detected varies non-linearly with Re, due to the
shear-thinning behaviour (Cagney & Balabani 2019b).

RSW. The transition sequence is thus CF-TVF-SVF-RSW-EIT. As expected from the519

strong elasticity and shear-thinning properties of the fluid, the CF destabilises at low Re520

values, and the onset of TVF occurs at ReTV Fc = 37 = 0.34 × Re0. EIT is reached at521

ReEITc = 78 = 0.73 × Re0. The intermediate flow states therefore occur within a short522

Reynolds span. The transitions to RSW and EIT are close in Re values, which compares523

well to the behaviour observed previously in the XG200-72 experiment (section 3.5, figure524

12).525

The additional SVF flow state corresponds to Taylor vortices spiralling and travelling526

along the axial direction, which translates on the flow maps as slanted dark and white527

stripes, not showing any particular temporal signature on the frequency map. The528

existence of such a flow state has been reported in elastic fluids (including the experiments529

of Baumert & Muller (1997), linear stability analysis of Avgousti & Beris (1993)), solid530

particle suspensions (Ramesh et al. 2019; Ramesh & Alam 2020), but also Newtonian531

fluids with counter-rotating outer cylinder (Andereck et al. 1986). Sudden changes of the532

spiralling propagation direction may occur and give rise to a similar flow state called the533

Inter-penetrating Spiral Vortex Flow (ISVF) (Ramesh & Alam 2020; Baumert & Muller534

1997). In the recent works by Elçiçek & Güzel (2020b,a) SVF (sometimes coexisting535

with TVF) has also been observed in shear-thinning (possibly also elastic) XG solutions.536

Remarkably, SVF and ISVF have been found to coexist with RIB states under certain537

conditions (Ramesh & Alam 2020). Indeed, RIB is actually the flow pattern resulting538

from the interactions between up-going and down-going stationary spirals of similar539

amplitudes. Latrache and co-workers (Latrache et al. 2016) have shown that in shear-540
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Figure 13: Intensity signal (a), flow map (b) and frequency map (c) for a highly elastic,
highly shear-thinning fluid (XG2000-50-2 experiment, El=74, ne=0.56). The dashed line
on sub-figure c denotes the inner cylinder rotation frequency. Vertical dotted lines denote
the transitions between flow states. Note that the rotation frequency detected varies non-
linearly with Re, due to the shear-thinning behaviour. d) is a zoom of b) in the SVF state.

Figure 14: Steady state experiments in the SVF (S1), RSW (S2) and EIT (S3, S4) states,
shown on ∆t intervals (horizontal axis) (S1 interval is larger in order to better describe
the SVF state). Superscripts “-” and “+” in S1 denote upward and downward spiralling
velocities, respectively.

thinning and viscoelastic PEO solutions, a local reduction in the amplitude of either541

of the two spirals led to spatial defects, the multiplication of which was a mechanism542

for the transition to EIT. A subregion of the flow map in figure 13 b) in the (I)SVF543

state is shown in detail in figure 13 d). SVF can be found to propagate either upwards or544

downwards. In highly shear-thinning XG solutions, it thus appears that one of the spirals545

can be completely suppressed, either on the full height of the cylinder (figures 13 b), 13546

d), 14 S1), or locally (Elçiçek & Güzel 2020b). SVF or ISVF could thus be thought of as547
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Figure 15: Steady state experiment (30 s) showing the transitional stage between RSW
and EIT in highly elastic and shear-thinning XG2000-50 fluid, at Re = 79. a) Reflected
intensity, b) binarized intensity map. Some of the numerous merging and splitting events
of Taylor-Vortices are highlighted by dashed circles, and the associated vortex drifting
by dashed lines.

an alternative version of the RIB state, whereby shear-thinning combined with elasticity548

prevent spirals from co-existing everywhere in the gap.549

Complementary steady state experiments have been performed and reported in table550

3 and figure 14. This allows the spiral travelling speed to be computed for a constant551

Re = 52 value: VSV F = d × α, where α (expressed in s−1) is the slope of iso-intensity552

lines on a time-(normalized) space flow map (time versus z/d, figures 4 e), 14 a)). It is553

found that V −SV F = −0.84 mm.s−1 in the downward spiralling section of the steady state554

experiment (figure 14, S1, t < 40 s, z/d < 15, lower dashed line). In the upper right corner555

of figure 14, S1 , an upward spiralling region is observed, with V +
SV F = 0.90 mm.s−1 (dark556

dashed line). The very close magnitude of these two velocities suggests that SVF and557

RIB spirals are related, but that SVF corresponds to a bistable state, where a wave of558

given velocity may travel in either direction, while the RIB state requires both waves to559

coexist.560

The steady state experiment in the RSW state (at Re = 69, sub-figure 14 b), shows561

a pattern similar to that of the mild shear-thinning and elastic case XG200-50 in figure562

11. With increasing Re, RSW state becomes increasingly disordered (figure 14 S3) and563

ultimately transitions to EIT (S4). In figure 15, the visualisation of figure 14 S3) is564

extended to a larger time span. Base Taylor vortices are crossed by multiple RSW waves,565

and the occurrence of several merge-split events and associated drifting of such base566

Taylor vortices are observed, leading to increased chaotic behaviours. Some merge-split567

and drifting features are indicated in figure 15 by dashed circles and lines respectively.568

This Merge-Split transition (MST) is a mechanism of transition to EIT in elastic, Boger569

fluids (Lacassagne et al. 2020), and it appears that it also applies here in the case of a570

highly elastic but also shear-thinning fluid.571

Finally, from the steady state experiment above (figure 14), two-dimensional space-572

time spectra can be computed as a means to probe the spatio-temporal dynamics of573

EIT, in this case in a shear-thinning fluid. In the RSW state, a spatial peak exists at574

λ/d ∼ 1, due to the base TVF (figure 16 a). In the temporal dimension, several clear575
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Figure 16: 2D FFT (time and space) of steady state experiments for the highly elastic,
highly shear-thinning fluid (XG2000-50-2 experiment, El=74, ne=0.56) at Re = 69 (a),
Re = 79 (b) and Re = 152 (c) corresponding respectively to RSW, RSW transitioning
to EIT, and EIT. Spectra are plotted in arbitrary units along a temporal frequency axis
scaled by the inner cylinder rotation frequency Ω/2π, and a spatial wavelength axis
where the wavelength is scaled by the gap width d. Space-averaged and time averaged
1D spectra are plotted in time-magnitude (blue) and space-magnitude (purple) planes
respectively. Vertical arrows are guide to the eye showing peaks in both dimensions.

peaks are identified, the most energetic found at frequencies much lower than the rotation576

frequency of the inner cylinder (figures 7 c, 10 c, 11 h, (Lacassagne et al. 2020)).577

In the transitional RSW-EIT state (figure 16 b) several peaks can be seen in the578

temporal spectra, albeit broader. The spatial peak corresponding to TVF is reduced579

in relative amplitude, and the most dominant one is found for λ/d < 1. The spatial580

structure of the flow is no longer dominated by the Taylor-Vortex wavelength, but by581

RSW waves of smaller wavelengths. Ultimately, EIT (figure 16 c) displays smoother,582

broadband spectra of multiple spatial and temporal scales, which correspond well to the583
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common definition of turbulence (Fenstermacher et al. 1979; Dutcher & Muller 2013; Liu584

& Khomami 2013).585

4. Discussion586

In this section, the striking effect of shear-thinning mediation (attenuation and even587

suppression) of elastic flow patterns and EIT is discussed. First, the critical conditions588

for the onset of EIT in shear-thinning fluids are reported. Data from the present work589

and experiments from the literature are then compiled to derive an empirical criterion590

for EIT suppression in strongly shear-thinning fluids, and possible mechanisms for such591

behaviour are discussed.592

4.1. Effect of shear-thinning on the transition to EIT593

The transition to EIT, for some polymer solutions, is detected from the flow maps of594

ramp up experiments. Values of all parameters at the critical point are denoted using595

the superscript EIT and subscript c. Note that while some parameters are constant596

throughout the ramp up in Boger fluids (El, viscosity ratios etc.) their value depends on597

the shear-rate-variable viscosity in shear-thinning fluids.598

In figure 17 a, the critical value ReEITc is plotted as a function of 1− ne with colours599

representing the magnitude of El. At first, increasing the shear-thinning behaviour leads600

to a decrease in the critical Re for the onset of EIT, with a simultaneous increase of601

elasticity. Above a critical shear-thinning index of 0.82 is reached (1−ne = 0.18), shear-602

thinning appears to delay the onset of EIT, despite the simultaneous significant increase603

in El (figure 17 a).604

A related non-monotonic trend can also be observed in figure 17 b) where ReEITc is this605

time plotted against El, with colour representing 1−ne values. For El < 1, increasing El606

together with a moderate decrease in the shear-thinning index (ne varying from 1 down607

to 0.82) leads to a decrease in ReEITc . Further increase of El above unity, together with608

a significant increase of the shear-thinning property, is associated with a delay of EIT.609

The elasticity versus shear-thinning parameter space thus seems to indicate the exis-610

tence of a critical point at ne = 0.82 and El ∼ 1. For 0.82 > ne > 1, shear-thinning is611

not sufficiently strong to disrupt the elastic destabilisation of the flow and the triggering612

of EIT. However for ne < 0.82, even a large increase in elasticity is not sufficient to613

promote the onset of EIT, which is delayed by shear-thinning. In other words, for fluids614

with sufficiently strong shear-thinning rheology, the elastic instabilities are delayed by615

the shear-thinning behaviour. This trend can be seen by plotting the critical values of616

El at the onset of EIT as a function of the critical values of 1-ne at this same onset in617

figure 17 c). It is found that while El < 1 is sufficient to trigger elastic instabilities for618

0.82 > ne > 1 (region R1 in sub-figure c), much higher values of El (several orders of619

magnitude) are required for the onset of EIT if ne < 0.82 (region R2).620

4.2. Suppression of EIT621

Although EIT is found to be delayed due to shear-thinning (eg. figure 13) in some622

experiments, it is not evidenced for Re < 300 in many other experiments reported here.623

Newtonian-like transition patterns (figure 8), or RSW transitioning to WTVF (figure 10)624

have been observed instead. In figure 18, data from the present study (circles for XG,625

square for PAAM) are plotted together with experiments from the literature in a shear-626

thinning versus elasticity parameter space
(
1− ne,El

)
. Experiments for which EIT has627

been reported in the Reynolds range measured (indicated in table 4) are denoted using628
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Figure 17: Critical Reynolds number value for the onset of EIT ReEITc as a function of
the averaged shear-thinning index (a) and elastic number (b). Marker colours on a and b
indicate the values of El and 1− ne, respectively. Vertical lines are plotted at ne = 0.82
and El = 1 on a and b respectively, and those threshold values are also reported on the
colour-map of the conjugate figure (b and a respectively) as horizontal tick marks with
arrows. Finally, sub-figure c) reports the critical values of El at the onset of EIT, Elc, as
a function of the critical shear-thinning 1 − ne also at the onset. El = 1 and ne = 0.82
thresholds are noted as horizontal and vertical dashed lines, respectively.

white markers, while those for which EIT has not been observed (including the XG200-50629

case with occasional RSW state, see figure 10) using black symbols. The flow transition630

patterns observed in these studies are also reported in table 4.631

It should be noted that the data from the literature are not always fully characterised.632

For example in Groisman & Steinberg (1997), it is mentioned that the “apparent solution633

viscosity was decreasing with increasing shear rate”, but the degree of shear-thinning was634

not quantified. However their solvent viscosity was sufficiently high for the fluid to exhibit635

mild shear-thinning at most, and their results are well within the moderate El range. A636

study involving wormlike micellar solutions (WMS) is also reported (Mohammadigoushki637

& Muller 2017), for which we estimate the shear-thinning index from the steady shear638

rheological characterisation reported by the authors (figure 1).639

The
(
1− ne = 0,El

)
axis of figure 18 shows the existence of a critical value for640

El beyond which EIT emerges for non-shear-thinning fluids. Below this curve, the641
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Reference Additive AR η
µp

µ ne El Remax Pattern

Present study XG,
PAAM

21.6 0.770 0.37-
1.0

0.46-
1.0

0.14-
74

300 Various

Cagney et al.
(2020)

XG 21.6 0.770 0.13-
1.0

0.46-
0.90

0.053-
9.03

1000 CF-
TVF-
WTVF

Groisman & Stein-
berg (1996)

PAAM 54.0 0.708 0.0083-
0.25

N.A. 0.09-
0.34

N.A. CF-
(TVF)-
(RSW)-
EIT

Crumeyrolle et al.
(2002)

PEO 46.6 0.883 0.16-
0.92

0.90-
0.98

0.0018-
0.050

200 CF-
TVF-
WTVF
or CF-
TVF-
RIB

Dutcher & Muller
(2011)

PEO 60.7 0.912 0.44 1.00 0-
0.023

200-250 CF-
TVF-
WTVF

Dutcher & Muller
(2013)

PEO 60.7 0.912 0.84 0.85 0.1-
0.2

200-250 CF-
TVF-
RSW-
EIT

Latrache et al.
(2016)

PEO 46.6 0.883 0.83-
0.96

0.80-
0.92

0.011-
0.14

150 CF-
TVF-
RIB-
EIT

Mart́ınez-Arias &
Peixinho (2017)

PEO 30.0 0.909 0.083-
0.63

0.92-
1.00

0.06-
1.09

200 CF-
TVF-
RSW-
EIT

Mohammadigoushki
& Muller (2017)

WMS 60.7 0.91 ∼1.00 0.58-
0.82

0.2-
3.8

100 CF-
(TVF/SVF)-
EIT

Table 4: Flow transition patterns in shear-thinning and viscoelastic polymer or micellar
solutions. N.A denotes quantities non-available or non-assessable from the available data.
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Figure 18: Shear-thinning versus elasticity parameter map in Taylor-Couette flows of
polymeric solutions. Present study and literature experiments in the (1-ne,El) parameter
space. White symbols indicate reported EIT, and black ones absence of it, for Re < Remax
as reported in table 4. The flow transition patterns observed in these studies are also
reported in table 4.

transitions are Newtonian-like due to the weak elasticity. This threshold value increases642

with increased shear-thinning (increasing 1−ne), so that for highly shear-thinning fluids,643

no EIT may be observed, even in the high elasticity domain (figure 8). It may be644

attributed to the fact that EIT is completely suppressed by shear-thinning, or that it645

is simply delayed to Rec values beyond the range studied. From comparison with the646

literature (figure 18, table 4), it appears that this phenomenon is common to a variety647

of polymers (including PEO (Crumeyrolle et al. 2002; Latrache et al. 2016), PAAM648

(Groisman & Steinberg 1996) and XG (Cagney et al. 2020), present study) and even to649

some extent to WMS (e.g. Mohammadigoushki & Muller (2017)). It becomes apparent650

that EIT needs both high El and significant Re to develop, but that shear-thinning may651

act to delay or even suppress elastic instabilities leading to EIT.652

This can be expressed by an empirical criterion of the form653

El > El0c +K × (1− ne)κ , (4.1)

where El0c = 0.025, K = 200 and κ = 5 are empirical parameters adjusted visually in654

order for the empirical line of equation 4.1 to separate the two domains (empty and full655

marker clouds) both in strong and weak shear thinning regions in figure 18. The first one656

corresponds to the El threshold for Boger fluids, while the second and third ones describe657

the dependency of the El threshold on the shear-thinning index. Discrepancies in the data,658

especially for moderate shear-thinning (1 − ne ∼ 0.1) and elasticity may be attributed659

to the different geometrical parameters of the study reported (aspect ratio and radius660

ratio). It is indeed known that the streamline curvature has a great impact on the onset661

of purely elastic instabilities (Pakdel & McKinley 1996; Schaefer et al. 2018), and could662

similarly affect elasto-inertial instabilities. The empirical constants are thus likely to be663
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related primarily to those geometrical parameters, and physical parameter of the fluid664

(temperature, molecular weight, shear-thinning viscosity, viscosity ratio etc) embedded665

into the El and ne estimators. On the other hand, figure 18, table 4 and equation 4.1 show666

that data collected from experimental setups different various geometrical parameters and667

using various polymer or micellar solutions all follow this empirical behaviour. This could668

possibly suggest, if not a universal behaviour, at least a weak influence of some of the669

geometrical parameters in the shear-thinning mediation process.670

4.3. What are the mechanisms of shear-thinning mediation ?671

The mechanisms for mediation of elasto-inertial features by shear-thinning remain to672

be explained. Intuitively, one may first postulate that for strong shear-thinning, radial673

viscosity gradients exist within the gap due to the strong base azimuthal flow, leading to674

a low viscosity inner core, and a high viscosity outer region. Viscous dissipation would675

then happen over a narrow range and an effective gap, dr < d, would exist, with rro < ro,676

rro being the outer radius of the flowing region. This is comparable to the flow of shear-677

banding solutions (Perge et al. 2014).678

The implications of this can be explored using simple scaling relations. Primarily, in the679

reduced gap, the apparent shear-rate for a given rotation speed increases: γ̇r = Ωri/d
r >680

γ̇. As a direct consequence, the Weissenberg number is increased:681

Wir = γ̇rte > Wi (4.2)

The apparent viscosity in the inner core (subject to higher shear rates γ̇r > γ̇) is expected682

to be lower than the apparent global viscosity in the full gap. Consequently, both the683

numerator and the denominator in the Re definition are reduced as a result of the gap684

reduction (equation 1.1). Simplifying the viscosity shear-rate dependency to a power law685

behaviour (introduced in section 1), one gets µr ∼ (γ̇r)
n−1

, with typically −0.6 < n−1 <686

1. Since γ̇r ∼ 1/dr, it follows that µr ∼ (dr)
1−n

, and687

Rer ∼ γr(dr)2

µr
∼ (dr)−1(dr)2

((dr)−1)n−1
∼ (dr)n, (4.3)

and finally,688

El ∼ (dr)
−n−1

. (4.4)

Since 0 < n < 1, shear-thinning will cause a decrease in dr which corresponds to a689

weak non-linear decrease in Re, but more importantly an increase in El. Thus, shear-690

thinning is not likely to be the case of reduced elastic instability, since it is conversely691

expected to promote elastic properties (i.e. increase Wi, El).692

While this analysis has been based on a purely azimuthal CF, the radial viscosity693

gradient due to the main shear in the gap persists even for higher order flows. For example694

in Cagney & Balabani (2019b); Topayev et al. (2019), it is shown that Taylor vortices695

are squeezed and deform against the inner cylinder, in the lower viscosity inner region696

(Topayev et al. 2019). The previous scaling arguments on enhanced elasticity parameters697

are thus likely to hold in more complex flows as well due to the base mean shear. On the698

other hand, secondary flows such as Taylor vortices are also affected by shear-thinning699

(Cagney & Balabani 2019b; Topayev et al. 2019), which in turn leads to axial viscosity700

gradients. Such axial viscosity gradients could well be involved in the damping effect701

of shear-thinning on transverse elastic waves. Results from section 3.5 also suggest that702

shear-thinning damping of elastic waves must involve an interplay between inertia and703

shear-thinning.704

The effects of shear-thinning could thus be interpreted through a concept of preferential705
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flow paths, outside of which elastic waves may not be able to travel. Axial elastic706

perturbations would thus be confronted with axial viscosity gradients which may act707

as dampers. Moreover, the strength of the extensional deformations induced by such708

perturbations would be reduced compared to the dominant radial shear rate, which is709

also in turn enhanced by the radial viscosity distribution. An analogy to this mechanism710

can be found in the recent work by Walkama et al. (2020), who performed an experimental711

study of the onset of elastic instabilities (at vanishing Re) in a microfluidic flow of PEO-712

based Boger fluids past an array of cylinders. Spatial disorder was found to delay or713

even suppress the onset of elastic instability. This was explained by the establishment, of714

preferential flow paths governed by the geometry, where shear deformation of the polymer715

is promoted over extensional deformation, having thus a stabilizing effects on the polymer716

chains. Interestingly their results were also compared with a similar experiment using a717

shear-thinning 3000 ppm xanthan gum solution (which may have featured significant718

elasticity, however not quantified). No elastic instabilities were observed on a similar719

range of Wi values despite the zero spatial disorder imposed, suggesting that shear-720

thinning may act to suppress elastic disorder with mechanisms comparable to those of721

spatial disorder.722

It should be mentioned that instabilities and flow transition in viscoelastic fluids are723

often found to be hysteretic and strongly subcritical (Mart́ınez-Arias & Peixinho 2017;724

Groisman & Steinberg 1996). If one were to characterise the nature of the bifurcations,725

ramp-down experiments (decreasing inner cylinder rotation speed) would be needed.726

From the results of Mart́ınez-Arias & Peixinho (2017), there is no reason to expect727

shear-thinning to completely suppress hysteretic behaviours. It would yet be of great728

interest to see how the conclusions of the present study apply to flow states encountered729

specifically during ramp-down protocol only, such as diwhirls described in Groisman &730

Steinberg (1996); Lange & Eckhardt (2001); Mart́ınez-Arias & Peixinho (2017).731

5. Summary and conclusions732

In this work, Taylor-Couette flow of polymer solutions of various degrees of elasticity733

and shear-thinning were studied using flow-visualisation. Combined shear-thinning and734

elasticity were found to globally de-stabilize the azimuthal Couette flow and favour735

the onset of unsteady flow states with increased complexity (WTVF, SVF), sometimes736

transitioning to chaotic and seemingly turbulent (RSW, EIT) even at relatively low Re.737

Shear-thinning mediates the transition patterns of moderately to highly elastic polymer738

solutions. In the absence of shear-thinning (Boger fluids), the flow transitioned to EIT739

even at moderate elasticity levels. In contrast, in highly shear-thinning cases, moderate740

to even high elasticity fluids may undergo Newtonian-like transition patterns, for which741

no elasto-inertial instabilities occurred. Features of the flow states, such as the TVF742

wavelength or the wavy frequency were also modified by the fluid’s rheology. When both743

shear-thinning and elasticity were moderate, elasto-inertial flow states (RSW, EIT) were744

reported in some cases. It was found that their nature was modified by shear-thinning.745

An increase in inertia tended to suppress chaos in the flow. Finally, in the most highly746

elastic fluids that also had significant shear-thinning, the flow ultimately did transition747

to EIT in a complex fashion. The Merge-Split Transition (MST) mechanism reported748

in Lacassagne et al. (2020) for Boger fluids was also observed. However, the transition749

occurred at elastic number values much higher than those required in the absence of750

shear-thinning.751

The global effect of shear-thinning was, thus, to delay or even suppress elasto-inertial752

flow states, delaying their onset, occasionally damping chaotic features of the flow753
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when inertia was increased, or even completely suppressing EIT. For this last effect,754

an empirical criterion for the existence of EIT was derived, also using results from the755

literature on various polymer solutions. Experiments with additional polymers, WMS,756

with a fully characterized rheology and in different geometrical configurations would be of757

great interest to verify the universality of this criterion. The physical origin of the shear-758

thinning mediation of elastic instabilities remains to be explained. It is not predicted by759

scaling arguments but could be the consequence of axial viscosity gradients caused by760

shear-thinning and secondary flows.761

From a physical standpoint, both shear-thinning and viscoelastic properties originate762

from the same fluid component: polymer chains. Disentangling the two effects is extremely763

relevant from an empirical and applied point of view. It has, for example, recently been764

applied in order to explain flow phenomena in micro-fluidic devices (Casanellas et al.765

2016; Haward et al. 2020). Casanellas et al. (2016) showed that in the absence of inertia,766

the Pakdel-McKinley criterion commonly used to describe the onset of purely elastic767

instabilities does not systematically capture the effects of shear-thinning. By properly768

characterising the fluid rheology, it may be possible to predict the existence, absence, or769

damping of elasto-inertial regimes in a Taylor-Couette flow without further knowledge770

or modelling of the state of polymer chains themselves. It is also evident that CF, TVF,771

WTVF or EIT may be associated with different degrees of mixing performances, related772

to flow unsteadiness and chaotic behaviour. Knowledge of very simple rheological fluid773

parameters could thus allow to foresee, for a given amount of inertia, the performance774

of a Taylor-Couette mixer in a shear-thinning and viscoelastic fluid. Tuning of such775

rheological parameters by controlling either the solvent viscosity or the polymer nature776

may in turn allow the mixing performances to be controlled and optimised.777
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Figure 19: Flow maps of fastest (top row) to lowest (bottom row) raamp up experiments
for a Newtonian fluid (N, first column, a), Shear-thinning fluid with a Newtonian-like
transition (ST, second column, b), purely elastic Boger fluid (E, third column, c), and
shear-thinning fluid with strong elasticity (STE, fourth column, d). The fluid type (N,
ST, E, STE), run index (A to E) and maximum NDAR Γ0 are reported in each sub-figure.

viscoelastic instability in cone-and-plate flow of a Boger fluid using a multi-mode Giesekus970

model. Journal of Non-Newtonian Fluid Mechanics 54, 351–377.971

Appendix A. Effect of non-dimensional acceleration rate972

In this appendix, dedicated ramp up experiments are performed. For each fluid, several973

tests are performed, in which Remax is kept constant, and dΩ/dt and experiment duration974

are varied over several decades to induce variations of Γ0.975

Five fluids corresponding to four different typical behaviours are studied: a Newtonian976

case (N72, noted N), a shear-thinning dominated case case, with a Newtonian-like977

transition sequence (XG1000-25, noted ST), a purely elastic, Boger fluid (P500-72, noted978

E), and a fluid with shear-thinning but dominant elasticity (XG2000-72, noted STE).979

Experimental conditions for all tests are detailed in table 5.980

The frequency map tool can not be used in the following analysis. Indeed, when varying981

dΩ/dt, the recording frequency has to be adapted in order to achieve similar Re-resolution982

flow maps regardless of the acceleration. In other words, fs/fmax has to be kept constant983

(typically above 3). Yet, the Nc segment must be long enough to capture low frequency984

events, even at high frame rates. Capturing a similar wave frequency fw, with the same985

fs/fmax ratio, would require to increase Nc proportionally to fs (in order of magnitude).986

The sampling time and Re variations corresponding to Nc may then become too large to987

assume that Re stays constant within the sampled sequence. Frequency maps can thus988

not be used systematically to describe fast ramp up experiments, and we are here limited989

to the qualitative study of flow states and to the quantification of transitions through990

flow maps. This is however a physical process more due to the acceleration rate itself991

rather than an experimental limitation: ramping up faster than a typical wave time-scale992

does not allow a wave or perturbation with this time-scale to develop in a steady manner,993

and thus to be captured in a frequency map.994
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Sample Test fs 1/∆Re Ωmax dΩ/dt Γ0 Expected behaviour
Hz s−1 s−2

N72 A 3000 179 66.96 3.732 21.69 N
N72 B 1500 179 66.96 1.866 10.85 N
N72 C 300 179 66.96 0.3732 2.169 N
N72 D 150 179 66.96 0.1866 1.085 N
N72 E∗ 75 224 66.96 0.07463 0.4338 N
N72 F∗ 30 202 66.96 0.03317 0.1928 N
XG1000-25 A 3000 200 46.84 2.229 26.48 ST
XG1000-25 B 1500 200 46.84 1.115 13.24 ST
XG1000-25 C 300 200 46.84 0.2229 2.648 ST
XG1000-25 D 150 200 46.84 0.1115 1.324 ST
XG1000-25 E∗ 30 200 46.84 0.02229 0.2648 ST
P500-72 A 4000 226 99.23 5.822 15.41 E
P500-72 B 2000 226 99.23 2.911 7.706 E
P500-72 C 400 226 99.23 0.5822 1.541 E
P500-72 D∗ 200 226 99.23 0.2911 0.7706 E
P500-72 E∗ 90 253 99.23 0.1164 0.3082 E
XG2000-50 A 4000 230 82.75 4.396 16.73 STE
XG2000-50 B 2000 230 82.75 2.198 8.366 STE
XG2000-50 C 400 230 82.75 0.4396 1.673 STE
XG2000-50 D∗ 200 230 82.75 0.2198 0.8366 STE

Table 5: Experimental conditions: influence of ramp up acceleration rate. Experiments
are conducted for samples expected to exhibit different behaviours: Newtonian (N) figure
6, Purely shear-thinning as described in figure 8 (ST) where elastic instabilities are
suppressed by shear-thinning, purely elastic Boger fluid (E) (figure 7) with negligible
shear-thinning, and shear-thinning dominated by elasticity (STE) figure 13. * denotes
experiments with Γ0 < 1 also reported in table 2.

In the Newtonian case (figure 19, left column, a), the flow maps are qualitatively995

similar for very different acceleration rates. However, the exact Reynolds number ReTV Fc996

for the CF to TVF transition increases for the largest Γ0 (a). Values of ReTFVc and λ are997

plotted against dΩ/dt and Γ0 in figure 20, for all N runs in table 5 (along with the critical998

Reynolds number for the onset of WTVF, ReWTV F
c , for the two lowest acceleration cases999

for which frequency maps can still be constructed). It appears that for Γ0 < 1, the1000

onset of TVF is not affected by the value of the acceleration rate as expected from the1001

observations of Dutcher & Muller (2009).1002

For the shear-thinning dominated case (figure 8), the flow maps are also not qualita-1003

tively affected. Note that in the fastest acceleration’s case, one can clearly identify the1004

waviness of Taylor vortices just from the flow map (d). Figure 20 ST shows that for1005

Γ0 < 3 the critical Reynolds number for CF to TVF transition does not depend on Γ0.1006

The results for the purely elastic case are qualitatively different in terms of flow states1007

transition. From figure 19 (third column, c), it appears that the RSW is modified by the1008

variations in acceleration rates. The Reynolds range in which it can be found reduces1009

with increasing Γ0, as illustrated in figure 20 where critical Reynolds numbers are plotted1010

as a function of Γ0. In the fastest acceleration case, it is difficult to tell whether the state1011

observed from Re = 100 to about Re = 120 is TVF or RSW (this would require the use of1012

frequency maps) but the flow signature is definitely different from low acceleration RSW.1013

As in the N and ST cases, the onset of TVF is also delayed for high Γ0 values, and ReTV Fc1014
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Figure 20: Values of critical Reynolds number for the onset of various flow states in the
four investigated cases: Newtonian (N), shear-thinning with Newtonian-like transitions
(ST), purely elastic Boger (E) and shear-thinning with elastic flow patterns (STE).

can be assumed acceleration-independent for Γ0 < 1. However values of ReEITc are almost1015

constant for all accelerations. This, in turn, leads to a narrowing of the Reynolds range1016

left for the two intermediate regimes (TVF, RSW), i.e, regimes comprised between the1017

base flow state (CF) and the ultimate elasto-inertial flow state (EIT). In other words,1018

ramping up the inner cylinder at high acceleration rates leads to a “squeezing” of the1019

intermediate transition steps in favour of an abrupt CF to EIT transition. Note that1020

once again the “temporal” frequencies (patterns along Re axis) for RSW or EIT are1021

more visible on the flow map in the fast cases, as the fast ramp up leads to capture only1022

a limited number of waves period, but describe them with great resolution, even though1023

that description spans a significant Re variation.1024

For the final case of a fluid where strong shear-thinning is dominated by elasticity1025

(STE) we consider the XG2000-50 case studied previously (figures 13,14,15,16). Note1026

that the XG1000-72 case has also been investigated and leads to results similar to the1027

E case. As in the E case, suppression of intermediate regimes (TVF, RSW, SVF) is1028

reported. Contrary to the previous cases however, the onset of the TVF flow is not1029

affected as ReTV Fc does not show any clear trend with Γ0 . On the other hand, it is the1030

earlier onset of EIT that leads to the “squeezing” of the intermediate Reynolds range.1031

From a qualitative point of view and in terms of succession of flow states, the N and1032

ST cases are acceleration-independent, but E and STE fluids may have intermediate1033

regimes suppressed for Γ0 � 1. From a quantitative point of view, the CF to TVF1034

transition is in general not affected by the acceleration rate for rates lower than unity (but1035

higher acceleration rates may even be used in the ST case). To extend this acceleration1036

study, it would be suitable to adapt the frequency maps analysis to highest acceleration1037

rates, and adapt the dimensional acceleration rates to achieve constant non-dimensional1038

acceleration rates throughout the ramp up for shear-thinning fluids, as done in Dutcher1039

& Muller (2013).1040


