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A model of the formation of stable nonpropagating magnetic
structures in the solar wind based on the nonlinear
mirror instability

Filippo G. E. Pantellini

Département de Recherche Spatiale, Observatoire de Paris-Meudon, Meudon, France

Abstract. A simple model for the formation of stable nonpropagating structures in a
magnetized collisionless plasma is presented. The model describes the evolution of an
electron-proton plasma from an initially spatially uniform, but unstable, configuration
toward a final nonuniform and nonpropagating stable configuration. The model is based on
the following hypothesis: (1) one-dimensionality and spatial periodicity, (2) cold electrons,
(3) bi-Maxwellian protons as initial condition, (4) conservation of magnetic moment for
all protons, (5) conservation of energy for magnetically non trapped protons, (6) spatial
pressure balance, (7) evolved structure has a crenellated shape, (8) slow growth of the
structure. Given these assumptions all the macroscopic properties of the plasma (density,
pressure, and magnetic field) in the saturated state can be computed explicitly. The model
shows that a spatially uniform and homogeneous plasma that is unstable against the linear
mirror mode can form stable non propagating structures. Thus one can consider the model
as a model for the nonlinear mirror instability where the magnetic trapping of protons in the
low magnetic field region is the important saturation mechanism. A simple expression for
the magnetic field saturation amplitude is found. The pressure balance, between high and
low magnetic field regions, which is needed for the evolved structure to be a stable one, is
obtained solely through betatron cooling of the trapped protons. Modification of the trapped
protons energy due to the Fermi effect seems to be of secondary importance. The model
predicts that the evolved structures are characterized by narrow and deep magnetic wells
except in the case of very low magnetic pressure (ratio of thermal to magnetic pressure
B 2 10) where the opposite situation becomes possible. This enforces the idea according to
which the proton mirror instability is the driving mechanism for the formation of magnetic

holes in high 8 ( 2 1) plasmas.

1. Introduction

On a timescale of a minute or less, maghetic holes are the
most commonly observed stable and nonpropagating struc-
ture in the solar wind. Even though a rigorous definition of
magnetic hole has not yet been given, such structures are
generally identified as more or less deep dropouts of the
magnetic field. . The magnetic field intensity within a hole
can be as low as 10% of the out of hole magnetic field. Typ-
ical durations are in the interval ranging from a few seconds
up to 1 or 2 min [Winterhalter et al., 1994). Magnetic holes
have been observed in the Earth magnetosheath [e.g., Kauf-
mann et al., 1970; Tsurutani et al., 1982], in the free solar
wind [Turner et al., 1977; Fitzenreiter and Burlaga, 1978;
Klein and Burlaga, 1980; Winterhalter et al., 1994], mostly
in the vicinity of stream interfaces, and at comets [Russell
et al., 1987; Glassmeier et al., 1993]. The total pressure
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(particle + field) inside a magnetic hole is generally believed
to be balanced by the pressure of the surrounding plasma
even though observations do not seem to be very conclu-
sive on that point. However, it is clear that if the pressure
of a nonpropagating magnetic hole is not balanced by the
pressure of the surrounding plasma, it must be unstable and
either collapse or explode. As we are only concerned with
stable structures, we shall consider the case of nonpropa-
gating magnetic holes that are in pressure balance with the
surrounding plasma.

Magnetic holes are mainly observed in high 2 (the ra-
tio of thermal pressure to magnetic pressure) plasmas with
B 2 1. Thus, soon after the very first observations of mag-
netic holes, the proton mirror instability, which is driven
by an anisotropic thermal pressure of the protons such that
pL/p) > 1 (subscripts L and || refer to the local magnetic
field direction), has been proposed to be the basic mecha-
nism leading to their formation. In fact, in a high 3 plasma,
the proton temperature anisotropy required for instability is
rather weak, that is 7 /T > 1+ 1/8. [e.g., Southwood
and Kivelson, 1993]. The mirror instability has some other
particularities that make it a privileged candidate to fit into
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a scenario of magnetic holes formation, the nonpropagating
nature of the mode and the anticorrelation of density and
magnetic field being two other important reasons.

Since the late 1950s the theory of the linear proton mirror
instability has been discussed by a large number of authors
[see Pantellini and Schwartz, 1995, and references therein].
However, the underlying physical processes, implicit in the
early treatments of the instability [e.g., Barnes, 1966; Tajiri,
1967], have been elucidated only recently by Southwood and
Kivelson [1993]. The new important aspect which has been
pointed out in the Southwood and Kivelson [1993] theory
is that the mirror instability is one where the resonant par-
ticles, that is, particles with small velocities parallel to the
magnetic field, play an important role. This has been the
strongest demonstration of the fact that the mirror instabil-
ity is based on essential kinetic effects and that, as a conse-
quence, fluid theories do not lead to a correct understanding
of the instability.

The rather speculative hypothesis according to which the
mirror instability is responsible for the formation of mag-
netic holes has been consolidated after the identification of
mirror mode waves in planetary magnetosheaths [e.g., Tsu-
rutani et al., 1982; Hubert et al., 1989; Lacombe et al., 1992;
Anderson and Fuselier, 1993; Violante et al., 1995]. The hy-
pothesis has become even less speculative since Winterhalter
et al. [1994] could show that trains of closely spaced mag-
netic holes are often observed in marginally mirror mode sta-
ble plasmas and also that proton distribution functions ob-
served within holes are sometimes similar to distributions
seen in numerical simulations of mirror mode waves [e.g.,
McKean et al., 1993]. From the theoretical point of view the
most stringent proof of the causal relationship between mir-
ror instability and magnetic holes has been given recently in
a paper on the nonlinear mirror instability by Kivelson and
Southwood [1996]. The theory of Kivelson and Southwood
[1996] indicates that if one admits that particles trapped in
the magnetic wells, created by the instability, do undergo a
mixture of both betatron deceleration, due to the locally de-
creasing field intensity, and Fermi acceleration, due to the
relative motion of the mirror points, then the mirror insta-
bility may evolve toward a saturated state characterized by
deep and narrow holes in the magnetic field profile. The
Kivelson and Southwood [1996] theory is based on the fact
that the evolved structure must satisfy the pressure balance
condition. This is only possible if one allows for substan-
tial cooling of the trapped proton population. However, the
amount of cooling needed to saturate the instability depends
on the spatial and temporal evolution of the magnetic field.
Unfortunately, the spatial and temporal dependence of the
magnetic field is not given by the Kivelson and Southwood
[1996]theory.

Our approach is similar to the one of Kivelson and South-
wood [1996] with the important difference that we restrict
the analysis to a particularly simple profile of the evolved
spatial structure which we expect to be a rough approxima-
tion of the real structure of the saturated nonlinear mirror
instability (see Figure 1). Following Kivelson and South-
wood [1996], our model is based on a spatial pressure bal-
ance condition between the high and low magnetic field re-
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gions. The pressure balance condition includes the contri-
bution from both magnetically trapped and nontrapped (cir-
culating) protons. The advantage of restricting the evolved
magnetic field profile to the simple shape shown in Figure 1
is that the model can be calculated easily throughout. In par-
ticular, we will show that for one given initial plasma condi-
tion, which is fully specified by two parameters (the proton
pressure anisotropy and the plasma (), there is at most one
final stable plasma configuration. This is completely differ-
ent than in the Kivelson and Southwood[1996] theory where
the emphasis is put on the qualitative description of the cool-
ing of the trapped proton population needed to reach a given
final state which may be taken from observations. The main
problem with that stems from the fact that it is extremely dif-
ficult, not to say impossible, to specify a plasma equilibrium
consistent with an observed non uniform magnetic field pro-
file. Given the strong uncertainties on the final state, it is
virtually hopeless to determine how such a state has been
obtained from an initially unstable (and a priori unknown)
configuration.

In our approach we start from an easy to define initial state
and compute the final state using a number of assumptions
that make the problem simpler than the one addressed by
Kivelson and Southwood [1996] at the expense of a loss of
generality. We shall see that even in the framework of this
simplified theory a final stable configuration can be obtained
in most cases. We shall argue that the detailed motion of
the trapped particles is unimportant in the saturation pro-
cess. We shall also show that the model leads naturally to
the formation of deep and narrow magnetic holes (observed)
rather than the opposite situation characterized by large and
shallow holes (rarely observed). In the latter case one would
no longer define these structures as magnetic holes but rather
as “magnetic monoliths’The qualitative agreement between
the results of our model and the observations suggests that
the former includes most of the important physics necessary
to generate the observed nonpropagating structures.

B(s)
N high B 1+68"*
A —
1-68B" low B
5 ~
0 Y g
Figure 1. Magnetic field profile for ¢ > 0. Att = 0 the

field is a constant By = 1 over the whole domain s € [0, 1].
The model is spatially periodic with period 1. Together
with Faraday’s equation, periodicity implies that the aver-
age magnetic field is equal to By at any time. Thus A, § B~
and § B* are related through (2). Note that all other quanti-
ties appearing in the model (number density, pressure, etc.)
are always taken to be constant in the intervals [0, \] (low-B
field) and [\, 1] (high-B field).
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We conclude by noting that the first attempt to describe
the nonlinear evolution of the mirror instability has been pro-
posed, long ago, by Shapiro and Shevchenko [1964]. Their
approach was based on quasi-linear theory. However, as
pointed out by Kivelson and Southwood [1996], quasi-linear
theory is most probably inappropriate in the treatment of the
mirror instability except in the case of very weak growth.
The main reason is that quasi-linear theory predicts a spa-
tially uniform final state while simulations [e.g., McKean et
al., 1992; McKean et al., 1993], as well as the above cited
observations, indicate that the evolved state of the mirror in-
stability is generally characterized by strong spatial varia-
tions.

2. Basic Assumptions of the Model

We start from the postulate that both the particle trapping
and a spatial pressure balance condition are the main ingre-
dients in a theory of the evolution of the nonlinear mirror
instability. Based on these two main assumptions, we con-
struct a simple model for the nonlinear evolution of the mir-
ror instability.

We consider a model where, at any given time ¢, all quan-
tities (e.g., density, pressure, magnetic field, ...) depend on
one spatial dimension only. As in linear theory, it is the mo-
tion of the particles along the magnetic field lines which con-
trols the evolution of the system [Kivelson and Southwood,
1996] so that the relevant spatial dimension is along the field
line. We restrict the model to a two species proton-electron
plasma. This restriction is a minor one as heavy ions, which
are present in the solar wind, do not affect significantly the
mirror instability [Price et al., 1986]. For simplicity we as-
sume that the electrons are cold so that they do not produce
any longitudinal electric field [cf. Pantellini and Schwartz,
1995]. Our purpose is to predict the final state of the plasma
given an unstable uniform initial equilibrium. Thus at ¢ = 0
the plasma is taken to be spatially uniform, the protons being
distributed according to a bi-Maxwellian

nom—3/2 Vo) voL
=———exp |-5 — 35—
Vp L VT

M
where vp, = (2kpTL/m)/? and vy, = (2kpTj/m)*/
designate the proton thermal velocity perpendicular and par-
allel to the uniform magnetic field Bg. Here m is the proton
mass, kp is the Boltzmann constant and ng is the proton
number density.

Hereinafter we adopt the following normalizations: ny =
1, Bp = land vry = 1 the plasmaatt = 0 being
completely specified by the dimensionless parameters ) =
2uokpnoT)/BE and the ratio R = T /Ty. We further as-
sume that the system is spatially periodic, with period 1, and
that at any time ¢ > 0 the magnetic field is constant in the
intervals [0, A] and [A, 1] (see Figure 1). We shall denote
quantities characterizing the high magnetic field region by a
plus superscript and quantities characterizing the low mag-
netic field region by a minus superscript. Subscript 0 denotes
time level ¢ = 0 whenever this indication is needed to avoid
ambiguity. We also note that the scale of length of the sys-
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tem does not need to be specified as only relative dimensions
will be used. Moreover, since the model is one dimensional
and periodic, from Faraday’s equation 0B/dt = —V x E it
follows that the average magnetic field must be constant in
time. Thus from Figure 1 one deduces that A\, § Bt and § B~
are related to each other through

(1—\)§B* = \6B~. @)

Hereinafter we will sometimes use the notation B¥ = 1 &+
§B=.

3. Density and Pressure in the High Magnetic
Field Region '

In order to compute the number density nt and the per-
pendicular particle pressure pi’ in the high magnetic field
region, we note that in a slowly growing magnetic struc-
ture nearly all particles do conserve energy. Only a small
number of particles for which the time needed to cross the
whole system is longer than the typical growth time of the
magnetic structure do not conserve energy. These particles,
called resonant particles in linear theory, gain or lose energy
depending on whether the local field is growing or decreas-
ing (betatron effect) and have been described in detail by
Southwood and Kivelson [1993]. Using the fact that the par-
ticles’ energy m(v2 +vﬁ) /2 and the particles’ first adiabatic
invariant 4 = mv?% /(2B) are both conserved one finds that
only particles satisfying the condition

vou/voi > ViBt 3)

can reach the high magnetic field region corresponding to
the interval [\, 1]. Thus we call circulating particles those
particles which do satisfy to the inequality (3) and trapped
particles those which do not. The two populations are sep-
arated by the trapping boundary, or separatrix, defined by
vo)|/voL = VéB*. It is obvious that trapped particles are
located in the interval [0, A], whereas the circulating particles
are distributed over the whole available space [0, 1].

Taking into account that f is constant along particle tra-
Jjectories and that energy and magnetic moment of the circu-
lating particles are both conserved, it is easy to compute the
number density nt and the particle pressure pi in the high
magnetic field region. Thus for n* we have

nt = / f+(v",vl,t) dv® -
DF
nt = /f+(v",v_|_,t) Jt d’l)g
D}
n+ = /fo(v()“,’l)()_l_) J+ d'l)g (4)
Do
nt = / 2mvgdvgy / fo (U0|| , UOJ.) :
0 [110”|>Uo_|_\/ éB+
J+(B+ y 1)0”, ’U()_L) d’Uou
‘ ~ R+6Bt
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where D;f denotes the domain in velocity space occupied
by the circulating particles spatially located in the high mag-
netic field region at time ¢, while Dy denotes the domain
in velocity space occupied by the same particles at ¢ = 0.
J7 represents the Jacobian giving the variation of the ve-
locity space volume element dv3 = 2mvg dvo 1dvg|| during
the time interval ¢. The Jacobian can be computed from the
equations of conservation for energy and magnetic moment.
This leads to

|’00"|B+
JH (B, vy, = .
(B von L) = G2 g sy

®)
Equation (4) shows that the density in the high-field region
is always smaller than the initial density value ng = 1,
and that for small amplitudes § BT <« 1, the result n* =
14+8B*(1—1/R), known from the linear theory of the mir-
ror instability, is recovered [Southwood and Kivelson, 1993].
This makes clear that our model is effectively a model for the
nonlinear mirror instability.

The mappings of Dy resulting from the motion of the cir-
culating particles to both high and low magnetic field regions
are illustrated in Figure 2. As Dy extends to infinity, only
the mapping of a part of the distribution function f, (shaded
region), delimited by an arbitrary contour level, is actually
shown in the figure. The fact that for BT — oo one ob-
tains a nonvanishing asymptotic density value nt — R can
be easily understood from Figure 2b. Since by definition
the energy of the circulating particles is conserved, particles
do move on circles in velocity space when being mapped
from the initial contour, corresponding to the distribution
at £ = 0 to the new contour at time ¢ > 0. Thus in the
limit §BT — oo the major half-axis of the half-ellipse D;"
shrinks to the same values as the minor half-axis, that is D}t
becomes a nonvanishing half circle. It is also clear from
the figure that in the same way f*(v),v1,t) must tend to-
ward an isotropic Maxwellian distribution with temperature
T = T since it results from the mapping, along circles,
of the points fo(vo),0). The integration over the resulting
isotropic distribution leads to the above asymptotic result
nt = R.

The question mark in Figure 2c illustrates the fact that, as
we shall show below, the motion of the trapped particles in
velocity space does not have to be known in order to com-
pute the model throughout. The only assumption concern-
ing the trapped particles is that their magnetic moment is
conserved. However, the energy of a particle trapped near
the separatrix has to be conserved if one asks for the dis-
tribution f to be continuous there. We shall point out that
this has not to be true (and is certainly not true in general!)
for all other trapped particles. The complicated behavior
of the trapped particles, which is implicit in our model, is
schematically illustrated in Figure 3. The top panel (Figure
3a) shows that circulating particles are thought to be energy
conserving since the time these particles spend in the low,
or high, field region is assumed to be small compared to the
typical growth time of the magnetic structure. Similarly, a
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particle that has just been trapped, that is, a particle with
mirror points at a magnetic field strength close to B, has
spent most of the time as circulating particle, so that its en-
ergy did not have time to depart significantly from the initial
value. Particles that have mirror points corresponding to a
field strength significantly less than Bt have been trapped
during a time which is comparable to the typical growth
time. Two effects can affect the energy of these particles.
(1) The particle loses energy due to fact that it sees a de-
creasing magnetic field (Figure 3b). This is the so-called be-

(a)

t>0 (high B)

v/

t>0 (low B)

Figure 2. Mapping of the velocity distribution function of
circulating particles to both high- and low-B field regions.
(a) A particular contour level ¢; of the distribution function
fo(voy|, vo1) is shown. The interior of the half-ellipse cor-
responds to the domain with fu3 > ¢;. The shadowed do-
main corresponds to the circulating particles for which the
inequality (3) is true, given a certain § B*. The remaining
sector of the ellipse corresponds to the particles which are
trapped for this same § B*. (b, ¢) Mapping of the circulating
particles to high- and low-field regions with the original con-
tour being represented by the dashed line. Obviously, there
are no trapped particles at magnetic field maximum (Fig-
ure 2b). As the model only requires that trapped particles
conserve magnetic moment 4, but not energy, their velocity
distribution is not known for ¢ > 0, thus the question mark
in Figure 2c.
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(a)

energy conserving

(b)

betatron

(©)
=

Fermi

Figure 3. Time dependence of the energy for particles in
the model. (a) A circulating and a freshly trapped particle
are shown. Both particles do approximately conserve energy
since the average magnetic field the particles see during the
typical growth time of the structure is roughly constant. A
particle that is trapped during a time which is comparable to
the time of evolution of the magnetic field may change its
energy due to two distinct mechanisms illustrated in Figures
3b and 3c. (b) The trapped particle loses energy at the rate
pdB/dt as it experiences a constantly decreasing magnetic
field (betatron deceleration), while (c) the trapped particle
gains energy as the magnetic hole contracts and the magnetic
mirror points move toward each other (Fermi acceleration).

tatron deceleration. It affects the perpendicular velocity of
the particle. (2) The particle gains (loses) energy because of
the converging (diverging) mirror points (Figure 3c). This is
the so-called Fermi acceleration (deceleration). It affects the
particle’s parallel velocity. We shall show below that only
the betatron effect does play a role in our model and that the
Fermi effect is of secondary importance in the saturation of
the mirror instability.

As announced, we may now compute the particle pressure
pt at magnetic field maximum in the same way as we did
for the number density n*. Keeping in mind that v =
v3, Bt for the particles circulating in the high-field reglon
we obtain

4793
pi’ = /fo(%uﬁoi) vy Bt Jt d”g
B+ \?
+ -
PL R<R+5B+) ‘ ©

It should be noted that n* and pT do not depend on § B~
and \. This is a consequence of the fact that the equations
of motion for particles reaching the high-field region only
depends on d BT. This is not true for particles located in
the magnetic wells. For example, circulating particles in the
low-field region do satisfy to the same inequality (3) as do
the circulating particles in the high magnetic field region,
but their perpendicular velocity depends on B~ since v? =
v2, B~. Thus their contribution to the density and pressure
depend on both B* and B~.

4. High-Field Saturation Level

In the previous section we have computed the density and
the particle pressure in the high magnetic field region for
a given magnetic field amplitude § B*. In this section we
shall compute the saturation amplitude § B, in the case of
an unstable plasma.

Now from the previous section we already know that, for
a given value of the field perturbation Bt the total perpen-
dicular plasma pressure is given (in normalized units) by

+ 2 +32
B >+(B). @)

+ —
p_l_,tot =R (R+ §B+ IBH

The important fact about this expression is that it does not
depend on the characteristics of the low magnetic field re-
gion. It is therefore clear that the saturation amplitude § B,
must depend on the initial plasma parameters 3 and R only.
Another important point about (7) is that for small values of
d B the total pressure and the magnetic pressure vary in an-
tiphase provided R~! — 1 — R/f) > 0, which is precisely
the instability condition for the linear mirror instability. In
fact, (7) is the finite amplitude equivalent of the magnetohy-
drodynamic response of a bi-Maxwellian plasma to a small,
and slowly varying, compressional perturbation § B*, which
reads

6pi,tot 2po_|_ tot( R~ 1B /By

and is the base of any theory of the linear mirror instabil-
ity [e.g., Hasegawa, 1969; Southwood and Kivelson, 1993].
We now postulate that even in the nonlinear regime the in-
stability keeps on growing as long as the total pressure and
the magnetic field pressure vary in antiphase. By setting
opt ot/ OB* = 0 one computes directly the limiting value
) B:;t beyond which the total pressure and the magnetic field
pressure are both growing. This leads to a simple expression
for the saturation amplitude

6B

9Dsat [ﬂ”R(l _ )]1/3 _

e ®)
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Figure 4. Contours of BJ,, computed from (8). The upper

thick contour corresponds to the stability threshold for the
linear mirror mode. The meaning of the shaded region will
be discussed in relation to Figure 5.

We note that (8) gives the saturation peak value for an ar-
bitrary magnetic field profile which may be different from
the one shown in Figure 1. This is a consequence of the fact
that no reference to the actual magnetic field profile has been
made in deriving equation (8). An example: for 8 = 1 and
R = 0.5, (8) predicts a saturation amplitude § B}, = 0.13.
The same value has been obtained numerically by Kivelson
and Southwoo using a sinusoidal field profile (compare Fig-
ure 3 of Kivelson and Southwood [1996]).

A contour plot for B (8, R) is shown in Figure 4. The
thick curve corresponds to the value BY,, = 1 which sep-
arates the mirror stable (above the curve) from the mirror
unstable domain. The figure shows that for reasonably weak
anisotropies of the proton distribution the saturation ampli-
tude increases with 3 and 7' /Tj|. For strong anisotropies
R — 0 we do not expect the model to be valid any longer
as the growth rate would then be so strong that most of the
circulating particles would not conserve energy which, of
course, is against one of the basic assumptions of the model.

5. Saturation in the Low-Field Region and
Overall Structure at Saturation

The explicit shape of the magnetic field profile has to be
considered in the derivation of the plasma conditions in the
low magnetic field region. Our purpose is to determine § B~
and )\, which are defined in Figure 1, such that the resulting
structure is a stable equilibrium. Stability of the structure
requires that the total pressure is the same at field minimum
and field maximum [Kivelson and Southwood, 1996]. In this
section we shall use a pressure balance condition in order to
compute the complete macroscopic state of the plasma at
saturation. i

The density ratio 5 = n~/nt (where the density n~ in-
cludes both trapped and circulating particles) is, besides the
magnetic field profile, one of the most easy to measure quan-
tity that characterizes a magnetic hole [e.g., Winterhalter et
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al., 1994]. Given nt from (4) and XA which will be deter-
mined later using the pressure balance condition (12), 7 must
necessarily satisfy to the following condition

n=n"/nt=[1-(1-XNnt]\/n". 9

In fact, this expression is consistent with the requirement
n~ A+ nt(1 - A) = 1 which ensures that the total number
of particles in the system is conserved. Let us now com-
pute the total number of particles that are trapped for a given
field strength § B*. This number, denoted Ny, includes all
particles that do not verify the inequality (3). Thus

Ntr _ /
No —

I’UD"|<‘U(]J_\/ §B+

§Bt \'?
3 _
deUO_(R+(5B+> (IO)

where Ny is the total number of particles in the system. The
total number of circulating particles is then simply given by

Neire = Ng — N;. (11)

Let us now come to the determination of A. We start by
writing the pressure balance condition for our system. Given
the simplicity of the configuration, we are considering here
the latter reduces to a balance between the pressure (particle
+ field) in the high magnetic field region and the pressure in
the low magnetic field region. Using the above normaliza-
tion, this can be written in the following way

pj-_,tot :pl,circ+pj__,tr+ (B_)z/ﬂll (12)
where P cire and p7 . are the pressure of the circulating
and the trapped particfes in the magnetic wells, respectively.
In reality, since B~ is related to A through (2), (12) is noth-
ing else but an equation for A\. However, in order to solve
(12) we need to determine the dependence on A of P cire

and p; ... For this purpose we observe that the contribution
to the pressure coming from one single particle is propor-
tional to B so that p; ;.. and p}  are both proportional to
B~. On the other hand, the pressure of a given population
changes proportionally to the spatial size of the domrain oc--
cupied by the population. In order to make things simple we
suppose that all the populations we are going to consider be-
low are distributed uniformly at £ = 0. This is reasonable for
two reasons. First, at ¢ = 0 the distribution of the sum of all
proton populations is given by the distribution function (1).
Second, the growth of the instability is slow compared to the
time it takes for a particle to cross the system. The latter
means that two particles with nearly the same velocity and
the same position at time ¢ originate, in general, from two
completely different positions at ¢ = 0; that is, the mem-
ory of the initial position is lost. Stated differently, one can
say that a particle located near a given position at time ¢ was
with the same probability located in the vicinity of any of the
points in the interval [0, 1] at ¢ = 0. As a consequence, we
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may assume that the population of trapped particles covers
uniformly the whole domain [0, 1] at ¢ = 0 but that this same
population is confined to the domain [0, \] at time ¢. Sum-
marizing these considerations, we conclude that the pressure
contribution due to the trapped particles at time ¢ must be
given by

(13)

where poy tr 1s the trapped particles’ pressure at ¢ = 0, that
is,

PoLtr = /

"Uo“l<’U0_LV éB+

PLtr =PoLr BT/A

2
v51 Jo 2mvg L dvgidug

sBt \'’[ 3R+ 2B+
(R+JB+) [2R(R+JB+)
An argument, similar to the one for trapped particles, ap-
plies to the circulating particles. Suppose that the circu-
lating particles, located in the low magnetic field region at
time ¢, cover a fraction a of the domain [0,1] at ¢t = 0.
According to the above discussion, a must be the same as
the ratio of the number of circulating particles located in the
magnetic well at time ¢ to the total number of circulating
particles. Since the total number of particles which are lo-

cated in the high-field region at time ¢ is n* (1 — \), one has
a = [Ngire — nT(1 — X)]/Neire Which leads to

Dol tr

] . (14)

PoL circ OZB—//\

1 aB™
R PoL tr Y

We can now express (12) as a function of the known quan-
tities 3, R, §BZ, and the remaining unknown parameter
A. This leads to a polynomial equation of degree three for
A. Physically acceptable solutions must be real and in the
interval [0, 1]. Only two solutions, shown in Figure 5, sat-
isfy these requirements in the domain in parameter space
(B, R) below the mirror instability threshold curve and out-
side the shaded domain. Elsewhere (above the mirror in-
stability threshold curve and in the shaded domain) the two
solutions are complex so that no equilibrium solution ex-
ists there. In the domain where the two roots are real their
value is generally smaller then 0.5, suggesting that the mirror
instability tends to form narrow low magnetic field regions
rather than the opposite. This is in qualitative agreement
with most observations [ Winterhalter et al., 1994]. However,
even though observations seem to indicate that the nonlinear
evolution of the mirror instability leads to narrow and deep
holes in the magnetic field, it sometimes happens that the
opposite situation is observed. One such case is illustrated
by Figure 2a in the Leckband et al. [1995] paper. The fig-
ure shows large nonlinear fluctuations of the magnetic field
observed in the Earth’s magnetosheath. The fluctuations can
be described as a more or less irregular sequence of narrow

p.L,circ

pI,circ (15)
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magnetic field spikes. Even this particular episode is consis-
tent with the results of the model. In fact, the plasma 3, mea-
sured by Leckband et al., was exceptionally large (3 ~ 30).
If we put the value ) = 20 in our model we find that the
stable solution, shown in Figure 5a for the domain 3 < 10
predicts that A is larger than 0.5, provided the initial temper-
ature anisotropy is not too weak, thatis R < 0.5.

Let us come back to the discussion of (12). Even though
the two physically acceptable solutions of (12) correspond
to possible equilibrium solutions, only one is a stable solu- |
tion (Figure 5a). Figure 5b corresponds to a solution with
Op7 1os/0B~ < 0 (at saturation), that is, the total pressure
and the magnetic pressure vary in antiphase in the low-field
region. Thus only Figure 5a corresponds to a totally stable
equilibrium for the final configuration. We note, however,
that the two solutions become identical on the border of the
shaded region and that they become both vanishing small as
one approaches the instability threshold from below.

Figure 6 1is a contour plot of the density ratio 7 of the
low to high magnetic field region densities (equation (9)).
The figure shows that for reasonable anisotropies R = 0.4
the values for 7 do not exceed 2.5 which is consistent with

T T T

- (a) stable

Figure 5. Contours for the two positive solutions A
of (12). The solutions become complex conjugate above
the mirror mode stability threshold and in the shaded re-
gion where no stable solutions exist. (a) Stable solu-

tion with 6p]_’tot /8B~ < 0. (b) Unstable solution with
Op] ot/0B~ > 0.
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Figure 6. Contours of the density ratio n~ /nt computed
using (9) for the case where A is the stable solution of Figure
Sa.

the typical values observed in the solar wind by Winterhal-
ter et al. [1994]. Concerning the fact that observed values
for 7 seem to be closer to unity than what may eventually
suggest our model, it should be pointed out here that all the
above results are valid in the case of a cold electron popu-
lation such that its temperature 7, is much smaller than the
parallel proton temperature, that is, 7. < Tjj. Electron tem-
perature effects have been shown to play an important role in
the linear mirror instability [Pantellini and Schwartz, 1995].
In particular, a hot electron population significantly reduces
the absolute value of the parallel compressibility (a measure
of the density fluctuations compared to the magnetic field
fluctuations) in a plasma with T, 2 Tj. We therefore ex-
pect the electron temperature effects to act in the sense of
reducing the value of 7 shown in Figure 6. Still, it should be
noted that even in the cold electrons framework it is possible
to obtain relatively small values of 7 associated with narrow
and deep holes. For example, the case §j = 2 and R = 0.65
(weakly unstable) leads to the stable asymptotic state char-
acterized by Agar = 0.17, 6B, = 0.12and 6B, = 0.59,
which represents a noticeable magnetic hole, while the asso-
ciated density ratio n = 1.34 is rather small.

Let us conclude this section with a comment concerning
the validity of the presented model. The most important re-
striction comes from the fact that the circulating particles
are supposed to conserve energy. As already stated above,
this cannot be true for particles located near the velocity
space trapping boundary. Thus in cases where the num-
ber of circulating particles that do not conserve energy is
large (e.g., in the case of fast growth of the instability), the
model is certainly inappropriate. In order to estimate the do-
main of validity of the model, let us suppose that during the
time of growth of the instability the maximum growth rate is
¥ = 27 [tgrowtn. This growth rate is likely to be the growth
rate predicted by linear theory, as in the nonlinear phase of
the instability growth tends to become smaller as the insta-
bility saturates. On the other hand, at saturation, in the high-
field region, a circulating particle that conserves energy has
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a field-aligned velocity given by v = 4/ 113” — v} _,_JB:;t.

If vy is large enough, so that the time it takes for the parti-
cles to cross the high-field region is shorter than the typical
growth time Zgrowth, the assumption of energy conservation
is a good approximation. This leads immediately to the con-
dition v > (1 — A)/(2). Since linear theory provides a
value for ~, but not for A\, we may use the more restrictive
condition /v, — v2, 6B, > v/(2m) which states that
only particles with an initial parallel velocity within y/(27)
from the separatrix do not conserve energy. Note that for
small § B, the above condition is the same condition that
distinguishes circulating from resonant particles in the lin-
ear mirror instability [Southwood and Kivelson, 1993].

6. Discussion

We have presented a model for the formation of stable
nonpropagating structures in a collisionless magnetized pla-
sma. The model is based on the fact that in a plasma with
cold electrons and a bi-Maxwellian proton distribution with
Ty > Tj the total pressure responds in antiphase to a low-
frequency compressional perturbation of the magnetic field
provided the criterion for the mirror instability is satisfied.
Saturation is assumed to occur when the magnetic pressure
and the total pressure of the plasma start varying in phase.
The model is in fact a model of the nonlinear mirror instabil-
ity where saturation is the consequence of particle trapping
in the low magnetic field regions of the evolved structure.

The model is similar to the one proposed by Kivelson and
Southwood [1996] in that the saturated state is one where the
total pressure is the same for both the high and the low mag-
netic field region. The main difference stems from the fact
that in our model a particular magnetic field profile, shown
in Figure 1, has been chosen. Compared to the more general,
but essentially qualitative, model of Kivelson and South-
wood, our model has the advantage of providing quantita-
tive estimates of the characteristics of the evolved structure
(Figures 4 to 6).

The basic conclusion of the Kivelson and Southwood anal-
ysis is that cooling of the trapped particles, which is needed
to reach pressure equilibrium, is likely to result from a mix-
ture of betatron and Fermi deceleration. A quantitative es-
timate of the final state is not possible in their case-as the
evolution of the instability does in general depend on the un-
known temporal and spatial variations of the magnetic field
profile. The simplifications in our model are such that the
temporal evolution of the field becomes unimportant and the
final structure can in general be computed unambiguously as
a function of the initial plasma conditions only. Moreover,
the detailed behavior of the trapped particles, which may be
rather complicated, does not need to be known.

The main results can be summarized as follows. First of
all, a simple expression for the saturation level of the nonlin-
ear mirror instability is found. As shown in Figure 4, the sat-
uration level generally increases with both 8 and the tem-
perature anisotropy 7 /Tj. We also observe that a stable
final solution can nearly always be found in the linearly un-
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stable domain except in the narrow shadowed domain shown
in Figures 4-6. A more general treatment of the instability
(allowing for structures other than the one shown in Figure
1) as the one discussed by Kivelson and Southwood [1996]
may probably lead to a stable final state even in the shad-
owed domain shown in our figures. We have argued that fi-
nite electron temperature effects, that have been shown to be
important in linear theory, may also significantly modify the
final equilibrium configuration. As suggested by Kivelson
and Southwood [1996], we observe that substantial cooling
of the particles in the magnetic wells is generally necessary
in order to reach the final equilibrium solution. Thus the
evolved structure tends to be one where the low magnetic
field regions are narrower than the high magnetic field re-
gions unless the plasma 3 is very high (i.e., § & 10). Narrow
wells also mean deep wells which seems to agree with the
majority of the observed magnetic holes wherein magnetic
field intensities as low as 10% of the out of hole value are not
unusual [e.g., Winterhalter et al., 1994]. The model suggests
that the holes are narrowest in plasma that are marginally un-
stable and predicts that the particle density is always higher
in the magnetic holes than in surrounding plasma, which is
consistent with observation. Finally, since our results are
independent of the amount of Fermi acceleration (or decel-
eration) that affects the trapped particles, we conclude that
the most important mechanism leading to saturation is the
betatron cooling of the trapped protons.

Further improvements of the model may be obtained ra-
ther easily by including electron temperature effects. The
treatment of more general field profiles, compared to the one
used here, may not be possible without making the model
considerably more complicated. Particle simulations of the
type published by McKean et al. {1992, 1993] may help in
better understanding the details of the formation of magnetic
holes whereas full particle simulations (including the elec-
tron dynamics) would be extremely useful in order to deter-
mine whether or not the high-frequency waves (for example,
the so-called lion roars [Tsurutani et al., 1982]), frequently
observed in magnetic holes, are effectively due to the elec-
tron cyclotron instability as suggested by Lee et al. [1987].
Particle simulations will also be needed to understand the
effects on the formation of stable structure due to finite Lar-
mor radius effects. Our model as well as the Kivelson and
Southwood [1996] one are both based on the hypothesis of
magnetic moment conservation for all particles. It is clear
that such an approximation will fail in the case of strong in-
stabilities where the most unstable wavelength becomes of
the order of the proton Larmor radius with a typical growth
rate comparable to the Larmor frequency. The complexity
of the particles’ motion in a field where the typical spatial
and temporal scales are of the order of the Larmor scales is
such that only numerical simulations may help farther under
these conditions. ‘
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