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Abstract TheM -regression estimator has recently been

widely used to build spectral estimators in time series

models. In this paper, we extend this approach when

the data follow a periodic autoregressive moving aver-

age (PARMA) process. We introduce an estimator of

the parameters based on the classical Whittle estima-

tor. The finite sample size performances of the proposed

estimator are analyzed under the scenarios of PARMA

processes with and without additive outliers (AO). Un-

der the non-contaminated scenario, our estimator and

the maximum Gaussian and Whittle likelihood estima-

tors have similar behaviors. However, in the contami-

nated case, the two last estimators are severely biased,

while the proposed estimator is robust. As a real data

application, carbon monoxide (CO) concentrations are

analyzed. A PARMA model is fitted and the data are
forecasted with the model.
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1 Introduction

Stochastic processes exhibiting periodic correlation are

frequently named as periodically correlated, periodi-

cally stationary (PS) or cyclostationary. Tiao and Grupe

(1980) point out that periodic correlation may be ne-

glected and misspecified as stationary seasonality when

the standard time series tools are used. Since the intro-

duction of PS processes in the literature by Gladyshev

(1961), many authors have identified the periodic corre-

lation phenomenon in time series of different areas, see

e.g. Gardner and Franks (1975) and Bloomfield et al.

(1994). Recent reviews on PS processes can be found,

for instance, in Gardner et al. (2006) and Hurd and

Miamee (2007).

Cyclostationary counterparts of standard paramet-

ric stationary models, e.g., ARMA processes, are ob-

tained by authorizing the parameters to vary periodi-

cally in time. In this context, the PARMA framework

is a natural candidate for parsimoniously fitting PS

time series. Estimation methods for PARMA models

have been investigated in the literature. For example,

Lund and Basawa (2000) have considered the Gaussian

maximum likelihood estimator (GMLE), Basawa and

Lund (2001) have studied the least square method, and

Sarnaglia et al. (2015) have proposed a Whittle likeli-

hood estimator (WLE). These authors have shown that

GMLE and WLE display similar performances in fi-

nite sample sizes, while WLE is faster to calculate than

GMLE, mainly in large dimensional parameter spaces.
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The methodology proposed in this paper is not only

motivated by its analytical and empirical features, but

also from a real problem in the health and environmen-

tal fields. The concern about air pollution problems has

increased considerably in the last 50 years. Especially in

developing countries, the air quality has been degraded

as a result of industrialization, population growth, high

rates of urbanization, and inadequate or non-existent

policies to control air pollution. The problems caused by

air pollution produce local, regional and global impacts.

Among different environmental pollution problems, air

pollution is reported to cause the greatest damage to

health and loss of quality of life from environmental

causes.

Air quality control is accomplished by monitoring

stations, which constitute the air quality monitoring

network, where each station may monitor different pol-

lutants according to the needs of the region where it

is installed. Once data are collected from a monitor-

ing system, they must be stored in data management

systems and databases. Subsequently, the data must be

retrieved and analyzed to see what they reveal about

the effectiveness of regulatory standards, the accuracy

of modeling, impacts on health endpoints, among oth-

ers.

The records over time of particulate matter (PM),

sulfur dioxide (SO2) and CO, among other atmospheric

pollutants, present some interesting features to investi-

gate by time series tools, such as stationarity and non-

stationarity (local trend, unit root), periodicity, asym-

metry, weak and strong (long-memory) dependence. For

example, He and Lu (2012) have studied the periodic

variation of the concentrations of CO, carbon dioxide

(CO2) and PM at a typical traffic intersection in Hong

Kong. In addition, the pollution series may present ob-

servations with high levels of concentrations producing

sample densities with heavy tails. Besides the conse-

quence of the atypical concentrations of the air pollu-

tant on the environment and on the public health, these

high levels of concentrations are not sequentially repeti-

tive events, and can be identified as outliers which affect

the statistical properties of sample functions, such as

the standard mean and covariance. Since the estimation

of time series models is connected with these sample

functions, the estimated model can be strongly affected

by the large peaks of the concentration. Therefore, it

is important to develop statistical tools for a time se-

ries with these characteristics in order to describe the

dynamics of the pollutants as well as to forecast future

concentrations.

There are several types of outliers which cause dif-

ferent effects on the estimates. In general, the following

three types are considered (Denby and Martin, 1979):

innovation outliers, which affect all subsequent obser-

vations; AO and replacement outliers, which have no

effect on subsequent observations. AO affect the pa-

rameter estimates more than innovation outliers, and

they have the same effect as replacement outliers (Ma

and Genton, 2000). In the case of PS processes, the

effect of AO was discussed by Sarnaglia et al. (2010).

These authors have proposed a robust autocovariance

function for PS processes which is used in the periodic

Yule-Walker equations to provide robust estimates for

PAR models. Shao (2008) has also suggested a robust

estimation method for PAR models. Solci et al. (2020)

have presented a comparative simulation study consid-

ering the robust methods proposed by Ma and Gen-

ton (2000), Shao (2008) and Sarnaglia et al. (2010) in

the scenario of PAR processes with asymmetric errors

and atypical observations. Recent studies in the envi-

ronmental area related to the use of robust methods to

estimate and forecast time series data are, for example,

Ursu and Pereau (2016), Sguera et al. (2016), Cabana

et al. (2020), and references therein.

In the frequency domain, the periodogram is a pow-

erful tool in the context of spectral analysis. The peri-

odogram is a function of a time series sample and is

strongly affected by outliers. One way to circumvent

the outlier’s effect is to use robust methods to compute

alternative spectral estimators and these functions have

been recently introduced as alternatives to the classi-

cal periodogram for stationary linear time series. It is

well known that the periodogram is related to the least

square estimator of the coefficients of a linear regression

model with sine and cosine regressors, see e.g., Priest-

ley (1981). Alternatively, several authors have defined

M -periodogram by using the non-linear method of M -

regression, see e.g. Li (2008) and Li (2010). In Reisen

et al. (2017) and Fajardo et al. (2018), the authors have

studied the M -periodogram for long-memory processes

based on the M -regression approach discussed by Koul

(1992). Reisen et al. (2019) have discussed this spectral

estimator for the short-memory case such as ARMA

processes. Therefore, based on the above references, the

asymptotic theory related to M -regression spectral es-

timation method in the standard stationary univariate

linear time series context is now fully established.

Here, we extend theM -regression method to PARMA

models by introducing a multivariate M -periodogram

spectral estimator in the Whittle likelihood function,

denoted as WLEM. The empirical performance of WLEM

is evaluated through Monte Carlo simulations. The re-

sults show that WLEM behaves similarly to GMLE and

WLE for uncontaminated time series. On the other

hand, for contaminated time series with AO, GMLE

and WLE are seriously affected, while WLEM gives
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close estimates to the ones in the uncontaminated data

case. Although the asymptotic properties of WLEM method

are not derived here due to their level of complexities,

the finite sample size investigation supports its use in

practical problems.

As an application, we consider CO daily maximum

concentrations. PARMA models are fitted to the data

with WLE and WLEM, respectively, and the models are

used to forecast the data. In addition, we investigate

whether possible atypical observations cause effects on

the identification of the model and the estimation of

its parameters. To the best of our knowledge, the M -

regression estimation method for PARMA model and

its application have not been discussed in the literature

yet.

The rest of the paper is structured as follows: Sec-

tion 2 describes the PARMA model with AO; Section3

introduces the M -Whittle estimation method; The fi-

nite sample performance of the robust estimator is in-

vestigated through a Monte Carlo study in Section 4;

An application of the methodology to CO daily mean

concentrations is presented in Section 5.

2 PARMA model with AO

Let Z be the set of integer numbers and (Zt), t ∈ Z,

be a real valued stochastic process satisfying E(Z2
t ) <

∞ for all t ∈ Z. Let µZ,t = E(Zt) and γZ,t(τ) =

Cov(Zt, Zt−τ ). We say that (Zt) is PS with period S
(PSS) if for every (t, τ) ∈ Z2,

µZ,t+S = µZ,t and γZ,t+S(τ) = γZ,t(τ), (1)

and there are no smaller values of S > 0 for which (1)

holds. This definition implies that µZ,t and γZ,t(τ) are

periodic functions in t and need to be known only for

t = 1, . . . ,S. If (Zt) is PS1 then it is weakly stationary

in the usual sense. In the following, we assume without

loss of generality that µZ,t = 0 for all t ∈ Z, and we

use the notation t = (r − 1)S + ν where r ∈ Z and the

season ν = 1, . . . ,S.

One of the most popular PSS process is the PARMA

model which generalizes the ARMA model, see e.g. Vec-

chia (1985). (Zt) is said to be a PARMA model if it

satisfies the difference equation

pν∑
j=0

φν,jZ(r−1)S+ν−j =

qν∑
k=0

θν,kε(r−1)S+ν−k, (2)

where, for each season ν, pν and qν are the AR and MA

orders, respectively, φν,1, . . . , φν,pν and θν,1, . . . , θν,qν are

the AR and MA coefficients, respectively, and φν,0 =

θν,0 = 1. The innovations (εt) satisfy ε(r−1)S+ν = σνε(r−1)S+ν ,

where (εt) is a sequence of zero-mean independent and

identically distributed random variables with unit vari-

ance. In the following, we set p = maxν pν , q = maxν qν ,

φν,j = 0 for j > pν , θν,k = 0 for k > qν , and we refer to

(2) as the PARMA(p, q)S model.

Let (Zr), r ∈ Z, be the S-variate time series defined

by Z′r = [Z(r−1)S+1, . . . , Z(r−1)S+S ], where Z′r denotes

the transpose of Zr. It is well known that (Zt) is PSS
if and only if (Zr) is weakly stationary. The covariance

matrix function of (Zr) is ΓZ(τ) = Cov(Zr,Zr−τ ) and

is related to γZ,t(τ) by [ΓZ(τ)]l,m = γZ,l(τS + l −m)

for every l,m = 1, . . . ,S. Now, (2) is equivalent to the

vector ARMA (VARMA) difference equation

P∑
j=0

ΦjZr−j =

Q∑
k=0

Θkεr−k, (3)

where P = dp/Se, Q = dq/Se and dxe denotes the

smallest integer greater than or equal to x. The entries

of matrix Φj are [Φj ]l,m = φl,jS+l−m with the conven-

tion that [Φ0]l,m = 0 when l < m. The definition of

Θk is similar. The white noise vector process (εr) is

defined by εr = [ε(r−1)S+1, . . . , ε(r−1)S+S ]′ and has the

covariance matrix Σε = diag(σ2
1 , . . . , σ

2
S).

For all z ∈ C, let

Φ(z) =

P∑
j=0

Φjz
j and Θ(z) =

Q∑
k=0

Θkz
k,

and assume that detΦ(z)Θ(z) 6= 0 for |z| ≤ 1. There-

fore, (Zr) is causal and invertible and the spectral den-

sity matrix of (Zr) is

fZ(ω) =
1

2π
Φ−1(e−iω)Θ(e−iω)ΣεΘ

′(eiω)Φ′−1(eiω),

where ω ∈ (−π, π]. The causality and invertibility do

not ensure that Σε, Φ(z) and Θ(z) are uniquely de-

termined by the covariance matrix function ΓZ(τ), or

equivalently the spectral matrix fZ(ω), see e.g. (Brock-

well and Davis, 2006, page 431). Additional restrictions

have to be imposed in order to obtain identifiable mod-

els, see Dunsmuir and Hannan (1976) and Deistler et al.

(1978) for general conditions for VARMA models. Sar-

naglia et al. (2020) have developed specific identifiabil-

ity conditions for PARMA models. In the following, we

assume that model (3) is identifiable.
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Example 1 When pν = qν = 1 for all ν = 1, . . . ,S,
we have p = q = 1, P = Q = 1,

Φ0 =


1 0 · · · · · · 0

φ2,1 1 · · · · · · 0

0 φ3,1 1 · · · 0
...

...
. . .

. . .
...

0 · · · · · · φS,1 1

 , Φ1 =



0 · · · · · · · · · φ1,1
0 · · · · · · · · · 0
... · · · · · · · · ·

...
... · · · · · · · · ·

...

0 · · · · · · · · · 0


and

detΦ(z) = det(Φ0 + Φ1z) = 1 + (−1)S+1

( S∏
ν=1

φν,1

)
z.

Similar results can be derived for Θ0, Θ1 and detΘ(z).

The causality condition detΦ(z) 6= 0 for |z| ≤ 1, and

the invertibility condition detΘ(z) 6= 0 for |z| ≤ 1 are

equivalent respectively to

ϑφ =

S∏
ν=1

|φν,1| < 1 and ϑθ =

S∏
ν=1

|θν,1| < 1. (4)

As discussed in Section 1, we shall consider AO since

they cause the more harmful effect in the inference of

time series. Sarnaglia et al. (2010) have shown theoret-

ically and empirically, that AO can induce a spurious

memory loss by increasing the variance of the process.

Let (Yt) be defined by

Yt = Zt + ηWt, (5)

where η > 0 is the magnitude of the outlier and (Wt) is

a sequence of independent and identically distributed

random variables taking the values −1, 0, 1 with prob-

abilities P(Wt = 0) = 1− ζ and P(Wt = −1) = P(Wt =

1) = ζ/2, where ζ ∈ (0, 1) is the probability of oc-

currence of an outlier. We assume that (Wt) and (Zt)

are independent processes. The probabilities for posi-

tive and negative outliers are the same. If ζ = 0 or

η = 0, then Yt = Zt and (Yt) is uncontaminated. It

is worth to point out that in model (5), the position

(in time) of the outliers is random, which seems to be

appropriate in real applications, since the position and

the occurrence of the outliers in the sample is usually

unknown. There are other ways to describe atypical ob-

servations. For example, one can consider heavy-tailed

distributions for the white noise process (εt), see e.g.

Katkovnik (1998). However, in this kind of outlier gen-

erating mechanism, there is no explicit definition for

the magnitude of the outliers and their investigation

can not be performed directly.

The autocovariance function γY,t(τ) = Cov(Yt, Yt−τ )

of the contaminated process (Yt) in (5) is given by

γY,t(τ) =

{
γZ,t(0) + η2ζ, τ = 0,

γZ,t(τ), τ 6= 0,

while E(Yt) = µY,t = µZ,t. Therefore, (Yt) is also a PSS
process but with larger variance than (Zt). Let Y′r =

[Y(r−1)S+1, . . . , Y(r−1)S+S ] and ΓY(τ) = Cov(Yr,Yr−τ ).

Then

ΓY(τ) = ΓZ(τ) + D1{τ=0}, (6)

where D is the (S × S) diagonal matrix with diagonal

entries (D)l,l = η2ζ, l = 1, . . . ,S. Therefore, the spec-

tral density matrix of the contaminated vector process

(Yr) is given by

fY(ω) = fZ(ω) +
1

2π
D, ω ∈ (−π, π].

Note that, letting η → ∞ makes the diagonal matrix

D to dominate fY, which becomes close to the spec-

tral density of a vector white noise process. This is the

frequency domain counterpart of the memory loss prop-

erty of processes with AO.

3 The Whittle M-estimator

We now introduce the estimation method proposed in

this paper. Firstly, we define a robust alternative to the

Fourier transform based on the non-linear M -regression

approach. Next, the robust Whittle-type method is pre-

sented.

3.1 M -Fourier transform

Let (Xr), r ∈ Z, be any S-dimensional vector process
and X = [X′1, . . . ,X

′
N ]′ be a sample of size N observed

from (Xr). The discrete Fourier transform of X, at the

frequency ω ∈ (−π, π], is defined by

WX(ω) = (2πN)−1/2
N∑
r=1

Xre
−irω. (7)

Expression (7) can be fastly computed at the Fourier

frequencies ωj = 2πj/N , j = 1, . . . , N ′, where N ′ =

b(N−1)/2c is the greatest integer smaller than or equal

to (N − 1)/2.

For any fixed frequency ωj , the S-dimensional vec-

tor WX(ωj) can be viewed as a linear regression vector

as follows. Let Xr,ν be the νth component of vector Xr,

r = 1, . . . , N , ν = 1, . . . ,S. Define the vector of covari-

ates Cr,j = [cos(rωj), sin(rωj)]
′ and consider the linear

model

Xr,ν = C ′r,jβν(ωj) + ξr,ν ,
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where ξr,ν is a random error term and the coefficient

vector βν(ωj) = (βν,1(ωj), βν,2(ωj))
′ can be seen as de-

scribing the impact of the jth harmonic on the time se-

ries X1,ν , . . . , XN,ν . The classical least square estimator

of the vector βν(ωj) is given by

β̂ν(ωj) = argmin
βν(ωj)∈R2

[
N∑
r=1

(
Xr,ν − C ′r,jβν(ωj)

)2]
. (8)

Now, define the vector d(ωj) = [d1(ωj), . . . , dS(ωj)]
′,

where dν(ωj) = β̂ν,1(ωj) − iβ̂ν,2(ωj). It can be shown

that

WX(ωj) =
√
N/8π d(ωj), j = 1, . . . , N ′.

It is well known that β̂ν(ωj) is not robust to atypical

observations and heavy-tailed distributions. To improve

robustness, one idea is to replace β̂ν(ωj) by a non-linear

M -regression estimator in WX(ωj). This will lead to

the robust periodogram for PS processes proposed here.

The key idea is to replace the quadratic loss function

in (8) by an alternative function ρ(·), which gives

argmin
βν(ωj)∈R2

[
N∑
r=1

ρ(Xr,ν − C ′r,jβν(ωj))

]
.

Equivalently, one can define the M -estimator β̂ν,ψ(ωj)

of βν(ωj) as the solution of

N∑
r=1

Cr,j ψ
(
Xr,ν − C ′r,j β̂ν,ψ(ωj)

)
= 0,

where ψ is the first derivative of the Huber function

given by

ρ(x) =

{
x2/2, |x| ≤ δ,
δ(|x| − δ/2), |x| > δ,

(9)

see Huber (1964). The choice of the tuning parameter

δ > 0 is quite important and provides the compromise

between robustness and efficiency of the M -estimator.

Larger values of δ would lead to the Huber loss closer

to the square loss, which would lead to closer perfor-

mances between WLE and WLEM. On the other hand,

small value of δ would improve robustness, but at the

price of efficiency loss in the uncontaminated Gaus-

sian processes. This conclusion is corroborated by other

authors, see e.g. Maronna et al. (2019). Following the

usual choice given in the literature, the tuning param-

eter is set to 1.345, which ensures efficiency of 95% of

the regression estimator in the Gaussian case.

Finally, by defining dψ(ωj) similarly to d(ωj) with

β̂ν(ωj) replaced by β̂ν,ψ(ωj), the robust alternative to

WX(ωj) proposed here is given by

WX,ψ(ωj) =
√
N/8π dψ(ωj), j = 1, . . . , N ′. (10)

3.2 Whittle M -estimator of PARMA parameters

Assume that Z1, . . . , Zn is a sample from a PARMA

process with known orders p and q. For simplicity, sup-

pose that n = NS, such that every season ν = 1, . . . ,S
is observed N times. As previously, define the vector

Zr = [Z(r−1)S+1, . . . , Z(r−1)S+S ]′ corresponding to the

rth cycle, the full sample being given by Z = [Z′1, . . . ,Z
′
N ]′.

The parameter vector of model (2) is ϕ = (ϕ′φ, ϕ
′
θ, ϕ
′
σ)′

where ϕφ and ϕθ contain all the AR and MA parame-

ters, respectively, and ϕσ = (σ2
1 , . . . , σ

2
S)′.

We define the parameter space P ⊂ R(p+q)S as the

set of points (ϕ′φ, ϕ
′
θ)
′ for which model (2) is identifiable

in the sense of Deistler et al. (1978). We denote by R>0

the set of positive real numbers. For any ϕ ∈ P ×RS>0,

let ΓN (ϕ) be the NS × NS matrix with ΓZ(m − l) in

the (l,m)th block of S × S elements, 1 ≤ l,m ≤ N .

The Gaussian log-likelihood multiplied with −2N−1 is

given by

L̂N (ϕ) = N−1 log detΓN (ϕ) +N−1Z′Γ−1N (ϕ)Z.

We denote by ϕ0 the true parameter vector ϕ from

which the sample Z1, . . . , Zn is generated. We assume

that (ϕ′φ0
, ϕ′θ0)′ ∈ P, and we have ΓN (ϕ0) = Cov(Z,Z).

The GMLE of ϕ0 is ϕ̂N = argminϕ∈P×RS>0
L̂N (ϕ).

To obtain ϕ̂N , an optimization algorithm is used

and can demand high computational effort due to the

fact that ΓN (ϕ) has to be inverted. To circumvent this

difficulty, we use the multivariate version of Whittle’s

methodology to approximate L̂N (ϕ), see Dunsmuir and

Hannan (1976) . For a PARMA process, it was shown by

Sarnaglia et al. (2015) that the corresponding Whittle

likelihood estimator (WLE) of ϕ0 is ϕ̃N = (ϕ̃′φN , ϕ̃
′
θN
, ϕ̃′σN )′

where

(ϕ̃′φN , ϕ̃
′
θN )′ = argmin

(ϕ′φ,ϕ
′
θ)
′∈P

S∑
ν=1

log σ̃2
N,ν(ϕφ, ϕθ),

σ̃2
N,ν(ϕφ, ϕθ) =

1

2πN ′

N ′∑
j=1

∣∣(Θ−1(e−iωj )Φ(e−iωj )WZ(ωj)
)
ν

∣∣2 ,
ν = 1, . . . ,S (11)

and WZ(ωj) is given by (7) in which Xr is replaced by

Zr, and the νth component of ϕ̃σN is σ̃2
N,ν(ϕ̃φN , ϕ̃θN )

for ν = 1, . . . ,S.

The Whittle M -estimator (WLEM) of ϕ0, ϕ̃N,ψ, is

obtained by replacing WZ(ωj) in (11) by WZ,ψ(ωj)

defined in (10) in which Xr is replaced by Zr.

It was pointed out by Sarnaglia et al. (2015) that

(ϕ′φ, ϕ
′
θ) involves (p + q)S parameters whereas the di-

mension of ϕ is (p + q + 1)S. Then, ϕ̃N is easier to
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calculate and is obtained faster than ϕ̂N . The same re-

mark applies to the calculation of ϕ̃N,ψ. However, the

computation time of ϕ̃N,ψ may be larger than ϕ̃N be-

cause a numerical optimization method is needed to

obtain WZ,ψ(ωj) since this function does not have a

closed form expression.

4 Numerical experiments

In this section, we compare the finite sample behaviors

of WLEM, GMLE and WLE. Samples of the processes

(Zt) and (Yt) were generated according to (2) and (5),

respectively, with p = 1, q ∈ {0, 1}, S = 2, ζ = 0.01 and

η = 10. The parameter values are given in Table 1. The

sample sizes are n = NS = 300, 800, and the Huber

function (9) is used with δ = 1.345. For each model,

200 sample paths were generated. Other PARMA mod-

els were also considered and the results lead to similar

conclusions.

We evaluate the finite sample performances of the

estimators by computing their sample root mean square

errors (RMSE), when the random variables (εt) are

Gaussian and non-Gaussian in (2). The results are dis-

played in Tables 2, 3, 4 and 5 when (εt) are Gaussian;

in Tables 6, 7, 8 and 9 when (εt) follow a standardized

Student’s t distribution with 5 degrees of freedom; in

Tables 10, 11, 12 and 13 when (εt) follow a Laplace dis-

tribution with location 0 and scale
√

2. The values with

“∗” refer to the sample RMSE for the contaminated se-

ries.

In the case of uncontaminated data, the three esti-

mators present very similar sample RMSE in all cases.

This quantity decreases as the sample size increases,

and increases with the orders of the models, which are

expected results. Relating to the estimation of the vari-

ance of the innovations, GMLE and WLE are more pre-

cise than WLEM when the data are Gaussian (Tables 2

to 5), and this is also an expected result. But, when

the data are not Gaussian (Tables 6 to 13), the RMSE

of the estimation of the variance of the innovations are

similar for the three estimators.

In the case of contaminated data with AO, the sam-

ple RMSE of GMLE and WLE increase substantially,

which means that these estimators are totally corrupted

by the atypical observations, while WLEM displays sim-

ilar sample RMSE values as in non-contaminated sce-

nario. WLEM presents generally accurate estimates, even

for a large number of outliers. Its superiority over GMLE

and WLE appears clearly in the tables for Gaussian and

non-Gaussian innovations. This empirical study indi-

cates that GMLE and WLE should be avoided when the

series contains AO, and WLEM is an alternative estima-

tor to deal with a periodic time series with and without

possible AO. These results are similar to those obtained

with the M -spectral estimator in the context of stan-

dard stationary time series with short and long-range

dependence discussed by Reisen et al. (2019), Reisen

et al. (2017) and Fajardo et al. (2018).

5 Analysis of air pollution data

We analyze the daily maximum concentrations of CO

collected at the station located in Enseada do Suá area

which belongs to the automatic air quality monitoring

network of the Greater Vitória Region, ES, Brazil. This

monitoring network has eight monitoring stations which

are located at urban sites of four cities and monitors

PM10 concentrations, total suspended particles (TSP),

ozone (O3), nitrogen oxides (NOx), CO, hydrocarbons

(HC) and meteorological variables.

The data consist of n = NS = 728 observations

measured from January 3, 2010 to December 31, 2011,

and 31 observations from January 1, 2012 to January

31, 2012. The first 728 data were used to fit the model,

and the last 31 records were used to perform the fore-

cast study. The sample mean and standard deviation of

the first 728 data are 2501.35 µg/m3 and 869.41 µg/m3,

respectively. The plot of the data over time and the box-

plots for each day of the week are displayed in Figures 1

and 2, respectively. These figures show that the series

displays a weekly pattern (seasonality) without shifts

or “abrupt” changes in the mean and long-term trends.

Figure 2 shows that the data are generally symmetric

for each day of the week.

2010 2011 2012

1
0
0
0

3
0
0
0

5
0
0
0

7
0
0
0

C
O

  
(µ

g
m

3
)

Year

Fig. 1 Daily maximum concentrations of CO concentrations
in Vitória, ES, Brazil.

We observe a high level of CO on Tuesday, Septem-

ber 13, 2011 (619th observation), which is approximately

5 standard deviations from the sample mean. Although,

high levels of pollutants are an important information

that should be considered in the context of air pollution

and health impact, these observations may be identi-
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Table 1 Parameters.

ν = 1 ν = 2 Eq. (4)
Model φ1,10

θ1,10
σ2
10

φ2,10
θ2,10

σ2
20

ϑφ ϑθ
1 −0.2 0.0 1.0 −0.5 0.0 1.0 0.1 0.0
2 −0.2 −0.5 1.0 −0.5 −0.2 1.0 0.1 0.1
3 −1.0 0.0 1.0 −0.5 0.0 1.0 0.5 0.0
4 −1.0 −0.5 1.0 −0.5 −0.2 1.0 0.5 0.1

Table 2 RMSE of the estimates for Model 1 with Gaussian innovations.

Method n φ1,1 σ2
1 φ2,1 σ2

1

300 0.067; 0.121∗ 0.117; 1.366∗ 0.079; 0.252∗ 0.111; 1.363∗

GMLE 800 0.048; 0.101∗ 0.079; 1.122∗ 0.046; 0.239∗ 0.074; 1.253∗

300 0.068; 0.121∗ 0.117; 1.368∗ 0.079; 0.252∗ 0.111; 1.364∗

WLE 800 0.048; 0.101∗ 0.079; 1.122∗ 0.046; 0.239∗ 0.074; 1.253∗

300 0.067; 0.067∗ 0.147; 0.179∗ 0.083; 0.089∗ 0.147; 0.189∗

WLEM 800 0.051; 0.054∗ 0.118; 0.149∗ 0.051; 0.058∗ 0.108; 0.152∗

Table 3 RMSE of the estimates for Model 2 with Gaussian innovations.

Method n φ1,1 θ1,1 σ2
1 φ2,1 θ1,1 σ2

1

300 0.364; 1.393∗ 0.371; 1.398∗ 0.120; 1.433∗ 0.638; 2.219∗ 0.649; 2.249∗ 0.114; 1.257∗

GMLE 800 0.171; 0.492∗ 0.184; 0.500∗ 0.065; 1.118∗ 0.167; 1.007∗ 0.171; 1.031∗ 0.064; 1.102∗

300 0.369; 0.981∗ 0.377; 0.985∗ 0.119; 1.433∗ 0.545; 1.309∗ 0.559; 1.340∗ 0.114; 1.255∗

WLE 800 0.171; 0.439∗ 0.184; 0.448∗ 0.065; 1.119∗ 0.167; 0.466∗ 0.171; 0.504∗ 0.064; 1.102∗

300 0.357; 0.344∗ 0.371; 0.363∗ 0.135; 0.164∗ 0.747; 0.704∗ 0.760; 0.714∗ 0.150; 0.180∗

WLEM 800 0.178; 0.186∗ 0.193; 0.201∗ 0.101; 0.132∗ 0.189; 0.200∗ 0.194; 0.206∗ 0.101; 0.131∗

Table 4 RMSE of the estimates for Model 3 with Gaussian innovations.

Method n φ1,1 σ2
1 φ2,1 σ2

1

300 0.064; 0.394∗ 0.107; 1.770∗ 0.047; 0.159∗ 0.107; 1.327∗

GMLE 800 0.036; 0.373∗ 0.069; 1.642∗ 0.030; 0.142∗ 0.070; 1.279∗

300 0.066; 0.397∗ 0.116; 1.780∗ 0.047; 0.159∗ 0.107; 1.328∗

WLE 800 0.037; 0.374∗ 0.073; 1.646∗ 0.030; 0.142∗ 0.070; 1.279∗

300 0.080; 0.107∗ 0.193; 0.334∗ 0.058; 0.067∗ 0.156; 0.227∗

WLEM 800 0.053; 0.077∗ 0.168; 0.317∗ 0.038; 0.047∗ 0.134; 0.215∗

Table 5 RMSE of the estimates for Model 4 with Gaussian innovations.

Method n φ1,1 θ1,1 σ2
1 φ2,1 θ1,1 σ2

1

300 0.233; 1.539∗ 0.252; 1.594∗ 0.118; 1.307∗ 0.124; 0.319∗ 0.150; 0.350∗ 0.107; 1.337∗

GMLE 800 0.140; 0.278∗ 0.146; 0.376∗ 0.068; 1.230∗ 0.077; 0.134∗ 0.089; 0.181∗ 0.071; 1.141∗

300 0.236; 0.792∗ 0.255; 0.864∗ 0.121; 1.313∗ 0.125; 0.238∗ 0.150; 0.280∗ 0.107; 1.336∗

WLE 800 0.141; 0.276∗ 0.147; 0.372∗ 0.068; 1.233∗ 0.077; 0.133∗ 0.089; 0.180∗ 0.071; 1.141∗

300 0.272; 0.296∗ 0.288; 0.311∗ 0.153; 0.207∗ 0.134; 0.140∗ 0.148; 0.152∗ 0.141; 0.183∗

WLEM 800 0.150; 0.149∗ 0.155; 0.154∗ 0.112; 0.169∗ 0.082; 0.085∗ 0.094; 0.097∗ 0.107; 0.145∗

Table 6 RMSE of Model 1 with Student’s t innovations.

Method n φ1,1 σ2
1 φ2,1 σ2

2

300 0.0730; 0.1242∗ 0.176; 1.296∗ 0.0816; 0.2505∗ 0.215; 1.493∗

GMLE 800 0.0444; 0.0960∗ 0.124; 1.110∗ 0.0491; 0.2480∗ 0.125; 1.197∗

300 0.0727; 0.1235∗ 0.176; 1.297∗ 0.0815; 0.2505∗ 0.215; 1.494∗

WLE 800 0.0445; 0.0961∗ 0.124; 1.111∗ 0.0495; 0.2481∗ 0.125; 1.197∗

300 0.0729; 0.0732∗ 0.206; 0.185∗ 0.0896; 0.0898∗ 0.191; 0.183∗

WLEM 800 0.0450; 0.0454∗ 0.198; 0.171∗ 0.0573; 0.0570∗ 0.145; 0.115∗

fied, from a statistical point of view, as being AO if

they are not sequentially repetitive events.

To verify if the 619th observation can be identified

as an AO or not, a new series was generated from the

original data by replacing this observation by the Hu-
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Table 7 RMSE of Model 2 with Student’s t innovations.

Method n φ1,1 θ1,1 σ2
1 φ2,1 θ2,1 σ2

2

300 0.291; 1.425∗ 0.305; 1.431∗ 0.181; 1.256∗ 0.617; 3.456∗ 0.625; 3.502∗ 0.204; 1.437∗

GMLE 800 0.154; 0.426∗ 0.164; 0.461∗ 0.135; 1.202∗ 0.158; 1.431∗ 0.163; 1.443∗ 0.139; 1.118∗

300 0.225; 0.256∗ 0.240; 0.286∗ 0.181; 1.263∗ 0.262; 0.241∗ 0.280; 0.294∗ 0.203; 1.453∗

WLE 800 0.133; 0.150∗ 0.141; 0.192∗ 0.135; 1.205∗ 0.137; 0.170∗ 0.144; 0.184∗ 0.139; 1.121∗

300 0.223; 0.231∗ 0.237; 0.248∗ 0.204; 0.181∗ 0.255; 0.256∗ 0.270; 0.270∗ 0.217; 0.187∗

WLEM 800 0.145; 0.148∗ 0.154; 0.155∗ 0.180; 0.150∗ 0.145; 0.155∗ 0.149; 0.159∗ 0.183; 0.154∗

Table 8 RMSE of Model 3 with Student’s t innovations.

Method n φ1,1 σ2
1 φ2,1 σ2

2

300 0.0640; 0.3882∗ 0.2213; 1.8123∗ 0.0502; 0.1705∗ 0.194; 1.386∗

GMLE 800 0.0395; 0.3895∗ 0.1160; 1.6595∗ 0.0322; 0.1398∗ 0.127; 1.314∗

300 0.0659; 0.3915∗ 0.2208; 1.8239∗ 0.0501; 0.1705∗ 0.194; 1.382∗

WLE 800 0.0406; 0.3911∗ 0.1188; 1.6650∗ 0.0321; 0.1398∗ 0.127; 1.314∗

300 0.0812; 0.1013∗ 0.1717; 0.2800∗ 0.0582; 0.0697∗ 0.170; 0.176∗

WLEM 800 0.0495; 0.0702∗ 0.0932; 0.1882∗ 0.0358; 0.0421∗ 0.118; 0.110∗

Table 9 RMSE of Model 4 with Student’s t innovations.

Method n φ1,1 θ1,1 σ2
1 φ2,1 θ2,1 σ2

2

300 0.227; 1.102∗ 0.230; 1.154∗ 0.196; 1.247∗ 0.124; 0.208∗ 0.151; 0.244∗ 0.194; 1.407∗

GMLE 800 0.133; 0.263∗ 0.139; 0.366∗ 0.143; 1.197∗ 0.073; 0.119∗ 0.088; 0.158∗ 0.167; 1.151∗

300 0.216; 0.216∗ 0.218; 0.269∗ 0.196; 1.251∗ 0.125; 0.161∗ 0.154; 0.215∗ 0.194; 1.411∗

WLE 800 0.125; 0.140∗ 0.130; 0.221∗ 0.143; 1.198∗ 0.072; 0.093∗ 0.088; 0.153∗ 0.167; 1.152∗

300 0.217; 0.221∗ 0.227; 0.228∗ 0.181; 0.165∗ 0.120; 0.127∗ 0.145; 0.151∗ 0.198; 0.174∗

WLEM 800 0.127; 0.132∗ 0.133; 0.138∗ 0.129; 0.101∗ 0.071; 0.073∗ 0.087; 0.087∗ 0.160; 0.129∗

Table 10 RMSE of Model 1 with Laplace innovations.

Method n φ1,1 σ2
1 φ2,1 σ2

2

300 0.0725; 0.1149∗ 0.200; 1.334∗ 0.0746; 0.2470∗ 0.182; 1.309∗

GMLE 800 0.0431; 0.0940∗ 0.114; 1.151∗ 0.0535; 0.2493∗ 0.100; 1.237∗

300 0.0728; 0.1155∗ 0.200; 1.335∗ 0.0747; 0.2468∗ 0.182; 1.309∗

WLE 800 0.0432; 0.0940∗ 0.115; 1.151∗ 0.0535; 0.2494∗ 0.100; 1.237∗

300 0.0715; 0.0701∗ 0.294; 0.266∗ 0.0894; 0.0888∗ 0.222; 0.199∗

WLEM 800 0.0418; 0.0398∗ 0.272; 0.241∗ 0.0647; 0.0599∗ 0.190; 0.155∗

Table 11 RMSE of Model 2 with Laplace innovations.

Method n φ1,1 θ1,1 σ2
1 φ2,1 θ2,1 σ2

2

300 0.319; 1.311∗ 0.327; 1.297∗ 0.190; 1.350∗ 2.087; 3.162∗ 2.088; 3.192∗ 0.166; 1.377∗

GMLE 800 0.167; 0.699∗ 0.177; 0.740∗ 0.113; 1.173∗ 0.162; 1.409∗ 0.161; 1.401∗ 0.110; 1.125∗

300 0.247; 0.224∗ 0.252; 0.263∗ 0.190; 1.353∗ 0.247; 0.260∗ 0.271; 0.307∗ 0.165; 1.397∗

WLE 800 0.145; 0.153∗ 0.154; 0.201∗ 0.113; 1.175∗ 0.145; 0.154∗ 0.146; 0.178∗ 0.110; 1.128∗

300 0.246; 0.247∗ 0.259; 0.260∗ 0.288; 0.264∗ 0.268; 0.272∗ 0.283; 0.285∗ 0.263; 0.233∗

WLEM 800 0.137; 0.139∗ 0.146; 0.149∗ 0.244; 0.211∗ 0.148; 0.155∗ 0.147; 0.155∗ 0.232; 0.200∗

Table 12 RMSE of Model 3 with Laplace innovations.

Method n φ1,1 σ2
1 φ2,1 σ2

2

300 0.0615; 0.3880∗ 0.178; 1.696∗ 0.0499; 0.1661∗ 0.172; 1.405∗

GMLE 800 0.0392; 0.3823∗ 0.104; 1.626∗ 0.0304; 0.1423∗ 0.102; 1.286∗

300 0.0642; 0.3913∗ 0.187; 1.715∗ 0.0498; 0.1664∗ 0.172; 1.403∗

WLE 800 0.0391; 0.3838∗ 0.105; 1.632∗ 0.0305; 0.1423∗ 0.103; 1.286∗

300 0.0793; 0.1003∗ 0.189; 0.297∗ 0.0518; 0.0622∗ 0.191; 0.174∗

WLEM 800 0.0477; 0.0705∗ 0.104; 0.200∗ 0.0350; 0.0430∗ 0.138; 0.106∗

ber location M -estimator of the corresponding season (ν = 3, Tuesday). The sample autocovariance functions
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Table 13 RMSE of Model 4 with Laplace innovations.

Method n φ1,1 θ1,1 σ2
1 φ2,1 θ2,1 σ2

2

300 0.203; 2.041∗ 0.215; 2.080∗ 0.170; 1.468∗ 0.124; 0.634∗ 0.147; 0.644∗ 0.168; 1.273∗

GMLE 800 0.131; 0.286∗ 0.133; 0.381∗ 0.102; 1.280∗ 0.072; 0.123∗ 0.085; 0.176∗ 0.116; 1.164∗

300 0.192; 0.205∗ 0.200; 0.260∗ 0.171; 1.475∗ 0.123; 0.186∗ 0.147; 0.230∗ 0.168; 1.281∗

WLE 800 0.125; 0.142∗ 0.126; 0.221∗ 0.102; 1.283∗ 0.071; 0.098∗ 0.085; 0.173∗ 0.116; 1.165∗

300 0.201; 0.204∗ 0.215; 0.218∗ 0.196; 0.191∗ 0.124; 0.130∗ 0.147; 0.151∗ 0.250; 0.217∗

WLEM 800 0.127; 0.131∗ 0.134; 0.132∗ 0.154; 0.121∗ 0.069; 0.069∗ 0.082; 0.081∗ 0.221; 0.187∗
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Fig. 2 Daily maximum concentrations of CO by day of the
week.

(ACFs) of the original and modified series were com-

puted for each season (day of the week), and are dis-

played in Table 14. These values reveal that the 619th

observation has some impact on the ACFs, especially

at lag 1 for the seasonal periods ν = 3, 4. In these

cases, the original series has smaller ACF values than

the modified series. This means that an AO generates

a memory-loss, see Fajardo et al. (2009) and Sarnaglia

et al. (2010). The ACF at the other periods are the

same. This simple empirical investigation supports the

idea that the largest observation may be considered as

an AO.

Table 14 ACFs of the original and modified series.

ν
Original Modified

lag 1 lag 2 lag 3 lag 1 lag 2 lag 3
1 0.130 0.141 −0.048 0.130 0.141 −0.048
2 0.045 0.178 0.181 0.045 0.178 0.181
3 0.206 0.138 0.105 0.313 0.096 0.153
4 0.205 0.110 0.052 0.219 0.110 0.052
5 0.238 0.127 0.029 0.238 0.046 0.029
6 0.554 0.267 0.151 0.554 0.267 0.108
7 0.314 0.184 0.160 0.314 0.184 0.160

Now we investigate whether this observation has

an impact on the identification and estimation of the

model. The WLE was calculated from the centered orig-

inal data obtained by subtracting the sample mean of

each period. The WLEM was calculated from the cen-

tered original data obtained by subtracting the Hu-

ber location M -estimator of each period, and taking

δ = 1.345 in (9). The modified WLE (MWLE) was ob-

tained by calculating the WLE with the centered mod-

ified data got by subtracting the modified sample mean

of each period. As part of the modeling strategy, the

values of the Bayesian information criterion (BIC) were

computed using each estimator. The GMLE was not

considered in this study since GMLE and WLE have

similar behaviors, see Section 4.

For WLE, BIC was computed by

BIC = N

S∑
ν=1

log(σ̃2
N,ν) + log(N)

S∑
ν=1

(pν + qν), (12)

where, for each ν = 1, ...,S, σ̃2
N,ν is the residual vari-

ance. For WLEM, BIC was obtained by replacing σ̃2
N,ν

by σ̃2
N,ν,ψ in (12) and is denoted by BICM. In the case

of MWLE, BIC was computed from (12), where σ̃2
N,ν

was replaced by the residual variance obtained with the

modified series, and is denoted by MBIC. For the three

estimators, the initial values for AR and MA estimates

were set as the AR and MA coefficients estimated from

a stationary ARMA(p, q) model with p = maxν pν and

q = maxν qν , respectively, and for white noise variances

set as S2
X,ν , which is the data sample variance of the pe-

riod ν. Identifiable models were fitted using the condi-

tions proposed by Sarnaglia et al. (2020). BIC selected a

PAR model with orders (p1, . . . , pS) = (0, 0, 0, 0, 1, 1, 1),

while BICM and MBIC selected a PAR model with or-

ders (p1, . . . , pS) = (0, 0, 1, 1, 1, 1, 1). The parameters of

these models and the (in sample) RMSE and median

absolute deviation (MAD) between the predicted val-

ues calculated from the model and the actual values,

are displayed in Table 15.

First, we observe that BIC suggested a smaller model

order than MBIC. This is in agreement with the results

in Table 14, and was also noticed by Sarnaglia et al.

(2010) who discussed the reduction of the order of PAR

models with AO when using Akaike information crite-

rion and BIC. Since BIC has selected a different model

than BICM and MBIC, the WLE is not expected to

have similar values to WLEM and MWLE, as seen in

Table 15, especially for ν = 3, the season in which the

atypical observation is present, and for ν = 4. Notice

that even though only one observation is suspected to
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Table 15 WLE, WLEM and MWLE for each season ν.

ν
WLE WLEM MWLE

SX,νφν,1 σν φν,1 σν φν,1 σν
1 - 475.43 - 503.20 - 475.43 475.43
2 - 835.60 - 830.62 - 835.60 835.61
3 - 901.63 −0.313 767.41 −0.293 742.58 901.63
4 - 781.63 −0.246 770.44 −0.219 762.73 781.63
5 −0.244 775.66 −0.296 794.00 −0.243 775.66 798.65
6 −0.581 696.79 −0.550 769.66 −0.581 696.79 837.09
7 −0.278 701.43 −0.274 695.97 −0.278 701.43 738.88

RMSE 749.03 744.71 720.77 869.41
MAD 482.31 471.95 469.32 583.98

be atypical, it has an impact on the estimation of the

parameters. Finally, WLEM and MWLE gave similar

results, which corroborates the robustness of WLEM.

The next step is to investigate whether the aberrant

observation has impact on the forecasts. Figure 3 dis-

plays the one-step-ahead forecasts and their respective

90% forecast intervals, and Table 16 presents the RMSE

and MAD for h-step-ahead forecasts for the models

fitted by WLE and WLEM. The one-step-ahead 90%

forecast intervals were calculated as Ẑ(r−1)S+ν−1(1) ±
1.64σν , where Ẑt−1(1) = E(Zt|Zt−1, Zt−2, . . .) denotes

the one-step-ahead point forecast of Zt. Deviations from

normality could be addressed by forecast intervals cal-

culated with the methods addressed in Sarnaglia et al.

(2018). Similar conclusions related to the impact of the

outlier in the confidence intervals are expected. We ob-

serve that the model fitted by WLEM provides more ac-

curate forecasts across the h-step-ahead, h = 1, . . . , 7,

since both RMSE and MAD are smaller using this ro-

bust approach.

Table 16 RMSE and MAD for h-step-ahead forecasts of the
CO concentrations of January 2012.

h
RMSE MAD

WLE WLEM WLE WLEM

1 660.29 630.70 559.26 442.78
2 661.70 655.85 569.76 547.25
3 662.41 652.47 559.26 539.53
4 638.23 628.78 526.07 492.95
5 624.54 616.44 492.88 457.57
6 636.13 628.26 526.07 498.55
7 631.67 625.05 492.88 457.57

6 Conclusions

This paper proposes to use the M -regression method

to estimate PARMA models in the frequency domain.

Contrarily to the usual GMLE and WLE, the proposed

spectral estimator is robust against AO. Moreover, it
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Fig. 3 Actual observations (solid black line), one-step-ahead
point forecasts (solid line), and 90% forecast intervals (dashed
lines) of the CO concentrations of January 2012.

has the same finite sample performance as GMLE and

WLE in the absence of outliers. Therefore, when the

presence of outliers is suspected, the robust spectral

estimator should be preferred. As an application to air

pollution data, daily maximum CO concentrations are

analyzed. The results strongly suggest that the high

levels of CO concentration lead to similar features as

AO do. Fitting a PARMA model to these data using the
robust estimator provides also more accurate multistep

predictors.

Acknowledgements The authors would like to thank the
agencies CNPq, CAPES and FAVES, Brazil and CNRS and
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