
HAL Id: hal-03185736
https://hal.science/hal-03185736v1

Submitted on 30 Mar 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Timed Systems through the Lens of Logic
S. Akshay, Paul Gastin, Vincent Juge, Shankara Narayanan Krishna

To cite this version:
S. Akshay, Paul Gastin, Vincent Juge, Shankara Narayanan Krishna. Timed Systems through the
Lens of Logic. 2019 34th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS), Jun
2019, Vancouver, Canada. �10.1109/LICS.2019.8785684�. �hal-03185736�

https://hal.science/hal-03185736v1
https://hal.archives-ouvertes.fr

HAL Id: hal-03185736
https://hal.archives-ouvertes.fr/hal-03185736

Submitted on 30 Mar 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Timed Systems through the Lens of Logic
S. Akshay, Paul Gastin, Vincent Juge, Shankara Narayanan Krishna

To cite this version:
S. Akshay, Paul Gastin, Vincent Juge, Shankara Narayanan Krishna. Timed Systems through the
Lens of Logic. 2019 34th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS), Jun
2019, Vancouver, Canada. pp.1-13, �10.1109/LICS.2019.8785684�. �hal-03185736�

https://hal.archives-ouvertes.fr/hal-03185736
https://hal.archives-ouvertes.fr

Timed Systems through the Lens of Logic
S. Akshay∗, Paul Gastin†, Vincent Jugé‡ and Shankara Narayanan Krishna∗
∗ IIT Bombay {akshayss, krishnas}@cse.iitb.ac.in
† LSV, ENS Paris-Saclay & CNRS, Université Paris-Saclay paul.gastin@lsv.fr
‡ LIGM, Université Paris-Est Marne-la-Vallée, CNRS vincent.juge@u-pem.fr

constraints, or even by allowing (non-) deterministic updates
of clocks. Subsequently, there has been a growing body of
work [2], [1], [5], [6], [15], [16], [17], [18], [26] towards
adding auxiliary data structures like stacks [28], [4], [3] or
queues [3] to such timed automata. In all these, the techniques
used to solve the emptiness problem were specific and tailor-
made to the choice of the data structure, kind of constraints
and updates that are allowed.

Our goal is to introduce a novel and uniform approach for
reasoning about such timed systems which allow rich timing
features along with several types of auxiliary data structures
at the same time. This technique captures the behaviors of the
underlying model as graphs (see [3]) and examines the logical
definability of certain properties over these graphs.

We start by abstracting a run of a system, be it timed or
not, as a sequence of instructions. When the system has a
data structure d such as a stack, these instructions may write
to d (denoted w(d)) or read from d (r(d)). The behavior
is modeled as a linear graph (the sequence of instructions),
with instruction labels and with additional data-structure edges
matching writes with corresponding reads, as illustrated in
Figure 1. When the system is timed, instructions may also
reset clocks (x := 0), check guards (x < 3), etc. These
timing instructions are recorded as additional labels in the
linear graph without a priori being interpreted as edges, as
shown on Figure 2 left. This allows to decouple the behavior
of the underlying untimed system from the timing constraints
that should be realized for the run to be feasible.

Our first contribution is to show that non-emptiness of
a timed system T can be reduced to the satisfiability of
a formula ΦT over such labeled linear graphs, which we
call T -graphs. A T -graph Gτ obtained from a sequence of
instructions τ , as depicted in Figure 2 (left), is a witness of
non-emptiness of T if it satisfies three properties:
1) The sequence of instructions τ can be generated by T . Since
the system T is usually described with a finite automaton
where transitions are labeled with instructions, T induces a
regular language of instruction sequences which can easily be
captured by (Φ1) in our logic.
2) The data-structure edges should comply with the sequence
of instructions. Intuitively, a node labeled with w(d) (resp.
r(d)) should have an outgoing (resp. incoming) d-edge. If the
data structure d is a stack (resp. queue), then d-edges should
be well-nested, i.e., satisfy the LIFO (resp. FIFO) policy. It
is known that compliance with stack or queue data-structures
can be expressed (Φ2) in our logics [11].

Abstract—In this paper, we analyze timed systems with data
structures. We start by describing behaviors of timed systems
using graphs with timing constraints. Such a graph is called
realizable if we can assign time-stamps to nodes or events
so that they are consistent with the timing constraints. The
logical definability o f s everal g raph p roperties [20], [10] has
been a challenging problem, and we show, using a highly non-
trivial argument, that the realizability property for collections
of graphs with strict timing constraints is logically definable in
a class of propositional dynamic logic (EQ-ICPDL), which is
strictly contained in MSO. Using this result, we propose a novel,
algorithmically efficient a nd u niform p roof t echnique f or the
analysis of timed systems enriched with auxiliary data structures,
like stacks and queues. Our technique unravels new results (for
emptiness checking as well as model checking) for timed systems
with richer features than considered so far, while also recovering
existing results.

Index Terms—Timed systems, propositional dynamic logic,
Logical definability, E fficient al gorithms, graphs

I. INTRODUCTION

The modeling and analysis of complex real-time systems
is a challenging and important area, both from theoretical
and practical points of view. The challenge often stems from
the fact that such models have different sources of infinite
behaviors, which makes them highly expressive but difficult
to analyze. On one hand, the timing features engender complex
constraints between events, which allow (or disallow) infinite
sets of timed behaviors (over real numbers) satisfying these
constraints. On the other hand, the auxiliary data structures
such as multiple stacks allow a rich expressive power often
leading to undecidable verification p roblems, e ven i n the
absence of time. Thus, each choice of combining these com-
ponents of real-time and specific d ata s tructures l eads t o rich
models whose analysis is complicated and often intractable.

The analysis of timed systems without any additional data
structures has often been done using well-accepted models
like timed automata [8], where clocks are real-valued variables
that are reset and checked at guards. The classical approach
to analyze such timed automata is by abstracting the real-
timed system using the so-called region abstraction into a
finite-state a utomaton p reserving e mptiness. S everal variants
and extensions of this basic model have been considered over
the years, for instance using event-clocks [9] or diagonal

Partly supported by UMI ReLaX, ANR project TickTac (ANR-18-CE40-
0015), DST/INRIA CEFIPRA project EQuaVe and DST/INSPIRE faculty
award [IFA12-MA-017].

{nop} {w(d1)} {w(d2)} {w(d2)} {r(d1)} {w(d1)} {r(d2)} {w(d1)} {r(d2)} {r(d1)} {nop} {r(d1)}

d1

d1

d1

d2 d2

Fig. 1: Labeled linear graph Gσ of a sequence of instructions σ = nop w(d1) w(d2) w(d2) r(d1) w(d1) r(d2) w(d1) r(d2) r(d1)
nop r(d1) from a system having two data structures (a stack d1 and a queue d2).

τ =

1

nop
x := 0
y := 0

2

w(d)
x = 0

3

nop
y := 0

4

w(d)
y ≤ 1

5

r(d)
2 < d− y

6

nop
x := 0

7

w(d)

8

r(d)
4 <d≤ 5

2 ≤ x

9

nop
y − x < 6

10

r(d)
x− d < 3

d
d d

1 2 3 4 5 6 7 8 9 10

≤ 0

≤ 0 < −2

≤ 1

< 6
≤ 5

< −4

< 3

≤ −2

Fig. 2: Left: labeled linear graph Gτ obtained from a sequence of timed instructions τ . For readability, the nodes are numbered
and their instruction labels are written below them. Right: the corresponding weighted graph Gτ .

3) The real-time constraints induced by the timing instructions
should be realizable, i.e., it is possible to timestamp the nodes
of G with some real numbers so that all timing constraints
are satisfied. The second main contribution of this paper is to
show that realizability can be expressed (Φ3) in our logic.

We use a light-weight propositional dynamic logic called
EQ-ICPDL for the logical definability. Writing formulae for
our systems in EQ-ICPDL is rather intuitive and improves
readability in several cases compared to the classical MSO.
On a technical note, it is known that EQ-ICPDL is a strict
fragment of MSO, and gives us a more tractable complexity
than MSO (avoiding a non-elementary blowup).

We show that realizability can be expressed in EQ-ICPDL in
two steps. First, from the T -graph Gτ , we define a weighted
graph Gτ which retains only the timing constraints induced
by the timed instruction sequence τ . For instance, in Figure 2,
the T -graph Gτ is on the left and the associated weighted
graph Gτ on the right. In Gτ , an edge from node i to node j
labeled < 6 means that the difference t(j)− t(i) between the
timestamps assigned to i and j should be less than 6. We prove
that the weighted graph Gτ can be EQ-ICPDL-interpreted in
the graph Gτ . This holds for all timing features that we con-
sider. Second, we prove that realizability of weighted graphs
is expressible in EQ-ICPDL, say with Φ′3. Since weighted
graphs Gτ can be EQ-ICPDL-interpreted in T -graphs Gτ , we
can backward translate Φ′3 into some EQ-ICPDL formula Φ3

expressing realizability over T -graphs. Finally, non-emptiness
of T is equivalent to satisfiability of ΦT = Φ1 ∧ Φ2 ∧ Φ3.

Our logical characterization of realizability for weighted
graphs is highly non-trivial. It is easier when the underlying
system only has closed guards, but we go beyond this and
prove that realizability is also definable in EQ-ICPDL in the
presence of both open and closed guards. On the other hand,
we show that, without the linear order, realizability is not
definable in MSO. In fact, we show that this already holds for
graphs with a partial order of width (i.e., size of the largest
anti-chain) 2, thus proving a tight characterization.

Our third contribution is to show how the two results above
can be combined with existing techniques to give an effective
algorithm for checking emptiness of several classes of timed
systems. First, observe that the above two contributions do
not immediately imply that checking emptiness of the system
is decidable, as satisfiability of EQ-ICPDL formulae over
arbitrary collections of graphs is undecidable. This is expected,
since, even in the untimed case, having a single queue or
two stacks as data structures leads to undecidability of empti-
ness. However, we can now consider under-approximations,
as classically done for untimed systems. One such under-
approximation is to consider collections of T -graphs that have
a fixed bound on the tree-width. Such T -graphs can now be
interpreted into trees and we can use the fact that checking
satisfiability for EQ-ICPDL (with bounded intersection width)
over trees is decidable in EXPTIME. This gives us a matching
EXPTIME algorithm for checking emptiness of timed systems
whose graph behaviors have a bounded tree-width. Using
this approach, we retrieve many known results on timed
systems with data structures, and also obtain new results. Our
approach captures with elan, the intricate flow and exchange of
information between data structures and clocks, see Section V.
Related work. Our technique is orthogonal to the theory of
timed systems via the region construction as well as to other
related approaches. In the untimed setting, the closest work to
ours is in [28], [4], where generic approaches for decidability
via logic and tree-width have been developed for automata
with data structures in the untimed setting. There have been
several papers on the decidability of timed systems with a
single stack: [12], [2] deal with specific timing constraints,
while [16], [17] use the language of timed atoms to specify
and analyze an orthogonal but powerful extension to timed
registers. In [18], a NEXPTIME bound is shown in this setting
by reduction to one-dimensional branching vector addition
systems. However, all these works are restricted to a single
stack, while we tackle several data structures including multi-
ple stacks, queues. Many recent papers [17], [15], [1] consider

complex constraints between data structures and clocks. In
these papers, there are time constraints between data structures
d1, d2, between clocks, and also between a clock c and a data
structure d. All of these can be modeled easily in our case, as
can be seen in Section V.

Our work is also related to [5], [6], where the behaviors
of timed systems with stacks are modeled as graphs having
data-structure edges as well as time constraint edges. The
presence of two types of edges necessitates a fresh proof for
the the bound on tree-width for each kind of timing feature.
On the contrary, we directly inherit the bound on tree-width
established in the untimed setting. The other main difference
is that [5], [6] directly build tree automata instead of going via
logic. Using logic instead of directly building a tree automaton
allows us to have a simpler higher level approach which is
easier to write and less technical.

The logic we use builds on Propositional Dynamic Logic, a
classical logic to reason about programs [23]. The extension
with loop, intersection and converse was explored in [25],
where complexity bounds were shown for satisfiability and
model checking. We inherit these complexity bounds. How-
ever, to the best of our knowledge, this is the first time this
logic has been used in the analysis of timed systems. Further,
even with MSO logic (a strictly more powerful and well-
known logic), the characterization of realizability in MSO over
graphs of timed systems was open, as mentioned in [5]: we
settle this problem in this paper.

Complete proofs of all results can be found in [7].

II. PRELIMINARIES

Node- and edge-labeled graphs. Let Σ and Γ be two
alphabets. Nodes will be labeled with Σ and edges with Γ.
A (Σ,Γ)-labeled graph is a tuple G = (V,E, λ) where V is a
finite set of vertices, λ : V → 2Σ labels vertices with (sets of)
letters from Σ and E ⊆ V ×Γ×V is the set of labeled edges.
A vertex may have 0, 1 or several labels from Σ. For γ ∈ Γ,
we let Eγ = {(u, v) : (u, γ, v) ∈ E} be the set of edges
labeled γ. G(Σ,Γ) denotes the set of (Σ,Γ)-labeled graphs.

In this paper, graphs model behaviors of sequential systems.
Hence, we have a special symbol succ in Γ to define the
successor relation Esucc of a total order on V . We simply
write u ≺· v instead of (u, v) ∈ Esucc. We call these graphs
linear; we let � = ≺·∗ be the linear order induced by ≺· and
we note ≺ = ≺·+ the strict order. The other edges Eγ , with
γ ∈ Γ\{succ}, are used to model other useful relations in the
graph, for instance the matching push-pop relation if we are
interested in pushdown systems.
Propositional dynamic logic over labeled graphs. We define
now the logic that we will use to specify properties of graphs.
We use a variant of the propositional dynamic logic [23]. This
logic is sufficiently expressive for our purposes and enjoys
good complexity for the satisfiability problem, rather than the
more expressive monadic second order logic (MSO) which has
a much higher complexity. The logic ICPDL(Σ,Γ) is defined
over Σ (often seen as propositional variables), and Γ (often
seen as atomic programs).

Syntax: We have the following, with p ∈ Σ and γ ∈ Γ:

Φ ::= Eσ : ¬Φ : Φ ∨ Φ

σ ::= > : p : σ ∨ σ : ¬σ : 〈π〉σ : loop(π)

π ::=
γ−→ : test{σ} : π + π : π · π : π∗ : π−1 : π ∩ π

In ICPDL, C stands for converse (π−1) and I for intersection
(π ∩ π). We also consider LCPDL which is the fragment with
loop but without intersection, since it has better complexity,
as stated in Theorem 2. We also write CPDL or PDL with the
obvious meaning. In the syntax above, Φ are sentences and E
is the existential node quantifier. The universal node quantifier
Aσ is written ¬E¬σ. Formulae σ are called node or state
formulae and have one implicit free first-order variable, while
formulae π are called path or program formulae and have two
implicit free first-order variables, the endpoints of the path.

Semantics: Given a (Σ,Γ)-labeled graph G = (V,E, λ),
we can write the semantics of the formulae. The semantics
of a state formula σ is a set JσKG ⊆ V , while the semantics
of a path formula π is a binary relation JπKG ⊆ V 2. Their
definitions are mutually inductive. If the graph G is clear from
the context, we omit subscripts and simply write JσK and JπK.

The base cases for path formulae are J γ−→K = Eγ and
Jtest{σ}K = {(v, v) : v ∈ JσK}. The operations +,∩, ·,∗
correspond to rational expression notations, interpreted respec-
tively as union, intersection, concatenation and Kleene star of
the respective relations. Finally, the converse is defined by
Jπ−1K = {(u, v) : (v, u) ∈ JπK}.

The base cases for state formulae are J>K = V and JpK =
{v ∈ V : p ∈ λ(v)}, where p ∈ Σ. Disjunction and negation
correspond to union and complement. We let Jloop(π)K consist
of the vertices v ∈ E from which there is a loop following path
π, i.e., such that (v, v) ∈ JπK. Similarly, we let J〈π〉σK consist
of the vertices u ∈ E from which it is possible to follow
the path π and reach a vertex satisfying σ, i.e., (u, v) ∈ JπK
for some v ∈ JσK. We often write 〈π〉 instead of 〈π〉>. A
sentence Eσ states that there exists a vertex of G satisfying
σ, i.e., G |= Eσ if JσKG 6= ∅. Disjunction and negation of
sentences are as usual.

While ICPDL allows intersection, loop and converse, we
also look at EQ-ICPDL where we allow existential quantifi-
cation over new propositional variables in a similar spirit as
in [27]. Thus, formulae of EQ-ICPDL(Σ,Γ) have the form
Ψ = ∃p1, . . . , pn Φ where AP = {p1, . . . , pn} is disjoint
from Σ and Φ ∈ ICPDL(Σ] AP,Γ). The semantics is
defined by G = (V,E, λ) |= ∃p1, . . . , pn Φ if there exists
λ′ : V → 2AP such that (G,λ′) = (V,E, λ ∪ λ′) |= Φ.
For formulae Ψ in ICPDL(Σ,Γ) or EQ-ICPDL(Σ,Γ), we let
L(Ψ) = {G ∈ G(Σ,Γ) : G |= Ψ}.

Example 1. We illustrate the semantics of ICPDL(Σ,Γ) using
Figure 3. We have a node- and edge-labeled graph, with node
labels Σ = {p, q, r, s} and edge labels Γ = {d, e, f, succ}.
In path formulae, we simply write → instead of succ−−→. The
formula E 〈(test{p∨ q} ·→)∗〉r evaluates to true on the given
graph: the leftmost node is a witness. Likewise, the formula

{p, s} {q, s} {p, q} {r} {q} {q, s}

d

e f

c

Fig. 3: A node- and edge-labeled graph.

¬E 〈→〉(p ∧ s) is also true, since there are no nodes in the
graph whose successors are labeled both p and s. Let ∆ =

Γ \ {succ}. The formula E
∨

(d,d′)∈∆2,d 6=d′ loop(
d−→· d

′

−→−1
) is

not true since all the non-successor edges are labeled by a
unique symbol. Finally, the formula E 〈test{s} · e−→ · test{r} ·
f−→· test{s} · d−→−1 · c−→〉p is true, while E 〈test{p} · d−→〉r is not.

Satisfiability of propositional dynamic logic. The following
definitions and results will be used in Section IV-C. Over
arbitrary graphs, the satisfiability problem for PDL is unde-
cidable. On the other hand, when we restrict to graphs of
bounded tree-width, then the satisfiability problem becomes
decidable with elementary complexity. We explain this now.
Tree-width is a well-known measure for graphs [29]. We say
that a labeled graph G = (V,E, λ) has tree-width k if the
underlying unlabeled graph has tree-width k. We will not
need the formal definition of tree-width in this paper, so it is
omitted. We denote by Gk(Σ,Γ) the graphs in G(Σ,Γ) having
tree-width at most k.

Below is one of the main theorems that we use in this paper.
It refers to the intersection width of an EQ-ICPDL formula,
which is the maximum of the intersection widths of its path
subformulae: the intersection width of path formulae is defined
inductively by iw(

γ−→) = iw(test{σ}) = 1, iw(π1 + π2) =
iw(π1 · π2) = max(iw(π1), iw(π2)), iw(π−1) = iw(π∗) =
iw(π), and iw(π1 ∩ π2) = iw(π1) + iw(π2). Hence, a formula
in LCPDL has intersection width 1.

Theorem 2 (Satisfiability). Given k ≥ 1 in unary and a for-
mula Ψ in EQ-ICPDL(Σ,Γ) of intersection width bounded by
a constant, checking whether G |= Ψ for some G ∈ Gk(Σ,Γ)
can be solved in EXPTIME.

This is a consequence of a similar result over trees due to
Göller, Lohrey and Lutz [25, Theorem 3.8]. Indeed, graphs
of tree-width at most k can be represented by binary trees
which are called k-terms. Moreover, for each formula Ψ ∈
ICPDL(Σ,Γ) we can construct an ICPDL formula Ψ

k
of size

O(k2|Ψ|) over k-terms such that, for all k-terms τ , we have
τ |= Ψ

k
iff JτK |= Ψ, where JτK is the graph denoted by

the k-term τ [11]. Hence, satisfiability of Ψ over Gk(Σ,Γ) is
reduced to satisfiability of Ψ

k
over k-terms.

Graph interpretation and backward translation. [21],
[11]The following definitions and results will be used in Sec-
tion IV-B. We consider two signatures (Σ,Γ) and (Σ′,Γ′). In-
tuitively, a graph G′ ∈ G(Σ′,Γ′) is interpreted in a graph G ∈
G(Σ,Γ) if we have formulae over the signature (Σ,Γ) which,
when evaluated on G, express nodes, labels and edges of

G′. In this paper, we use CPDL interpretations, which means
that the formulae for the interpretation are in CPDL(Σ,Γ).
Also, we only need interpretation when the graphs G and
G′ have the same set of nodes. In this simple case, an
interpretation I is given by a tuple of state formulae (σp)p∈Σ′

and a tuple of path formulae (πγ)p∈Γ′ , all in CPDL(Σ,Γ).
Now, we say that a graph G′ = (V,E′, λ′) ∈ G(Σ′,Γ′)
is I-interpreted in the graph G = (V,E, λ) ∈ G(Σ,Γ) if,
for all u, v ∈ V , all p ∈ Σ′ and all γ ∈ Γ′, we have
p ∈ λ′(u) iff G, u |= σp and (u, γ, v) ∈ E′ iff G, u, v |= πγ .
In this case, we write G′ = I(G).

Interpretations allow for a backward translation theorem:
for each formula Ψ′ ∈ EQ-ICPDL(Σ′,Γ′), we can construct a
formula Ψ ∈ EQ-ICPDL(Σ,Γ) such that, for all graphs G ∈
G(Σ,Γ), we have I(G) |= Ψ′ iff G |= Ψ. The formula Ψ
is obtained from Ψ′ by replacing the atomic state formulae p
with σp (for p ∈ Σ′) and the atomic path formulae

γ−→ with πγ
(for γ ∈ Γ′). Hence, Ψ and Ψ′ have same intersection width
and |Ψ| ≤ |Ψ′| ·max{|σp|, |πγ | : p ∈ Σ′, γ ∈ Γ′}.

III. LOGICAL DEFINABILITY OF REALIZABILITY

Weighted graphs. We consider linear weighted graphs where
node labels are irrelevant, i.e., Σ = ∅, and edges are labeled
with constraints of the form < α or ≤ α, where α ∈ Z, i.e.,
Γ = {succ} ∪ ({<,≤}× Z). Since node labels are irrelevant,
a linear weighted graph is simply denoted G = (V,E). Often
we use a maximal constant M ∈ N and let ΓM = {succ} ∪
({<,≤} × {−(M − 1), . . . , 0, . . . ,M − 1}). A graph G ∈
G(∅,ΓM) is called M weight-bounded. If we only compare
using ≤, i.e., if there are no edges of the form (u,<, α, v),
then we say that the graph is closed or a graph with closed
constraints. Otherwise, we call it a mixed weighted graph or
a graph with mixed constraints.

Realizability. One important property of interest, which is
the focus of this paper, is realizability. The property of real-
izability asks whether the constraints defined by the weights
can be satisfied in a manner that is consistent with the order.

Definition 3. A weighted graph G is realizable if there exists
a time-stamp map ts : V → R such that (i) all constraints are
satisfied: ∀(u, /, α, v) ∈ E, ts(v)− ts(u) / α, and (ii) ts is
monotone w.r.t. the linear order: ∀u, v ∈ V , if u � v, then
ts(u) ≤ ts(v).

If G is realizable via a map ts, then we say that ts is
a realization of G. Note that the monotonicity could have
been enforced by adding more constraint edges: when u ≺· v
we could have added an edge (v,≤, 0, u). With these extra
constraints, realizability corresponds to checking the feasibility
of the difference constraints. This is a classical problem on
graphs which amounts to checking the absence of a negative
cycle (see [19] for more details). There are many algorithms
to solve this problem, e.g., the Bellman-Ford shortest path
algorithm. Finally, as a quick aside, note that if we have
reflexive edges (u, /, α, u) ∈ E, checking realizability for
these constraints is always vacuously true or false for all

y := 0 x := 0 x > 2
3 ≤ y − x < 4

x := 0
1 < x ≤ 3
y − x ≤ 6

< −2

< 4

≤ −3

≤ 6

≤ 3

< −1

Fig. 4: A realizable linear weighted graph obtained from a
sequence of instructions of a timed system. x, y are real-
valued variables called clocks. x := 0 (y := 0) denotes reset
instructions. Changing the last instruction to x− y ≤ 5 gives
a non-realizable weighted graph. The non-realizability follows
from (i) there is a time elapse more than 5 between the first
and third nodes, (ii) the time elapse is at most 5 between the
first and fourth nodes, and (iii) time is monotone, hence there
is at least zero time elapse between the third and fourth nodes.
This gives a negative cycle between the first and fourth nodes.

possible time-stamps, and is easy. A realizable linear weighted
graph obtained from a sequence of instructions of a timed
system is depicted in Figure 4.

A. The first main result: logical definability of realizability

We are interested in properties of (possibly infinite) collec-
tions of such graphs, presented in a finite fashion. In particular,
we wish to view graphs as being generated by an automaton,
i.e., as behaviors of a system, and we wish to reason about
this set of graphs. From this automata-theoretic viewpoint, a
natural question to ask is whether the properties that we wish
to reason about are definable in a certain logic. We focus on the
specific property of realizability in weighted graphs and study
its definability in EQ-ICPDL in our first main result below. In
the next section, we will explain far-reaching consequences of
our logical characterization, and in particular its application
for checking emptiness of timed systems.

Theorem 4. Realizability is EQ-ICPDL definable on the set
of graphs G(∅,ΓM). The size of the formula is polynomial in
M and its intersection width is 2.

We prove the above theorem in two steps: in Subsec-
tion III-A1, we consider closed graphs and show that the
logical definition is rather easy for them. Then, in Subsec-
tion III-A2, we consider graphs with mixed constraints.

Throughout the proof, given a linear weighted graph G =
(V,E) with |V | = n, we let V = {u1, . . . , un} with u1 ≺·
u2 ≺· · · · ≺· un. We start with a simple observation regarding
the time-stamps witnessing realizability in weighted graphs.
Given an M weight-bounded graph G = (V,E), a mapping
ts : V → R is said to be slowly monotone if 0 ≤ bts(v)c −
bts(u)c ≤M − 1 for all u→ v.

Lemma 5. A graph G = (V,E) in G(∅,ΓM) is realizable iff
there is a slowly monotone map ts : V → R that realizes G.

Intuitively, if a realization of a graph G is not slowly
monotone, then there must exist two consecutive points whose

time-stamps are separated by more than M−1. But in this case
there can be no forward edge (i.e., upper bound) that crosses
this point, and hence the time difference between them can
be reduced to any value larger than M − 1 without affecting
realizability. We detail this proof, via an induction, in [7].

Next, we have a crucial definition on general weighted
graphs. Given an M weight-bounded linear graph G = (V,E),
a time-stamping modulo M is a map tsm : V → ZM =
{0, . . .M − 1}. For all u, v ∈ V , we set dtsm(u, v) =
tsm(v) − tsm(u) mod M . Further, (u, v) is said to be tsm-
big if there exist w1, w2 ∈ V such that u � w1 ≺ w2 � v
and dtsm(u,w1) + dtsm(w1, w2) ≥M . Observe that, if v � u,
then (u, v) cannot be tsm-big.

Definition 6. A time-stamping modulo M tsm is said to
weakly satisfy G = (V,E) if for all e = (u, /, α, v) ∈ E,
(a) if u � v, then (u, v) is not tsm-big and dtsm(u, v) ≤ α;
(b) if v ≺ u then (v, u) is tsm-big or dtsm(v, u) ≥ −α.

Lemma 9 below shows that for linear weighted graphs,
existence of such a map is a necessary condition for real-
izability. But first, we establish some useful facts. Recall that
V = {u1, . . . , un} with u1 ≺· u2 ≺· · · · ≺· un. For i ≤ j,
we also define d+

tsm(ui, uj) = min{M, dtsm(ui, ui+1) + · · ·+
dtsm(uj−1, uj)} and d+

tsm(uj , ui) = −d+
tsm(ui, uj). Notice that

we have d+
tsm(ui, ui) = 0.

Claim 7. Let G = (V,E) ∈ G(∅,ΓM) and let ts : V → R be
a slowly monotone map (which need not satisfy the constraints
of G). Define tsm : V → ZM by tsm(v) = bts(v)c mod M
for all v ∈ V . Then, for all u, v ∈ V such that u � v, we
have d+

tsm(u, v) = min{bts(v)c − bts(u)c,M}. Furthermore,
we have d+

tsm(u, v) = M if (u, v) is tsm-big, and d+
tsm(u, v) =

dtsm(u, v) otherwise.

Given that |α| < M for all edges e = (u, /, α, v) ∈ E,
Claim 7 provides us with the following, alternative charac-
terization of weak satisfiability. A formal proof of the above
claim and of the lemma below can be found in [7].

Lemma 8. A time-stamping modulo M tsm weakly satisfies
the graph G = (V,E) if and only if d+

tsm(u, v) ≤ α for all
(u, /, α, v) ∈ E.

Now, we obtain one direction of the characterization, which
works both for closed and open constraints.

Lemma 9. If G ∈ G(∅,ΓM) is realizable, then there exists a
time-stamping modulo M that weakly satisfies G.

Proof. Lemma 5 proves that there exists a slowly monotone
time-stamping ts that satisfies the constraints G. We define
tsm : V → ZM by tsm(v) = bts(v)c mod M , and we show
below that tsm weakly satisfies G.

Let (u, /, α, v) ∈ E. By Lemma 8, it is enough to show
that d+

tsm(u, v) ≤ α. According to Claim 7, distinguishing the
cases u � v and v ≺ u, we show easily that d+

tsm(u, v) ≤
bts(v)c − bts(u)c or d+

tsm(u, v) = −M . In the first case, it
follows that d+

tsm(u, v) ≤ bts(v)c−bts(u)c ≤ ts(v)−bts(u)c <
ts(v) − ts(u) + 1 ≤ α + 1, and in the second case, we also

have d+
tsm(u, v) = −M < α + 1. Hence, in both cases, we

have d+
tsm(u, v) < α+ 1. Observing that d+

tsm(u, v) and α are
integers proves that d+

tsm(u, v) ≤ α.

The converse of the above lemma does not hold with mixed
guards and this will be handled in the next subsection. How-
ever, for closed guards it yields the following characterization.

1) Characterizing realizability in closed graphs:

Lemma 10. A closed graph G = (V,E) in G(∅,ΓM) is
realizable iff there exists a time-stamping modulo M that
weakly satisfies G.

Proof. One direction is Lemma 9. Conversely, suppose that
tsm : V → ZM is a time-stamping modulo M that weakly
satisfies G. Then, the map ts : V → N defined inductively by
ts(u1) = 0 and ts(ui+1) = ts(ui) + dtsm(ui, ui+1) is a slowly
monotone map.

Let (u, /, α, v) ∈ E. By Claim 7, distinguishing the cases
u � v and v ≺ u, we show easily that d+

tsm(u, v) ≥ bts(v)c −
bts(u)c or d+

tsm(u, v) = M . Since tsm weakly satisfies G (i.e.,
d+
tsm(u, v) ≤ α) and M > α, the second case is impossible. It

follows that ts(v)− ts(u) = bts(v)c− bts(u)c ≤ d+
tsm(u, v) ≤

α, which shows that ts satisfies the constraints of G.

It remains to encode the characterization of Lemma 10 in
EQ-ICPDL to obtain the logical definability of realizability for
linear weighted graphs.

EQ-LCPDL characterization: We use existential quantifica-
tion over atomic propositions p0, . . . , pM−1 to guess the time-
stamping modulo M . Intuitively, a node satisfies pi iff its tsm
value is i. So we define the formula ∃p0, . . . , pM−1 Partition∧
Forward∧Backward where the auxiliary formulae are defined
in Table I. The formula Partition states that every vertex
satisfies exactly one pi (0 ≤ i < M).

For 0 ≤ i, j < M , let δM (i, j) = (j − i) mod M . We
use a path formula to characterize pairs of vertices that are
tsm-big: a pair (u, v) is tsm-big iff we can go from node u
to node v following the path formula BigPath.

Since negation is not allowed at the level of path formulae,
we provide another formula, SmallPath, to express that a
pair (u, v) of vertices is not tsm-big. There are two cases,
depending on whether tsm(u) ≤ tsm(v) or not. In both
cases, (u, v) |= SmallPathi,j iff u � v, (u, v) is not tsm-big,
i = tsm(u) and j = tsm(v).

Formulae Forward and Backward respectively state the two
conditions in Definition 6. The constraint on �-forward edges
is stated using the loop operator of LCPDL. By excluding
the existence of a loop following the path BigPath · ≤α−−→−1

we make sure that forward edges (u, v) ∈ E≤α are not tsm-
big. Now, to ensure that forward edges (u, /, α, v) satisfy
dtsm(u, v) ≤ α, we exclude the existence of a path violating
this property, i.e., a loop following test{pi} ·

≤α−−→ · test{pj} ·
(→−1)+ with δM (i, j) > α.

2) A characterization with mixed guards: The characteri-
zation above is not sufficient when some of the constraints are
strict, i.e., E contains edges of the form (u,<, α, v). It turns

Partition = A
∨

0≤i<M
[pi ∧

∧
j 6=i
¬pj]

BigPath =
∑

0≤i,j,k<M
δM (i,j)+δM (j,k)≥M

test{pi} · →+ · test{pj} · →+ · test{pk} · →∗

SmallPathi,j = test{pi} ·
(∑
i≤k≤`≤j

test{pk} · → · test{p`}
)∗
· test{pj} if i ≤ j

SmallPathi,j =
∑

0≤`≤j<i≤k<M
SmallPathi,k · → · SmallPath`,j if j < i

Forward = ¬E
∨

−M<α<M

loop(BigPath · ≤α−−→−1)

∧ ¬E
∨

0≤i,j<M
δM (i,j)>α

loop(test{pi} ·
≤α−−→ · test{pj} · (→−1)+)

Backward = ¬E
∨

−M<α<M
0≤i,j<M

δM (i,j)<−α

loop(SmallPathi,j ·
≤α−−→)

TABLE I: LCPDL for realizability of linear closed graphs

out that we need an additional condition to make sure that the
fractional parts do not violate the realizability.

Definition 11. Given a graph G = (V,E) and a time-stamping
tsm : V → ZM modulo M , we define two binary relations
geqFr and gtFr on V :
• (u, v) ∈ geqFr iff one of the following conditions hold:

1) u ≺ v, (u, v) is not tsm-big and dtsm(u, v) = α for
some edge (u, /, α, v) ∈ E;

2) v ≺ u, (v, u) is not tsm-big and dtsm(v, u) = −α for
some edge (u, /, α, v) ∈ E;

3) v ≺· u and dtsm(u, v) = 0.
• (u, v) ∈ gtFr iff one of the following conditions hold:

1) u ≺ v, (u, v) is not tsm-big and dtsm(u, v) = α for
some edge (u,<, α, v) ∈ E;

2) v ≺ u, (v, u) is not tsm-big and dtsm(v, u) = −α for
some edge (u,<, α, v) ∈ E.

Notice that gtFr ⊆ geqFr. The idea is that these relations give
the ordering between the fractional parts. Thus, (u, v) ∈ geqFr
(resp. gtFr) means that the fractional part of ts(u) must be at
least (resp. strictly greater than) the fractional part of ts(v).
Once again, since |α| < M for all edges (u, /, α, v) ∈ E,
Claim 7 provides an alternative characterization of the rela-
tions geqFr and gtFr.

Lemma 12. Consider graph G = (V,E), tsm : V → ZM
modulo M and a pair (u, v) of vertices of G. Then,

• (u, v) ∈ geqFr iff there exists an edge (u, /, α, v) ∈ E
such that d+

tsm(u, v) = α, or if v ≺· u and d+
tsm(u, v) = 0;

• (u, v) ∈ gtFr iff there exists an edge (u,<, α, v) ∈ E
such that d+

tsm(u, v) = α.

Lemma 13. Let G = (V,E) be an M weight-bounded graph
with a linear order and mixed constraints. G is realizable iff
there exists a time-stamping modulo M tsm such that (i) tsm
weakly satisfies G and (ii) there do not exist u, v ∈ V such

that (u, v) ∈ gtFr and (v, u) ∈ geqFr
∗, where geqFr

∗ is the
reflexive transitive closure of geqFr.

Proof. In the forward direction, let G be realizable. Let
ts : V → R be a slowly monotone map that realizes G,
and let tsm be the time-stamping modulo M defined by
tsm : v → bts(v)c mod M . Lemma 9 proves that tsm weakly
realizes G. We further claim that, if (u, v) ∈ geqFr, then
{ts(u)} ≥ {ts(v)}, and that, if (u, v) ∈ gtFr, then {ts(u)} >
{ts(v)}. The proof is as follows.
• If (u, v) ∈ geqFr because v ≺· u and d+

tsm(u, v) = 0,
then ts(v) ≤ ts(u) and 0 = d+

tsm(u, v) = min{bts(v)c −
bts(u)c,−M}. Hence, bts(u)c = bts(v)c, and therefore
{ts(v)} ≤ {ts(u)}.

• If (u, v) ∈ geqFr because there exists an edge (u, /,
α, v) ∈ E such that d+

tsm(u, v) = α, then −M <
α = d+

tsm(u, v) < M , and Claim 7 proves that α =
d+
tsm(u, v) = bts(v)c − bts(u)c. It follows that {ts(v)} =

ts(v)−bts(v)c ≤ ts(u)+α−bts(v)c = ts(u)−bts(u)c =
{ts(u)}.

• If (u, v) ∈ gtFr, then the same argument proves that
α = d+

tsm(u, v) = bts(v)c − bts(u)c, and it follows that
{ts(v)} = ts(v) − bts(v)c < ts(u) + α − bts(v)c =
ts(u)− bts(u)c = {ts(u)}.

In the reverse direction, let tsm : V → ZM be a time-
stamping modulo M that weakly satisfies G and such that
(ii) holds. As a direct consequence of (ii), every path in the
graph GgeqFr = (V, geqFr) contains at most |V | edges in gtFr.
Indeed, otherwize two such edges would start from the same
vertex, so that one edge would belong to a cycle of GgeqFr .
Hence, for every vertex v ∈ V , we define the integer ts1(v)
as the largest number of edges in gtFr that may be used by a
path in GgeqFr starting from v: observe that 0 ≤ ts1(v) ≤ |V |.

By construction, for every pair (u, v) in geqFr, we have
ts1(u) ≥ ts1(v), and we even have ts1(u) > ts1(v) if (u, v) ∈
gtFr. Then, consider the map ts0 : V → N defined inductively
by ts0(u1) = 0 and ts0(ui+1) = ts0(ui)+dtsm(ui, ui+1). The
proof of Lemma 10 shows that ts0 is a slowly monotone map
and that ts0(v)− ts0(u) ≤ α for all edges (u, /, α, v) ∈ E.

We prove now that the map ts : V → R defined by ts(v) =
ts0(v) + ts1(v)/(|V |+ 1) is monotone. For all pairs (u, v),
• if u ≺· v and (v, u) ∈ geqFr, then ts(v) = ts0(v) +
ts1(v)/(|V | + 1) ≥ ts1(u) + ts1(u)/(|V | + 1) ≥ ts(u),
because ts0(v) ≥ ts0(u) and ts1(v) ≥ ts1(u);

• if u ≺· v and (v, u) /∈ geqFr, then d+
tsm(v, u) 6= 0, and

therefore d+
tsm(u, v) ≥ 1, which proves that ts(v) ≥

ts0(v) = ts0(u) + d+
tsm(u) ≥ ts0(u) + 1 > ts0(u) +

ts1(u)/(|V |+ 1) = ts(u).
Then, we prove that ts satisfies the constraints of G. Indeed,

for every edge (u, /, α, v) ∈ E,
• if d+

tsm(u, v) = α, then (u, v) ∈ geqFr, and therefore
ts1(v) ≤ ts1(u); it follows that ts(v) = ts0(v) +
ts1(v)/(|V | + 1) ≤ ts0(u) + α + ts1(u)/(|V | + 1) =
ts(u) + α;

• if d+
tsm(u, v) = α and, furthermore, / = <, then

(u, v) ∈ gtFr, hence ts1(v) < ts1(u); it follows that

geqFr = (
≤α−−→ +

<α−−→) ∩
(∑
0≤i,j<M
δM (i,j)=α

SmallPathi,j +
∑

0≤i,j<M
δM (j,i)=−α

SmallPath−1
j,i

)

+
∑
i<M

test{pi} · →−1 · test{pi}

gtFr =
<α−−→∩

(∑
0≤i,j<M
δM (i,j)=α

SmallPathi,j +
∑

0≤i,j<M
δM (j,i)=−α

SmallPath−1
j,i

)

TABLE II: ICPDL formulae for capturing strict guards

ts(v) = ts0(v) + ts1(v)/(|V | + 1) < ts0(u) + α +
ts1(u)/(|V |+ 1) = ts(u) + α;

• if d+
tsm(u, v) 6= α, then d+

tsm(u, v) ≤ α − 1, since tsm
weakly satisfies G; it follows that ts(v) = ts0(v) +
ts1(v)/(|V |+ 1) < ts0(v) + 1 ≤ ts0(u) + (α− 1) + 1 ≤
ts(u) + α.

Consequently, in all cases, we have ts(v)− ts(u) / α, which
completes the proof.

EQ-ICPDL characterization: As before, we use existen-
tially quantified propositional variables p0, . . . , pM−1 to guess
the tsm values. To state weak-realizability, we use the formula
WRealizable = Partition ∧ Forward ∧ Backward where the
subformulae have been defined in Table I. In addition, we
have to check the absence of a cycle among the fractional
parts, which contains at least one strict inequality and other,
possibly non-strict, inequalities. By Lemma 13, this suffices
to ensure realizability. To capture the ordering among the
fractional parts, we use two EQ-ICPDL formulae, gtFr and
geqFr respectively for the strict and non-strict parts, formally
defined in Table II. The EQ-ICPDL formula Realizable is then:

∃p0, . . . pM−1 WRealizable ∧ ¬E loop(gtFr · geqFr∗)

The intersection width of gtFr and geqFr is 2. Hence, the
intersection width of Realizable is also 2. This completes the
proof of Theorem 4.

B. Realizability is beyond logical definability in general

Above, we have seen the EQ-ICPDL definability of realiz-
ability for linear weighted graphs. In the absence of a linear
order, this is no longer true, even if one uses the strictly more
expressive MSO logic (an easy example is the property of
connectivity which separates EQ-ICPDL from MSO).

Theorem 14. The property of realizability is not definable in
MSO for weighted graphs without the linear order.

We sketch the proof idea here, and leave the technical details
to [7]. We consider a family of word structures over {a, b}
of the form a∗b∗ and define an MSO transduction that gives
rise to a family of weighted graphs. For a word anbm in the
domain, the transduction gives rise to a weighted graph with
n+m nodes, with edges from nodes i to i+ 1 (with 1 ≤ i ≤
n− 1) having weight 1, and edges from node i to i+ 1 (with
n + 1 ≤ i ≤ n + m − 1) having weight -1. Edges of weight
0 go from the node n to the node n + 1, and from the node
n+m to the node 1. The constructed weighted graph has width

2, and it is realizable iff n ≥ m. If realizability were MSO-
definable, then using backwards translation theorem [21], one
would obtain a regular language as the pre-image of those
realizable graphs. This is not the case with {anbm : n ≥ m}.

IV. ANALYZING TIMED SYSTEMS WITH DATA STRUCTURES

In this section, we develop a generic technique to analyze
timed systems with auxiliary data structures. We start with
untimed systems with data structures.

A. Capturing data structure operations as graphs

Let us fix a finite set of data structures DS. Each data
structure d ∈ DS can be operated via two instructions,
either a write that writes to the data structure, denoted w(d),
or a read instruction that reads from the data structure,
denoted r(d). The set of instructions from DS is denoted
ΣDS = {r(d), w(d) : d ∈ DS} ∪ {nop}, where nop is a
special operation that does not access the data-structures. For
simplicity and ease of exposition, we restrict each d ∈ DS
to be a stack or a queue. However, the approach described
here can be adapted to other structures (such as bags) with
minor modifications. When d ∈ DS is a stack, r(d) is the pop
operation and w(d) is the push operation on stack d. Similarly,
if d is a queue, r(d) is the dequeue operation, while w(d) is
the enqueue operation on queue d.

A sequence of operations from ΣDS abstracts a run of a
system with these data structures. We can then define the
system as a generator of (possibly infinitely many) sequences
of operations. The mechanism for generating this sequence
of operations can be some machine (an automaton), or can
be specified by regular expressions. We do not dwell on this
detail here, and instead define a system S with data structures
as a regular language of sequences of operations over ΣDS.
Without loss of generality, we assume that all sequences will
start with nop. It is easy to see that standard models such
as (multi)pushdown automata, (multi)queue automata, multiset
automata and so on generate regular languages of sequences
of such operations.

A sequence σ of operations over ΣDS is said to be valid if,
for every prefix σ′ of σ and for every data structure d ∈ DS,
the number of reads r(d) in σ′ is at most the number of writes
w(d) in σ′, and the number of reads and writes in σ are equal.
For a system S , we are only interested in valid sequences
generated by S, and we denote this set by L(S). For instance,
a valid behavior of a pushdown system cannot read/pop from
a stack before writing/pushing to it. Let ΓDS = DS ∪ {succ}.
We associate, to any valid sequence σ of operations over ΣDS,
a (ΣDS,ΓDS) linear graph Gσ .

Definition 15. Let σ = σ1 . . . σn be a valid sequence
of operations over ΣDS. We define its (ΣDS,ΓDS)-graph as
Gσ = (V,E, λ), where V = {1, . . . n} and

1) for 1 ≤ i ≤ n, λ(i) = {σi}, and, for 1≤i<n, i succ−−→ i+1,
2) σi = w(d) (r(d)) iff there is an outgoing (incoming) edge

in E labeled d from (to) i.
3) for each stack (queue) d, edges labeled d satisfy the LIFO

(FIFO) property.

As an example, let σ be a sequence of operations from
DS = {d1, d2}, where d1 is a stack and d2 is a queue. The
graph Gσ corresponding to σ is depicted in Figure 1, where
the node labels are exactly the singleton sets of operations
w(d) and r(d), for d ∈ {d1, d2}. We remark that this graph
depends crucially on the interpretation of the data structure,
as a stack or a queue. Notice that the edges labeled d1 respect
the stack discipline (well-nesting), while the edges labeled d2

respect FIFO. For a fixed DS, we assume the interpretation of
each data structure to be fixed and simply write Gσ .

Given a (Σ,ΓDS)-graph G = (V,E, λ), we define its
projection π(G) as the (∅,ΓDS)-graph obtained by removing
the node labels: π(G) = (V,E).

Theorem 16 ([11]). Let S be a system with data structures
from DS. We can construct an EQ-LCPDL(∅,ΓDS) formula ψS
such that, for all (∅,ΓDS)-graphs G, G |= ψS iff G = π(Gσ)
for some σ ∈ L(S).

The classical non-emptiness problem for a system S with
data structures can be formulated as whether L(S) 6= ∅.

Corollary 17. For system S, ψS is satisfiable iff L(S) 6= ∅.

This corollary, along with Theorem 2, and using known
bounds on tree-width, provides a “uniform" proof for the de-
cidability of checking non-emptiness for a variety of untimed
systems including (multi)pushdown and (multi)queue systems
with bounded contexts, scope, or phases in a sequential setting.
In many cases, the complexity obtained matches the best
known bounds. We extend this approach uniformly to timed
systems, using the realizability proof of Section III.

B. Combining timing and data structures

While combining time constraints and data structures, we
cannot directly rely on the formula for realizability from
Section III in the approach outlined above. The vocabulary of
graphs obtained from systems having time constraints and data
structures might differ from the (weighted) (∅,ΓM)-graphs
of Section III and the (unweighted) (Σ,ΓDS)-graphs above,
where Σ = ∅ or Σ = ΣDS. The crucial observation is that, for
a large class of timing constraints and data structures that we
are interested in, it turns out that the former weighted graphs
can be interpreted in the latter unweighted graphs, paving the
way to extend the approach for systems having both time
constraints and data structures. We now detail this intuition.

1) Timing instructions: In a timed system with data struc-
tures, the sequence of instructions generated by the system
includes (i) checking time constraints on clocks (encoded as
operations on clocks), (ii) checking time constraints on data
structures, and (iii) mixing operations on clocks and data
structures. Recall that we already have a fixed set of data
structures DS consisting of stacks and queues. To be concrete,
we also fix a representative set of timing features.

We fix a finite set Clocks of real-valued “clock” variables
and a maximal constant M ∈ N. We also fix notations ./ ∈
{≤, <,=, >,≥}, β ∈ [0,M) ∩ N and use letters x, y, x1, . . .
for clock variables. Atomic timing instructions are as follows:

1) for x ∈ Clocks, x:=0 represents clock resets, while x ./ β
represent guards or clock constraints;

2) for d ∈ DS, d ./ β represents an age constraint checking
the “age” of the message read;

3) for d ∈ DS and x, y ∈ Clocks, (x− y) ./ β, (d− x) ./ β
and (x−d) ./ β represent diagonal constraints. The latter
two capture mixing clock variables and data structures.

Thus, we define a set of instructions ΣDS
Clocks which contains

ΣDS with the atomic timing instructions described above.
Without loss of generality, we only consider sequences of
instruction sets (also called sequences of instructions for
simplicity) from ΣDS

Clocks starting with the set {nop}∪{x:= 0 :
x ∈ Clocks}, i.e., which resets all clocks at start-up. A
sequence τ of such instructions is shown in Figure 2. We
associate to every such sequence τ a sequence of untimed
instructions στ , obtained by ignoring the atomic timing in-
structions. Now we say τ is valid if στ is valid. Then, for
every valid τ , we can immediately associate a (ΣDS

Clocks,Γ
DS)-

labeled linear graph Gτ by considering Gστ and enriching its
node labels with the timing instructions.

We define a timed system with data structures T as a regular
language of sequences of instructions over ΣDS

Clocks. It is easy
to see that classical models, such as timed automata, (multi-
stack) timed pushdown automata or timed automata with gap
order constraints, can be modeled in this formalism. The set
of valid sequences generated by T is denoted L(T). Now,
a valid sequence of instructions τ = τ1 . . . τn over ΣDS

Clocks

is said to be timed feasible or just feasible if there exists a
time-stamping ts : {1, . . . , n} → R≥0 such that all timing
constraints engendered by the timing instructions are satisfied.
That is, for ./ ∈ {≤, <,=, >,≥} and β ∈ N:

(C1) For every guard of the form x ./ β at position i, if the
last reset instruction of the clock x in τ before i was at
position j, then ts(i)− ts(j) ./ β.

(C2) For every age constraint of the form d ./ β at position i,
we have an edge j d−→ i in Gτ (which implies w(d) ∈
λ(j) and r(d) ∈ λ(i)), and ts(i)− ts(j) ./ β.

(C3) For every diagonal constraint of the form x − y ./ β at
position i, if j and k are the last resets of clocks x and
y respectively, then ts(k)− ts(j) ./ β.

(C4) We can similarly define diagonal constraints between
clocks and data structures.

Thus, the non-emptiness problem for the timed system T is to
check whether there exists a feasible τ ∈ L(T).

2) From timing instructions to weighted graphs: We reduce
checking non-emptiness of T to checking satisfiability of an
EQ-ICPDL formula over (ΣDS

Clocks,Γ
DS)-graphs. Towards this,

we first define the weighted graph Gτ corresponding to a valid
sequence of instructions τ of T in a natural manner. We extend
from Section III, where all timing instructions were simply
clock constraints and resets of clocks i.e., corresponding to
(C1) and (C3) above. In Figure 2, the check of x = 0 on node
2 gives two bidirectional weighted edges in the weighted graph
Gτ depicted on the right, between the last reset point of x and
node 2. Similarly, instruction y ≤ 1 at node 4 gives rise to the
forward edge labeled ≤ 1 between last reset of y and node 4.

For diagonal constraints (C3), the edge obtained is between the
last reset points. E.g, y − x < 6 at node 9 yields the weighted
edge from node 3 to node 6 (last resets of clocks y and x).

This construction easily lifts to (C2) and (C4) as well. For
(C2), we just observe that each age constraint engenders edges
between the source write and target read of that data structure
edge. E.g., in Figure 2, the age constraint 4 <d≤ 5 at node
8 yields two weighted edges between the source of the data
structure edge, i.e., node 4 and target, node 8. The upper bound
is captured by the forward edge while the lower bound by the
backward edge. Similarly the constraint 2 < d− y at node 5
yields the backward edge from node 3 (the last reset of clock
y) to node 2 (the source of the data structure edge reaching
node 5) labeled < −2 (as it is a lower bound constraint).

The main property about the weighted graph is that it cap-
tures feasibility of a sequence of instructions as realizability.

Lemma 18. A valid sequence of instructions τ over ΣDS
Clocks

is feasible iff Gτ is realizable.

3) Interpreting weighted graphs in unweighted graphs:
From the above discussion, given a timed system T , for each
valid τ of T , we have a weighted graph Gτ . A significant
contribution of this paper, of possible independent interest,
is the following proposition which relates these weighted
graphs with unweighted (ΣDS

Clocks,Γ
DS)-graphs obtained from

τ . Proposition 19 allows us to logically interpret weighted
graphs into unweighted ones and, therefore, to decouple the
data structure and process edges from the timing constraints.

Proposition 19. Let τ be a valid sequence of instructions over
ΣDS

Clocks. Then the weighted graph Gτ can be CPDL-interpreted
in the (ΣDS

Clocks,Γ
DS)-graph Gτ .

Proof. Given a valid sequence of instructions τ over ΣDS
Clocks,

let M be the maximal constant appearing in these instructions.
We saw in the previous subsection that the weighted graph
Gτ = (V,E) has successor edges, and weighted edges arising
from constraints of type (C1–C4). First, we observe that
successor edges in Gτ are already present as successor edges in
Gτ . For weighted edges, let / ∈ {<,≤}, and c ∈ [0,M)∩N.
We assume that equality constraints such as x = c have been
replaced by the conjunction of x ≤ c and c ≤ x. For a clock
x ∈ Clocks, we define the path formula
Resetx =→−1 · (test{¬(x := 0)} · →−1)∗ · test{(x := 0)}
which moves backwards along successor edges up to the last
reset of clock x. Then, towards the interpretation of forward
edges weighted with / c, we define the path formula Π/c as∑

x∈Clocks

Reset−1
x · test{x / c} (C1)

+
∑
d∈DS

d−→ ·test{d / c} (C2)

+
∑

x,y∈Clocks

Reset−1
x · test{x− y / c} · Resety (C3)

+
∑

x∈Clocks
d∈DS

Reset−1
x · test{x− d / c}·

d−→−1 (C4)

+
d−→ ·test{d− x / c} · Resetx

Then, for all u, v ∈ V and c > 0 (we will discuss the case
c = 0 below), we have (u, /, c, v) ∈ E iff (Gτ , u, v) |= Π/c.
The four types of upper constraints defined in (C1–C4) are
described by the respective path formulae (C1–C4) in Π/c. As
an example, if we refer to the ith node of Gτ (and Gτ) as ui
in Figure 2, we have the edge (u3, /, 6, u6) in Gτ because
(Gτ , u3, u6) |= Reset−1

y · test{y − x / 6} · Resetx. Similarly,
the edge (u6, <, 3, u7) is present in Gτ since (Gτ , u6, u7) |=
Reset−1

x · test{x − d < 3}· d−→−1. Notice that in Resetx, we
walk backward to the first node labeled x := 0, while, in C2

and C4, for checking the age of a data structure, it is sufficient
to check the existence of a data structure backward edge from
the point where the age is checked.

Similarly, towards the interpretation of backward edges
weighted with / −c, we define the path formula Π/−c as∑

x∈Clocks

test{c / x} · Resetx (C1)

+
∑
d∈DS

test{c / d}· d−→−1 (C2)

+
∑

x,y∈Clocks

Reset−1
y · test{c / x− y} · Resetx (C3)

+
∑

x∈Clocks
d∈DS

Reset−1
x · test{c / d− x}·

d−→−1 (C4)

+
d−→ ·test{c / x− d} · Resetx

Then, for all u, v ∈ V and c > 0, we have (u, /,−c, v) ∈ E
iff (Gτ , u, v) |= Π/−c. Again, the four types of lower
constraints defined in (C1–C4) are described by the respective
path formulae (C1–C4) in Π/−c.

Now, when c = 0, an edge weighted / 0 may arise from an
upper constraint such has x / 0 or a lower constraint such as
0 / x. Therefore, for all u, v ∈ V , we have (u, /, 0, v) ∈ E iff
(Gτ , u, v) |= Π/0 + Π/−0.

The size of Π/α is O(|Clocks|2 + |DS|+ |Clocks||DS|).
Thus we have described how each edge of the weighted

graph Gτ can be interpreted in the (ΣDS
Clocks,Γ

DS)-graph Gτ by
an CPDL-formula, of size O(|Clocks|2+|DS|+|Clocks||DS|),
which completes the proof of this proposition.

Thus, any formula over weighted graphs can be translated
into an “equivalent” formula over (ΣDS

Clocks,Γ
DS)-graphs:

Corollary 20. Given a formula ψ ∈ EQ-ICPDL(∅,ΓM), we
can construct ψ′ ∈ EQ-ICPDL(ΣDS

Clocks,Γ
DS) such that, for

all valid sequences of instructions τ over ΣDS
Clocks, we have

Gτ |= ψ iff Gτ |= ψ′. The size of ψ′ is O((|Clocks|2 + |DS|+
|Clocks||DS|)|ψ|) and its intersection width is same as ψ.

4) Reducing emptiness of T to satisfiability of EQ-ICPDL:
From Theorem 4, we know that there exists a formula
capturing realizability on weighted graphs, with signature
(∅,ΓM). Combining with Corollary 20 gives us the second
main theorem of the paper regarding logical characterization
of emptiness checking in timed systems with data structures.

Theorem 21 (Logical characterization of a timed system).
Given a timed system with data structures T , we can construct

a formula ΨT ∈ EQ-ICPDL(∅,ΓDS) such that for all (∅,ΓDS)
linear graphs G, we have G |= ΨT iff G = π(Gτ) for some
feasible τ ∈ L(T). The size of ΨT is polynomial in the size
of T and its intersection width is 2.

Proof sketch. By Theorem 4, we can construct a formula
Realizable in EQ-ICPDL(∅,ΓM) that captures realizability
over weighted graphs G(∅,ΓM). By Corollary 20, we ob-
tain a formula ψreal ∈ EQ-ICPDL(∅,ΓDS) such that, for all
τ ∈ L(T), Gτ |= ψreal iff Gτ |= Realizable. In fact, ψreal is
simply obtained from Realizable by replacing every reference
to a weighted edge in the formula by its logical interpretation
in Gτ . Now, by definition of EQ-ICPDL, we have ψreal =
∃p1 . . . prψ

′ for some ψ′ ∈ ICPDL({p1, . . . pr},ΓDS).
Next, recall that a timed system T is a regular language

of sequences of timed instructions. We consider the au-
tomaton that describes this regular collection, denoted by
A = (Q, i, F,∆) with Q the set of states, i the initial state
and F the final states and ∆ the transition function. Then,
the accepted sequences of instructions can be captured in
EQ-LCPDL, by guessing the states visited along an accepting
run, and by checking that consecutive states have a transition
between them and start from initial and end at final state.

Set Σ = ΣDS
Clocks∪Q = {q1, . . . , qn}. There exists a formula

ξ = ∃q1 . . . qnξ
′, with ξ′ ∈ LCPDL(Σ,ΓDS), such that, for all

(∅,ΓDS)-graphs G, we have G |= ξ iff G = π(Gτ) for some
sequence τ ∈ L(T). Combining this with the formula above,
and define ψT = ∃p1 . . . pr, q1, . . . qn(ξ′ ∧ ψ′). Then we have
for any (∅,ΓDS)-graph G, G |= ψT iff G = π(Gτ) for some
τ ∈ L(T) and τ is feasible, which completes the proof.

C. Application: deciding emptiness

While we have reduced checking emptiness of timed sys-
tems to checking satisfiability of a formula in EQ-ICPDL, this
does not immediately give decidability results. This is obvious
since systems with multiple data structures (such as stacks or
even single queue) are all Turing powerful, even without any
timing features. To obtain decidability, one often considers
under-approximations, for which we essentially restrict the
class of graphs that are considered as behaviors. As mentioned
in the preliminaries, graphs of bounded tree-width form a
large family of graphs where we regain decidability thanks
to Theorem 2. Recall that Gk denotes graphs of tree-width at
most k. Combining Theorems 2 and 21, we have the following
corollary about decidability in timed systems.

Corollary 22 (Underapproximations.). Let k ∈ N. Let S be a
timed system with data structures that uses clocks from Clocks
and has maximum constant M ∈ N. We can check whether
there exists a feasible τ ∈ L(S) such that Gτ ∈ Gk(∅,ΓDS)
in time 2poly(k,M,|Clocks|,|DS|) × |S|poly(k,|DS|).

Thus, if the set {Gτ : τ ∈ L(S)} has a bounded tree-
width, we obtain the same complexity bounds for checking
emptiness of S. As concrete applications, the following models
of timed systems all fall in this category of having bounded
tree-width, hence we obtain decidability (and efficient algo-

τ =

1

x1 := 0
x2 := 0
x3 := 0

2

d1 := x1

x2 := 0

3

x2 := d1

x1 := 0
x4 := x2

4

d2 := x2

x2 := 0
x3 := x4

5

x4 := d2

x3 < 3

6

x4 < 4

d1 d2

1 2 3 4 5 6

< 3

< 4

Fig. 5: Intricate flow of information in complex updates.

rithms) for checking emptiness: timed automata [8], dense-
timed pushdown automata with a single stack [2], multi-stack
dense-timed pushdown automata with bounded rounds [5].
In fact, the complexity obtained for dense-timed pushdown
automata with a single stack is even optimal. In addition, by
this technique, we also have the following (new, to the best
of our knowledge) results on the decidability of the emptiness
problem for multi-stack dense-timed pushdown automata with
(i) bounded contexts (the tree-width of graphs in the case of
p-bounded context systems is ≤ p + 1 [28]), (ii) bounded
phase (the tree-width of graphs in the case of p-bounded
phase systems is ≤ 2p+1 [22]), and (iii) bounded scope
(the tree-width of graphs in the case of p-bounded scope is
≤ 2(p + 2) [22]). Further, if one considers timed automata
with b-bounded channels (a b-bounded channel is one where
the number of unread messages is bounded by b ∈ N at any
point of time), then the (∅,ΓDS)-graphs have a tree-width
≤ b + 2 [11]. We expect that many other data structures
and various novel combinations (e.g., any combination of the
above with multiple stacks and queues) can be handled using
our technique, and leave these as routine exercises.

V. EXTENSIONS

A. Extending time features - a generic template

We develop a two-step template to add new timing features
to our approach above. Step 1 consists in expressing the edges
engendered by the new feature in the weighted graph and
Step 2 consists in writing a formula in LCPDL to capture
this new edge relation. If we can accomplish these steps, then
our theorems lift to the setting with these new timing features.

This highlights the robustness of our approach, since we
are able to easily and uniformly handle these extra features.
That apart, this template is interesting even for timing fea-
tures which can be simulated by ordinary clocks. A classical
instance of this are diagonal guards in timed automata, which
do not add expressiveness. Indeed, eliminating diagonal guards
incurs an exponential blow-up in the worst-case [13]. This is
avoided in our approach by directly expressing their edges in
the weighted graph as in Equation C4.

1) Event clocks: Let us illustrate this template in action
via another example of a well-studied model, namely, event
predicting clocks [9], [24], which can be simulated by or-
dinary (non-deterministic) timed automata. We fix a set AP
of atomic propositions (events) arising from the system. An

event-predicting timing instruction nexta ./α, for a ∈ AP,
./ ∈ {≤, <,>,≥} and α ∈ [0,M) ∩ N, entails a constraint
between the current point (call it u) and the point at which
node label a occurs next (call it v). Consistently with the
notations on timing constraints C1-C4, in section IV-B1, we
call this constraint C5. Now, Step 1 is that this can be expressed
in the weighted graph as an edge between these two vertices
u and v. For Step 2, it is easy to write the PDL formula that
allows to interpret these edges of the weighted graph as edges
in the ΓDS-graph. Specifically, we just have to add to the path
formula Π/α in proof of Proposition 19 the following term:∑
a∈AP

test{(nexta / α)}· → ·(test{¬a}· →)∗ · test{a} (C5)

We proceed similarly for the path formula Π/−α. It is not
difficult to see that we can define similar formulae to capture
event recording clocks as well.

2) Clock renaming via tracking: While event clocks are
relatively straightforward, for some other timing features, it
is not easy to figure out, from the timing instruction, what
edges in the weighted graph must be added. This happens for
instance in clock renaming: if we assign to x the value of
clock y and then check it later with x ≤ α, the edge to be
added is from the last reset of y to the point of checking the
constraint. This is the case even if y has been reset in between
after the assignment. Figure 5 illustrates this.

We consider a generic class of (deterministic) clock renam-
ing in timed systems. These are a special case of clock updates,
again a classical notion in timed automata [14], [13], but
have not been studied much for timed systems with single or
multiple data structures such as stacks and queues. We divide
the features we consider into 4 classes:

(i) the usual reset of a clock x to 0 (x := 0),
(ii) assigning to clock x the value of clock x′ (x := x′),

(iii) assigning to clock x the value associated to data structure
d ∈ DS, while reading from d (x := d),

(iv) writing to d ∈ DS the value of clock x (d := x).

Note that renamings (iii) and (iv), combined with the age and
diagonal constraints on data structures, give us a very rich and
expressive class of timed systems. This allows us to consider
timed systems where we can write to some d1 ∈ DS the value
of a clock x1, then read from d1 this value (which changes
with passage of time) into a clock x2, write this value of x2 to
some d2 ∈ DS, and retrieve the value (after some time elapse)
into a clock x4. This value in x4 can then be checked with
the value read from some d4 ∈ DS, or with a clock x5, or
with a constant α. In such a sequence, the clock x1 has come
a long way at this time of checking, and we need to track it,
to ensure that the time elapse we are looking at happens from
the last reset of x1 before it was written to d1. See Figure
5, where the value of clock x1 flows through d1, x2, d2 and
finally x4, from where it is checked. Likewise, the value of
clock x2 flows through clocks x4, x3, and is checked at x3.
Now, x2 is reset after it flows into x4; however, when checking
x3, we use the reset of x2 before x2 flowed inside x4.

Inferring such constraints requires us to follow and track
the clock reset back to the original event. Rather than writing
a formula in CPDL, we find it easier to describe an automaton
which “walks” in the graph and performs this tracking. This
enables us to express the weighted edges engendered by the
constraints using the accepting paths of the automaton. This
essentially handles the Step 1 we mentioned earlier. To handle
Step 2, which is the logical definability, we write CPDL
formulae whose paths π use this automaton. This allows us to
interpret the weighted edges.

Formally, we construct an automaton A with set of states
Q = {qx : x ∈ Clocks}. A run of A starting from some state
qx will track the name of the clock whose value originates
from x. Without loss of generality, we assume that each
transition of the timed system T contains exactly one update
for each clock, which could be of the form x := 0 (reset),
x := x′ (deterministic clock update, we use x := x if the
clock is unchanged), x := d (x is updated with the value read
from d ∈ DS), or d := x. There are two types of transitions:
• (clock update): if there is an update x′ := x then we have

a transition qx
test{x′:=x}·→−−−−−−−−−→ qx′ ,

• (DS update): if there is an update x′ := d for some
d ∈ DS, then for all clocks x, we have a transition

qx
test{d:=x}·

d−→·test{x′:=d}−−−−−−−−−−−−−−−−→ qx′ . This corresponds to writ-
ing the value of clock x to some d ∈ DS, and, at the time
of reading from d ∈ DS, assign this value to a clock x′.

Consider a run ρ = qx0

π1−→ qx1

π2−→ qx2 · · ·
πn−−→ qxn in

A. Let τ ∈ L(T) be a valid sequence of instructions from the
timed system T . Let Gτ be the associated (ΣDS

Clocks,Γ
DS)-graph

and let u, v be vertices in Gτ . Then, Gτ , u, v |= label(ρ) =
π1 · π2 · · ·πn iff the value of clock xn at v originates from
clock x0 at u. We write Gτ , u, v |= Ax,x′ if there is a run ρ
of A from qx to qx′ such that Gτ , u, v |= label(ρ).

Now, we can revisit and generalize the timing constraints
above in (C1–C4) using A instead of the paths tracking the
last reset of a clock. For instance, the subformulae (C1–C3) of
Π/α in the proof of Proposition 19 should be replaced with∑

x,x′∈Clocks

test{(x := 0)} · Ax,x′ · test{x′ / α} (C1)

+
∑

x,x′∈Clocks
d∈DS

test{(x := 0)} · Ax,x′ · test{d := x′}

· d−→ · test{d / α} (C2)

+
∑

x,x′,y,y′∈Clocks

test{(x := 0)} · Ax,x′ · test{x′ − y′ / α}
· (Ay,y′)−1 · test{(y := 0)} (C3)

This completes Steps 1 and 2 of our template. Hence, timed
systems with data structures whose timing features include
updates can be analyzed by our approach, with a complexity
blow-up that is polynomial in the size of the input. Even for
timed automata without data structures, the presence of clock
renamings makes the model exponentially more succinct [13].
Converting timed automata with clock renamings to ordinary
timed automata (using the reduction from [14]) and then

applying our technique would incur an additional exponential
blowup that we avoid by using our template above.

B. Extending to other problems: Model checking

Here, we would like to check whether a system satisfies
a specification. As usual, we assume a finite set AP of
atomic propositions which are used to link the system and
the specification, and thus we will write specifications in the
logic LCPDL(AP,ΓDS). For instance, if req, grant ∈ AP, the
formula A (req =⇒ 〈→+〉grant) says that every request
should eventually be granted. As another example, the formula
A ((a∧〈→· d−→〉) =⇒ 〈→· d−→·→〉a) says that, if some property
a ∈ AP holds before a message is sent over data structure d,
then a still holds after the message is received.

Specifications are evaluated over (AP,ΓDS)-graphs. Such
graphs are generated by runs of the timed system. Again, we
consider valid sequences τ = τ1 · · · τn of instructions over
AP ∪ ΣDS

Clocks. An instruction τi ⊆ AP ∪ ΣDS
Clocks defines the

atomic propositions τi ∩ AP which hold on the ith event, to-
gether with the set of operations τi∩ΣDS

Clocks which are executed
at the ith event. Let Gτ = (V,E, λ) be the (AP∪ΣDS

Clocks,Γ
DS)-

graph associated with τ . When Σ′ ⊆ Σ, we note πΣ′ the
projection on Σ′: if G = (V,E, λ) is a (Σ,Γ)-graph, then
πΣ′(G) = (V,E, λ′), where λ′(u) = λ(u)∩Σ′ for all u ∈ V .

Let T be a timed system with data structures DS and
let Φ ∈ LCPDL(AP,ΓDS) be a specification. Recall that, in
Theorem 21, we define the formula ΨT = ∃p1, . . . , pn Ψ′T .
Consider Ψ = ∃p1, . . . , pn (Ψ′T ∧ ¬Φ). Let G = (V,E) be
an (∅,ΓDS)-graph. By Theorem 21, if G |= Ψ then Gτ |= Ψ
and there exists a feasible τ ∈ L(T) such that G = π∅(Gτ).
Then Gτ |= ¬Φ, and since the specification uses AP only, we
deduce that πAP(Gτ) |= ¬Φ. Thus, as a corollary of Theorem
21, we can construct a formula Ψ ∈ EQ-ICPDL(∅,ΓDS) which
is satisfiable over (∅,ΓDS)-linear graphs iff there is a run of
the system which violates the specification Φ.

Corollary 23. Let T be a timed system with data structures
DS and let Φ ∈ LCPDL(AP,ΓDS) be a specification. For all
(∅,ΓDS)-linear graphs G, we can construct a formula Ψ such
that G |= Ψ iff there exists a feasible τ ∈ L(T) such that
G = π∅(Gτ) and πAP(Gτ) 6|= Φ. The size of Ψ is polynomial
in the size of T and Φ, and its intersection width is 2.

VI. CONCLUSION

We studied timed systems via their behaviors depicted as
graphs and reasoned about them via logic EQ-ICPDL. This
gave rise to a problem of independent and basic interest: logi-
cal definability of realizability of weighted graphs. We showed
that realizability is definable in EQ-ICPDL over sequential
graphs but not definable, even in MSO, over non-sequential
graphs. We developed a new logic based technique to analyze
and model-check timed systems having a complex interplay
of time and data structures. Potential future work would be
to generalize this approach to handle larger classes of timed
systems. In light of the negative result for non-sequential
systems, an intriguing question is to come up with classes
of concurrent systems that can be analyzed.

REFERENCES

[1] P. Abdulla, M. F. Atig, and S. Krishna. Perfect timed communication
is hard. In FORMATS Proceedings, pages 91–107, 2018.

[2] P. Abdulla, M. F. Atig, and J. Stenman. Dense-timed pushdown
automata. In LICS Proceedings, pages 35–44, 2012.

[3] C. Aiswarya and P. Gastin. Reasoning about distributed systems:
WYSIWYG (invited talk). In FSTTCS Proceedings, pages 11–30, 2014.

[4] C. Aiswarya, P. Gastin, and K. Narayan Kumar. Verifying communi-
cating multi-pushdown systems via split-width. In ATVA Proceedings,
pages 1–17, 2014.

[5] S. Akshay, P. Gastin, and S. Krishna. Analyzing timed systems using
tree automata. In CONCUR Proceedings, 2016.

[6] S. Akshay, P. Gastin, S. Krishna, and I. Sarkar. Towards an efficient tree
automata based technique for timed systems. In CONCUR Proceedings,
pages 39:1–39:15, 2017.

[7] S. Akshay, Paul Gastin, Vincent Jugé, and Shankara Narayanan Krishna.
Timed systems through the lens of logic. CoRR, abs/1903.03773, 2019.

[8] R. Alur and D. Dill. A theory of timed automata. Theoretical Computer
Science, 126(2):183–235, 1994.

[9] R. Alur, L. Fix, and T. A. Henzinger. Event-clock automata: A
determinizable class of timed automata. Theoretical Computer Science,
211(1-2):253–273, 1999.

[10] A. Blumensath and B. Courcelle. Monadic second-order definable graph
orderings. Logical Methods in Computer Science, 10(1), 2014.

[11] B. Bollig and P. Gastin. Non-sequential theory of distributed systems.
CoRR, abs/1904.06942, 2019.

[12] A. Bouajjani, R. Echahed, and R. Robbana. On the automatic verification
of systems with continuous variables and unbounded discrete data
structures. In Hybrid Systems II, pages 64–85, 1994.

[13] Patricia Bouyer and Fabrice Chevalier. On conciseness of extensions of
timed automata. Journal of Automata, Languages and Combinatorics,
10(4):393–405, 2005.

[14] Patricia Bouyer, Catherine Dufourd, Emmanuel Fleury, and Antoine
Petit. Updatable timed automata. Theor. Comput. Sci., 321(2-3):291–
345, 2004.

[15] L. Clemente. Decidability of timed communicating automata. CoRR,
abs/1804.07815, 2018.

[16] L. Clemente and S. Lasota. Timed pushdown automata revisited. In
LICS Proceedings, pages 738–749, 2015.

[17] L. Clemente and S. Lasota. Binary reachability of timed pushdown
automata via quantifier elimination and cyclic order atoms. In ICALP
Proceedings, pages 118:1–118:14, 2018.

[18] L. Clemente, S. Lasota, R. Lazic, and F. Mazowiecki. Timed pushdown
automata and branching vector addition systems. In LICS Proceedings,
pages 1–12, 2017.

[19] T. H. Cormen, C. Stein, R. L. Rivest, and C. E. Leiserson. Introduction
to Algorithms. McGraw-Hill Higher Education, 2nd edition, 2001.

[20] B. Courcelle. Regularity equals monadic second-order definability for
quasi-trees. In Fields of Logic and Computation II - Essays Dedicated
to Yuri Gurevich on the Occasion of His 75th Birthday, volume 9300
of Lecture Notes in Computer Science, pages 129–141. Springer, 2015.

[21] B. Courcelle and J. Engelfriet. Graph Structure and Monadic Second-
Order Logic - A Language-Theoretic Approach, volume 138 of Ency-
clopedia of mathematics and its applications. CUP, 2012.

[22] A. Cyriac, P. Gastin, and K. Narayan Kumar. MSO decidability of multi-
pushdown systems via split-width. In CONCUR Proceedings, pages
547–561, 2012.

[23] M. J. Fischer and R. E. Ladner. Propositional dynamic logic of regular
programs. Journal of Computer and System Sciences, 18(2):194–211,
1979.

[24] Gilles Geeraerts, Jean-François Raskin, and Nathalie Sznajder. On
regions and zones for event-clock automata. Formal Methods in System
Design, 45(3):330–380, 2014.

[25] S. Göller, M. Lohrey, and C. Lutz. PDL with intersection and converse:
satisfiability and infinite-state model checking. Journal of Symbolic
Logic, 74(1):279–314, 2009.

[26] S. Krishna, L. Manasa, and A. Trivedi. What’s decidable about recursive
hybrid automata? In HSCC Proceedings, pages 31–40, 2015.

[27] F. Laroussinie and N. Markey. Quantified CTL: expressiveness and
complexity. Logical Methods in Computer Science, 10(4), 2014.

[28] P. Madhusudan and G. Parlato. The tree width of auxiliary storage. In
POPL Proceedings, pages 283–294, 2011.

[29] Neil Robertson and Paul D. Seymour. Graph minors. III. planar tree-
width. J. Comb. Theory, Ser. B, 36(1):49–64, 1984.

