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Abstract. Laser Guide Stars aim at increasing the sky coverage, highly restricted when using Adaptive Optics
with Natural Guide Stars. With such an artificial object, spot elongation may be a limitation for the measurement
quality when using a Wave Front Sensor. In this document, we evaluate and discuss the effects of this limitation
on wave front measurements, for a 40 m class telescope. We also explore the possibilities of taking these effects
into account in the wave front reconstruction.

1 Introduction

Adaptive Optics (AO) relies on a Wave Front Sensor (WFS) to measure properly the pertubations
induced by the turbulence on the wavefront. Yet, source extension may limit its performance: waves
coming from different points of an extended source, such as Laser Guide Stars (LGS), are not identi-
cally distorted by the turbulence, depending on the atmospheric volume seen through the propagation.
This effect, called phase anisoplanatism, refers to an angular decorrelation of the phase perturbations
in the Field of View (FoV) ([1], [2]). Next to phase anisoplanatism, scintillation anisoplanatism ac-
counts for the angular dependence of the collected flux in the pupil plane. These effects both affect the
accuracy of the measurements. On an extended source, the measurement accuracy for astronomical,
solar and endo-atmospheric observations [3], and its influence on the wavefront estimation [4] have
been investigated as well.

Measurement accuracy on an extended object is an issue when AO systems, such as Multi Conju-
gated (MCAO) systems, are used with LGS [5], especially for the next generation of 40 m telescopes,
called Extremely Large Telescopes (ELTs). Indeed, by focusing a CW laser beam in the atmospheric
sodium layer, we obtain a pin-like laser beacon, around 10 km long, which is seen from the edge of
the pupil with a field angle that increases with the diameter of the telescope (typically 5 to 10 arcsec
with an ELT).

The present study is aimed at estimating the wave front measurement error induced by phase and
scintillation anisoplanatism, in case of LGS for the ELTs. We select the Shack-Hartmann WFS (SH
WFS), which is the most commonly used nowadays. We propose to evaluate the impact of the aniso-
planatic error first on the measurement precision at the subaperture level, then on the reconstructed
wavefront, when using a SH WFS on one LGS or more.

Our approach is to evaluate firstly the measurement error with a numerical model, to check the
results with an analytical model, and then to use the measurement error thus estimated in the wavefront
reconstruction process. For this purpose, we start by presenting the numerical and analytical models
in Sect. 2, showing both results in comparison. Then we present in Sect. 3 the formalism used for the
reconstruction, as well as numerical estimations of the wavefront reconstruction error for both single
and multi LGS cases.
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(a) (b)

Fig. 1. Main parameters of the study. (a) Principle of the 2D analytical model. (b) Principle of the 3D numerical
model : example of a 1:2 downscaled model. The C2

n profile is unchanged from the 1:1 to the 1:2 model.

2 Anisoplanatic slope measurement error

In this study we consider a SH WFS with a fixed subaperture size of 0.5 meters, as set by the first
studies of ELT systems [6] [7] [8]. Since we are only interested in the evaluation of the anisoplanatism
impact, we consider a noise-free case. The slope estimator is the basic center of gravity (CoG) and is
always computed on Shannon-sampled images. The measurement error is denoted by the fluctuations
of the global CoG of the extended object, referenced to the fluctuations of the CoG that would be cal-
culated for a point source in the particular direction of the center of the object. A complete description
of the anisoplanatic slope measurement error can be found in [3]. Other algorithms will be tested in
future work.

2.1 Parameters of the simulations

In order to simulate the diffractive propagation, we use the PILOT code, developed at Onera. Coupled
to a SH WFS measurement simulator, it allows us to estimate here the slope measurement error made
when using a SH WFS on a LGS. Further details on this algorithm can be found in [3] and [4]. In order
to validate the numerical results obtained with this 3D end-to-end simulation, we use a 2D analytical
model. This model allows us to study the measurement error that would be induced by an horizontal
object located at the lowest altitude of the sodium layer (see fig. 1(a)), with the same field angle as the
original one. It is described more in details in [3]. Both models, numerical and analytical, are able to
take into account phase anisoplanatism effects only, scintillation effects only, or both effects together.

3D simulations on a 42 m telescope being too heavy to be run with the means currently at our
disposal, we choose to run them on downscaled cases, where all the distances are reduced by a factor 2
(1:2 model) or 3 (1:3 model), but with all the angles conserved, as well as the size of the subaperture,
and the C2

n profile, in terms of altitude and strength (see fig. 1(b)). In this configuration geometrical
effects are unchanged: the turbulence profile remains the same so that scintillation is still modelized
correctly. The agreement between the downscaled results and the original ones has been checked. The
3D simulation is run on a 1:2 model, while the analytical model is run on a 1:1 model. The Na layer
is set uniform, 10km thick, leading to a maximum elongation of ≈10 arcsec. We have evaluated the
convergence of the results as the sampling of the LGS elongation increases. This lead us to choose a
LGS sampling of 9 points for our simulations. A similar estimation for the sampling of the volume
of turbulence makes us choose either the 9-layer ESO profiles [9] or an equivalent 5-layer profile for
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Fig. 2. Measurement error standard deviation along the X axis (nm) in function of the angular size of the spot
along the X axis (arcsec): contribution of the different terms. The errors obtained analytically with phase (scin-
tillation) effects only are represented by a dotted (dashed) curve. The total error of both effects plus the coupling
(dash-dotted curve) is represented for comparison (solid curve). The errors obtained numerically with phase (scin-
tillation) effects only are denoted by stars (crosses). Those obtained with both effects are denoted by diamonds.

our simulations. We use preferentially the profiles corresponding to a good seeing (0.6 arcsec) or bad
seeing (1.1 arcsec), as they set the lower and higher limits of the error with regards to the turbulence
strength. Finally, around a hundred propagations were performed in our Monte-Carlo simulations.

2.2 Results

Results shown in Fig. 2 are obtained for a single LGS, launched on the X axis, from the edge of the
primary mirror of a 42-meter telescope. They show the measurement error in the sub-pupils along the
X axis, depending on the spot elongation on X.

The results show a good agreement between the 2D and 3D approaches, which validates our down-
scaled model. Then, analytical and numerical results both show the preponderance of scintillation
anisoplanatism and coupling in the total error, while the phase anisoplanatism is almost negligible, no
matter how elongated the spot may be. The measurement error, obtained with bad seeing conditions,
reaches ≈100 nm in standard deviation (≈1rad2 in variance) in the subapertures where the spot elonga-
tion is maximum, i.e. the subapertures diametrically opposed to the laser launching point. Taking into
account a good seeing, the level of the error roughly decreases by a factor 2 in variance. Nevertheless,
this error has to be included into a reconstruction process, in order to estimate the effective impact of
anisoplanatism on the system.

3 Wave front reconstruction error
In this section, we focus on the wave front reconstruction, and on the phase error in the telescope pupil,
further called Wave Front Error (WFE). We aim at computing the propagation of the anisoplanatic
slope measurement error (at subaperture level) through the reconstruction, and evaluating the WFE in
a single LGS case, and a 6 LGS case. We will test LS (Least Squares), WLS (Weighted LS), MAP
(Maximum A Posteriori) and Unif.MAP (MAP with Uniform Noise) reconstruction.

3.1 Principle of the calculations

Let’s consider the slope error covariance matrix Cε , concatenating the slope measurement error vari-
ances of each subaperture, the error covariances for each couple of subapertures, and the correlations
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between each LGS in a multi-LGS scheme. The SH WFS being assumed as linear, the measured slopes
S may be expressed as a function of the phase Φ coming from one LGS, so that S = DΦ + ε. D is
the interaction matrix giving the SH response to the phase and ε the slope error. In the following, we
choose to expand the phase on the KL basis so that Φ is the KL coefficient vector.

Considering a WLS reconstructor, the estimated phase is given by Φ̂ = R S , with R the recon-
struction matrix [10], written as R = (DT C−1

ε D)−1 · DT C−1
ε . The phase error in the telescope pupil is

then given by the sum of the KL noise variances, i.e. the diagonal terms of the error covariance matrix
of the phase:

WFE = σ2
ε =
∑

i
Var(Φ̂i) = trace(R Cε RT ) (1)

In case of a multi-LGS launching scheme, a tomographic reconstruction of the volume of turbu-
lence is required [11]. For sake of simplicity, the slope error is here assumed to be independant of the
phase, as a preliminary approach. The interaction matrix D′α = D′ Mα is first calculated by multiplying
D′, derived from the D matrix, with Mα, a projection matrix which accounts for the different directions
αi of the LGS in the FoV, i.e. the directions where the turbulent volume is probed. In case of a MAP
reconstructor, the tomographic reconstruction matrix W is then given by:

W = (D′α
T C−1
ε D′α + C−1

φ )−1 · D′αT C−1
ε (2)

where Cφ is the turbulence covariance matrix, giving the a priori on the turbulent volume. Yet the MAP
reconstructor is hard to use here in practice, since it assumes that the C2

n profile and the error are known
precisely. Using Unif.MAP (or LS instead of WLS in the previous case) sets the error covariance
matrix to σ2 × I, where I is the identity matrix and σ2 a reference error set to the measurement error
variance obtained with maximum elongation. The reconstructed phase in any of the directions β0 of
the FoV,Φβ0 , is obtained by projection in this particular direction, so that Φβ0 = Mβ0 W S . Finally, the
phase error in this direction is given by:

WFE = trace(Mβ0 W Cε WT MT
β0

) + trace(Mβ0 B MT
β0

) (3)

where B = (WD′α − I) Cφ (WD′α − I)T is the bias of the reconstructor. For this study our approach is
to calculate the covariance matrix Cε with a MC method based on the end-to-end simulation, and then
to evaluate the WFE with the formulas (1) or (3). However, due to the coupling between the error and
the phase, the reconstruction is not optimised, and the WFE slightly inappropriate.

3.2 Single-LGS reconstruction

We choose a model where the LGS is launched vertically, from the edge of M1, at an angle of 48 arcsec
from the center of the FoV, in a MAORY-like configuration for a single LGS [6]. We use a 1:2 model
and perform the reconstruction of the phase in the pupil, on the 1000 first K-L modes, considering
a telescope without central occultation. The LGS is sampled with 9 point sources. The C2

n profile
corresponds to bad seeing conditions, and is reduced to an equivalent 5-layer profile in that case in
order to speed up calculations. Since the simulations are very time and memory consuming, the error
covariance matrix Cε is still quite noisy, with values having a very low SNR, which makes its inversion
difficult. Consequently we set to zero the elements of the matrix that are above a given threshold. Fig. 3
shows the standard deviation of the reconstructed phase error for various reconstructors.

Let’s first notice that results obtained with WLS and MAP are very close one to each other. This
means that the SNR is high, so that the influence of the prior on the phase (i.e. the Cφ matrix, see Eq. 2)
is negligible. As it is the same for the LS and Unif.MAP reconstructors, we show only LS and WLS
results here. The validity of the approximation of independance between error and phase is somewhat
reinforced by these results.

Secondly, results obtained with WLS and MAP reconstructors are limited by the noise level in the
error covariance matrix Cε . Yet we can see that using these reconstructors makes the error decrease,
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Wave Front Error (nm)  VS  Karhunen−Loeve mode number
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Fig. 3. Reconstruction error (nm) in function of the Karhunen-Loeve mode number: LS and WLS reconstructors
for a single side-launched LGS. The scale of the model is 1:2. The error on the reconstructed phase is shown in
solid or dash-dotted curve depending on the reconstructor used, LS or WLS respectively.

and helps reduce the total wave front error from ≈30 nm, when using a LS or Unif.MAP reconstructor
in that case, to ≈20 nm.

All in all, the error comes essentially from the slope measurement error along the elongated dimen-
sion, as seen from each subaperture, since the impact of scintillation is negligible in the perpendicular
direction [3]. This way, using multiple LGS should reduce the impact of the error, as it is the case for
the detector noise [12].

3.3 Multi-LGS tomographic reconstruction

The launching scheme for these simulations is the same as the one used for a single LGS case [6]. We
choose a 6 LGS configuration, equally distributed, in a MAORY-like configuration. The reconstruction
precision is estimated in the direction β0 that corresponds to the center of the FoV. The scale of the
model is now reduced to 1:3 so that the simulations are technically feasible with 6 LGS. We still use
a thresholded covariance matrix in the standard case (cf. Subsect. 3.2). We also run the simulations in
the particular case where we reduce the error covariance matrix Cε to a diagonal matrix by setting all
its non-diagonal elements to zero, in order to study the impact of the cross-correlation terms on the
estimation of the error. Fig. 4 shows the error standard deviation of the reconstructed phase on the KL
modes, in a tomographic reconstruction process using a MAP reconstructor, for these various cases.

Results obtained with a diagonal error covariance matrix roughly show a gain of a factor 2 to 3
when passing from a single LGS case to a multi LGS case, which seems realistic when crosschecking
with results of other studies [12] [13]. Orders of magnitude of the WFE over 300 modes in that case
are around 20 to 30 nm for a single LGS, and around 10 nm for a multi LGS case.

Results obtained with the thresholded covariance matrix are noisy. Yet we can see that the errors
on the reconstructed phase for either 1 or 6 LGS, are very close to each other. Moreover they are closer
than in the previous case, when Cε was diagonal. This makes us think that the cross-correlation terms
have a non-negligible impact on the error propagation. All in all, the error on the reconstructed phase
using 6 LGS is somehow of the same order of magnitude than the single LGS case, around 10 to 20
nm.

4 Conclusion
In this study, we evaluated the order of magnitude of the anisoplanatic slope measurement error that
is made when using a SH WFS on a side-launched LGS, on a 42-meter telescope, and highlighted
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Wave Front Error (nm)  VS  Karhunen−Loeve mode number
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Fig. 4. Tomographic reconstruction error (nm) in function of the Karhunen-Loeve mode number: MAP recon-
structor for 1 or 6 side-launched LGS, with Cε being diagonal or thresholded. The scale of the model is 1:3. The
errors obtained for a single (multi) LGS case with a diagonal Cε are shown in bold face solid (bold face dashed)
curve, the ones obtained with a thresholded Cε are shown in dotted (dash-dotted) curve.

the importance of the scintillation and coupling in these results. We also presented the propagation of
this anisoplanatic error on the reconstructed phase, for a single side-launched LGS channel and for a
multi-LGS case, using different reconstructors, with or without priors.
It appears that the anisoplanatic slope measurement error can go up to 100 nm (1rad2) under bad see-
ing conditions, leading to a WFE of a few dozens of nanometers when using a LS reconstructor under
the same conditions. Adding information about the noise covariance lowers these errors even more. A
multi-LGS scheme gives the same orders of magnitude for the error on the reconstructed phase as a
single LGS case. Yet these estimations remains uncertain since we face a lack of precision on our error
covariance matrix, due to a rather small number of propagations in our Monte-Carlo simulations, and
base our calculations on an inappropriate approximation concerning the independance between error
and phase. Future work tends to tackle these problems.
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