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Introduction

The production of adhesively bonded structures has significantly increased in several industries such as aerospace, automotive or marine. The great interest for adhesive bonding is due to its low cost, low weight, the good distribution of stress it insures and 2 the ease of assembly. Nevertheless, adhesive bond defects can appear. They can be mainly classified in two different types: adhesive defects related to the weak bond between the adhesive and the adherent, and cohesive defects related to the mechanical properties of the adhesive [START_REF] Santos | Ultrasonic guided waves scattering effects from defects in adhesively bonded lap joints using pitch and catch and pulse-echo techniques[END_REF]. The adhesion degradation can be caused or accelerated by moisture infiltration, through the adhesive layer or along the interface, and improper assembly process due to contamination and micro-cracks introduced at the interfaces. The ability of ultrasound waves to penetrate opaque media, with possibility to generate guided waves, makes them the most promising in order to assess the adhesion quality between coatings and substrates, two substrates or two layers. Many authors have studied the interaction between ultrasonic waves and adhesive layers [START_REF] Drinkwater | A study of the interaction between ultrasound and a partially contacting solid-solid interface[END_REF][START_REF] Rokhlin | Ultrasonic characterization of plasma spray coating[END_REF][START_REF] Guo | Modeling and acoustic microscopy measurements for evaluation of the adhesion between a film and a substrate[END_REF][START_REF] Baltazar | Inverse ultrasonic determination of imperfect interfaces and bulk properties of a layer between two solids[END_REF][START_REF] Siryabe | Apparent anisotropy of adhesive bonds with weak adhesion and non-destructive evaluation of interfacial properties[END_REF]. Their works addressed the case of normal and oblique incidence waves in pulse echo mode [START_REF] Drinkwater | A study of the interaction between ultrasound and a partially contacting solid-solid interface[END_REF][START_REF] Baltazar | Inverse ultrasonic determination of imperfect interfaces and bulk properties of a layer between two solids[END_REF] and transmission mode [START_REF] Siryabe | Apparent anisotropy of adhesive bonds with weak adhesion and non-destructive evaluation of interfacial properties[END_REF]. They evaluated also the adherence quality using Rayleigh waves [START_REF] Rokhlin | Ultrasonic characterization of plasma spray coating[END_REF] and leaky SAWs [START_REF] Guo | Modeling and acoustic microscopy measurements for evaluation of the adhesion between a film and a substrate[END_REF].

In this work, the interest is directed towards multilayered structures. The ultrasonic characterization of interfaces in this specific case has been assessed by several researchers [START_REF] Siryabe | Apparent anisotropy of adhesive bonds with weak adhesion and non-destructive evaluation of interfacial properties[END_REF][START_REF] Wang | Evaluation of interfacial properties in adhesive joints of aluminum alloys using angle-beam ultrasonic spectroscopy[END_REF][START_REF] Vlasie | Mechanical and acoustical study of a structural bond: comparison theory/numerical simulations/experiment[END_REF][START_REF] Ismaili | Determination of epoxy film parameters in a three-layer metal/adhesive/metal structure[END_REF][START_REF] Budzik | Monitoring of crosslinking of a DGEBA-PAMAM adhesive in composite/aluminium bonded joint using mechanical and ultra-sound techniques[END_REF]. For example, Vlasie et al. [START_REF] Vlasie | Mechanical and acoustical study of a structural bond: comparison theory/numerical simulations/experiment[END_REF] proposed an interface model simulating the damage evolution of a structural joint. The originality of their model lies in the fact that it allows to access the stiffnesses of the interface that cannot be derived from mechanical tests. To do so, they modeled the adhesive layer by a geometrical interface with a uniform mass/springs distribution. Then, they performed a comparison between the cutoff-frequencies of the ultrasonic guided modes for a trilayer model and a mass/springs model of the adhesive layer. This comparison allows to derive the longitudinal and transversal stiffnesses with respect to frequency. Thus, a comparison between simulation and experimental measurements enabled them to validate their model and evaluate the elastic parameters. Ismaili et al. [START_REF] Ismaili | Determination of epoxy film parameters in a three-layer metal/adhesive/metal structure[END_REF] proposed a method allowing to determine the thickness, the longitudinal and shear waves velocities of an adhesive layer embedded in a 3-layer structure. They used, subsequently, these parameters in order to study the sensitivity of some guided modes with respect to the parameters in question.

In this paper, we will study the influence of different parameters of an adhesive interface layer on the resonance modes (minima of the modulus of the reflectance function) of a multilayered structure. This study is included in the frame of V(z) measurements in order to characterize adherence properties in multilayered structures. When inversing the V(z) experimental data, it allows to rebuild the reflectance function R(θ) with a simple experimental set-up, that works in normal incidence only, with the use of a forward transducer of large angular aperture. The guided modes of the structure are sensitive to the interface conditions between layers, for this, each guided mode needs to be isolated. Thus, the reflectance function is used in this study as a parameter of control since it gives the resonance modes which are shown to correspond to the guided modes of the structure, and thus, it avoids the difficulty in guided waves measurements, thanks to the V(z) method as previously described.

An imperfect interface model inspired by Rokhlin's imperfect anisotropic interface layer [START_REF] Rokhlin | Ultrasonic wave interaction with a thin anisotropic layer between two anisotropic solids: Exact and asymptotic-boundary-condition methods[END_REF] has been implemented to model the reflectance function of an anisotropic multilayer possessing an interface layer offering a variable adherence quality. Rokhlin simulates a fictitious porous interface layer, created from a Hill's approximation of the substrate underneath the interface, with the possibility of changing the porosity factor and the orientation of the pores. In our case, the solid matrix of the porous medium is made of an epoxy resin and the adhesive layer thus obtained is embedded in a multilayered structure and not between two semi-infinite media such as in the case addressed by Rokhlin. From a practical point of view, this model allows for the simulation of an altered interface possessing defects such as delamination and porosity accounted for by the vacuum inside the pores. The possibility to vary the orientation of the pores allows also to investigate such defects characterized by a privileged orientation within the adhesive layer.

In this paper, the theoretical background, based on the transfer matrix method [START_REF] Brekhovskikh | Waves in Layered Media[END_REF] and the porous interface layer, is described first. Afterwards, we establish the equivalence between the resonance modes obtained for a bilayer (containing an interface layer) immersed in water and the dispersion curves of the guided waves calculated for the same structure in vacuum. In the same section, the waves coupling phenomenon between the different layers is highlighted. Finally, the influence of different properties, such as thickness and porosity, of the adhesive layer on the resonance modes of the multilayer is studied as a function of the frequency and the incident angle.

Theoretical background

Global transfer matrix of a multilayer

An anisotropic multilayered structure consisting of N layers is considered (Figure 1). Each layer k of this structure has a thickness d and the total thickness is equal to D. The multilayer structure is immersed in water (media 0 and N + 1) and a longitudinal wave is assumed to be incident on the structure with an angle θ . Due to the anisotropic nature of the materials and using the superposition principle, in each layer, six waves can propagate in the medium [START_REF] Hosten | Transfer matrix of multilayered absorbing and anisotropic media. Measurements and simulations of ultrasonic wave propagation through composite materials[END_REF]. Indeed, in an anisotropic medium, a quasilongitudinal and two quasi-shear waves can propagate, and the fact that these waves are reflected by the bottom surface of the layer induces that these three kinds of waves propagate also in the opposite direction of the incident ones. The incident wave is reflected on the multilayer with the same angle θ , previously introduced, with respect to the normal as shown on Figure 1. Using this feature, we can calculate the reflectance function related to the multilayered structure.

Following the well-known Thomson-Haskell matrix method [START_REF] Lowe | Matrix techniques for modeling ultrasonic waves in multilayered media[END_REF][START_REF] Rose | Ultrasonic waves in solid media cambridge university press[END_REF], displacements and stresses existing at the bottom of a layer are connected to those at the top of the same layer by means of a layer transfer matrix as described in Eq. (1).
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where , , and , , are respectively the components of the displacements of the lower and the upper face of a layer. Similarly, , σ , σ and σ , σ , σ are the stresses applied on the lower and upper faces of a layer, respectively. is the 6*6 layer transfer matrix [START_REF] Hosten | Transfer matrix of multilayered absorbing and anisotropic media. Measurements and simulations of ultrasonic wave propagation through composite materials[END_REF]. The continuity conditions then make it possible to establish a global transfer matrix resulting from the product of the transfer matrices of the successive layers. This global matrix allows the displacements and stresses of the top layer to be related to those of the bottom one as follows:
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where is the global transfer matrix of the multilayered structure, is the interface matrix relating the displacements and stresses of two consecutive layers (k) and (k+1), is the local transfer matrix of layer k and $ is the interface matrix relating the displacements and stresses of the upper layer of the multilayer to those existing in the coupling fluid (water in our case).

The interface between two layers has different properties from those of the effective layers forming a multilayered structure. The nature of the interface depends on the type of solid contact made (bonding, various metallurgical processes, etc.). Conventional interface conditions that replicate a perfect and infinitely thin interface are not suitable for describing real interfaces, which are often not perfect. Hence, an imperfect anisotropic interface layer model is introduced here. This imperfect interface is involved in the establishment of the global transfer matrix of the multilayered structure via the interface matrices named that were introduced in Eq. [START_REF] Drinkwater | A study of the interaction between ultrasound and a partially contacting solid-solid interface[END_REF]. The interface layer used in this work does not take into account specifically cohesive or adhesive defects but describes globally the strength of a bond between two layers. This is due to its small thickness in comparison with the thicknesses of the metallic layers and the ultrasonic wavelength that allows us to consider it as a very thin interface layer between two media.

Modeling of the interface layer

When an interface is imperfect and has different micro-defects, it can be considered as a multi-phase layer characterized by effective elastic properties of its own [START_REF] Rokhlin | Analysis of ultrasonic wave interaction with imperfect interface between solids[END_REF]. The imperfect interface is modeled here by a thin orthotropic layer containing cylindrical pores parallel to the interface [START_REF] Rokhlin | Ultrasonic wave interaction with a thin anisotropic layer between two anisotropic solids: Exact and asymptotic-boundary-condition methods[END_REF]. This virtual layer consists of an isotropic epoxy matrix in which pores (considered as vacuum) are integrated. The effective elastic constants of this layer are calculated using Christensen's two-phase composite model [START_REF] Christensen | Mechanics of Composite Materials[END_REF]. The pores direction can be shifted by an azimuthal angle φ with respect to the incident plane. The five elastic constants & , & , & , & and & '' refer to the five effective independent constants that fully describe the stiffness tensor of the interfacial medium. Christensen's model aims to provide analytical expressions for these five constants by taking into account the properties of the pores, the matrix and the respective volumes occupied by each of these phases. To do this, a geometric model of the composite material must be introduced. The most commonly used model is the cylinder composite model developed by Hashin and Rosen [START_REF] Hashin | The elastic moduli of fiber-reinforced materials[END_REF]. The fibers (which correspond to the empty pores in our case) are made of infinitely long circular cylinders incorporated in a continuous matrix, as described in Figure 2. [START_REF] Christensen | Mechanics of Composite Materials[END_REF] In order to obtain the effective elastic constants of the interface layer, the expressions of the moduli ( , ) , * , + and + are required. ( is the effective uniaxial Young's modulus, ) is the effective Poisson's coefficient where x1 axis is in the direction of the fiber (pore), * is the bulk modulus, + is the shear modulus in the fiber direction and finally + is the transverse shear modulus in the direction perpendicular to that of the pores, i.e. in the x direction. The first four parameters are expressed as follows: )A> (3.a) where P denotes the porosity factor defined by the ratio of the volume occupied by the pores to that occupied by the solid material, ( . and ( 2 are the Young's moduli of the materials constituting respectively the fibers (vacuum in our case) and the matrix (epoxy resin in our case), ) . and ) 2 are the respective Poisson's coefficients of the materials constituting the fibers and the matrix, F . and F 2 are the respective bulk moduli of the materials constituting the fibers and the matrix, and finally + . and + 2 are the respective shear moduli of the materials constituting the fibers and the matrix. The elastic parameters of the epoxy matrix are calculated using the data available in a paper published by Rokhlin et al. [START_REF] Rokhlin | Ultrasonic evaluation of environmental durability of adhesive joints[END_REF], as for the parameters related to the vacuum filling the pores, we set all of these parameters to an infinitely small value (eps function in Matlab ® ).
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In order to obtain the value of + the second degree equation below must be solved: 
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In this model, the alteration of the quality of adherence is directly related to the increase of the porosity in the interface layer. Since the quality of an interface is dependent on the shear modulus (whose value is responsible for the transmission of the shear components of stresses and displacements), it is crucial, in our case, to know the evolution of the shear moduli + and + with respect to the porosity factor P. Figure 3 shows the evolution of both shear moduli, defining the interface layer, with respect to the porosity. The value of these moduli decreases as the porosity grows until, logically, it reaches 0 when P = 1. The porous interface layer described here is included in the global transfer matrix method through a 6*6 matrix. The elements of this interface matrix are obtained in the same way as the local transfer matrix calculated for the metallic layers. Indeed, the difference compared to the other local transfer matrices of the structure lies in the thickness of the interface layer, which is much lower than the other thicknesses involved. The calculation of the velocities of the waves propagating in the medium and their polarizations are performed using the elastic constants expressed in Eq. ( 5), as well as the density U V of the interface material. The latter is obtained by the relation:

U V = (1 1 -)U WXY (6) 
Where U WXY is the density of the epoxy resin, fully polymerized, acting as a solid matrix for the fictitious porous interfacial medium.

Free guided waves and reflectance function of the multilayer

When writing the continuity conditions of displacements and stresses at the top and bottom interfaces with those of the surrounding fluid and using Eq. (1) and Eq. ( 2), one can obtain the expression of the reflection coefficient as follows: [START_REF] Wang | Evaluation of interfacial properties in adhesive joints of aluminum alloys using angle-beam ultrasonic spectroscopy[END_REF] where c is the angular frequency, d is the acoustic impedance of the coupling fluid and the e V` are the determinants of matrices made of combinations of coefficients of the global transfer matrix . The expressions of e V` are given in Appendix B.
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In order to analyze the wave propagation inside the multilayered structures, the free guided waves dispersion curves have to be calculated. If we consider a multilayered structure surrounded by vacuum, it is possible to calculate the dispersion curves of the guided waves by adopting the free surfaces conditions. These boundary conditions result in the following relation between the displacements and stresses located respectively at the bottom (referred to by the superscript bot) and the top (referred to by the superscript top) of the structure: As we want to determine the free guided waves, corresponding to the multilayered structure surrounded by vacuum, it implies that the stress components , and at the top and bottom interface of the multilayer have to be null.

Taking into account the nullity of the previous stress components, Eq. ( 8) possesses non trivial solutions only if:

p m 3 m 3 m 3 m n m n m n m ' m ' m ' p = 0 (9) 
The numerical resolution of Eq. ( 9) thus allows the phase velocities of the free guided waves to be obtained with respect to frequency. This equation can also be established by nullifying the denominator of the reflection coefficient, presented in Eq. ( 7), when setting the parameter d to zero. Indeed, since the poles of the reflection coefficient correspond to the generalized guided waves radiating in the incident fluid environment ("leaky guided waves"), the free guided waves are obtained by setting the acoustic impedance d of the incident coupling fluid to zero, leading to equivalently determine the roots of the scalar value e . Thus, when looking at the expression of e in Appendix B, the equality e = 0 strictly corresponds to the equation [START_REF] Ismaili | Determination of epoxy film parameters in a three-layer metal/adhesive/metal structure[END_REF]. The solutions of Eq. ( 9) are obtained numerically using the MATLAB ® software. In our case, for each frequency, the phase velocities of the guided waves are derived via the process described above. These results are plotted, with respect to frequency, in order to build the dispersion curves of the free guided waves. This protocol provides accurate dispersion curves, even if some modes appear discontinuous due to the computation steps of the frequency and incident angle.

Reflectance function minima and free guided waves dispersion curves for a perfect interface

In Section 2, the methodology to obtain the free guided waves and the reflectance function has been exposed.

The multilayered structure that will serve as a reference and point of comparison for our simulations is shown in Figure 4, and consists in an assembly of a 1.2 mm thick cubic anisotropic nickel (Table 1) layer and a 0.5 mm thick cubic anisotropic copper (Table 1) layer connected by a 2 μm thick interface layer. The interface layer, here, is considered as perfect (no porosity) and made of an epoxy resin (Table 1). 

Validity of the guided waves dispersion curves and their comparison with the reflectance function

The multilayer is considered infinite along the x and x axes and its surfaces are free (structure placed in vacuum). The dispersion curves of the free guided waves can be plotted in an equivalent way as a function of phase velocity or incidence angle. Indeed, by identifying them to the corresponding leaky guided modes, and according to Snell's law, the angle of incidence { corresponding to each free guided mode is given by:

{ = arcsin • ' _ \ ƒ " ( 10 
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where … is the wave velocity in water and † ‡ is the phase velocity of the guided wave.

The representation of { as a function of frequency facilitates comparison between the reflectance function amplitude and the dispersion curves of the free guided waves. Thus, it should be noted that a higher phase velocity † ‡ implies a smaller incidence angle { , at a given frequency. The dispersion curves of the guided waves, obtained by Eq. ( 7) and using our algorithm, are first validated for the reference multilayer by comparing them with simulation results obtained on the Comsol ® finite element (FE) calculation software.

Figure 5 shows that a perfect agreement is obtained between the two calculation methods. This proves the reliability of the representation of the dispersion curves of the guided modes (in the case of absence of porosity, i.e. -= 0) used as a reference for all comparisons that allow to study the influence of the properties of the interface layer on the resonance modes of the structure of interest in our work.

Figure 6 illustrates the superposition of the resonance modes obtained for the reference multilayer immersed in water and the dispersion curves of the free guided waves calculated for the same structure. The resonance modes derived from the reflection coefficients, calculated with the transfer matrix method, are represented in this paper for a maximum incidence angle of 45° and a maximum frequency of 5 MHz. This incidence angle has been chosen because above this value, starting from 0.5 MHz, the reflection coefficient is equal to one and therefore no resonance modes are generated. Concerning the frequency limit of 5 MHz, it has been chosen in order to represent a sufficient number of resonance modes, with respect to the thickness of the studied multilayered plate. The global transfer matrix method suffers from numerical instabilities when the frequency-thickness product gets too high. For the structure described in Figure 4, the maximum frequency-thickness product possible before the appearance of numerical instabilities is around 39.1 MHz.mm. For a frequency of 5 MHz, the frequency-thickness product, related to the studied structure, is equal to 8.5 MHz.mm and is therefore way under the limit generating numerical instabilities.

From now on, the expression "dispersion curves of the guided waves" will refer systematically to the guided waves calculated for the reference multilayer considered in vacuum. These dispersion curves will be systematically represented by blue circles as in Figure 6. The guided modes represented in this figure are pseudo symmetric and pseudo anti-symmetric due to the absence of a plane of symmetry [START_REF] Lee | Measuring Lamb wave dispersion curves of a bi-layered plate and its application on material characterization of coating[END_REF] along the x axis. In order to identify each guided mode propagating in the multilayered reference structure, these different modes will be identified by the symbol M ‰ with 1 < i < 16. The index i increases with the frequency of appearance of the guided modes. The black patterns in this figure correspond to the minima of the reflectance function module and the white color, on the other hand, corresponds to a reflectance function modulus equal to 1. It can be seen that the minima of the reflectance function perfectly overlap the guided modes. This is in accordance with the results found in the literature [START_REF] Lee | Measuring Lamb wave dispersion curves of a bi-layered plate and its application on material characterization of coating[END_REF][START_REF] Rokhlin | Recent advances in waves in layered media[END_REF][START_REF] Lowe | The applicability of plate wave techniques for the inspection of adhesive and diffusion bonded joints[END_REF], where, in most cases, guided waves correspond to the minima of the reflectance function when the acoustic impedance of the coupling fluid is significantly lower than that of the layers forming the solid structure.

It can also be noted in Figure 6 that some guided modes, such as M and M 3 , do not have their equivalents in resonance modes. Indeed, these guided waves corresponding to horizontally polarized transverse waves [START_REF] Maghsoodi | Calculation of wave dispersion curves in multilayered composite-metal plates[END_REF], called SH (Shear Horizontal) waves, do not appear on the resonance modes since the last ones correspond to the poles of the reflectance function (Eq. 8) which was obtained considering an excitation wave polarized in the plane (x , x ), as shown in Figure 1. 

Contribution of the different layers to the dispersion curves

We compare the dispersion curves of the guided waves in the reference multilayer on the one hand with those propagating in the nickel layer only (Figure 7) and, on the other hand, with those propagating in the copper one only (Figure 8). The purpose of this comparison is to identify the guided modes corresponding to waves propagating, over certain frequency ranges, only in the nickel or copper layer, or resulting from a coupling between them. This procedure allows identifying the modes in certain frequency ranges most likely to be affected by changes in adhesive layer properties, thus corresponding to a coupling between the two layers. 8 illustrate well the fact that guided modes in the multilayer get close, for certain frequency ranges, to Lamb modes propagating in the nickel and copper layers and that other modes do not correspond to any particular layer and therefore result from a coupling between the two metal layers via the interface one. Table 2 details the classification of the guided modes in the reference multilayer to the three categories described above. Acoustic coupling increases at low frequencies and the glued structure vibrates more like a "double thickness" plate [START_REF] Nagy | Adhesive joint characterization by leaky guided interface waves[END_REF], which explains why most of the coupling modes listed in Table 2 appear in the low frequency range. Indeed, in this frequency range, the resonance modes of the structure are more sensitive to the elastic properties of the adhesive layer [START_REF] Nagy | Adhesive joint characterization by leaky guided interface waves[END_REF]. In Table 2, all guided modes are analyzed with the aim of extracting the frequency ranges for which they can be considered as belonging to one of the three categories previously defined. However, guided modes corresponding to SH waves (M , M 3 , M Š , M , M , M ' ) cannot be used for adhesion characterization because the latter cannot be excited in the context of the V(z) method. 

Multilayer modes

Nickel layer modes and their frequency ranges (MHz)

Copper layer modes and their frequency ranges (MHz)

Coupling modes and their frequency ranges (MHz)
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Influence of different parameters of the interface layer on the resonance modes

In this section, we will study the influence of different parameters, characterizing the interface layer, on the resonance modes of the multilayer. The influence of these parameters will be studied through comparisons between the corresponding modified resonance modes and the dispersion curves of the guided modes obtained in the case of the reference structure with a perfect adhesive layer. Particular attention will be paid to the propagation modes corresponding to coupling modes that are more sensitive to interface conditions. When h varies, we observe that the resonance modes are shifted over the major parts of the frequency ranges over which they are excited. For a lower value of h, the resonance modes are shifted to the higher frequencies and are generated, at a given frequency, for smaller incidence angles. This behavior means that the waves guided in the structure propagate at higher speeds as the interface layer gets thinner. Indeed, as it has been showed through Eq. ( 9), a smaller incidence angle means a higher phase velocity. The opposite behavior is observed when h increases. This might be due to the fact that, as the elastic properties of the adhesive layer tend to decrease the guided waves velocities of the structure, a thinner adhesive layer has less impact on the phase velocities of the bilayer.

Influence of the thickness of the interface layer

‹ !T " • ∶ '. ST < • < z T. • < • < '. ST ‹ !' '. '" < • < z ‹ !z '. " < • < z ‹ !• '. " < • < z
It can be seen that the variation in the thickness of the interface layer leads to a greater shift in the resonance modes corresponding to global coupling modes of the structure, such as M n (1 MHz < f < 1.5 MHz), M ' (1.42 MHz < f < 2.6 MHz), M š (1.96 MHz < f < 4.6 MHz) and M 3 (4.5 MHz < f < 5 MHz). Thus, these modes will be of great interest to be detected, in order to quantify the thickness variations of the interface layer.

As the thickness of the interfacial layer increases, some resonance modes are attenuated as illustrated by the modes M š (1.9 MHz < f < 2.56), M › (2.54 MHz < f < 3 MHz) and M (3.25 MHz < f < 4.25 MHz). This attenuation is visible through the black patterns representing the resonance modes, that transforms to grey up to light grey for some frequency ranges. This lighter color represents the fact that the reflection coefficient is higher, which is equivalent to say that more of the energy needed to excite the corresponding resonance mode is leaked inside the incident medium, thus leading to an attenuation of the mode. This attenuation may be due to the increased contribution of the interface layer which results in a higher reflectance function due to the large difference in acoustic impedance between the interfacial material and the metals constituting the other layers.

Finally, the shift in resonance modes increases with frequency, as illustrated by the M 3 coupling mode (4.49 MHz < f < 5 MHz). This is most likely due to the fact that the decrease of the wavelengths when frequency increases makes the guided modes in the multilayer become more sensitive to the interface layer.

Influence of the mass density of the interface layer

The aim here is to determine the influence of the density of the interfacial material on the propagation of guided waves in the multilayered structure. Figure 10 shows a comparison between the dispersion curves of the guided waves in the reference multilayered structure and the resonance modes obtained in the case of multilayers containing interface layers of different mass densities. It can be noted in this figure that the increase or decrease in mass density does not seem to affect the resonance modes of the multilayer. This may be due to the large difference in mass density between the nickel (ρ = 8900 kg/m ) and copper (ρ = 8936 kg/m ) layers and the epoxy (ρ = 1200 kg/m ) layer which is the matrix material of the interface layer. Thus, it appears that in the case of metallic multilayers whose effective layers all have mass densities much higher than that of the adhesive layer, it is difficult to deduce variations in the latter's density through the observation of the resonance modes of the investigated structure. 2). Since the resonance modes correspond to the minima of the reflectance function, the attenuation of the previous resonance modes, as the porosity increases, is explained by a higher amplitude of the received (reflected) signal [START_REF] Guo | The non-destructive assessment of porosity in composite repairs[END_REF]. Thus, an interface layer with greater porosity has an acoustic impedance further away from those of the metallic layers and therefore a smaller fraction of the ultrasonic energy is transmitted through the interface [START_REF] Rokhlin | Ultrasonic wave interaction with a thin anisotropic layer between two anisotropic solids: Exact and asymptotic-boundary-condition methods[END_REF]. Moreover, as porosity increases, all resonance modes are shifted to low frequencies, except for the resonance mode corresponding to M (0.6 MHz < f < 0.8 MHz), especially in the case of modes generated for higher frequencies, probably due to a higher sensitivity of the waves to the porosity of the interface layer. This behavior can be used effectively to monitor the state of an adhesive layer because, as Wang [START_REF] Wang | Evaluation of interfacial properties in adhesive joints of aluminum alloys using angle-beam ultrasonic spectroscopy[END_REF] has shown, the frequencies of occurrence of the reflectance function minima vary with the condition of the interface. Indeed, a degradation of the interface is accompanied by a strong shift of the minima in the decreasing frequency direction [START_REF] Rokhlin | Ultrasonic evaluation of environmental durability of adhesive joints[END_REF]. In addition to this shift of minima towards low frequencies, we see that resonance modes tend to appear at higher incidence angles, for a given frequency, as porosity increases, which means that their phase velocities are lower. The modes most affected by this decrease in phase velocity are M ' (1.42 MHz < f < 2.46 MHz) and M 3 (4.49 MHz < f < 5 MHz) coupling modes, sensitive to interface layer properties. Since the increase in porosity reduces the mass density of the interface layer and its shear moduli (Figure 3), it can be assumed that the decrease in resonance mode velocities is related to the decrease in propagation velocities in the interfacial material.

Thus, shift of resonance modes towards low frequencies, attenuation of coupling modes and decrease of their phase velocities can be used as indicators of the presence of porosity within the layer, corresponding to poorer adhesion.

Influence of the orientation of the pores

In the previous section, the influence of the porosity factor of the interface layer on resonance modes was presented. Now, we will vary the azimuthal angle φ that the cylindrical pores form with the incidence plane and analyze the consequences of this variation on the resonance modes. Figure 12 shows a comparison between the dispersion curves of the guided waves and the resonance modes calculated with interface layers having a porosity factor equal to 0.5 and different angles φ. A porosity of 0.5 was chosen here because this value offers a good compromise between a significant influence of the porosity of the interface layer and a reasonable attenuation of the resonance modes allowing to clearly distinguish them. Even though this porosity value might not be very frequent in real samples, except for high delamination cases, we chose it here as a case study in order to better analyze the influence of the orientation of the pores on the resonance modes. Since the interfacial material is orthotropic, it has two planes of symmetry: one with respect to φ = 0° and another with respect to φ = 90°. Therefore, we will only look at the angles φ between 0° and 90° in order to cover all cases. When φ is different from 0, we observe a decoupling of some resonance modes, such as M n at f = 1.23 MHz and f = 1.48 MHz, M ' at f = 1.89 MHz and M at f = 3.47 MHz. M n and M ' modes, for the frequencies mentioned, lie within frequency ranges assigned to the global coupling between the different layers forming the structure (Table 2). Areas where decoupling is clearly visible are highlighted in Figure 12-b). These decouplings gradually increase until φ = 45° (Figure 12-d)), then the modes resulting from these decouplings tend to be attenuated as visible on figures 12-b) to 12-e), and specifically illustrated on Figure 12e) representing the resonance modes of the structure for ž = 75°. The attenuation of the decoupling phenomenon itself, visible for ž > 45°, is also illustrated in Figure 12-f). Thus, we can affirm that the effect of the pore orientation on resonance modes is maximum for ž = 45°, and that it tends to decrease as the symmetry axes approach, which here correspond to the angular values ž equal to 0° and 90°.

It can be noted that these so-called "decoupling" modes correspond to quasi-SH waves, since they join up the SH waves velocities as it can be seen on Figure 12-d). These resonance modes do not appear among the resonance modes obtained for pores directed along the incidence plane. These modes correspond to quasi-SH waves and not purely SH waves because, as explained above, the last ones cannot be generated due to the nature of the incident wave. Thus, the fact that the cylindrical pores are offset from the incidence plane allows the generation of waves with polarizations that are almost perpendicular to the incidence plane.

The increase in φ also leads to an attenuation of the resonance modes visible through shallower minima. When φ = 0, the cylindrical pores are parallel to the incidence plane and it is possible that this configuration allows to guide more acoustic energy along the interface and therefore to generate deeper minima. To illustrate this phenomenon, the most affected resonance modes have been surrounded in Figures 12-a) and 12-f), relative respectively to the lowest φ angle (φ = 0°) and the highest φ angle (φ = 90°).

To summarize, the variation of the angle φ has consequences on the coupling of resonance modes, on their attenuation, as well as on their phase velocities. In a practical case, in order to detect a defect with a preferential orientation inside the adhesive layer, this defect will be modeled by a privileged φ orientation of the pores and the decoupling of certain resonance modes, observed experimentally, could constitute a tool to characterize this type of imperfection.

Conclusion

In this work, the effect of certain properties of an interface layer is studied in the context of an anisotropic multilayered structure. Reflectance functions and free guided waves dispersion curves are modeled using the global transfer matrix method. The characterization of variable properties of the adhesive layer by means of a comparison of resonance modes (given by the minima of the modulus of the reflectance function) with free guided waves dispersion curves of the multilayer containing a perfect epoxy layer is proposed. An anisotropic multilayered system consisting of nickel, epoxy resin and copper is the configuration studied here. The equivalence between the reflectance function magnitude minima and the free guided waves dispersion curves has been established for the considered structure. The coupling modes of the multilayer have been highlighted through a comparison between its free guided waves dispersion curves and the Lamb waves of the nickel plate only and copper plate only respectively. Then, we studied the influence of some parameters responsible for the alteration of an adhesive layer. Indeed, the impact of the thickness and density of the adhesive layer has been studied with respect to the guided modes, especially with regard to the coupling modes that are the most sensitive to the changes in the interface layer. A model assessing the interface quality through a fictitious porous material, whose cylindrical pores can be shifted with respect to the incidence plane, has also been implemented. The increase in porosity induces a shift of the resonance modes with respect to frequency and a change in the velocity of the guided modes. In addition, the variation of the orientation angle of the pores with respect to the incidence angle has consequences on the coupling of the resonance modes, on their attenuation as well as on their phase velocities. All of these parameters allow to characterize the interface layer and monitor its changes. Indeed, this model allows to model defects such as delamination and porosity in the adhesive layer, with the possibility to vary their orientation which enables us to simulate defects with a privileged orientation that can be detected through the decoupling of certain modes.

This study provides an overview of the impact of the adhesive interface layer nature on the reflectance function magnitude and the potential of the comparison with the free guided waves dispersion curves in order to characterize the interface quality within an anisotropic multilayered structure.

Thus, it could be envisaged to characterize interface defects through experimental V(z) measurements. Indeed, the reflectance functions, obtained by modeling, could be compared to the experimental ones rebuilt thanks to the inversion of measured V(z) data, a study which is expected to be performed in the near future. where:
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 1 Figure 1: Multilayered structure geometry
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 2 Figure 2: Geometrical model of the composite material containing cylindrical pores[START_REF] Christensen | Mechanics of Composite Materials[END_REF] 

  where M, O and C are detailed in Appendix A. Once the moduli ( , ) , * , + and + are obtained, the elastic constants & , & , & , & and & '' are calculated via the following equations: & = ( / 4* ) (5.a) & = 2* ) (5.b)
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 3 Figure 3: Evolution of the shear moduli R !S and R ST with respect to the porosity
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 4 Figure 4: Anisotropic reference multilayered structure: nickel (t u = !. S ww)/ interface layer (t x = S Rw )/ copper (t y = $. z ww)
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 5 Figure 5: Comparison between the dispersion curves obtained by FE simulation and the algorithm for the reference multilayer
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 6 Figure 6: Comparison between resonance modes and dispersion curves of the guided waves
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 78 Figure 7: Superposition of the dispersion curves of the guided waves propagating in the reference multilayer and the nickel layer
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 7 Figure7and Figure8illustrate well the fact that guided modes in the multilayer get close, for certain frequency ranges, to Lamb modes propagating in the nickel and copper layers and that other modes do not correspond to any particular layer and therefore result from a coupling between the two metal layers via the interface one. Table2details the classification of the guided modes in the reference multilayer to the three categories described above. Acoustic coupling increases at low frequencies and the

Figure 9

 9 Figure 9 illustrates a comparison between the dispersion curves of the guided waves of the reference structure and the resonance modes obtained for different values of the interface layer thickness. The chosen thicknesses are: ™ = ™/2 and ™ = 2™.
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 9 Figure 9: Comparison between the dispersion curves of the guided waves and the resonance modes calculated with different thicknesses of the interface layer: a) t = t/S and b) t′′ = St
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 10 Figure 10: Comparison between the dispersion curves of the guided waves and the resonance modes calculated with different densities of the interface layer: a) oe = oe/S and b) oe′′ = Soe
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 11 Figure 11: Comparison between the dispersion curves of the guided waves and the resonance modes calculated with different porosity factors of the interface layer: a) P = 0.01 ; b) P = 0.1 ; c) P = 0.3 ; d) P = 0.6
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 12 Figure 12: Comparison between the dispersion curves of the guided waves and the resonance modes calculated with interface layers modeled with P=0.5 and different values of •: a) • = 0°; b) • = 10°; c) • = 30°; d) • = 45°; e) • = 75°; f) • = 90°

  

  

Table 1 : mechanical properties of the materials constituting the multilayer Material
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	Nickel [11]	8900	270	170	123
	Copper [20]	8936	168.4	121.4	75.2
	Epoxy [19]	1200	5.2	2.8	1.2

Mass density (kg/m ) c (GPa) c (GPa) c 33 (GPa)

Table 2 : Identification of the different categories of guided waves propagating in the multilayered structure
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