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For the elastic SV (transverse) waves in metals, a high-quality narrow passband filter
that consists of aligned parallel thin plates with small gaps is designed. In order
to obtain a good performance, the thin plates should be constituted by materials
with a smaller mass density and Young’s modulus, such as polymethylmethacry-
late (PMMA), compared to the embedded materials in which the elastic SV waves
propagate. Both the theoretical model and the full numerical simulation show that the
transmission spectrum of the designed filter demonstrates several peaks with flaw-
less transmission within 0 KHz ∼20 KHz frequency range. The peaks can be readily
tuned by manipulating the geometrical parameters of the plates. Therefore, the cur-
rent design works well for both low and high frequencies with a controllable size.
Even for low frequencies on the order of kilohertz, the size of this filter can be still
limited to the order of centimeters, which significantly benefits the real applications.
The investigation also finds that the same filter is valid when using different met-
als and the reason behind this is explained theoretically. Additionally, the effect of
bonding conditions of interfaces between thin plates and the base material is inves-
tigated using a spring model. © 2018 Author(s). All article content, except where
otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/1.5023517

I. INTRODUCTION

During the past decade, design of filters/isolators for classical waves has attracted great atten-
tions due to their wide employment in various applications such as wave signal processing system and
noise/vibration controlling. The existence of forbidden band gaps allows phononic crystals (PnCs) to
become a potential candidate for the design of filters/isolators for acoustic and elastic waves.1–3 Con-
trolled by the Bragg scattering mechanism, the forbidden bandwidth of PnCs is typically narrow and
the waves inside the band gaps are of the wavelength at the same order as the lattice constants of PnCs.
As a result, the PnCs-based design usually serves as a broad passband filter and an unmanageable
size is needed for low frequency problems. This has consequently led to the increased research effort
to increase the forbidden bandwidth4–7 and to decrease the working frequency of PnCs. The pioneer
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work of Liu et al.8 by incorporating local resonators9 into PnCs, which are usually referred to as meta-
materials, provided a very efficient way to reduce the working frequency of PnCs. Compared with
PnCs, the working frequency of these metamaterials is significantly reduced by one or more orders
of magnitude. It is in this spirit that, during the past several years, various acoustic and elastic meta-
materials were designed mainly in the forms of 1D mass-spring model,10–14 beams,15–21 plates with
single22–26 and double26–30 sided stubs, membranes,31–36 as well as 2D metamaterials.2,37–40 To make
the metamaterials more adaptive, more recently, several tunable local resonators were designed.41–49

To date, although the above introduced various PnCs and metamaterials have been proposed, it
should be noted that they typically work well as broad passband ones. However, the design of filters
with a narrow passband is still not sufficient. Khelif et al.2,50 proposed a narrow passband acoustic
2D PnC based filter composed of a square array of hollow steel cylinders embedded in water. The
frequency at which the narrow passband occurs can be tuned by the inner radius of hollow steel cylin-
ders. Inspired by the structure of biomaterials, a multilayered model with a hierarchical structure
was proposed by Zhang,51 the reflection spectrum indicates that such multilayered model works effi-
ciently as a narrow passband filter for P- and SV- waves of ultra-high frequencies. Besides, a narrow
passband filter was realized through the impedance-mirroring by Lee and Kim.52,53 Additionally,
there exists a technique of inserting a cavity/defect inside the waveguide parts made of PnCs to yield
a narrow passband.37,54 In brief, the above various narrow passband filters still inherit the character-
istic of PnCs, that the narrow passband occurs at relatively high frequencies i.e., few megahertz in
millimeter size structures. A narrow passband filter working at relatively low frequencies is still less
considered.55,56

As the basic mechanical element, the dynamic behavior of thin plates has been well investigated.
Therefore, as mentioned before, various thin plates based PnCs and metamaterials have been proposed.
In our previous work,57 we designed a thin plate based narrow passband filter for elastic SV waves
propagating in metal blocks. The filter is composed of aligned parallel thin PMMA plates, which
are separated by small gaps, and are seamlessly bonded at the two ends to the base blocks. Both
theoretical model and numerical simulations show that the transmission spectrum of this filter has
several sharp peaks with flawless transmission. The peaks at which the narrow passband occurs can
be tuned by the length of plates. Therefore, the designed filter is effective for both low and high
frequencies. Even for low frequencies on the order of kilohertz, the size (length of the plates) of
this filter can be still confined to the order of centimeters. Moreover, the peaks occur at the same
frequency points for different base materials.

However, in our previous paper, it is found that the theoretical solutions in which the plate is
modelled by the Kirchhoff plate theory agree well with numerical simulations at low frequencies,
while deviating from them at relatively high frequencies. Moreover, only the PMMA is consid-
ered for the plates and the physical mechanism behind the fact that the base material does not
change the peaks is not well understood and clarified. Additionally, in our previous work, the inter-
faces between plates and the base matrix is assumed to be perfect, other situations have not been
considered.

In the current work, we attempt to provide a more comprehensive study on the above listed
problems, which is important to well understand the design. Specifically, the Mindlin plate theory
taking the rotatory inertia and shear deformation effects into account is adopted to describe the
thin plates.58 The corresponding theoretical model is solved using two different techniques: one is
a semi-analytical method and the other is a full analytical method. The results show that solutions
based upon the Mindlin plate theory agree better with numerical simulations than the Kirchhoff
plate theory. Results indicate that the peaks occur at the natural frequencies of the plate with fixed
displacement or opposite displacements at two ends. Besides the PMMA, other potential materials
being suitable to fabricate the thin plates are explored and the bonding conditions between the
thin plates and the base material on the performance of this filter are investigated through a spring
model.

The outline of the paper is described as follows. In Section II, the design of this filter is intro-
duced briefly. Then, in Section III, two theoretical models are proposed and solved to evaluate the
transmission spectrum of this filter using two different techniques, in particular, the one to divide the
conventional transmission into a symmetric and anti-symmetric modes. The Finite Element Method
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(FEM) numerical model used to evaluate the performance of this filter is introduced in Section IV.
The results are presented in Section V and followed by a short conclusion in Section VI.

II. DESIGN OF THE FILTER

Figure 1 demonstrates a schematic of this filter, where the thickness and length of the plates are
denoted by h and L, and the gap between adjacent plates is denoted by a. Here, a is much smaller than
h. The propagation of SV waves is along the horizontal direction and the material particles vibrate
along the vertical direction as indicated by the short arrows. The thin plates are made up of a single
material, such as PMMA used in our previous paper, other potential materials being suitable to make
the plates are mentioned later.

III. THEORETICAL MODEL FOR THE TRANSMISSION SPECTRUM OF THIS FILTER

In this work, Young’s modulus, shear modulus, Poisson’s ratio, and mass density are denoted by
E, µ, υ, and ρ, respectively. In the Kirchhoff plate theory, the governing equation for flexural waves
under a harmonic loading is expressed as:59

D
∂4w

∂x4
− ρhω2w = 0 (1)

Here,ω is the angular frequency, w is the flexural displacement, and D = Eh3/12(1 � υ2) is the
bending stiffness of the plate. Expressing the general solution for Eq. (1) in the form of w(x) = ekx and
substituting it into Eq. (1) yields k4 = ρhω2/D. Therefore, four solutions for k are k1,2 =±i 4

√
ρhω2/D

and k3,4 =±
4
√
ρhω2/D, where i denotes the imaginary part. In our previous paper and the work by Su

and Norris,60 it is found that the theoretical solutions based on the Kirchhoff plate theory deviate from
the numerical simulations, in particular at high frequencies. The reasons behind this mainly include
that the rotatory inertia and shear deformation effects are neglected in the Kirchhoff theory. Hence,
in the current work, in order to obtain more accurate results, the Mindlin plate theory is employed.
The same treatment has also been considered in the recent work by Su etc.58 The corresponding
governing equation becomes:

D
∂4w

∂x4
+ ω2

(
ρh3

12
+
ρD
χµ

)
∂2w

∂x2
+

(
ρ2h3

12χµ
ω4 − ρhω2

)
w = 0 (2)

where χ is the Timoshenko shear coefficient, which is normally set to be 5/6 for a rectangular section.
Similarly, general solution to Eq. (2) can be expressed in the form w(x) = ekx as before. Four values

FIG. 1. 2D Schematic of the filter made by aligned parallel thin plates for elastic SV waves propagating in metals.
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for k under the Mindlin plate theory can be solved as:

k1,2 =±i

√√√
β2

2
+

√(
β2

2

)2

+ γ4

k3,4 =±

√√√
−
β2

2
+

√(
β2

2

)2

+ γ4

(3)

with β2 =

(
ρh3

12D + ρ
χµ

)
ω2 and γ4 =

(
ρh
D ω

2 −
ρ2h3

12χµDω
4
)
. Different from those in the Kirchhoff theory,

the magnitude of k1,2 is different from that of k3,4 in the Mindlin plate theory. In order to obtain the
transmission spectrum of this filter, a unit cell as proposed in Ref. 60 is adopted as shown in FIG. 2.
Under a normal incidence of a plane elastic SV wave, the wave fields in the unit cell can be expressed
as:

w(x)=




eikT x + Re−ikT x, x <−
L
2

Aek1x + Bek2x + Uek3x + Vek4x, |x | <
L
2

TeikT x, x >
L
2

(4)

The parameters R, A, B, U, V, and T are the coefficients of displacements for the reflected wave, the
forward and backward waves in the plate, and the transmitted wave. kT =ω/cT is the wave number of
transverse waves in the base material, in which the corresponding wave speed is cT =

√
E/2ρ(1 + υ).

The six unknowns (R, A, B, U, V, and T ) are determined by the z-averaged continuity conditions
of displacement, rotation angle, and shear force at x = �L/2 and x = L/2 as follows:60




z−i
0 + Rzi

0 =Az−1
1 + Bz−1

2 + Uz−1
3 + Vz−1

4

z−i
0 − Rzi

0 =
1

ikT

(
Ak1z−1

1 + Bk2z−1
2 + Uk3z−1

3 + Vk4z−1
4

)
z−i

0 − Rzi
0 =

Di
µ(0)h′kT

(
Ak3

1z−1
1 + Bk3

2z−1
2 + Uk3

3z−1
3 + Vk3

4z−1
4

)
Tzi

0 =Az1 + Bz2 + Uz3 + Vz4

Tzi
0 =

1
ikT

(Ak1z1 + Bk2z2 + Uk3z3 + Vk4z4)

Tzi
0 =

Di
µ(0)h′kT

(
Ak3

1z1 + Bk3
2z2 + Uk3

3z3 + Vk3
4z4

)

(5)

with z0 = ekT
L
2 and zi = eki

L
2 (i= 1, 2, 3 and 4). µ(0) is the shear modulus of the base material. Solving

Eq. (5) yields the transmission and reflection coefficients, yet the analytical solutions are not easy to
be obtained. Towards this end, the above problem is re-formulated in another way, where the total
wave fields are divided into two parts: the symmetric and anti-symmetric modes as done in Refs. 60

FIG. 2. The unit cell (between the two dash lines) used to analyze the transmission spectrum of this filter.
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and 61. The wave fields for the symmetric and anti-symmetric modes are written respectively as:

wS(x)=




eikT x + A1Se−ikT x, x <−
L
2

C1S cos(|k1 |x) + D1S

(
ek3x + e−k3x

)
, |x | <

L
2

e−ikT x + A1SeikT x, x >
L
2

(6)

and

wA(x)=




eikT x + A1Ae−ikT x, x <−
L
2

C1A sin(|k1 | x) + D1A

(
ek3x − e−k3x

)
, |x | <

L
2

−e−ikT x − A1AeikT x, x >
L
2

(7)

where A1S , C1S , D1S , A1A, C1A, and D1A are the unknown coefficients to be determined. It is easy to
check that wS(�x) = wS(x) and wA(�x) = �wA(x). The total wave field, i.e., w(x) = wS(x) + wA(x), has
the following expression:

w(x)=




2eikT x + (A1S + A1A) e−ikT x, x <−
L
2

C1S cos(|k1 | x) + C1A sin(|k1 | x) + (D1S + D1A) ek3x + (D1S − D1A) e−k3x, |x | <
L
2

(A1S − A1A) eikT x, x >
L
2

(8)

which is similar to that in Eq. (4). The symmetric and anti-symmetric modes are solved separately
according to the same continuity conditions used in Eq. (5). As an illustration, the corresponding
continuity conditions for the symmetric mode can be listed as:




z−i
0 + A1Szi

0 =C1S cos (|k1 | L/2) + D1S

(
z−1

3 + z3

)
z−i

0 − A1Szi
0 =−iτ

[
C1S sin (|k1 | L/2) + D1Sη

(
z−1

3 − z3

)]

z−i
0 − A1Szi

0 =
iD|k1 |

3

µ(0)h′kT

[
−C1S sin (|k1 | L/2) + D1Sη

3
(
z−1

3 − z3

)]
(9)

with τ = |k1 |

kT
and η = ���

k3
k1

���. The analytical solution for A1S is obtained as:

A1S =

1
η(1+η2)

(
1
th

+
η

t

) (
1 −

µ(0)h′

D|k1 |
2

)
−

(
τi +

1
t

)
1

η
(
1 + η2) (

1
th

+
η

t

) (
1 −

µ(0)h′

D|k1 |
2

)
+

(
τi −

1
t

) e−ikT L (10)

with t = tan
(
|k1 |

L
2

)
and th = tanh

(
|k3 |

L
2

)
. The anti-symmetric mode can be solved similarly, leading

to the analytical expression for A1A as:

A1A =

1

η
(
1 + η2) (−th + ηt)

(
1 −

µ(0)h′

D|k1 |
2

)
+ (τi − t)

1

η
(
1 + η2) (−th + ηt)

(
1 −

µ(0)h′

D|k1 |
2

)
− (τi + t)

e−ikT L (11)

According to the wave fields expressed in Eq. (8), the transmission and reflection coefficients are
calculated as:




T = (A1S − A1A)/2

R= (A1S + A1A)/2
(12)

Results indicate that solutions from Eq. (5) are the same as those based on Eqs. (10–12).
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FIG. 3. The numerical model used in this paper.

IV. FEM NUMERICAL SIMULATIONS

To validate the feasibility of the designed filter, a series of numerical simulations using the FEM
are conducted. Figure 3 plots the used numerical model, the rectangle in the middle represents the
thin plate and the connected two parts are the base material. In the numerical simulations, the thin
plate is perfectly bonded to the base blocks and the entire domain is discretized using plain-strain
quadrilateral elements. The perfectly matched layers (PML) are employed at both ends to yield non-
reflecting boundaries. In order to mimic the periodicity of the current design in the vertical direction,
the periodic boundary conditions are applied on the top and bottom edges of the base blocks as the
red lines shown. The horizontal displacement is fixed at the two exterior ends in order to avoid rigid
motion. A uniform vertical displacement is applied on the left solid blue line to yield a plane SV
wave (see red arrows). The vertical displacement at the right dashed blue line is obtained to calculate
the transmission coefficient.

V. RESULTS AND DISCUSSIONS

A. Comparison between analytical results and numerical simulations

Figure 4 shows the transmission spectrum of this filter made up of thin PMMA plates when the
base material is aluminum. The material properties of PMMA and aluminum are tabulated in Table I.
The size of the thin PMMA plates is L=0.05m, h=0.005m, and h’=0.0055m. For a comparison,
theoretical solutions from both the Kirchhoff and Mindlin plate theories have been plotted. The results
show that all the transmission spectrums of this current filter from the two theories and numerical
simulations have several sharp peaks, where the incident SV wave is transmitted through the filter
without loss. However, t his is not the case for the transmission spectrum of the design with plates
composed of the same material as the base material. At lower frequencies, both the two analytical
solutions match well the numerical results, however, the solution based on Kirchhoff plate theory

FIG. 4. The transmission spectrum of the designed filter obtained from the analytical models and the FEM numerical
simulation.
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TABLE I. The materials used in the present work.

E(GPa) υ ρ(kg/m∧3)

PMMA 0.53 0.37 1180
Aluminum 70.0 0.35 2700
Steel 210.0 0.29 7800
Copper 210.0 0.25 8500

deviates significantly from the numerical simulations at higher frequencies. The main reason is that,
at high frequencies, the rotatory inertia and shear deformation effects become important.

The calculated vibration modes of the plate at the peaks are plotted in FIG. 5. The results show
that the vibration direction of the transmitted wave is opposite to that of the incident wave at peaks
1©, 3© and 5©, while they are kept in pace at peaks 2©, 4© and 6©. This fact is also illustrated by the

curve of real and imaginary parts of the transmission coefficient T as shown in FIG. 6. The peaks
occur as the imaginary part of transmission coefficients equals zero and the absolute value of real
parts equals one. At the corresponding peaks 1©, 3© and 5©, the real part of analytical transmission
coefficients equals minus one, and is equal to positive one at the peaks 2©, 4© and 6©.

B. Other potential materials suitable to constitute the plates

In our previous paper, only the PMMA was considered to make the thin plates. In this work, other
potential materials suitable for the thin plates are also discovered, which opens more opportunities.
From FIG. 4, it is clear that the performance of this filter is determined by two factors: one is the
existence of the peaks, and the other is the average value of the transmission coefficients over the
investigated frequency range. As the peaks exist, a smaller mean value of the transmission coefficients
indicates the filter has a better performance to inhibit other waves. Hence, the average transmission
coefficients of filters with plates made of different materials are calculated using the theoretical model
(Eqs. (10)–(12)) and illustrated in FIG. 7. For comparison, the result of PMMA denoted as the cross

FIG. 5. Magnitude of the vertical displacement fields at the peaks of the numerical simulation results illustrated in FIG. 4.

FIG. 6. Real (a) and imaginary (b) part of analytical (Mindlin plate theory) transmission coefficient vs frequencies.
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FIG. 7. The contour plot of average transmission coefficients of the current filter over 0 KHz∼20 KHz versus material
properties of the thin plates. The base material is aluminum and L=0.05m, h=0.005m, and h’=0.0055m. The Poisson’s ratio
of plates is assumed to be the same as that of the base material. E(1)/E(0) is the ratio of Young’s modulus between plates and
the base material, and ρ(1)/ρ(0) is the corresponding ratio of mass density.

dot is also plotted, the corresponding value for PMMA is 0.137. The results in this figure indicate
that, in order to design a high-quality current filter, both the mass density and the Young’s modulus
of plates should be smaller than those of the base material.

C. The performance of this filter for waves in different base materials

Figure 8 shows the numerically calculated transmission coefficient of this filter for different base
materials. It is clearly seen that the transmission spectrums of the current design show sharp peaks
for all these three base materials. Moreover, the peaks occur at the same frequency points even the
base material changes. This fact greatly benefits the development and application of the filters for
elastic SV waves in various metals. The reason behind this fact can be referred to FIG. 5, in which the

FIG. 8. The numerically calculated transmission spectrum of the designed filter under three different base materials. The
geometry of the plate is: L=0.05m, h=0.005m, and h’=0.0055m. In the legend, the former represents the base material and the
latter is the material of the plates.
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FIG. 9. The spring model used to investigate the bonding conditions of the interfaces on the performance of the current filter.

results show that the peaks happen at the natural frequencies of the plate of L with fixed displacement
or opposite displacements at two ends.

D. The effect of bonding conditions of interfaces

In the above analysis and the previous work, the plates are assumed to be perfectly bonded to
the base material at two ends. However, this is not true in practice. Here, the influence of the bonding
condition between the plates and the base on the performance of this filter is analyzed using a spring
model62,63 as shown in FIG. 9, where the stresses and rotation angles are assumed to be continuous
across the interfaces, while the displacements jump. Furthermore, the displacement jump is assumed
to be linearly proportional to the stress at the interface. The ratio of the stress to the displacement
jump is defined as the stiffness of the spring. Compared with Eq. (5), the corresponding equations
taking the bonding condition into account are listed as follows,



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4 −
(
z−i
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0

)
=

iµ(0)h′kT

(
z−i
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0

)
K

z−i
0 − Rzi

0 =
1

ikT

(
Ak1z−1
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4

)
z−i

0 − Rzi
0 =

Di
µ(0)h′kT

(
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0
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0 =
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FIG. 10. Influence of the bonding condition of the interfaces between the base material and the plates on the transmission
spectrum of the designed filter. The geometry of the plate is: L=0.05m, h=0.005m, and h′=0.0055m.
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where K is the stiffness of the shear springs. Figure 10 shows the calculated transmission spectrum
of the current filter for elastic SV waves in aluminum with the account of various bonding conditions
at the two interfaces. The results show that the spring model with K = 1.0K

∗

is close to the perfect
bonding, where K

∗

equals (E(0) + E(1))/2. As the stiffness decreases, the peaks of the transmission
spectrum generally shift from high frequencies to low frequencies, especially for those with a higher
frequency. The effect of this imperfectly bonded interfaces on the peaks of low frequencies is almost
negligible.

VI. CONCLUDING REMARKS

A narrow passband filter made with aligned parallel thin plates for the propagation of elastic SV
waves in metals was designed. Based on the proposed unit cell, both the analytical model and the
comprehensive numerical simulation verified the feasibility of the designed filter. For the analytical
model, besides the classical Kirchhoff plate theory, the Mindlin plate theory with the account of
rotatory inertia and shear deformation effects is also adopted to describe the dynamic behavior of
the plates in the filter. Compared with the numerical simulations, the analytical model based upon
the Mindlin plate theory gives more accurate results than the Kirchhoff plate theory. The calculated
vibration modes indicate that the full transmission (peak) occur at the natural frequencies of the plate
with fixed displacements or opposite displacements at the two ends. That is why the same filter works
well for different base materials where the elastic SV waves propagate. The working frequencies
of this filter can be easily adjusted by the change of geometries of the thin plates, specifically, the
peaks shift from high frequencies to low frequencies as the length of the thin plates increases. The
bonding condition of the interfaces between the thin plates and the base was also investigated using
a spring model. Generally, the peaks shift from high frequencies to low frequencies as the bonding
stiffness becomes weak. However, at low frequencies, the influence of this bonding stiffness becomes
negligible. This filter has the potential to benefit the controlling of SV waves, such as mechanical
vibration suppression, sensing, etc.
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