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Abstract: This study proposes an original ultra-wideband short-range radar (UWB-SRR) recognition system based on higher-
order statistics (HOS) and support vector machines (SVMs). The main purpose of this work is to improve the road safety by
implementing these techniques for detection and recognition of the uncovered road users such as pedestrians and cyclists. The
combination of HOS and cell-averaging constant false alarm rate (CA-CFAR) radar detector has been proposed and
investigated. The results show that a combination of HOS and CA-CFAR promises a good performance for UWB radar detector.
The authors have also evaluated the performance of SVM-based target recognition system using normalised radar signature as
input features. A total of 1000 signatures have been extracted for each class including pedestrian, cyclist, and car, where 50%
of them have been used for the training data and the rest for the validation data. The results show that the SVM gives a good
performance for the proposed system, where the recognition rates are up to 96.23, 95.25 and 97.23% for the cyclist, pedestrian
and car. In the real testing performance using their scenarios, the system has successfully identified 92.77% of the right cyclist,
90.82% of the right pedestrian and 90.73% of the right car.

1 Introduction
One of the factors that contribute to the injuries and mortality of
the uncovered road users such as pedestrians and cyclists is the
lack of drivers’ visibility. The blind spots around the trucks and
buses environments could make a fundamental crash accident with
these uncovered road users [1].

Many techniques have been proposed over the years in order to
reduce these injuries and mortality caused by road crash accidents.
Crash warning and avoidance systems promise a great contribution
to enhance the protection of the pedestrians and the cyclists. These
potential solutions include the radar system and the computer
vision for object detection as suggested in [2]. However, the
performance of the camera-based system will decrease when
illumination diminishes, as an example in cloudy, smoggy, foggy
and night conditions. On the other hand, the radar system is robust
to such conditions, and it can provide accurately the distance of
both stationary and moving targets while the camera cannot. By
consequence, it detects and tracks their movement and can reduce
this fatal error.

In this work, an original ultra-wideband short-range radar
(UWB-SRR) recognition system based on higher-order statistics
(HOS) and support vector machines (SVMs) has been proposed,
where the normalised amplitudes are the basic elements of the
features vectors.

The proposed radar system uses UWB technology in order to
reach high obstacles detection. This technology is characterised by
a very low-power density and a very small pulse width, from few
picoseconds to few nanoseconds. The amplitude of the pulse
should be normalised to comply with Federal Communications
Commission mask. The wide bandwidth issued (several GHz)
allows signals with a precise temporal resolution, low probability
of interception/detection and offers robustness against multipath
fading [3]. Thus, the UWB radar offers a great interest in short-
range road safety applications [4].

The use of UWB in the SRR system presents many advantages.
First, the brevity of UWB pulses with strong spectral contents
makes it possible to obtain information on the target with a rich
transitory response content. This allows the easy dissociation of
various echoes at the reception stage. Then, the broadband

spectrum authorises to obtain results on the entire frequency band
in a single measurement together with a strong capacity for
detection. Finally, the pulse spectrum has abilities to penetrate
through naturally screening materials [5]. Considering all these
properties, UWB radar using very short pulses is of great interest
for many applications of obstacle detection and target identification
in short range [6].

In this paper, we have explained about how the radar target is
localised and identified by using, respectively, a proposed method
‘a combination of HOS and the well known cell-averaging constant
false alarm rate (CA-CFAR) radar detector’ and SVM. The
performances of the proposed radar detector and SVM target
recognition based on radar signature have been analysed.

This paper is organised as follows. Section 2 introduces briefly
the HOS and its variants including the fourth-order cumulant based
on Tugnait4 algorithm and the fourth-order cross-moment. In
Section 3, the SVM recognition technique is explained. Then,
Section 4 presents in great detail about the performance of the
proposed radar detector based on HOS and CA-CFAR, and it
explains also how the radar signatures are collected. Section 5
presents the performance of target recognition based on SVM using
the radar signatures as the input features. The last section of this
paper provides the discussion and the conclusion.

2 Higher-order statistics
Unlike second-order statistics, the HOS algorithm is based on
higher-order moment spectra in order to interpret and analyse the
characteristics of a random process [7, 8].

This technique offers many advantages. It reduces clearly the
Gaussian noise and the secondary lobes, reconstructs the phase as
well as magnitude response of signals or systems and detects and
characterises the non-linearity in the data. In addition, the use of
HOS allows detecting several obstacles at the same time and
simplifying the automation of the process by applying a simple
threshold.

HOS consists of higher-order moment spectra, which is defined
for deterministic signals and cumulant spectra for random process
[7]. Indeed, many real-world applications are truly non-Gaussian.
Therefore, contrary to the second-order statistics, HOS is
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applicable when we are dealing with non-Gaussian, because it can
adapt to non-Gaussian noise or to non-linear channel
characteristics and reveal the phase information [8, 9]. In [10], they
used the HOS method to estimate time delay in unknown spatially
correlated noise and the result is better than that of used cross-
correlation method.

There are two algorithms of the HOS that have been
investigated in this work: the fourth-order cumulant based on
Tugnait4 algorithm and the fourth-order cross-moment.

2.1 Tugnait4 algorithm

Tugnait4 is an algorithm which uses the fourth-order cumulant of
the HOS to estimate time delay. It is developed by Tugnait (1989).
The advantage of the Tugnait4 algorithm is its ability to suppress
the Gaussian noise over the useful signal. The expression of the
Tugnait4 algorithm is shown in the equation below [4, 10]:

J4(i0) = cum4(c(i − i0), c(i − i0), r(i), r(i))
|cum4(c(i), c(i))| |cum4(r(i), r(i))| (1)

with c as the reference signal, r as the incoming signal and i0 as the
time index decision where (see (2)) .

2.2 Fourth-order cross-moment

A novel design based on the approach of a fourth-order cross-
moment is proposed in this UWB radar. The fourth-order cross-
moment m4 for a stationary random process x(n) with samples
x0(n), x1(n), x2(n) and x3(n) is defined as [7]

m4(τ1, τ2, τ3) = E{x0(n)x1(n + τ1)x2(n + τ2)x3(n + τ3)} (3)

where E{ ∗ } denotes statistical expectation.
For deterministic signal, it is replaced by a time summation

over all time samples (for energy signals) or time averaging (for
power signals). Under the assumption that x(n) is of zero mean, the
fourth-order cross-moment is calculated from the given data as [7]

m4(τ1, τ2, τ3) = 1
N ∑

n = 0

N
x0(n)x1(n + τ1)x2(n + τ2)x3(n + τ3) (4)

where N is the length of the signal.
A better combination of the x0, x1, x2 and x3 for the proposed

system is ‘Reference’, ‘Signal’, ‘Reference’ and ‘Signal’,

respectively. Then, ‘x0, x2’ are replaced by the received echoes and
‘x1, x3’ are replaced by the references. The parameters of τ1 is equal
to zero, and τ2 = τ3 = τ so the equation becomes

m4(τ1, τ2, τ3) = 1
N ∑

n = 0

N
c(n)r(n + τ) 2 (5)

with c as the reference signal and r is the received signal.
After looking briefly at the HOS, then in the next section, we

explain the literature of basic SVM concept.

3 Support vector machine
SVM is a supervised machine learning of binary classification
technique for pattern recognition. This classifier creates a
hyperplane to separate the pattern of data into two classes (+1 or
−1) with the maximum margin. The vectors that define the
hyperplane are called support vectors [11] (Fig. 1). 

Let us label the training data xi ∈ Rd with a label yi ∈ − 1, 1,
for all the training data i = 1, …, n, where n is the number of data
and d is the dimension of the problem. yi is separated by a
hyperplane with margin M, then for each training sample (xi, yi)

negative class wTxi + b ≤ − 1, if yi = − 1

positive class wTxi + b ≥ 1, if yi = 1

To maximise the margin, we need to minimise ∥ w ∥. That is
equivalent to minimise 1/2 ∥ w ∥2. Then, we can formulate a
quadratic optimisation problem and solve it for w and b.

By multiplying each class by its label, then we have the
constrain of this Quadratic Programming (QP) optimisation as

yi(wTxi + b) ≥ 1 (6)

Thus, the optimal margin can then be found by minimising

1/2 ∥ w ∥2 (7)

which subjects to

yi(wTxi + b) − 1 ≥ 0, ∀i (8)

3.1 Solving optimisation problem

By using the Lagrange multiplier method, we get the primal form
for this minimisation problem

L = f (x) − α g(x) (9)

where g(x) ≥ 0.
Inserting f (x) = 1/2 ∥ w ∥2 and g(x) = y(wTxi + b) − 1 into (9),

we get the primal form

Lp = 1/2 ∥ w ∥2 − ∑
i = 1

n
αi(yi(wTxi + b) − 1) (10)

By applying the Karush–Kuhn–Tucker conditions to the primal
form, we get the primal-dual form

cum4(c(i − i0), c(i − i0), r(i), r(i)) = 1
N ∑

i = 1

N − 1
c2(i − i0)r2(i)

−2 1
N ∑

i = 0

N − 1
c(i − i0)r(i)

2

− 1
N ∑

i = 0

N − 1
c2(i − i0) 1

N ∑
i = 0

N − 1
r2(i)

(2)

Fig. 1  Illustration of support vectors, hyperplane and margin
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Lpd = − 1/2∑
i = 1

n

∑
j = 1

n
αiαjyiyjxixj + ∑

i = 1

n
αi (11)

As the vectors xi, xj and yi are known and Lpd is optimal at
(∂Lpd/∂α) = 0, and at ∑i = 1

n αiyi = 0, we can find αi value.
The non-negative value of αi will correspond to support vectors.

Knowing the αi, we can find w by

w = ∑
i = 1

n
αiyixi (12)

The b parameter can then be determined by the next equation

αi[yi(wTxi + b) − 1] = 0 (13)

3.2 SVM kernel

In the case of non-linear separable data, the transformations are
performed by using variable kernel functions such as sigmoid,
polynomial, linear, Gaussian radial basis function (RBF) etc. These
kernel functions define an inner product in high-dimensional space,
given as below [12]:

linear K(xi, xj) = xi
Txj (14)

polynomial K(xi, xj) = (γxi
Txj + r)d, γ > 0 (15)

RBF K(xi, xj) = exp( − γ ∥ xi − xj ∥2 ), γ > 0 (16)

sigmoid K(xi, xj) = tanh(γxi
Txj + r) (17)

The SVM technique was realised by using the library for SVM
(LIBSVM) developed by [13]. LIBSVM is a library for SVM that
has been widely used in many research areas. These four basic
kernels are investigated and their performances are compared in
order to have a better kernel that matches in our UWB-SRR
system.

4 Target detection based on HOS
4.1 Hardware specifications

The experimentation has been performed by using an UWB Radar
Kit HST-D3 hardware module developed by UMAIN.INC, which
is a short range of UWB impulse radar that packs 450 MHz–1 GHz
of radio-frequency bandwidth in a small, low-cost, low-power
device. This UWB commercial radar module, embedded with in-
house developed software is connected to a Raspberry-Pi3 which
stored the raw radar data.

UWB HST-D3 radar module comes with two types of antennas,
UWB directional antenna and UWB monopole antenna, but in our
experiments, we use the UWB directional antenna because it has
better target echo-to-clutter and noise ratio. Detail specification of
the radar module is presented in Table 1. 

4.2 Experimental setup

All of the experiments were conducted yet in the parking area of
our laboratory. The radar was attached on a tripod and placed on a
stroller. The height of the radar from the ground is about 1.8 m.
Fig. 2 illustrates more detail about this radar setup. The distance of
the targets is within the range of 0.5–8 m far from the radar. For
this first experimentation, the scenario for identification of the
pedestrian and the cyclist is: both pedestrian and cyclist can move
randomly in front of the stationary radar within the range
mentioned above (from 0.5 to 8 m far from the radar). The
pedestrian speed varies from 3 to 5 km/h, and the cyclist speed is
6–10 km/h. 

The experimentation scenario for the car identification is as
follows: we performed the experiments on the stationary of three
different cars while the stroller with the radar is moving toward and

backward to the cars with the speed was from 4 to 5 km/h. For this
preliminary experimentation, the velocity of the cars is not our
main purpose, but we focus on the nature of the target.

4.3 Time-delay estimation

Determination of radar targets requires the time-delay estimation in
order to localise the targets positions. Therefore, in this section, we
first present the investigation results of the performance
comparison between two HOS methods including the fourth-order
cumulant (Tugnait4-based algorithm) and the fourth-order cross-
moment. Then, we provided the results of a comparison between
the selected HOS and the ordinary second-order statistics.

Fig. 3 shows an example of the performance of the fourth-order
cumulant (green curve) and the fourth-order cross-moment (red-
dotted curve). Both methods were applied to the original echo of
raw radar data. It can be seen that they have a very similar
performance in terms of noise suppression. Therefore, since the
fourth-order cross-moment has less computation than that of the
fourth-order cumulant, it is better to use the fourth-order cross-
moment in estimating time delay in UWB radar system. Then, the
fourth-order cross-moment is compared with the ordinary second-
order statistics as presented in Fig. 4. From this figure, we can see
that the first target has a lot of reflections of energy which is easy
to be detected, whereas the second one only has very few
reflections of energy which is difficult to be detected. Red curve
and blue-dotted curve in this figure are the plots of HOS result and
the plot of the ordinary second-order result, respectively. We can
see that with the threshold value set to 0.05 (black-dotted line),
HOS positively detected the position of the second target, thanks to
its successful noise suppression, while the second-order statistics

Table 1 Specification of radar sensor module HST-D3 [14]
Parameter Value Comments
detection range 10–20 m factory default 13.4 m
frequency range 3–4 GHz
bandwidth 0.45–1 GHz max: 1 GHz
output rower typ. −25 dBm
distance resolution 15–33 cm

 

Fig. 2  Radar setup and an example of an experiment where a cyclist
moved in front of the radar
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produced a lot of false detection and it failed to detect the second
target. 

From this observation, we concluded that one of the advantages
of using HOS in this radar application is that it can enhance the
radar sensitivity performance, thanks to its ability to suppress the
noise.

In the next section, we investigated the comparison
performance between HOS and the well known detector CFAR. We
proposed to combine HOS and CFAR in order to have a robust
radar target detector. We continued this discussion by introducing a
moving target indication (MTI).

4.4 Moving TI

An MTI helps for pre-processing the radar signal before applying
targets detection method because it can enhance the signal-to-
clutter ratio of the radar echo. One of the MTI methods is the so-
called pulse canceller. The basic pulse canceller is 2-pulse

canceller. To have a higher order of this pulse canceller, we can
cascade the 2-pulse canceller [15]. Transfer functions for several
higher-order pulse cancellers are presented in Table 2. 

On the basis of [16] it is shown that the 4-pulse canceller
performs effective reduction of static radar clutters, so in this
experiment before implementing HOS and CFAR detector, we
simply applied the 4-pulse canceller to reject the clutters and direct
antenna coupling in our UWB radar. The 4-pulse canceller can be
written as

Rout = Ri − 3Ri − 1 + 3Ri − 2 − Ri − 3 (18)

where Rout is the final output after pulse canceller, Ri is the input
original signal and Ri − n is the nth original delayed signal.

4.5 HOS and CFAR combination

We began this section by introducing the well known CFAR
detector and then continued by presenting the performance
comparison results between the selected HOS type (the fourth-
order cross-moment) and the CFAR detector. The most known
good performance of CFAR is the CA-CFAR.

In a CA-CFAR detector, a threshold is adaptively estimated
based on local information on the background noise, from both
leading and lagging cells (called reference cells) surrounding the
cell under test [17–19].

The noise estimate can be computed as [18, 19] (Fig. 5)

Pn = 1
M ∑

m = 1

M
xm (19)

where M is the number of reference cells and xm is the sample in
each reference cell and Pn represents the estimated noise power.
Then, the detection threshold T is given by

T = αPn (20)

α is a scaling factor called the threshold factor and is calculated as

α = M(Pfa
−1/M − 1) (21)

where Pfa is the desired false alarm rate. 
As already mentioned above, we have investigated the

performances comparison results between automatic threshold CA-
CFAR which is directly implemented in the radar signal without
time-delay estimation and the HOS with the fixed threshold value.
Here, we noted that both HOS and CA-CFAR are implemented
after pulse canceller. We obtain that the HOS with the fixed
threshold value gives better performance than that of the CA-
CFAR which is directly implemented in the signal without time-
delay estimation as we can see in Table 3. 

We noted that the problem with CA-CFAR is the difficulty to
determine the number of reference cells as shown in Figs. 6 and 7.
Fig. 6 shows the result of applying CA-CFAR directly on the radar
signal without time-delay estimation when the number of reference
cells (M), the number of guard cells (N) and the false alarm rate
(Pfa) were, respectively, set to, 80, 2 and 10−5. With this
configuration, the detector detected three targets, while in the real
condition it was presented only one target at 5 m away from the
radar. This means that the false alarms have occurred. Fig. 8 shows

Fig. 3  Performance comparison between the fourth-order cumulant
(Tugnait4) and the fourth-order cross-moment

 

Fig. 4  Comparison result between HOS and ordinary second-order
statistics in the presence of two radar targets with the threshold value set to
0.05

 
Table 2 Transfer function for several higher orders of pulse
canceller [15]
Number of pulses processed Transfer function
2 1 − z−1

3 1 − 2z−1 + z−2

4 1 − 3z−1 + 3z−2 − z−3

5 1 − 4z−1 + 6z−2 − 4z−3 + z−4

 

Fig. 5  CA-CFAR algorithm architecture [17]
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the result of the CA-CFAR performance with the same number of
guard cells and the false alarm rate as in the previous
configuration, but the number of reference cells was reduced to 20.
With this configuration, the detector performed well. It can detect
the right target position without false detection, but it had the
problem for another radar data frame as shown in Fig. 7 that the
detector has missed detection of the presented target. Therefore, if

the number of reference cells is not well chosen, the detector will
result in a lot of false alarms and most probably will have missed
detection of the target. 

To have a robust radar detector, the authors proposed a solution
for this problem, that is, by first implementing the HOS to estimate
the time delay before running automatic threshold CA-CFAR
detector. Figs. 9–11 show several examples of the comparison
results between the CA-CFAR run directly on the signal without
time-delay estimation and with time-delay estimation (HOS). We
can see clearly that the implementation of the CA-CFAR detector
after time-delay estimation by HOS promises a better performance
compared with the CA-CFAR detector without estimating the time
delay. 

To validate the proposed method, we have tested a number of
200 raw radar data where each of it contains a real single target.
We consider two conditions including positive condition (PC) and
negative condition (NC). The PC is when the radar gives the good
decision, and otherwise is for the NC. The following is the detail
description for both decisions:

PC:

(a) when real condition presents one target and the observation
only detects one target; that means there is no false detection and
(b) when real condition presents no target and the observation
results no detected target.
NC:

Table 3 Performance evaluation between HOS with the
fixed threshold (TH), CA-CFAR without time-delay estimation
and CA-CFAR after time-delay estimation by HOS (N = 2,
Pfa = 10−5)
Detector type Number of

true
detection

Number of
false

detection

Detection
accuracy, %

HOS (TH = 0.05) 124 76 62.0
HOS (TH = 0.1) 129 71 64.5
CA-CFAR (M = 100) 102 98 51.0
CA-CFAR (M = 150) 115 85 57.5
CA-CFAR (M = 200) 118 82 59.0
CA-CFAR (M = 250) 106 94 53.0
HOS–CA-CFAR (M = 
100)

157 43 78.5

HOS–CA-CFAR (M = 
150)

164 36 82.0

HOS–CA-CFAR (M = 
200)

175 25 87.5

HOS–CA-CFAR (M = 
250)

172 28 86.0

 

Fig. 6  CA-CFAR detects false alarms, P f a = 10−5, M = 80 and N = 2
 

Fig. 7  Miss detection of CA-CFAR, P f a = 10−5, M = 20 and N = 2
 

Fig. 8  Correct detection of CA-CFAR, P f a = 10−5, M = 20 and N = 2
 

Fig. 9  Comparison of the CA-CFAR performance run directly on the
signal without time-delay estimation and with time-delay estimation (HOS),
P f a = 10−5, M = 150 and N = 2. A real target presents 5 m away from the
radar
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(a) when real condition presents one target, but the observation
results in more than one target, that means there are detection
errors (false alarm);
(b) when real condition presents one target, but the observation
results in no detected target; and
(c) when real condition presents no target, but the observation
results in one or more targets.

The performance of accuracy is calculated as

ACC = number of PC
number of PC + number of NC × 100% (22)

Table 3 presents the performance evaluation results between HOS
with the fixed threshold value (TH), CA-CFAR without time-delay
estimation and CA-CFAR after time-delay estimation by HOS for
different numbers of the reference cells M. The number of guard
cells N and the false alarm rate Pfa are, respectively, set to 2 × 10−5.
From this table, we can note that the performance of the HOS with
the fixed threshold value is better than that of the CA-CFAR which
is directly implemented in the signal without time-delay estimation,
but the performance of CA-CFAR after estimating time delay by
HOS outperforms the others. The detection accuracy of HOS with
the fixed threshold value is up to 64.5%, when threshold value
(TH) is set to 0.1, where the CA-CFAR is only up to 59.0% when
the reference cell (M) is set to 200. It is clear that, the combination
of HOS and CA-CFAR promises the good performance that has
achieved up to 87.5% of the detection accuracy when M is set to
200..

4.6 Target detection and radar signature

After investigating the performance of the radar detectors, we
noted that the combination of HOS and CA-CFAR (a proposed
method) promises a good performance in UWB target detection.
Then, we use this proposed method in our UWB-SRR system to
detect the positions of the radar targets. The HOS is first applied
after pulse canceller, and then the threshold value is estimated by
using CA-CFAR on the result of the HOS. Once the position of the
target is obtained, then we step back to the originally received echo
and perform the windowing around the known target position and
keep it as a radar signature. This signature can be directly used in
real-time radar identification or can be saved to be used as the
radar dataset (Fig. 12). 

Fig. 13 shows three different UWB pulses distortion by three
different targets of nature including pedestrian, cyclist and car.
These differences in pulses’ distortion are called radar target
signatures. Fig. 14 shows their normalised radar signatures
followed by their power spectral densities. We can see clearly the
difference between them. The important things of these signatures
are their normalised amplitudes that represent the features vector of
each signature. 

5 SVM-based radar target identification
The recognition system has been developed by using SVM
technique. SVM recognises the target based on the result of the
training parameters.

5.1 Dataset

In the case of UWB radar, we cannot find the dataset benchmark of
radar signatures, thus we performed our own dataset. For
pedestrian and cyclist, the target signatures are collected from the
moving, either pedestrian or cyclist randomly with a different
orientation (e.g. front, back, side etc.) in front of radar with
different speed motions as already mentioned in Section 4.2. For
collecting car signatures, we simply moved the radar closer to and
farther away from the cars. Then, to extract the signature, we
applied the method explained in Section 4.6. To have a reliable
dataset, we have also considered for short stop target. We have
performed the experiments to extract 1000 radar signatures for
each category of a radar target.

5.2 Training SVM models

To measure the identification performance of the realised system,
the testing and training data must be chosen from different data
segments, which means that both training and testing data must be
not the same. Therefore, after obtaining radar dataset, we
randomised and divided them into two groups, 50% of them as a
training set and the remaining 50% as a testing set. The model data
is trained based on data that has been grouped already into each
class (labelled data).

To have a better performance of the SVM classifier, before
training and testing dataset, we need first an investigation to have a
better SVM kernel by using cross-validation technique [20]. The
fourth basic SVM kernel including the linear kernel, polynomial
kernel, RBF kernel and Sigmoid kernel have been already
investigated.

Basically, SVM kernel has two important parameters that are C
and γ. Both parameters are used to control the over-fit weights and
biases. Thus, before performing the process of training and testing
data, it is important to have best parameters for C and γ, and then
use them in training and testing processes, so that the classifier can

Fig. 10  Comparison of the CA-CFAR performance run directly on the
signal without time-delay estimation and with time-delay estimation (HOS),
P f a = 10−5, M = 150, and N = 2. A real target presents 2.5 m away from the
radar

 

Fig. 11  Comparison of the CA-CFAR performance run directly on the
signal without time-delay estimation and with time-delay estimation (HOS),
P f a = 10−5, M = 150 and N = 2. Two real targets present at 2.5 and 7 m
away from the radar

 

Fig. 12  Diagram of determination of target radar signature
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predict more accurately the unknown data. A common strategy to
have these parameters is to separate the training data into k equal
size bins and then one bin is used as the validation for testing the
model and the remaining of k − 1 bins are used as the training data.
The cross-validation process is then repeated k times (the folds),
with each of the k bins used exactly once as the validation data.
This technique is called k-fold cross-validation. The k results from
the folds can then be averaged to produce a single estimation. The
advantage of this method is that all observations are used for both
training and validation, and each observation is used for validation
exactly once. The best performance of accuracy (99.49%) is
achieved at C = 4 and γ = 2. Table 4 shows the summary of best
parameters for four used SVM kernels. Finally, we compared the
performance of the four kernels by computing their cross-
validation accuracy rates and we have chosen RBF kernel which
has better performance for our model. 

5.3 Testing SVM model

Before performing a real-time test, we have done first off-line
testing; it means that we performed the evaluation by using the
remaining of 50% dataset. Testing performance of the testing
dataset will be predicted as a specific label based on the parameters
obtained from the result of SVM training. Table 5 shows the
performance of the confusion matrix of off-line testing SVM
model. 

The results show that the SVM gives a good performance for
our system where the recognition rate is up to 96.23, 95.25 and
97.23% for the cyclist, pedestrian and car, respectively. It proves
that the use of SVM in classification radar target for uncovered

Fig. 13  Signatures of the three different targets
(a) Pedestrian signature, (b) Cyclist signature, (c) Car signature

 

Fig. 14  Normalised signatures of the three different targets followed by
their power spectral densities. As can be seen, the figure shows that the
different natures of the radar target yielded different radar signatures
(a) Pedestrian signature and its power spectral density, (b) Cyclist signature and its
power spectral density, (c) Car signature and its power spectral density
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road users such as cyclist and pedestrian results is very good in
accuracy.

5.4 Real-time identification

Finally, we tested the ability of our UWB radar identification
system to recognise the targets in real-time conditions. In this first
experimentation, we performed the observation for every radar
target independently, means that we have investigated their
performances one by one.

We first investigated real-time identification for a cyclist. The
performance of the result is shown in Fig. 15, where the system has
successfully identified a cyclist as a cyclist with the accuracy of
92.77%. The second experiment was conducted for identifying a
pedestrian, where the result performance is provided in Fig. 16.
The system has successfully identified a pedestrian as a pedestrian
with the accuracy of 90.82%. The final test was conducted for
identifying a car. The system has successfully identified a car as a
car with an accuracy of 90.73% as its performance is shown in
Fig. 17. The confusion matrix for these experiments is summarised
in Table 6. 

6 Discussion and conclusion
This work is divided into two parts: the detection and recognition
parts. The objective of the first part is to evaluate the performance
of radar detectors in order to obtain a robust UWB radar detector,
and the objective of the second part is to investigate the
performance of the recognition system of SVM using the radar
signature as input features.

In the first part of this work, we proposed to combine the HOS
and the well known automatic CA-CFAR detector. There are two
types of HOS algorithms, the fourth-order cumulant (Tugnait4
based) and the fourth-order cross-moment. First, we investigated
both these algorithms to obtain the optimal performance of the
HOS before combining with the CA-CFAR. On the basis of the
investigation results, we found that both algorithms give a very
similar performance in terms of noise suppression, but in terms of
the complexity, the fourth-order cross-moment has less calculation
than the fourth-order cumulant. This means that the fourth-order
cross-moment is more efficient to be used in UWB radar. Then, we
compared the performance of time-delay estimation between the
fourth-order cross-moment and the ordinary second-order statistics.
We noted that the performance of time-delay estimation of the
fourth-order cross-moment is much better than that of the second-
order statistics. Therefore, the fourth-order cross-moment has been
considered to be used in our proposed UWB radar detector. Finally,
by combining the fourth-order HOS and the CA-CFAR, an
automatic UWB radar detector that is robust to the noise has been
developed. To prove this idea, we have evaluated the performance
between HOS with the fixed threshold value, CA-CFAR detector
without time-delay estimation, and a combination of HOS and CA-

Table 4 Best parameters for C and γ
SVM kernels C Gamma Cross-validation

accuracy, %
linear 128 — 95.64
polynomial 3.051758×10−5 64 98.72

RBF 4 2 99.49
sigmoid 1024 0.0625 96.41

 

Table 5 Confusion matrix of using RBF kernel for three
identification targets

Cyclist, % Pedestrian, % Car, %
cyclist 96.23 2.46 1.31
pedestrian 3.62 95.25 1.13
car 1.60 1.17 97.23
 

Fig. 15  Real-time experiment result for investigating cyclist identification
performance

 

Fig. 16  Real-time experiment result for investigating pedestrian
identification performance

 

Fig. 17  Real-time experiment result for investigating car identification
performance

 
Table 6 Confusion matrix of real-time identification radar
target for three different natures: cyclist, pedestrian and car

Cyclist, % Pedestrian, % Car, %
cyclist 92.77 6.38 0.85
pedestrian 6.76 90.82 2.42
car 0.0 9.27 90.73
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CFAR detector (the proposed method). The result is the
combination of HOS and CA-CFAR promises a good performance
for UWB radar detector.

In the second part of this work, we have investigated the
performance of the recognition of SVM using the radar signature
as input features. After investigating the performance of the
proposed detector, we applied it to detect the positions of the radar
targets. Once the position of the target is obtained, then we step
back to the originally received echo and perform the windowing
around the known target position and take it as a radar signature.
As discussed in the recognition part, it has two important
processes: training and testing. In the training process, it requires
the features along with the labels associated with the class, where
the features are taken to be trained. In this case, we have extracted
1000 signatures for each class including pedestrian, cyclist and car
and 50% of them have been used as the training data and the rest of
50% have been used as data validation. The results show that the
SVM gives a good performance for the proposed system, where the
recognition rate is, respectively, up to 96.23, 95.25 and 97.23% for
the cyclist, pedestrian and car. In the real testing performance using
our scenarios, the system has successfully identified 92.77% of the
right cyclist, 90.82% of the right pedestrian and 90.73% of the
right car.

Preliminary results were encouraging and very useful for our
future work. To enhance the performance of recognition, we will
use deep belief network and also we will investigate the possibility
to use a convolution neural network for UWB radar targets’
recognition.
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