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Abstract—This work presents a novel localization framework
based on Ultra-Wideband (UWB) channel sounding, employing
a triangulation method using the geometrical properties of
propagation paths, such as time of arrival, angle of departure,
angle of arrival, and their estimated variances. In order to
extract these parameters from the UWB sounding data, an
extension to the high-resolution RiMAX algorithm was developed,
facilitating the analysis of these frequency-dependent multipath
parameters. This framework was then tested by performing
indoor measurements with a vector network analyzer and virtual
antenna arrays.

The estimated means and variances of these geometrical
parameters were utilized to generate multiple sample sets of input
values for our localization framework. Next to that, we consider
the existence of multiple possible target locations, which were
subsequently clustered using a Kim-Parks algorithm, resulting
in a more robust estimation of each target node. Measurements
reveal that our newly proposed technique achieves an average
accuracy of 0.26 m, 0.28 m and 0.90 m in Line-of-Sight (LoS),
Obstructed-LoS (OLoS), and Non-LoS (NLoS) scenarios, respec-
tively, and this with only one single beacon node. Moreover,
utilizing the estimated variances of the multipath parameters
proved to enhance the location estimation significantly compared
to only utilizing their estimated mean values.

Index Terms—Channel Sounding, Channel Modeling, Localiza-
tion, Location Estimation, Location Tracking, Positioning, Kim-
Parks, Multipath Clustering, Ultra-Wideband, RiMAX, Indoor.

I. INTRODUCTION

IN recent years, there has been a growing interest in the
application of wireless sensor networks (WSNs). Location

information of sensor nodes in WSNs is crucial for many
applications, for example target localization, tracking and
guidance of mobile nodes. A possible method to obtain this
information is equipping each node with a GPS receiver, which
is a rather expensive and energy-consuming approach focusing
mostly on outdoor environments only. In most WSNs, only a
limited number of all sensor nodes know their exact position;
these are called the beacon nodes. The mobile nodes can
estimate their position relative to these beacon nodes, and
are called the target nodes. Many alternative approaches to
GPS can be adopted to estimate the location of these target
nodes, most of which are either based on a triangulation
method using angle of arrival (AoA) information [1], [2], a
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trilateration approach using time of arrival (ToA) [3], [4] or
received single strength indication (RSSI) [5]. However, these
methods mainly focus their efforts on Line-of-Sight (LoS)
scenarios and for direct propagation paths only, without taking
reflection or transmission into account. RSSI-based methods
compare the on-site measured RSSI values to the ones stored
in a fingerprinting database. This is a rather cumbersome and
often very inaccurate approach, which requires carrying out
a-priori measurements or simulations in the environment, and
is very geometry- and site-dependent. Cooperative estimation
schemes can be found in the literature as well. For example, [6]
proposes a localization scheme to estimate the AoA by com-
paring the measured RSSI values of multiple beacon signals
received at two perpendicularly-oriented antennas at the target
node. Their experiments demonstrate an average accuracy of
1.24 m, but only consider simplified LoS-scenarios without
the presence of scattering objects.

Therefore, we propose a measurement-based ray tracing
method exploiting the geometrical properties of propagation
paths, to tackle the problem of target localization using Ultra-
Wideband (UWB) channel sounding, working accurately in
LoS, Obstructed-LoS (OLoS), as well as Non-LoS (NLoS)
scenarios. UWB is a popular technology in WSNs, allowing
for very high data rates over a short distance due to its
large bandwidth. This broad bandwidth also implies a high
temporal resolution, making it suitable to achieve a high
ranging accuracy, and thus allows for the precise positioning
of each target node in the network. UWB communication is
characterized by its ability to transmit short pulses with low
power spectral density in a large frequency band (ranging from
3.1 GHz to 10.6 GHz). This allows communication systems
to harmlessly operate in frequency bands currently occupied
by other applications. In current literature, localization based
on UWB [7]–[10] focuses its efforts on the trilateration of the
unknown location of a target node using three or more beacon
nodes. Moreover, in contrast to our proposed method, these
methods only work in LoS situations.

The main advantage of our technique is that it identifies the
location of a target node using only one single beacon node,
making our solution inherently different from existing ones,
which need a minimum of three nodes or more. Next to that,
our approach can handle OLoS and NLoS scenarios exception-
ally well, due to the fact that we combine the AoA with the an-
gle of departure (AoD) information of each propagation path at
the beacon node. This allows us to easily differentiate between
direct- and scattered propagation paths, and employ different
strategies for the localization of a target node accordingly. As
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such, we can cover the entire indoor environment with fewer
nodes in contrast to the more contemporary methods breaking
down the environment into LoS-areas, and thus needing more
beacon nodes doing so. Localization algorithm using a single
beacon node have previously been proposed in [11], [12], but
they focus on cooperative localization approaches with the
necessity of multiple users (target nodes), whilst our work
focuses on a single beacon and a single user (target) in order
to localize the latter one.

In our work, we have utilized both the mean- and the
variance estimates of the extracted geometrical multipath pa-
rameters to generate a distribution from which we can sample
several input parameter sets for our localization framework,
in contrast to only using their mean values. We also consider
the existence of multiple possible estimated target locations,
in comparison with the aforementioned works which estimate
only one single target location per measurement [1]–[4], [6]–
[10]. This is a rather different, but at the same time a very
robust approach with respect to localization. Because the
RiMAX [13] multipath estimation framework allows us to
extract several propagation paths per measurement, we end up
with a mixture of direct paths between transmitter and receiver,
and multiple scattered paths. This allows us to cluster all
these possible locations (originating from direct- and scattered
paths), as was done before in [14]. In contrast to their work,
we consider the existence of multiple clusters, to improve the
robustness of our localization framework to outliers. Moreover,
our approach can easily be extended to also estimate the
orientation of the target with the help of an extra beacon node,
as proposed in [1]. One of the drawbacks of our approach is
that we require synchronization between the mobile node and
the beacon node, but this can be resolved by applying two-
way ranging, in order to compensates for the phase differences
between the oscillators of both target- and beacon nodes.

II. MEASUREMENTS

A. Measurement environment

The indoor measurements were conducted in a laboratory
of Ghent University in Belgium, as depicted in Figure 1.
The base surface of the long side of the laboratory was
approximately 16 m long and 5 m wide (see Figure 1(b)),
and the small side adjacent to it was approximately 8.5 m
long and 5 m wide (see Figure 1(c)). This environment was
mostly equipped with metallic cabinets, tables, computers and
other hardware equipment. As we can see from the pictures
below, this environment can be considered as a very cluttered
one. We believe that more realistic environments, which are
likely to be less cluttered than the one we measured in, will
further enhance the accuracy of the localization framework we
will explain in the following sections.

In this laboratory environment, the indoor radio channel
of 15 spatially distinct receiver positions (target nodes) was
measured with respect to one single transmitter (beacon node).
We refer to Figure 6(a) for an outline of their positions. In
total, 8 of the 15 positions were considered Line-of-Sight
(LoS) scenarios, where there is a direct (free space) path
from the transmitter to the receiver. Next to that, 4 of the 15

Long side 

Small side 

Fig. 1c 

Fig. 1b 

(a) Schematic representation

(b) Photograph: long side

(c) Photograph: small side

Figure 1: Measurement environment.

positions were considered Obstructed Line-of-Sight (OLoS)
scenarios, where the free space path from transmitter to the
receiver has to undergo a reflection and/or a diffraction. Lastly,
3 of the 15 positions were considered Non Line-of-Sight
(NLoS) scenarios, where the (partly free space) path from the
transmitter to the receiver needs to undergo a transmission
through a certain medium (in this case, a plasterboard wall).
The exact positions of the receiver nodes with respect to the
transmitter were measured by means of a digital laser distance
meter, which had an accuracy of 2 mm.

B. Channel sounding procedure
Wideband channel sounding measurements were carried out

at each of the 15 positions. A Vector Network Analyzer (VNA)
of type Rohde & Schwarz ZNB8 was used to probe the indoor
radio channel ranging from 3.1 GHz up to 10.6 GHz, this being
the UWB frequency band. Both at the transmit and receive-
side of the measurement system, a virtual antenna array was
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created by an automated positioning system on which the
antennas were mounted. A virtual antenna array offers the
benefit that the antennas do not suffer from mutual coupling,
which would otherwise distort the radio channel measure-
ments. The VNA was then used to measure the complex gain
between each combination of transmit and receive antenna. In
the aforementioned UWB band, Mf = 7501 uniformly spaced
frequency points were sampled with a resolution bandwidth of
10 kHz, resulting in a maximum measurable delay of 1000 ns
with a resolution of 0.13 ns. The feeder cables for the transmit
and the receive antenna were included in the VNA calibration
in order to exclude them from the measurement data.

Figure 2: Automated positioning system and UWB antenna, both together
forming a virtual Uniform Circular Array (UCA).

At both the transmitting (T) and the receiving (R) side of
the measurement system, the virtual array was a planar hor-
izontal Uniform Circular Array (UCA) (see Figure 2). Three
different types of configurations for the antenna array were
tested, namely a UCA with [MT ×MR] = [4× 4] antennas at
transmitter and receiver, a [6× 6] UCA, and an [8× 8] UCA.
The inter-element spacing for this array was 0.45 times the
wavelength at the highest measured frequency (10.6 GHz), re-
sulting in a spacing of 1.27 cm between two adjacent antennas
on the UCA circle. The transmitting and receiving antennas
were omnidirectional UWB antennas in the azimuth plane
of type Electro-Metrics EM-6865 [15], both placed 1.5 m
above ground level. All measurements were done outside of
regular working hours, since frequency-swept measurements
with virtual arrays require the radio channel to be static,
without any form of movement. It should be noted that a real
antenna array and advanced channel sounder equipment (e.g.,
the MIMOSA sounder [16] or the RUSK sounder [17]) can
measure this channel in less than a millisecond. By doing so,
the channel can be considered static during this period of time,

and the requirement that the channel should not contain any
movement can be omitted.

III. EVALUATION

The flow graph in Figure 3 summarizes the processing steps
in our evaluation scheme, and describes how we convert the
measurement data into an estimate of the target node location.

Channel sounding 
UWB-RiMAX  

(AoD, AoA, ToA, power) 
Sampling of input 

parameter sets 

Location estimation  
(ray tracing) 

Clustering the 
estimated locations 

Identification of  
target node 

1 2 3 

4 5 6 

Figure 3: Flowchart of the evaluation process.

The novelty and added value of this work over existing
localization techniques can especially be found in bocks 3,
5 and 6 in Figure 3, which will be explained in detail in
the following subsections. It should be noted that comparable
versions of both (UWB-)RiMAX [13] and the ray tracing
algorithm [18] can be found in the literature.

A. UWB-RiMAX algorithm (Figure 3, block 2)

Our virtual array system with multiple antennas at trans-
mitter and receiver allows us to obtain a Multiple-Input
Multiple-Output (MIMO) measurement system, from which
we can extract the geometrical properties of the electromag-
netic waves, such as the AoD, AoA and ToA. An observation
of the frequency response of a MIMO radio channel h can
be modeled as the superposition of a deterministic part s
(specular multipath components (SMC)) and a stochastic part
d (diffuse scattering; dense multipath components (DMC), and
additive measurement noise).

h = s(θsmc) + d(θdan)

h ∈ CMT×MR×Mf .
(1)

In this formula, h can be considered as a random variable dis-
tributed according to a complex multivariate Gaussian distri-
bution h ∼ Nc(s(θsmc),R). The deterministic part s(θsmc)
of the data model acts as the first-order statistics of the
radio channel, while the stochastic part d(θdan) (DMC and
noise) describes the second-order statistics by means of the
covariance matrix R. Both operators s and d reconstruct the
deterministic- and stochastic part of the radio channel, and
are explained in [13]. Based on the capability of the RiMAX
estimation framework to extract both parameter sets from the
virtual array measurement data, the following structures for
the deterministic and stochastic arrays can be adopted:

θsmc =




ϕD
T

ϕA
T

τA
T

γT




T ← SMC azimuth of departure
← SMC azimuth of arrival
← SMC time of arrival
← SMC complex amplitude.

(2)
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In (2), ϕD, ϕA, τA are γ are P × S matrices, where P is
the number of SMCs extracted from the measurement data,
and S is the number of sub-bands in which the total UWB
bandwidth was partitioned (in analogy with the UWB-SAGE
algorithm, which will be explained in the next section). Each
row in these matrices contains the corresponding specular
parameter for each of the p ∈ P propagation paths (P = |P|
in total), and describes its frequency-dependency in each of
the s ∈ S sub-bands (S = |S| in total). Note that the angular
modeling was limited to that of the azimuthal plane, and we
only consider a single snapshot of the channel. Whilst it would
be possible to use several snapshots of the channel in a real
measurement environment, we would then have to impose a
parametric model to handle the time dependence of the SMC,
or assume them to be independent and identically distributed
(i.i.d.) across snapshots in time. Since this is out of the scope
for the purpose of this paper, we will use a single snapshot of
the channel and leave this up for future work.

θdan =




α1

τd
τr
α0




← DMC peak power
← DMC onset time
← DMC reverberation time
← additive noise power.

(3)

In (3), θdan is a 4× S matrix containing the DMC and noise
(DAN) parameters for each sub-band s ∈ S. The RiMAX data
model assumes that the DMC are spatially white at the transmit
and receive side of our measurement system, meaning that
they have constant angular power densities. It should be noted
that recent works (e.g., [19] and [20]) will assume the DMC
to be spatially correlated with the SMC, but we leave the
influence of this on the localization accuracy for future work.
Furthermore, the DMC is assumed correlated and wide-sense
stationary in the frequency domain. The DMC and noise power
describes how the power of the diffuse signal is distributed
over the time-delay domain. The DMC and noise power is
commonly modeled based on the observation that its Power
Delay Profile (PDP) ψ(τ) has a base delay τd related to
the distance between the transmitter and receiver, together
with an exponential decay over time-delay (see Eq. (4)),
corrupted by complex additive white Gaussian noise with
power α0. The parameter α0 thus describes the noise floor,
whilst α1 + α0 describes the peak power at the time-delay τd,
from which the PDP follows an exponential decay regulated by
τr (reverberation time). The reverberation time is the time for
the electromagnetic waves to uniformly distribute themselves
in a room. Higher values for τr indicate a slow exponential
decay of the PDP, whilst low values indicate a fast decay. A
full discussion of this model can be found in [13].

ψ(τ) = α1 exp

(
−τ − τd

τr

)
+ α0 (τ > τd). (4)

The idea of the localization framework is to only work with
the reliable deterministic contributions of the SMC, since the
stochastic contributions of the DMC (comprised of diffuse
scattered paths and weak SMC) are unreliable to perform the
ray-matching of the propagation paths, which is the basis for
our localization framework on. Hence, we need the distinction
between SMC and DMC.

We note that the (UWB-)RiMAX framework is an iterative
maximum-likelihood (ML) algorithm; the estimated ML pa-
rameter sets θ̂smc and θ̂dan (denoted with a hat-operator) of
the ‘true’ values of θsmc and θdan are estimated such that they
maximize the likelihood of observing the measured frequency
response h of the radio channel given these parameters.

The original data model of the RiMAX estimation frame-
work follows the narrowband assumption, hence stating that
the SMC and DMC are Kronecker-separable in the spatial and
frequency domains in order to keep the algorithm computation-
ally feasible [13]. As such, it does not account for frequency-
dependent propagation phenomena, so that the reflection coef-
ficients of certain materials in the environment (e.g., metallic
cabinets) can no longer be considered constant with respect to
frequency. In addition, the antenna array responses of transmit-
ter and receiver will no longer be frequency-independent, and
can vary significantly over the total UWB bandwidth. In order
to track these frequency-dependent propagation parameters,
an extension to the RiMAX framework was developed that
can process UWB measurement data, and will be referred
to as UWB-RiMAX from now on [21]. This framework is
described in Algorithm 1, and depicted in Figure 4. Prior to
the processing of the measurement data, the entire UWB band
was split up into S = 30 sub-bands of 250 MHz to assure
frequency stationarity (and thus Kronecker separability) in
each sub-band, following the multi-band UWB principle.

Algorithm 1: Outline of the UWB-RiMAX framework
Input : Observation of the MIMO radio channel h,

number of sub-bands S
Output: ML parameter estimates θ̂smc and θ̂dan
while Specular paths to extract do

Function Initialization is
Compute N new paths using a SAGE [22]-
like algorithm by a weighted approach of
combining cost-functions in each band s ∈ S.
The geometrical parameters ϕD, ϕA and τA
were kept constant over frequency, only the
amplitude γ was allowed to vary.

while ML estimates are not converged do
Function DMC+noise optimization is

The newly initialized and previously found
specular paths are subtracted from the
measured channel response h.
The Gauss-Newton algorithm is applied to the
remainder of the channel response to re-fit
and improve the DMC and noise parameter
estimates in each sub-band.

Function SMC optimization is
The raw estimates of the new specular paths
are further optimized in all sub-bands by
using the Levenberg-Marquardt algorithm.

The optimized specular paths and the improved
DMC+noise parameter estimates are stored.

The algorithm keeps searching for N new specular paths per
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Measured data: h Residual data: h−
p∑

p′=1

xp′

More paths
to extract?

Estimation result:
[θsmc,θdmc]

Initialization: find [ϕD, ϕA, τA]p over all sub-bands jointly

Estimate and optimize θdmc

per sub-band separately
Estimate and optimize θsmc,p

per sub-band separately

Path p
reliable?

Convergence?

Signal reconstruction of path p

over all sub-bands S: xp =
S∑

s=1

xs
p

p← 0

no

yes
p← p+ 1

yes no; drop path

no yes

+

−

Figure 4: Flowchart of the UWB-RiMAX multipath estimation algorithm. In
the first iteration, the input data is the measured channel h. The switch at the
top will ensure that subsequent iterations of the algorithm use the residual
channel as its input data.

iteration (so that their mutual dependency can be taken into
account) until the stopping criterion that is described in [13] is
met. When this stopping criterion is met, we will have a total
of P propagation paths. The approach outlined in this work
is based on the estimated power of the extracted propagation
paths. For each path, we associate a Signal-to-Noise Ratio
(SNR) with it, based on its estimate for the complex amplitude,
and its estimation error according to the Fisher information
matrix (described in Section III-B). A propagation path is
considered to be unreliable and hence removed from further
analysis if its estimated SNR is smaller than the 90th percentile
of a chi-squared distribution with a single degree of freedom,
equal to 4.32 dB [23].

One important aspect to note is that the (UWB-)RiMAX
algorithm was implemented in such a way that it is optimized
to execute in real-time. For example, in [17] RiMAX was used
to measure mobile channels. The computation time needed to
perform the variance-based localization detailed below, is only
a fraction of the time needed to execute the RiMAX algorithm.

B. Variance-based localization (Figure 3, block 3)

After the estimation of the geometrical multipath parameters
over all sub-bands in the previous subsection, we will take the
median of each geometrical parameter (ϕD, ϕA, and τA)
over all sub-bands in order to keep the localization algorithm
computationally viable. This ensures that we get the most-
likely specular propagation paths in the environment over all
sub-bands. This can be mathematically formulated as follows:

ϕ̃D = atan2(median{sinϕD},median{cosϕD}) (5)
ϕ̃A = atan2(median{sinϕA},median{cosϕA}) (6)
τ̃A = median{τA} (7)

In Eq (5) and Eq (6), the atan2 operator was used to ensure that
we get the circular median of the AoD and AoA parameters.
Processing the results in each sub-band separately would result

in the fact that we would have to perform the localization
S = 30 times with the input parameters per sub-band.

A significant feature of the RiMAX algorithm is that it
also provides an estimate of the Fisher information matrix
(FIM) in its output. For asymptotically uncoupled parameters,
the diagonal elements of the inverse of this FIM are the
estimated variances of the propagation parameters in Eq. (2)
and Eq. (3). In our localization framework, we will combine
both the estimated mean values of the geometrical parameters
with their corresponding estimated variances, prior to the
estimation of the location of the receiver. More specifically,
we start by selecting a number of propagation paths per
measurement position, accounting for a certain percentage of
the total power in the channel. In LoS scenarios, few paths
will account for most of the total power, but more paths
are needed in OLoS or NLoS scenarios to account for the
same percentage of the total power. This inherently adapts
our framework to account for the difference between LoS
and OLoS or NLoS scenarios. This was done by summing
the powers γ of each propagation path over all sub-bands S,
and afterwards sorting them in descending order. After this,
we will associate a normal distribution with each propagation
path parameter (AoD, AoA and ToA), based on its estimated
mean value and its corresponding estimated variance. We
will then sample different sets of input values for our ray
tracing algorithm from these distributions, with a weighting
based on the estimated power of each propagation path, until
we have a set of so-called ‘virtual paths’ (arbitrarily chosen
as 10 times the original number of paths accounting for a
certain percentage of the total power in the channel). Stronger
estimated paths will thus be sampled more often than weaker
paths, although the latter ones might still provide us with
useful information for our localization framework.

The UWB-RiMAX algorithm is constrained so that it es-
timates a maximum of 50 propagation paths. However, we
have found that due to the implemented stopping criterion, the
algorithm stops searching for new paths before this maximum
number is reached. Table I summarizes the number of strongest
propagation paths accounting for a certain percentage of the
total measured power in the channel:

Table I: Number of propagation paths accounting for a certain percentage of
the measured power.

Nr. of paths accounting for
x % of the measured power

LoS
scenario

OLoS
scenario

NLoS
scenario

4× 4 array
90 % 7 6 10
95 % 9 8 14
99 % 15 13 21

6× 6 array
90 % 8 12 23
95 % 11 20 30
99 % 17 31 40

8× 8 array
90 % 9 14 21
95 % 13 22 28
99 % 20 35 40

From Table I, we can state that by working with 90 %
of the total power in the channel measured with an 8× 8
antenna-array, this corresponds with 9 paths on average in a
LoS scenario, 14 paths in an OLoS scenario and 21 paths in an
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NLoS scenario. We can also observe that a larger antenna-array
configuration is able to estimate more paths (distinguish more
paths) from the measurement data for the same percentage
of total power in the channel. Our localization framework
will thus sample a total of 90 virtual paths on average in a
LoS scenario, 140 virtual paths in an OLoS scenario and 210
virtual paths in an NLoS scenario. Since the UWB-RiMAX
algorithm estimates 5 new propagation paths per iteration with
a maximum of 50 paths, it estimates more than 99 % of the
total power in the channel within 10 iterations.

We found that the measured path loss varied between
−26.2 dB and −19.4 dB for the various LoS scenarios,
between −30.2 dB and −28.4 dB for the various OLoS
scenarios and between −38.5 dB and −35.2 dB for the various
NLoS scenarios. In future work, this information could be
useful to distinguish between estimating the receiver in the
same room, or in an adjacent room. This distinction can also be
performed by looking at the number of estimated propagation
paths accounting for a certain percentage of the power. In
an OLoS scenario, this was on average more than one and a
half the number of paths in a LoS scenario, and in an OLoS
scenario, this was on average more than double.

C. Measurement-based ray tracing (Figure 3, block 4)

In this section, we will explain how the known location
of the beacon node transmitter [Tx,Ty], together with the
geometrical propagation parameters ϕD, ϕA, and τA of our
virtual parameter set can be used to estimate the unknown
location of a target node receiver [Rx,Ry]. The ray tracing
framework we will use for this purpose is comparable to
the one described in [18]. In their work, a measurement-
based ray tracer for multi-link double directional propagation
parameters was developed to identify the scattering points of
the propagation paths, by tracing these estimated rays from
a known transmitter location to a known receiver location.
In contrast to their work, we will use such a framework to
estimate the unknown receiver location by using an a-priori
known map of the environment in combination with tracing
the virtually constructed rays (paths) originating from a known
transmitter location.

In our work, we thus assume that we have access to a
map of the environment of the surrounding area near the
transmitter. This can be a very simple map describing only
the walls (possibly supplemented with the materials they were
made of), but it can be extended with information about where
certain larger objects are located (e.g., metallic cabinets). The
information contained in this map will be used to construct the
trajectory of the propagation paths from the known transmit-
ter’s location into the environment. Since we have estimates
of the angular information of each path (AoD and AoA) and
its associated path length (based on the ToA information), we
can estimate how each path physically propagated from the
transmitter to where the travel time along its trajectory equaled
the ToA (since both are related by the speed of light). This
final position is then regarded as an estimated location of the
receiver. Algorithm 2 describes this measurement-based ray
tracing localization algorithm.

Algorithm 2: Measurement-based ray tracing algorithm.
Input : [Tx,Ty], ϕD, ϕA, τA, map of environment
Output: Receiver location [Rx,Ry]

ray ← [Tx,Ty], ϕD, length = 0
shoot ray from [Tx,Ty] in ϕD direction
while ∃ rays with length < τA do // tracing

for ray ∈ rays do
calculate first impinging surface
length ← length + length to surface
if length < τA then

newray ← reflecting ray on surface
newray ← transmitted ray through surface

else
finalRay ← extend length ray to τA

rays ← newrays

diff ← 5◦

for ray ∈ finalRays do // matching
if |ray.ϕA − ϕA| < diff then

diff ← |ray.ϕA − ϕA|
[Rx,Ry] ← ray.endpoint

In this algorithm, the first phase performs the actual ray
tracing. That is, launching a ray, calculating where it impinges
on a surface, and performing a reflecting- and a transmission
operation. The second phase performs the ray matching, in
which the ray with the tracked AoA at the final location which
best matches the UWB-RiMAX estimated AoA is considered
the most-likely propagation path associated with the input set
of geometrical propagation parameters. Of all virtual paths,
not all will satisfy this ray matching selection criterion (thus
having a sufficiently small difference between the ray traced
AoA and the estimated AoA). Our algorithm keeps sampling
new input sets until we achieve the predefined number of
virtual paths for each measurement positions (which can vary
over a LoS, OLoS or NLoS scenario). It should be noted that
we consider up to 3 reflections and/or transmissions of the
rays in the environment, to keep the algorithm viable and not
accumulate errors due to the limitation of the accuracy with
which the map of the environment was implemented.

The accuracy with which this map was implemented will
have an influence on the estimation accuracy of the target
node for OLoS and NLoS scenarios where the signal impinges
at the receiver following a reflection and/or transmission in
the environment. For LoS scenarios, the direct path will have
a greater influence in the location estimation algorithm than
the reflected paths, such that this scenario suffers less from
the accuracy with which the map of the environment was
implemented. Even so, we believe that if an error of 10 cm
was made when entering the dimensions of the environment,
this would at most result in an additional error of 20 cm
(2× 10 cm) for the location estimate of the target node.
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D. Clustering of estimated locations (Figure 3, block 5)

In our work, we have a multitude of (virtual) propagation
paths in our parameter set, giving rise to multiple estimated
target locations. This assumption is in line with reports in
the literature which found that propagation paths arrive at
the receiver in clusters (e.g., COST 259 [24] and COST 273
model [25]). This is a rather different approach with respect
to localization, but it proves to be a very robust method when
we look at the ultimate estimation of the target node.

Since our UWB-RiMAX multipath estimation framework
allows us to extract several propagation paths per measurement
position, which are then used to sample new virtual paths from,
we can end up with a mixture of direct- and scattered paths
between transmitter and receiver. Some of these paths can be
false due to errors in the estimation framework, and some of
the ray traced estimated locations can be incorrect due to the
finite resolution of our ray tracing algorithm (more specifically,
the accuracy of the modeled environment). This leads to the
existence of multiple target location estimates, which can be
a mixture of valid and invalid estimates. Therefore, we aim
to cluster these estimated target locations. In contrast to the
work in [14], we consider the existence of multiple clusters, to
improve the robustness of our localization scheme to outliers.
By doing so, we try to group the valid estimates for the target
node location, and disregard the erroneous ones. Afterwards,
we need to make an ultimate estimation for the target node
location, by formulating a suitable selection criterion.

We first define a clustering-metric to find the optimal num-
ber of clusters, in which to partition the total set of estimated
receiver locations. The Kim-Parks clustering index [26] was
used for this purpose, which employs two partition func-
tions showing opposite properties around the optimal cluster
number. We can define the under-partition measure function
vu(k,V;Z) of the Kim-Parks index as follows:

vu(k,V;Z) =
1

k

k∑

i=1

∑

z∈Zi

‖vi − z‖
mi

, 2 ≤ k ≤ kmax (8)

In this function, Z = [zT
1, z

T
2, . . . z

T
N ]T is a matrix of N receiver

estimates, where zn is a 1× 2 vector representing a set of
(x,y)-coordinates for the estimated location of the nth receiver
index. V = [vT

1 ,v
T
2 , . . .v

T
k]

T is a k × 2 matrix of k estimated
clusters, where vi is a two element vector representing a set of
(x,y)-coordinates for the estimated location of the ith cluster.
Next to that, Zi is the set of estimated receiver locations
belonging to the ith cluster, and mi = |Zi| is the number
of locations in the ith cluster. This under-partition measure
function vu(k,V;Z) also represents the mean intra-cluster
distance, averaged over all possible clusters k. In our work,
we used kmax = 7, which proved to be a feasible maximum
number of possible clusters.

The over-partition measure function vo(k,V) of the Kim-
Parks index can be defined as follows:

vo(k,V) =
k

dmin
=

k

min
i 6=j
‖vi − vj‖

, 2 ≤ k ≤ kmax, (9)

in which the denominator dmin is the minimum distance
between cluster centers, measuring inter-cluster separation.

The Kim-Parks index can then be formulated as the sum-
mation of the normalized versions of these under- and over-
partition functions, after which the optimal cluster number kopt
is simply the smallest value of this index for 2 ≤ k ≤ kmax.

E. Identification of target node location (Figure 3, block 6)

After clustering the total set of estimated receiver locations,
we have to decide which cluster is most likely to contain
the true location of the target node. Therefore, we first prune
the clusters by deleting those which have less than a third
of the elements in the largest cluster (i.e., the cluster with
the most estimated locations in it). Next to that, we also
prune the estimated receiver locations in each cluster i by
removing those locations z ∈ Zi which lie further away than
an arbitrarily chosen 1.5 times the intra-cluster distance ICDi

(see Eq. (10)) from their cluster centroid position vi, in order
to improve robustness.

ICDi(kopt,V;Z) =
∑

z∈Zi

‖vi − z‖
mi

, 1 ≤ i ≤ kopt (10)

In Eq. (10), ICDi represents the average distance in the cluster
i between the estimated receiver locations in that cluster, and
the cluster centroid position vi. Clusters with lower ICD
thus represent groups of estimated receiver positions of which
their locations lie close to each other. Pruning those receiver
locations further away than 1.5 times the ICD results in denser
and more compact clusters, where their centroid positions are
influenced less by their location outliers.

Ultimately, we still have to select the cluster that is most
likely to contain the true location of the target node. Therefore,
we have established a new decision criterion as follows,
taking into account the number of locations mi (= propagation
paths) in each cluster i, the number of reflections and/or
transmissions rz each propagation path z ∈ Zi underwent
(thus 0, 1, 2 or 3 at most), and their distance to the cluster
centroid position vi:

Ci(kopt,V;Z) =

∑
z∈Zi

(2rz · ‖vi − z‖)∑
z∈Zi

2rz
·
(
1− mi

N

)
(11)

Adding the parameter rz adds more weight in Eq. (11) to those
clusters having propagation paths with multiple reflections
and/or transmissions. This allows us to prioritize those clusters
with fewer interactions with the environment (thus less accu-
mulated errors in the estimation of the receiver location), as we
can see that the above criterion becomes lower for clusters with
low intra-cluster distance, a low number of reflections and/or
transmissions per path, and many paths mi in that cluster. The
optimal cluster iopt is then the one with the lowest criterion
Ci with at least two paths in it (otherwise ‖vi − z‖ would be
zero, and thus the criterion itself would be zero), after which
the target node location is simply its centroid position vi.

In our evaluation of the localization results, we will compare
two closely related algorithms. The first one is ‘method 1’ [27],
which follows the procedure described above, but only uses
the estimated mean parameters of the propagation paths for
the ray tracing localization. More specifically, the flowchart
for this method can be obtained by omitting block 3 from
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Figure 3 (described in Section III-B). The second one is
‘method 2’, which is the full procedure described above, and
thus extends the number of input propagation paths for the ray
tracing localization by sampling new virtual paths utilizing the
estimated means and the estimated variances of the extracted
propagation paths.

IV. RESULTS

A. Location estimation

Figure 5 shows an example of the measurement-based ray
tracing, clustering and target node localization for the 4th

measurement position (see Section II-A). Figures 5(a) and 5(b)
depict the results using method 1 (ray-tracing with estimated
paths), Figures 5(c) and 5(d) depict the results using method
2 (ray-tracing with virtual paths based on sampling).
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(b) method 1 - with pruning
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(c) method 2 - without pruning
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(d) method 2 - with pruning

Figure 5: Measurement-based ray tracing, clustering and localization of the
4th measurement position. Possible receiver positions are indicated with an
asterisk, colors indicate their respective clusters, of which the centers are
indicated with a black cross. Propagation paths were drawn in blue for the
optimal cluster.

From Figure 5, we can see that the cluster pruning operation
removes smaller clusters, of which if they were to be chosen as
the optimal cluster, they would result in an inaccurate location
estimation of the target receiver node. After this pruning, the
remaining location estimations are clustered again, as we can
clearly see in the transition from Figure 5(c) to Figure 5(d).
Looking at this transition, we can also see the robustness of the
algorithm, as more and more inaccurate clusters and receiver
locations are removed from our dataset.

Figure 6 presents a map of the measurement environment
with the location of the transmitter, as well as the true- and
estimated receiver locations. From this figure, we can state
that there were no major errors in the localization of the
receivers, especially for larger antenna array sizes, and that
the most inaccurate estimates occurred for the NLoS scenario.
As expected, it is very difficult to achieve a good accuracy in
an NLoS scenario due to the electromagnetic waves having to
propagate through a specific medium in a realistic environment
(in this case it was through plasterboard walls).
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(a) Localization using a 4× 4 array.
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(b) Localization using a 6× 6 array.
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(c) Localization using a 8× 8 array.

Figure 6: Location estimation of the measurement campaign. The true receiver
positions are indicated with a green dot, their estimated positions are indicated
with a blue asterisk, and both are connected to each other by means of a red
line, which thus represents the estimation error for each position.

B. Overview of localization results

From Table II we can state that our new proposed local-
ization algorithm (method 2) outperforms method 1 most of
the time. For example, when we look at the results of the
8× 8 array, we can see that our new technique results in a
better average localization of the target receiver nodes for LoS,
OLoS, and NLoS scenarios compared to method 1 (given that
method 1 fails to estimate the 11th receiver index). Next to
that, method 1 was unable to estimate receiver index 11 with
a 4× 4- or an 6× 6 array. This implies that incorporating
the variance of the estimated geometrical propagation paths
in our localization algorithm contributes significantly to the
accuracy, compared to only using the estimated mean values
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Table II: Localization accuracy (in meters) for LoS, OLoS, and NLoS scenarios for different receiver positions, as a function of antenna array size. Method
1 only uses the estimated propagation paths for the ray tracing procedure, method 2 one will first generate new virtual paths by sampling input parameters
from a normal distribution utilizing the estimated means and the estimated variances of the propagation paths.

LoS OLoS NLoS
Receiver index 1 2 3 8 9 13 14 15 average 4 5 6 7 average 10 11 12 average

accuracy (m)
4×4 array

method 1 0.49 0.19 0.42 0.21 0.22 0.41 0.41 2.08 0.55 0.27 0.27 N/A 0.54 0.36 0.84 N/A 1.20 1.02
method 2 0.26 0.14 0.89 1.08 0.22 0.52 1.05 0.13 0.54 0.55 0.25 N/A 0.53 0.44 1.01 3.80 0.88 1.90

accuracy (m)
6×6 array

method 1 0.41 0.04 0.56 0.18 0.26 0.67 0.48 0.58 0.40 0.19 0.37 1.01 0.28 0.46 0.74 1.29 0.39 0.81
method 2 0.21 0.32 0.87 0.17 0.22 0.31 0.20 0.19 0.31 0.19 0.27 1.26 0.21 0.48 0.73 1.54 0.86 1.04

accuracy (m)
8×8 array

method 1 0.57 0.07 0.02 0.25 0.17 0.61 0.34 0.41 0.30 0.58 0.50 0.63 0.25 0.49 0.79 N/A 0.67 0.73
method 2 0.25 0.24 0.38 0.22 0.22 0.40 0.24 0.15 0.26 0.17 0.32 0.43 0.19 0.28 0.86 1.07 0.77 0.90

of these paths. We can also see that increasing the antenna
array size results in a better localization of the target receiver
nodes. Looking at the LoS scenario for method 2, the average
accuracy is 0.54 m with a 4× 4 array, 0.31 m with a 6× 6
array, and 0.26 m with a 8× 8 array. This is mainly due to
the fact that the physical propagation paths in the environment
can be estimated more accurately when increasing the size
of the antenna array (resulting in more observations of the
radio channel). In an OLoS scenario for method 2, the average
accuracy is 0.44 m with a 4× 4 array, 0.48 m with a 6× 6
array, and 0.28 m with a 8× 8 array. In an NLoS scenario for
method 2, the average accuracy is 1.90 m with a 4× 4 array,
1.04 m with a 6× 6 array, and 0.90 m with a 8× 8 array.

Overall, we can state that our new localization algorithm
can estimate the location of a target receiver node with an
average accuracy of 0.26 m in a LoS scenario, 0.28 m in an
OLoS scenario, and 0.90 m in an NLoS scenario.

We now analyze the 8× 8 antenna array configuration more
closely, which is supposed to have the best resolution with
respect to the estimation accuracy of the propagation paths.
When increasing the size of the antenna array configuration,
the total number of observations of the radio channel also
increases. The measurements with a MT ×MR = 8× 8 an-
tenna array have 4 times as many as observations as the
4× 4 antenna array. Increasing the number of observations
causes the estimated variance on the extracted propagation
path parameters to decrease. We hypothesize that this is the
reason why the 4× 4 antenna array sometimes yields better
results, since its larger variance can allow for a broader
sampling, which causes large sparse clusters of estimated
receiver positions. This is in contrast to the small dense
clusters generated by the 8× 8 antenna array.

We found that with the method 1 of only using the estimated
mean values of the propagation paths for the localization,
an average of 2.5 paths were found in the optimal cluster
in a LoS scenario, 2.5 paths in an OLoS scenario, and 2
paths in an NLoS scenario. This corresponds with a usage
of 47 % in LoS, 59 % in OLoS and 67 % in NLoS of the
total number of paths satisfying the ray matching criterion.
By applying our new localization algorithm with the addition
of incorporating the estimated variance of the propagation
paths, the absolute number of paths in the optimal cluster
obviously increased, since we have sampled virtual paths from
the original data set of propagation paths. We found that
the relative number of paths in the optimal cluster was now

9 % in LoS, 6 % in OLoS and 14 % in NLoS of the total
number of paths satisfying the ray matching criterion. An
interesting conclusion is that looking at these relative numbers
of paths used, these percentages have dropped significantly
compared to method 1. This indicates that, relatively speaking,
more paths were deleted after pruning, and more distinctive
clusters of estimated receiver locations could be formed. As
an apparent result when looking at the localization accuracy,
our proposed method 2 was able to choose the most likely
receiver location from several more possible clusters compared
to method 1.

Moreover, we can state that in a LoS scenario, the average
accuracy of method 1 and method 2 are comparable, regardless
of antenna array size. The largest improvements that are
made by adding the variance of the propagation paths in
our framework, is that it allows for a robuster estimation of
the receiver indices. For the 8× 8 antenna array, the average
accuracy improves from 0.49 cm in an OLoS scenario with
method 1 to 0.28 m with method 2. Moreover, we can see
that more receiver indices can be estimated by using method
2 over method 1.

V. CONCLUSION

This work presented a novel localization algorithm based on
UWB channel sounding, exploiting the geometrical properties
of the estimated propagation paths and their corresponding
variances. An extension to the high-resolution RiMAX algo-
rithm was developed, after which we tested this framework
by performing channel sounding measurements in an indoor
laboratory environment. Several multipath parameters were
estimated from these measurements, and tracked as a function
of frequency. These were subsequently used in a new variance-
based localization scheme, allowing for the localization of a
target receiver node in LoS-, OLoS- and NLoS scenarios. Our
measurements reveal that our technique achieves an average
accuracy of 0.26 m in LoS-, 0.28 m in OLoS-, and 0.90 m in
NLoS scenarios.

Future research consists of a large measurement campaign
with more OLoS and NLoS scenarios, since it was shown that
our technique already performs quite well in LoS scenarios.
We will also focus on more realistic office environments,
since a typical laboratory environment such as the one in
this work can be categorized as a very cluttered environment,
which can complicate the localization, and deteriorate the true
performance of our proposed technique.
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