State of the art in hardware-accelerated neural networks
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Biology vs Electronics

The Brain: the Ultimate Autonomous System

» 1,2to 1,4 kg, 1260 cm?®
» Consumes between 15 and 30 Watts

» 86x107 neurones, ~ 10" synapses
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Two phases
Learning, off-line, floating point
Inference, run-time, floating point
Weights
Values “found” during learning
Values used during inference
Issues

Complex learning algorithms: GPU
farms

Limited computing power during
inference
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CNN Models: Accuracy, Operations and Weights
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A. Canziani, E. Culurciello, A. Paszke, "An Analysis of Deep Neural Network Models for Practical Applications", 2017 (EfficientNet-BO/B7 added by myself)
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Our focus? Inference!

Local computation!

Energy

No router, cloud server, ...

= Huge constraint in Edge Computing
= Worse in loT

= Transmitting data costs energy

Latency
Immediate response, no dead zone, no
network reliability issue, ...

Privacy

No storage in someone else’s servers
Neither wire nor wireless sniffing
possible
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Challenges in Embedded and Hardware Accelerated Neural Networks

Constraints on HW Accelerated Neural Networks

» Accuracy needs depend on the application

» Silicon resources:
= Computations to perform
= Weights storage and access
» Energy efficiency
Typical constraints :

Ml 10-100 uW for wearables,
Bl 10-100 mW for phones,
B 1-10 W for plugged devices
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Computation Demanding

Inference involves a lot of computation...

» Elevated number of floating point (FP)  [operation Eree| Reltve Energy Cost e | Relthe Ava Cost

. P. um?

operations 8bAdd 0.03 || s |
16b Add 0.05 67
32b Add 0.1 137

0.5G < Nb of FLOPs < 40G szohic o1 |

» Floating point operations are energy T o TN
and area costly 32b Mul 31 3495
16b FP Mult 1.1 1640
(My 4 core-i7 PC ~120 GFLOPs => 30 GFLOPs/core.) 320 FP Mult 37 7700

1 10 102 103 104 1 10 102 103

"Hardware Architectures for Deep Neural Networks", ISCA Tutorial, 2017
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"Hardware Architectures for DNN", ISCA Tutorial, 2017

Memory stores millions of (64-bit) weights
= 4M (GooglLeNet), 60M (AlexNet), 130M (VGG)

Memory access becomes the bottleneck
= Each op needs 2 operands and produces a
result

An “elevated” power consumption is involved
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Simplify the operations
Avoid sigmoid, batch normalization and stuff

FP arithmetic is not HW friendly
= Use data-types that are not 64-bit floats

Use “small” data types

Integrate many memory cuts with processing K. Usher, "The Dwarf in the Dirt", Bones, 2009
elements and use them wisely (Energy comes from donuts + beer)

Integrate computation into the memory itself
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Dynamic

Processor Static Memory
INST.|DATA i Mem Ctrl ETeRy BT
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I Interconnect )

Exploit weight sparsity to
optimize memory usage and

weight placement

Use low precision/high
efficiency computation
along with on-chip
memory storage of the
weights

M+P) M+P| M-+P)
M+P) M+P) M+P) M+P)

Integrate computation inside
the memory itself, directly

where the data is stored
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Quantization: we need it anyway!

Quantization levels and accuracy...

Just reducing precision,
reduce hardware cost &
increases error

Recuperate accuracy by
retraining & increasing

network size

1b, 2b and 4b provide pareto Q
optimal solutions

© Copyright 2017 Xilinx
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Kees Vissers, "A Framework for Reduced Precision Neural Networks on FPGAs", MPSOC, 2017
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Reduces storage requirements

Dedicated sparse matrix/vector representation
= Eliminates redundant connections

Quantizes weights

Quantization of AlexNet weights
256 shared weights (Conv layers) = 4 bits
35x of reduction (240MB = 6.9MB)

Weights stored into on-chip SRAM
= 5 pJ/access (vs. 640 pl/access off-chip DRAM)

S. Han et al., "EIE: Efficient inference engine on compressed deep neural network", ISCA, 2016

B CPU Dense (Baseline) ®CPU Compressed
BGPU Dense @ GPU Compressed BEEIE

61,533x

100000x 34,522x
14,826x

10000x
1000x
100x
10x

Energy Efficiency

Alex-6 Alex-7 Alex-8
Power efficiency

600 mW for Alexnet Fully-
Connected layers

12/22



Only balanced are used {—1,0,+1}
Floating point accumulations are kept
Multipliers are not needed

Most of the FP operations operate on zero values

Zero-skipping FwdPass (Inference)
BWD Pass
Grad Update

0.00 0.25 0.50 0.75

Demonstrated highest accuracy B e

= 93% on the ImageNet object classification challenge
= Divide by 3 the number of FP operations

G. Venkatesh et al., "Accelerating Deep Convolutional Networks Using Low-Precision and Sparsity", ICASSP, 2017

1.00
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Based on BinaryConnect approach
Binary weights € {—1, +1}
2's complement and multiplexers instead of
multipliers
Still full fledge adders: 12-bit activations

Large on-chip weights storage thanks to their size

Latch-based standard cell memory

Flexible accelerator

7 kernel sizes supported

= 61.2 TOP/s/W at 0.6V

R. Andri et al., "YodaNN: YodaNN: An architecture for ultralow power binary-weight CNN acceleration", |EEE TCAD, 2017 14/22



) Convolution layer
Mapping

All values € {—1,+1}
Binary input activation

weight
memory
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Binary synapse weights

input vector index
output vector

=
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Binary output activation

popcount

Weights kept in on-chip memory
= Zyng-7000 FPGA technology
= 80.1% accuracy for CIFAR-10
= Total system power 25W

Dot-product between input vector
and row of synaptic weight matrix
Compares result to a threshold
Produces single-bit output

Y. Umuroglu et al., "FINN: A Framework for Fast, Scalable Binarized Neural Network Inference", FPGA, 2017

"Field-Programmable Gate-Array: fine-grain reconfigurable hardware technology.
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Sliding Window Layer (SWL) Neuron Layer (NL)

5 nneurons

Ternarization Layer (TL)

Read @

Write @
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Weights | ! ]
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Large-scale ternary CNN pipeline VGG-like (NN-64 or NN-128)
Neuron layer (NL) — memory ( ) + neurons
Ternarization layer (TL) — e {-1,0,+1}
= Error rate 13.29% for CIFAR-10 (vs. 19.9% in FINN)
= Virtex-7 FPGA technology (VC709, Laaaaaaarge FPGA)

= 1.62 TOP/s/W (vs 0.69 TOP/s/W in FINN)
= Throughput > 60k fps

A. Prost-Boucle et al., "High-Efficiency Convolutional Ternary Neural Networks with Custom Adder Trees and Weight Compression", ACM TRETS, 2018
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emory [EE] [Memeny
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X Romain Brette, Computing with spikes
neurosynaptic core

dendrites synaptic
EED rosster Neurons communicate sending spikes
Data encoded according to frequency,
5 time, and spatial distribution of spikes
:
TTAAAL A | rewrons
| (o] Non-Von Neumann architecture
= 4096 neuromorphic cores Neuromorphic core = 256 neurons (PE) + 64k
= 1 million of digital neurons synapses (memory)
= 256 millions of synapses Memory and computation physically close to
= 46 GSOP/s/W at 65 mW each other

Asynchronous logic implementation Reduction of power consumption

F. Akopyan et al., "Truenorth: Design and Tool Flow of a 65mW 1 million Neuron Programmable Neurosynaptic Chip", TCAD, 2015 17/22



Peripheral circuitry
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Computation accelerated by NVM arrays

Synaptic weights are not stored in
external memories

= Zero transfers between memory and

processing elements

= Reduction of energy consumption

Arrays of resistive RAM devices

Resistances vary according to voltages

No CMOS access devices but complex

peripheral circuitry

Analog, intrinsically approximate,
computations

aE
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From receptive field to feature maps...

Kernel 1 Kernel 2
. Vv,
Receptive field 1
/| V1| V2| Vs Receptive field = row voltages
/ V4| Vs|Vg V2 .
| Nlvalve G11/G21/Gs1 Convolution kernel = column of
/ G,1/Gs)|G . . .
/ 41751761 resistive devices
G71681691 Vo
. Kernel 1 Convolution operation = column
“.Receptive field »
Vi|Vz| V3 current
\ Yl Vs Vsl I 16.2/Gan
\V7|Ve|Vs| (G l6.l60 Interactive protocol programs kernels
G G. G.

Kernel 2

Single demonstration on digits of MNIST

L. Gao et al., "Demonstration of Convolution Kernel Operation on Resistive Cross-Point Array", IEEE Electron Device Letters, 2016

P. Chi et al., "PRIME: A Novel Processing-In-Memory Architecture for Neural Network Computation in ReRam-Based Main Memory", ISCA, 2016
19/22



B B B
aE

B B B
B B B

Modeling synapses between neurons

Post-spike
Pre-spike /_ L
JL_ . Input and output potentials fired between
neurons (spikes)
Axon
nileck - Syapse Fostanaps Synaptic connections are potentiated or depressed

Pre-synaptic neuron

v top electrode amorphous

Programmed in different states . RESET" puise

(conductances) melt

Compatible with CMOS "SET" = cnaicogenide

Ge,Sb,Te

components T P (Ge, z_es)
2 |28 |\crystalline

Scalable to nanometric g |52 %

dimensions Tamb time | bottom electrode 16.0.9.0.¢ /
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PCM as Synaptic Element

500x661 PCM Crossbar Array

Large scale implementation

» 3-layer perceptron

» 916 neurons

» 164865 synaptic connections

= Accuracy: 82% (MNIST)
= Low-power: at least 120x (vs. GPU)

S. Burc et al., "Experimental Demonstration of Array-Level Learning with Phase Change Synaptic Devices", IEDM, 2013
G.W. Burr et al., "Experimental Demonstration and Tolerancing of a Large-Scale NN (165000 Synapses) using PCM as the Synaptic Weight Element", 2015
G.W. Burr et al., "Large-Scale Neural Networks Implemented with NVM as the Synaptic Weight Element: Comparative Performance Analysis", IEDM, 2015
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Quantization and compression is the way to go

Few bits for weights and activations are enough in many cases
Learning need to be changed according to bit-width

Networks and HW architectures available today!

finyML

Top-5 Error (ImageNet)

Th. Preusser, QNNs on All Programmable Devices, FPL 2017 22/22



Quantization and compression is the way to go
Few bits for weights and activations are enough in many cases

Learning need to be changed according to bit-width il
Networks and HW architectures available today! o

TinyML

Few experiments of NVM crossbar array implementations at large scale
Comparison of energy gains is difficult

Flexibility of the NVM to match a given ANN architecture questionable
Promising ongoing research subject
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