Applied Machine Learning Days @ EPFL

State of the art in hardware-accelerated neural networks

Frédéric Pétrot, Lorena Anghel, Liliana Andrade Univ. Grenoble Alpes, CNRS, Grenoble INP[⋆], TIMA, F-38000 Grenoble, France

- * tima.imag.fr/sls/people/petrot
- ✓ frederic.petrot@univ-grenoble-alpes.fr

Institute of Engineering Univ. Grenoble Alpes

The Brain: the Ultimate Autonomous System

- > 1,2 to 1,4 kg, 1260 cm³
- ► Consumes between 15 and 30 Watts
- $ightharpoonup 86 imes 10^9$ neurones, $pprox 10^{12}$ synapses

The Brain: the Ultimate Autonomous System

- ▶ 1,2 to 1,4 kg, 1260 cm³
- Consumes between 15 and 30 Watts
- ► 86×10^9 neurones, $\approx 10^{12}$ synapses

J. Vitti and D. Silverman, "Bart the Genius", The Simpsons, 1990

The Brain: the Ultimate Autonomous System

- 1,2 to 1,4 kg, 1260 cm³
- Consumes between 15 and 30 Watts
- ▶ 86×10^9 neurones, $\approx 10^{12}$ synapses

J. Vitti and D. Silverman, "Bart the Genius", The Simpsons, 1990

Human Brain Project (EU Flagship)

- ▶ 16,000 neurones per 1 Watt chip
- ▶ 5.375 MW/brain
- ► 1.2×10⁹ € from Europe: ≈ 1.4 cent of €/neurone

The Brain: the Ultimate Autonomous System

- 1,2 to 1,4 kg, 1260 cm³
- Consumes between 15 and 30 Watts
- ► 86×10^9 neurones, $\approx 10^{12}$ synapses
- ► (Energy comes from eggs, honey and mushrooms)

J. Vitti and D. Silverman, "Bart the Genius", The Simpsons, 1990

Human Brain Project (EU Flagship)

- ▶ 16,000 neurones per 1 Watt chip
- 5.375 MW/brain
- > 1.2×10⁹ € from Europe: ≈ 1.4 cent of €/neurone

The Brain: the Ultimate Autonomous System

- ▶ 1,2 to 1,4 kg, 1260 cm³
- Consumes between 15 and 30 Watts
- ► 86×10^9 neurones, $\approx 10^{12}$ synapses
- ► (Energy comes from eggs, honey and mushrooms)

J. Vitti and D. Silverman, "Bart the Genius", The Simpsons, 1990

Human Brain Project (EU Flagship)

- ▶ 16,000 neurones per 1 Watt chip
- ▶ 5.375 MW/brain
- 1.2×10⁹ € from Europe: ≈ 1.4 cent of €/neurone

Classical Deep Neural Network (DNN) Topology

$$u_i = \sum_{i=1}^n x_i w_{ij}$$
 $y_i = act(u_i + b_i)$

Two phases

- Learning, off-line, floating point
- ► Inference, run-time, floating point

Weights

- Values "found" during learning
- Values used during inference

Issues

- Complex learning algorithms: GPU farms
- Limited computing power during inference

CNN Models: Accuracy, Operations and Weights

Hardware Accelerated Neural Network

Our focus? Inference!

What's the interest, by the way?

Local computation!

- Energy No router, cloud server, ...
 - ⇒ Huge constraint in Edge Computing
 - \Rightarrow Worse in IoT
 - ⇒ Transmitting data costs energy

- Latency Immediate response, no dead zone, no network reliability issue, ...
- Privacy
 No storage in someone else's servers
 Neither wire nor wireless sniffing possible

Challenges in Embedded and Hardware Accelerated Neural Networks

Constraints on HW Accelerated Neural Networks

- Accuracy needs depend on the application
- Silicon resources:
 - \Rightarrow Computations to perform
 - \Rightarrow Weights storage and access
- Energy efficiency Typical constraints :
 - 10-100 uW for wearables,
 - 10-100 mW for phones,
 - 1-10 W for plugged devices

Challenges in Embedded and Hardware Accelerated Neural Networks

Constraints on HW Accelerated Neural Networks

- Accuracy needs depend on the application
- Silicon resources:
 - ⇒ Computations to perform
 - \Rightarrow Weights storage and access
- Energy efficiency Typical constraints :
 - 10-100 uW for wearables,
 - 10-100 mW for phones,
 - 1-10 W for plugged devices

Computation Demanding

Inference involves a lot of computation...

Elevated number of floating point (FP) operations

$$0.5G \le Nb$$
 of FLOPs $\le 40G$

► Floating point operations are energy and area costly

(My 4 core-i7 PC ~120 GFLOPs ⇒ 30 GFLOPs/core.)

"Hardware Architectures for Deep Neural Networks", ISCA Tutorial, 2017

Memory demanding

Inference involves a lot of memory access...

Operation:	Energy (pJ)	Relative Energy Cost				
32b SRAM Read (8KB)	5					
32b DRAM Read	640					
		1	10	10 ²	10 ³	104

[&]quot;Hardware Architectures for DNN", ISCA Tutorial, 2017

- Memory stores millions of (64-bit) weights ⇒ 4M (GoogLeNet), 60M (AlexNet), 130M (VGG)
- Memory access becomes the bottleneck
 ⇒ Each op needs 2 operands and produces a result
- An "elevated" power consumption is involved

Coping with GFLOPs and GBytes

Alternatives: trade FLOPs for (some) accuracy loss

Simplify the operations

- ► Avoid sigmoid, batch normalization and stuff
- FP arithmetic is not HW friendly
 - ⇒ Use data-types that are not 64-bit floats

Alternatives: trade bytes for (some) accuracy loss

- Use "small" data types
- Integrate many memory cuts with processing elements and use them wisely
- Integrate computation into the memory itself

K. Usher, "The Dwarf in the Dirt", Bones, 2009 (Energy comes from donuts + beer)

Typical Architectures for HW ANN

Exploit weight sparsity to optimize memory usage and weight placement

Use low precision/high efficiency computation along with on-chip memory storage of the weights

Integrate computation inside the memory itself, directly where the data is stored

Quantization: we need it anyway!

Quantization levels and accuracy...

 ${\it Kees \ Vissers, "A \ Framework for \ Reduced \ Precision \ Neural \ Networks \ on \ FPGAs", \ MPSOC, \ 2017}$

Exploit Sparsity and Quantization

Custom hardware for sparse matrix-vector multiplication

Deep Compression Technique

Reduces storage requirements

- Dedicated sparse matrix/vector representation
 ⇒ Fliminates redundant connections
- Quantizes weights

Quantization of AlexNet weights

- ▶ 256 shared weights (Conv layers) ⇒ 4 bits
- ▶ 35x of reduction (240MB \Rightarrow 6.9MB)

Weights stored into on-chip SRAM

⇒ 5 pJ/access (vs. 640 pJ/access off-chip DRAM)

S. Han et al., "EIE: Efficient inference engine on compressed deep neural network", ISCA, 2016

High weights quantization with floating-point activations

Acceleration using Low-Precision (ternary) weights

Only balanced ternary weight are used $\{-1, 0, +1\}$

- Floating point accumulations are kept
- Multipliers are not needed

Most of the FP operations operate on zero values

Non-Zero Fraction

Demonstrated highest accuracy

- ⇒ 93% on the ImageNet object classification challenge
- \Rightarrow Divide by 3 the number of FP operations

G. Venkatesh et al., "Accelerating Deep Convolutional Networks Using Low-Precision and Sparsity", ICASSP, 2017

Exploit full-quantization

YodaNN: VLSI Implementation of binary-weights CNN Accelerator

Based on BinaryConnect approach

- ▶ Binary weights $\in \{-1, +1\}$
- 2's complement and multiplexers instead of multipliers
- ▶ Still full fledge adders: 12-bit activations

Large on-chip weights storage thanks to their size

Latch-based standard cell memory

Flexible accelerator

- 7 kernel sizes supported
- \Rightarrow 61.2 TOP/s/W at 0.6V

Binary-Quantized Low-Power/Low-Area Digital Computations

FINN: Framework for building FPGA* accelerators

Mapping binarized neural networks to hardware

All values $\in \{-1, +1\}$

- Binary input activation
- Binary synapse weights
- Binary output activation

Weights kept in on-chip memory

- ⇒ Zynq-7000 FPGA technology
- \Rightarrow 80.1% accuracy for CIFAR-10
- ⇒ Total system power 25W

Convolution layer

- Dot-product between input vector and row of synaptic weight matrix
- Compares result to a threshold
- Produces single-bit output

Y. Umuroglu et al., "FINN: A Framework for Fast, Scalable Binarized Neural Network Inference", FPGA, 2017

^{*}Field-Programmable Gate-Array: fine-grain reconfigurable hardware technology.

Ternary weights and ternary activations

FPGA Architecture for Ternary Neural Networks (TNN

- Large-scale ternary CNN pipeline VGG-like (NN-64 or NN-128)
- Neuron layer (NL) → memory (ternary weights) + neurons
- ▶ Ternarization layer (TL) \rightarrow ternary activations $\in \{-1, 0, +1\}$
- \Rightarrow Error rate 13.29% for CIFAR-10 (vs. 19.9% in FINN)
- ⇒ Virtex-7 FPGA technology (VC709, Laaaaaaarge FPGA)
- \Rightarrow 1.62 TOP/s/W (vs 0.69 TOP/s/W in FINN)
- \Rightarrow Throughput > 60k fps

Computations using spikes, not bits

TrueNorth: Integrated Chip for Spiking Neural Networks

- ⇒ 4096 neuromorphic cores
- \Rightarrow 1 million of digital neurons
- \Rightarrow 256 millions of synapses
- \Rightarrow 46 GSOP/s/W at 65 mW

Asynchronous logic implementation

Romain Brette, Computing with spikes

- Neurons communicate sending spikes
- Data encoded according to frequency, time, and spatial distribution of spikes

Non-Von Neumann architecture

- Neuromorphic core = 256 neurons (PE) + 64k synapses (memory)
- Memory and computation physically close to each other
- Reduction of power consumption

Emerging Processing-In-Memory (PIM) Approaches

MAC operations using Non Volatile Memory (NVM)

Computation accelerated by NVM arrays

- Synaptic weights are not stored in external memories
 - \Rightarrow Zero transfers between memory and processing elements
 - ⇒ Reduction of energy consumption

Arrays of resistive RAM devices

- Resistances vary according to voltages
- No CMOS access devices but complex peripheral circuitry
- Analog, intrinsically approximate, computations

Resistive RAM Crossbar Implementations

Convolution Kernel in 12×12 Array

From receptive field to feature maps...

- Receptive field = row voltages
- Convolution kernel = column of resistive devices
- Convolution operation = column current

Interactive protocol programs kernels

Single demonstration on digits of MNIST

Processing-In-Memory Approaches Using Emerging Technologies

P | K+P | K+

⇒ Artificial synapse using NVM

- Modeling synapses between neurons
- Input and output potentials fired between neurons (spikes)
- Synaptic connections are potentiated or depressed

Electronic Synapses Modeled by Phase Change Memory (PCM) Devices

- Programmed in different states (conductances)
- Compatible with CMOS components
- Scalable to nanometric dimensions

PCM as Synaptic Element

500x661 PCM Crossbar Array

Large scale implementation

- 3-layer perceptron
- > 916 neurons
- ► 164865 synaptic connections

⇒ Accuracy: 82% (MNIST)

 \Rightarrow Low-power: at least 120x (vs. GPU)

S. Burc et al., "Experimental Demonstration of Array-Level Learning with Phase Change Synaptic Devices", IEDM, 2013
G.W. Burr et al., "Experimental Demonstration and Tolerancing of a Large-Scale NN (165000 Synapses) using PCM as the Synaptic Weight Element", 2015
G.W. Burr et al., "Large-Scale Neural Networks Implemented with NVM as the Synaptic Weight Element: Comparative Performance Analysis", IEDM, 2015

Take Away

Classical digital (CMOS) architectures

- Quantization and compression is the way to go
- Few bits for weights and activations are enough in many cases
- ▶ Learning need to be changed according to bit-width
- ▶ Networks and HW architectures available today!

Take Away

Classical digital (CMOS) architectures

- Quantization and compression is the way to go
- Few bits for weights and activations are enough in many cases
- ► Learning need to be changed according to bit-width
- Networks and HW architectures available today!

Processing in-memory approaches using emerging technologies

- ▶ Few experiments of NVM crossbar array implementations at large scale
- Comparison of energy gains is difficult
- ▶ Flexibility of the NVM to match a given ANN architecture questionable
- Promising ongoing research subject