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Biology vs Electronics

The Brain: the Ultimate Autonomous System
I 1,2 to 1,4 kg, 1260 cm3
I Consumes between 15 and 30 Watts
I 86×109 neurones,≈ 1012 synapses

I (Energy comes from eggs, honey and mushrooms)
J. Vitti and D. Silverman, "Bart the Genius", The Simpsons, 1990

Human Brain Project (EU Flagship)
I 16,000 neurones per 1 Watt chip
I 5.375 MW/brain
I 1.2×109 € from Europe: ≈ 1.4 cent of €/neurone
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Classical Deep Neural Network (DNN) Topology

ui =
n∑

i=1
xi wij yi = act(ui + bi)

Two phases
I Learning, off-line, floating point
I Inference, run-time, floating point

Weights
I Values “found” during learning
I Values used during inference

Issues
I Complex learning algorithms: GPUfarms
I Limited computing power duringinference
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CNN Models: Accuracy, Operations and Weights

A. Canziani, E. Culurciello, A. Paszke, "An Analysis of Deep Neural Network Models for Practical Applications", 2017 (EfficientNet-B0/B7 added by myself) 4 / 22



Hardware Accelerated Neural Network

Our focus? Inference!
What’s the interest, by the way?
Local computation!
I EnergyNo router, cloud server, ...
⇒ Huge constraint in Edge Computing
⇒Worse in IoT
⇒ Transmitting data costs energy

I LatencyImmediate response, no dead zone, nonetwork reliability issue, ...
I PrivacyNo storage in someone else’s serversNeither wire nor wireless sniffingpossible
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Challenges in Embedded and Hardware Accelerated Neural Networks

Constraints on HW Accelerated Neural Networks
I Accuracy needs depend on the application
I Silicon resources:
⇒ Computations to perform
⇒Weights storage and access

I Energy efficiencyTypical constraints :
� 10-100 uW for wearables,
� 10-100 mW for phones,
� 1-10 W for plugged devices
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Computation Demanding

Inference involves a lot of computation...

I Elevated number of floating point (FP)operations
0.5G≤ Nb of FLOPs≤ 40G

I Floating point operations are energyand area costly
(My 4 core-i7 PC ~120 GFLOPs⇒ 30 GFLOPs/core.)

"Hardware Architectures for Deep Neural Networks", ISCA Tutorial, 2017
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Memory demanding

Inference involves a lot of memory access...

"Hardware Architectures for DNN", ISCA Tutorial, 2017

I Memory stores millions of (64-bit) weights
⇒ 4M (GoogLeNet), 60M (AlexNet), 130M (VGG)

I Memory access becomes the bottleneck
⇒ Each op needs 2 operands and produces aresult

I An “elevated” power consumption is involved
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Coping with GFLOPs and GBytes

Alternatives: trade FLOPs for (some) accuracy loss
Simplify the operations
I Avoid sigmoid, batch normalization and stuff
I FP arithmetic is not HW friendly
⇒ Use data-types that are not 64-bit floats

Alternatives: trade bytes for (some) accuracy loss
I Use “small” data types
I Integrate many memory cuts with processingelements and use them wisely
I Integrate computation into the memory itself

K. Usher, "The Dwarf in the Dirt", Bones, 2009
(Energy comes from donuts + beer)
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Typical Architectures for HW ANN

Exploit weight sparsity tooptimize memory usage andweight placement
Use low precision/highefficiency computationalong with on-chipmemory storage of theweights

Integrate computation insidethe memory itself, directlywhere the data is stored
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Quantization: we need it anyway!

Quantization levels and accuracy...

Kees Vissers, "A Framework for Reduced Precision Neural Networks on FPGAs", MPSOC, 2017
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Exploit Sparsity and Quantization

Custom hardware for sparse matrix-vector multiplication

Deep Compression Technique
Reduces storage requirements
I Dedicated sparse matrix/vector representation
⇒ Eliminates redundant connections

I Quantizes weights
Quantization of AlexNet weights
I 256 shared weights (Conv layers)⇒ 4 bits
I 35x of reduction (240MB⇒ 6.9MB)

Weights stored into on-chip SRAM
⇒ 5 pJ/access (vs. 640 pJ/access off-chip DRAM)

Power efficiency600 mW for Alexnet Fully-Connected layers
S. Han et al., "EIE: Efficient inference engine on compressed deep neural network", ISCA, 2016
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High weights quantization with floating-point activations

Acceleration using Low-Precision (ternary) weights
Only balanced ternary weight are used {−1,0,+1}
I Floating point accumulations are kept
I Multipliers are not needed

Most of the FP operations operate on zero values
I Zero-skipping

Demonstrated highest accuracy
⇒ 93% on the ImageNet object classification challenge
⇒ Divide by 3 the number of FP operations
G. Venkatesh et al., "Accelerating Deep Convolutional Networks Using Low-Precision and Sparsity", ICASSP, 2017
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Exploit full-quantization

YodaNN: VLSI Implementation of binary-weights CNN Accelerator
Based on BinaryConnect approach
I Binary weights ∈ {−1,+1}
I 2’s complement and multiplexers instead ofmultipliers
I Still full fledge adders: 12-bit activations

Large on-chip weights storage thanks to their size
I Latch-based standard cell memory

Flexible accelerator
I 7 kernel sizes supported
⇒ 61.2 TOP/s/W at 0.6V
R. Andri et al., "YodaNN: YodaNN: An architecture for ultralow power binary-weight CNN acceleration", IEEE TCAD, 2017 14 / 22



Binary-Quantized Low-Power/Low-Area Digital Computations

FINN: Framework for building FPGA* accelerators
Mapping binarized neural networks to hardwareAll values ∈ {−1,+1}
I Binary input activation
I Binary synapse weights
I Binary output activation

Weights kept in on-chip memory
⇒ Zynq-7000 FPGA technology
⇒ 80.1% accuracy for CIFAR-10
⇒ Total system power 25W

Convolution layer

I Dot-product between input vectorand row of synaptic weight matrix
I Compares result to a threshold
I Produces single-bit output

Y. Umuroglu et al., "FINN: A Framework for Fast, Scalable Binarized Neural Network Inference", FPGA, 2017
*Field-Programmable Gate-Array: fine-grain reconfigurable hardware technology.
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Ternary weights and ternary activations

FPGA Architecture for Ternary Neural Networks (TNN)
I Large-scale ternary CNN pipeline VGG-like (NN-64 or NN-128)
I Neuron layer (NL)→memory (ternary weights) + neurons
I Ternarization layer (TL)→ ternary activations ∈ {−1,0,+1}
⇒ Error rate 13.29% for CIFAR-10 (vs. 19.9% in FINN)
⇒ Virtex-7 FPGA technology (VC709, Laaaaaaarge FPGA)
⇒ 1.62 TOP/s/W (vs 0.69 TOP/s/W in FINN)
⇒ Throughput> 60k fps
A. Prost-Boucle et al., "High-Efficiency Convolutional Ternary Neural Networks with Custom Adder Trees and Weight Compression", ACM TRETS, 2018
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Computations using spikes, not bits

TrueNorth: Integrated Chip for Spiking Neural Networks

⇒ 4096 neuromorphic cores
⇒ 1 million of digital neurons
⇒ 256 millions of synapses
⇒ 46 GSOP/s/W at 65 mWAsynchronous logic implementation

Romain Brette, Computing with spikes

I Neurons communicate sending spikes
I Data encoded according to frequency,time, and spatial distribution of spikes

Non-Von Neumann architecture

I Neuromorphic core = 256 neurons (PE) + 64ksynapses (memory)
I Memory and computation physically close toeach other
I Reduction of power consumption

F. Akopyan et al., "Truenorth: Design and Tool Flow of a 65mW 1 million Neuron Programmable Neurosynaptic Chip", TCAD, 2015 17 / 22



Emerging Processing-In-Memory (PIM) Approaches

MAC operations using
Non Volatile Memory (NVM)

Computation accelerated by NVM arrays

I Synaptic weights are not stored inexternal memories
⇒ Zero transfers between memory andprocessing elements
⇒ Reduction of energy consumption

Arrays of resistive RAM devices

I Resistances vary according to voltages
I No CMOS access devices but complexperipheral circuitry
I Analog, intrinsically approximate,computations
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Resistive RAM Crossbar Implementations

Convolution Kernel in 12×12 Array
From receptive field to feature maps...

I Receptive field = row voltages
I Convolution kernel = column ofresistive devices
I Convolution operation = columncurrent

Interactive protocol programs kernels

Single demonstration on digits ofMNIST

L. Gao et al., "Demonstration of Convolution Kernel Operation on Resistive Cross-Point Array", IEEE Electron Device Letters, 2016
P. Chi et al., "PRIME: A Novel Processing-In-Memory Architecture for Neural Network Computation in ReRam-Based Main Memory", ISCA, 2016 19 / 22



Processing-In-Memory Approaches Using Emerging Technologies

⇒ Artificial synapse using NVM

I Modeling synapses between neurons
I Input and output potentials fired betweenneurons (spikes)
I Synaptic connections are potentiated or depressed

Electronic Synapses Modeled by Phase Change Memory (PCM) Devices
I Programmed in different states(conductances)
I Compatible with CMOScomponents
I Scalable to nanometricdimensions
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PCM as Synaptic Element

500x661 PCM Crossbar Array
Large scale implementation

I 3-layer perceptron
I 916 neurons
I 164865 synaptic connections
⇒ Accuracy: 82% (MNIST)
⇒ Low-power: at least 120x (vs. GPU)
S. Burc et al., "Experimental Demonstration of Array-Level Learning with Phase Change Synaptic Devices", IEDM, 2013
G.W. Burr et al., "Experimental Demonstration and Tolerancing of a Large-Scale NN (165000 Synapses) using PCM as the Synaptic Weight Element", 2015
G.W. Burr et al., "Large-Scale Neural Networks Implemented with NVM as the Synaptic Weight Element: Comparative Performance Analysis", IEDM, 2015
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Take Away

Classical digital (CMOS) architectures
I Quantization and compression is the way to go
I Few bits for weights and activations are enough in many cases
I Learning need to be changed according to bit-width
I Networks and HW architectures available today!

Th. Preusser, QNNs on All Programmable Devices, FPL 2017 22 / 22
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Classical digital (CMOS) architectures
I Quantization and compression is the way to go
I Few bits for weights and activations are enough in many cases
I Learning need to be changed according to bit-width
I Networks and HW architectures available today!

Processing in-memory approaches using emerging technologies
I Few experiments of NVM crossbar array implementations at large scale
I Comparison of energy gains is difficult
I Flexibility of the NVM to match a given ANN architecture questionable
I Promising ongoing research subject
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