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Abstract
Visual confidence is the observers’ estimate of their precision in one single perceptual decision. Ultimately, however, observers
often need to judge their confidence over a task in general rather than merely on one single decision. Here, we measured the
global confidence acquired across multiple perceptual decisions. Participants performed a dual task on two series of oriented
stimuli. The perceptual task was an orientation-discrimination judgment. The metacognitive task was a global confidence
judgment: observers chose the series for which they felt they had performed better in the perceptual task. We found that choice
accuracy in global confidence judgments improved as the number of items in the series increased, regardless of whether the
global confidence judgment was made before (prospective) or after (retrospective) the perceptual decisions. This result is
evidence that global confidence judgment was based on an integration of confidence information across multiple perceptual
decisions rather than on a single one. Furthermore, we found a tendency for global confidence choices to be influenced by
response times, and more so for recent perceptual decisions than earlier ones in the series of stimuli. Using model comparison, we
found that global confidence is well described as a combination of noisy estimates of sensory evidence and position-weighted
response-time evidence. In summary, humans can integrate information across multiple decisions to estimate global confidence,
but this integration is not optimal, in particular because of biases in the use of response-time information.

Keywords Confidence .Metacognition . Integration . Perception . Vision

Introduction

Perception is often presented as an inference problem involv-
ing noisy inputs and uncertainty (Mamassian, 2016). How do
humans acknowledge and evaluate this perceptual uncertain-
ty? Since Peirce and Jastrow’s (1885) seminal work, re-
searchers have addressed this question by having observers
make a confidence judgment about the perceptual decision

on a sensory stimulus. Studies on perceptual metacognition
have detailed the link between one perceptual decision and its
associated confidence (e.g., Kepecs et al., 2008; Kiani &
Shadlen, 2009; Maniscalco & Lau, 2016; Zylberberg et al.,
2012), offering new theoretical frameworks to study confi-
dence (Fleming & Daw, 2017; Pouget et al., 2016). In every-
day life, the confidence in a single perceptual decision can be
important in many situations, for example, in tasks that require
an observer to decide whether to opt out. However, we often
repeat perceptual decisions over multiple stimuli rather than a
single one. For instance, a radiologist may inspect tens of
mammograms a day for potential tumors. A consumer may
open the egg box to confirm that no eggs are cracked before
buying them. When asked about one’s own ability to perform
such tasks, developing a global sense of confidence for doing
the task correctly could be more relevant and important than
the confidence for each individual perceptual decision. Such a
global confidence will be useful to predict future performance
and to decide whether or not one should engage in a task (e.g.,
Aguilar-Lleyda et al., 2020; Carlebach & Yeung, 2020).

So far, little is known about whether and how our
metacognitive system forms a general evaluation of our own
perceptual performance over a set of trials. One recent study
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suggests that such global confidence judgments are affected
by the local confidence estimates that follow each perceptual
trial and by the presence of feedback (Rouault et al., 2019).
However, in the absence of feedback, global confidence judg-
ments did not really accumulate information over trials within
each set. Along a similar idea, previous studies measured par-
ticipants’ performance in reaching a single perceptual decision
from multiple, sometimes inconsistent, sensory evidence
when sensory information is presented progressively
(Balsdon et al., 2020; Fleming et al., 2018). However, how
confidence is constructed over multiple, unrelated, perceptual
decisions remains unknown.

To address the above questions, we designed a psycho-
physical paradigm that combines individual perceptual deci-
sions and global confidence judgments. Observers were pre-
sented with two sets of sensory stimuli, and chose the set for
which they were more confident in performing correctly a
perceptual task. This forced-choice paradigm enables us to
estimate observers’ metacognitive sensitivity in evaluating
their own performance (Barthelmé & Mamassian, 2009; de
Gardelle & Mamassian, 2014).

To evaluate the integration of confidence information, we
manipulated the set size, i.e., the number of stimuli in each set.
Critically, by increasing set size, we provided the
metacognitive systemwithmore information to evaluate glob-
al confidence. If the metacognitive system integrates this in-
formation across multiple stimuli to evaluate global confi-
dence, metacognitive sensitivity should increase with set size.
At the other extreme, if the metacognitive system can only
rely on one sensory stimulus per set, metacognitive sensitivity
should remain constant across set sizes.

We report here two experiments. In Experiment 1, partici-
pants viewed the stimuli in two sets without making any per-
ceptual decisions, and then indicated which set they would be
more confident in. We instructed participants to make global
confidence judgments by asking them to choose the set that, if
they had to make a perceptual decision about a randomly
sampled stimulus within that set, they would be more likely
to be correct than if they had chosen the other set. In
Experiment 2, participants made perceptual decisions for all
stimuli in both sets before indicating which set was associated
with a greater global confidence. We also compared candidate
models that include different cues and weighting strategies in
describing the computations that support global confidence.

Experiment 1

Method

Participants Experiment 1 involved 50 participants. The key
effect of interest was a positive set-size effect on
metacognitive sensitivity (see Experiment 1: Results), but

we did not find any reference to a similar effect in previous
studies, so we assumed the effect to be of medium size
(Cohen’s d = 0.50). At alpha = 0.05 and power = 0.90, a
one-sample, two-tailed t-test would require a sample size of
at least 44. All observers were naive to the purpose of the
experiment, and all participants had normal or correct-to-
normal vision. Informed consent was obtained from all partic-
ipants. All experimental procedures were in compliance with
the Declaration of Helsinki.

Experiment 1 consisted of three sub-experiments, namely
sub-experiments 1A (n=15), 1B (n=13), and 1C (n=22). The
design, stimulus, and procedure were identical across the three
sub-experiments, except for the details described specifically
below.

Stimulus and apparatus The stimulus was a Gabor patch,
generated by overlaying a 2D Gaussian window (radius =
1.25°, standard deviation = 0.4°) on a sine-wave grating (spa-
tial frequency = 2 cycles/°), with Michelson contrast = 0.4.
Each set was made of several Gabor patches, oriented around
a fixed reference orientation tilted 30° from vertical (with a 5°
jitter across sets). This reference was indicated by a red-blue
arc, with the blue (or respectively red) color on the counter-
clockwise (or respectively clockwise) side of the reference,
each side being 40° width. The arc was 1° thick, and posi-
tioned 0.52° outside the Gabor patch.

In order to abolish interactions between consecutive stim-
uli, each stimulus was followed by a brief mask. The mask
was generated by superimposing 256 Gabor patches of iden-
tical size and spatial frequency as the stimulus, but with ran-
domly sampled orientations and phases, and setting the con-
trast of the resulting image to 0.4. We generated 32 mask
images and randomly selected one for each stimulus. Stimuli
and masks were faded in and out, respectively, by ramping the
contrast linearly from zero to 0.4 in the first 100 ms of presen-
tation and from 0.4 to zero in the last 100 ms.

The experiments were conducted in a dim room. Stimuli
were presented on a 19-in., 1,600 × 1,200 Sony CRT monitor
(Experiment 1A), or a 24-in., 1,920 × 1,080 BenQ LCDmon-
itor (Experiments 1B and 1C), with a 100-Hz refresh rate.
Viewing distance was kept constant at 57 cm (for a pixel size
of about 0.03° of visual angle), stabilized using a chin and
forehead rest. Monitors were calibrated with a photometer
and gamma-corrected, so that luminance values were linear-
ized to a programmable range of 0–255, which corresponded
to about 0–100 cd/m2.

Procedure of initial calibration Before the main experiment,
each observer went through an initial calibration phase.
Observers completed an orientation-discrimination task,
which would be used in the main experiment. In each trial,
the Gabor patch was presented for 500 ms, followed by a
mask of 300 ms. Observers judged whether the orientation
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of the Gabor patch pointed to the blue (i.e., counterclockwise)
or the red (i.e., clockwise) regions in the reference arc. They
responded by pressing the left (counterclockwise) or the right
(clockwise) arrow key on the keyboard. Feedback on the ac-
curacy was given after each response.

Each observer completed four blocks of calibration, with
two blocks for each reference (in the order of either [30°, -30°,
-30°, 30°] or [-30°, 30°, 30°, -30°]). In each block, we used
adaptive staircases (i.e., accelerated stochastic approximation;
Kesten, 1958) to control performance via u , the difference
between the Gabor and reference orientations. Four indepen-
dent staircases were interleaved across the calibration trials,
with two staircases converging at 25% and two at 75% of
“away-from-vertical” responses (i.e., “clockwise” responses
when the reference was clockwise relative to vertical, and
“counterclockwise” responses when the reference was coun-
terclockwise to the vertical). Each staircase was terminated
after the 50th trial, or when the change in |u| was smaller than
0.5°, whichever came earlier. To avoid early trials with unsta-
ble learning effects, we only used the data from the last two
blocks (about 320 trials per observer).We fitted to these data a
cumulative normal distribution function with two parameters
(the mean corresponding to the point of subjective equality
and the standard deviation corresponding to the reciprocal of
perceptual sensitivity, or 1/sensitivity in short). From this
fitted psychometric curve, we selected different stimuli (i.e.,
different values of u ) to target the same performance levels
across observers.

Procedure of main experiment Figure 1A illustrates the pro-
cedure of a trial in the main experiment in Experiment 1. In
each trial, we presented two sets of stimuli, namely, set A (the
first set) and set B (the second set), one after another, followed
by a confidence-comparison task, and, finally, ended with one

trial of the orientation-discrimination task. At the beginning of
a trial, the observer saw a prompt, for example, “A:4”, which
referred to the set label (A) and the set size (4, i.e., the number
of stimuli to appear). This prompt lasted for 1,200 ms in
Experiment 1A, and 500 ms in Experiments 1B and 1C.
Then, a series of stimulus-mask pairs were presented back-
to-back, with each stimulus being presented for 500 ms,
followed by a mask for 300 ms. After the predetermined num-
ber of stimulus-mask pairs had been presented for set A, there
was a 500-ms rest interval. Then, the prompt for set B was
presented (e.g., “B:4”), followed by the presentation of stimuli
in set B, which were presented in the same manner as their
counterparts were presented in set A.

Set A and set B always had the same set size (e.g., in Fig.
1A both had four stimuli), but set sizes were randomized and
counterbalanced across trials. The two sets were also assigned
opposite reference angles: counter-clockwise for A and clock-
wise for B, or vice versa ( in a randomized and
counterbalanced order). Within each set, the reference orien-
tation remained the same, and, therefore, the same red-blue
reference arc stayed on the screen until the end of stimulus-
mask series. During the presentation of stimuli in the two sets,
observers were instructed not to give any explicit response to
the perceptual task, but to pay attention to the stimuli within a
set.

After the presentation of stimuli in both sets, observers
completed a two-interval, forced-choice (2IFC) task of confi-
dence comparison: they were asked to choose, between set A
and set B, the set with stimuli on which they were more con-
fident in performing the orientation-discrimination task.
Observers responded by pressing either “1” (for set A) or
“2” (for set B) on the computer keyboard. Immediately after
the response, observers completed one single trial of the
orientation-discrimination task. The stimulus for this trial

Fig. 1 Illustration of the trial procedures for (A) Experiment 1 and (B)
Experiment 2. (A) In Experiment 1, in each confidence-comparison trial,
two sets of one, two, four, or eight oriented Gabor stimuli were presented
in succession (a set size of four is shown above as an example). During
the presentation of stimuli in each set, observers viewed the stimuli with-
out giving any perceptual responses. Based on the confidence-choice
response, one stimulus randomly sampled from the chosen set would be
presented afterwards. Observers then performed the perceptual task on

this stimulus. (B) In Experiment 2, procedure was identical to that in
Experiment 1, except that observers performed the orientation-
discrimination task on every stimulus within a set immediately after it
had been presented. After the presentation of all stimuli for both sets,
participants completed the global confidence-comparison task by indicat-
ing the set in which they had greater confidence overall in performing the
perceptual task
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was randomly selected from the set that had just been chosen
to be “more confident” by the observer. No feedback was
given to the confidence-comparison task or the one trial of
orientation-discrimination task. Each observer completed
eight blocks of 32 trials, resulting in 64 confidence-
comparison responses for each of the four set sizes. After each
block, overall accuracy on the orientation-discrimination task
was given (as a percentage score) to the observer as a block
feedback.

There was a targeted performance level for each of the two
sets within each trial. Individual performance levels of the
stimuli within each set were determined by random sampling
around the targeted performance level of the set. With the
sampled performance level for each stimulus, we referred to
the observer’s psychometric function estimated based on the
calibration data to obtain the actual u value for the stimulus.
Here we report the targeted difficulty levels in terms of d’ for
the orientation-discrimination task.

Stimulus difficulty was determined based on the psycho-
metric curve estimated from the responses in the initial cali-
bration phase. Each stimulus had a targeted difficulty in d’
units, which was sampled from a normal distribution over
N(μ,σ2). In Experiment 1A, the two sets were assigned with
a fixed sampling standard deviation of σ=0.5, but a sampling
mean of either μ=1.5 or μ=1, which correspond to 77% or
69% accuracy, respectively, in a one-interval, two-choice dis-
crimination task for an unbiased observer. This resulted in
four types of confidence-comparison trials, namely,
μA=μB=1 for both sets, μA=μB=1.5 for both sets, μA=1 and
μB=1.5, and μA=1.5 and μB=1, with 32 trials for each type.
When the two sets had the same sampling mean difficulty
level, there was no objectively “correct” answer to the 2IFC
confidence-comparison task. Therefore, we focused on the
trials in which sets A and B had different sampling mean
difficulty. For each set size, there were 64 trials in which the
sampling mean d’ values were different between the two sets.

In each of Experiments 1B (N=13) and 1C (N=22), set A
and set B always had different samplingmean d’ values across
all 64 confidence-comparison trials, in which half (32 trials)
assigned a higher target d’ for set A. To make the confidence-
comparison task easier, we increased the difference in sam-
pling mean d’ values between the two sets and reduced the
sampling variance. In Experiment 1B, we used N(0.71, 0.32)
or N(1.52, 0.32), in which the mean d’ corresponded to 64%
and 78% accuracy in a one-interval, two-choice discrimina-
tion task for an unbiased observer. In Experiment 1C, we used
N(0.57, 0.41) and N(1.81, 0.41) (with corresponding accuracy
levels of 61% and 82% for an unbiased observer).

Experiment 1: Results

We defined a confidence choice as being correct if the partic-
ipant chose the set containing easier trials (i.e., the set with the

higher targeted perceptual performance). To quantify
metacognitive sensitivity in the confidence-choice task, we
computed the d’ (for a 2IFC task) by measuring hits (and
respectively false alarms) as being confident on the first inter-
val when that interval did contain (and respectively did not
contain) the set of easier trials. Overall, the confidence choice
d’ was significantly above zero (Fig. 2A, M = 0.531, SD =
0.498, 95% confidence interval (CI) = [0.390, 0.673]; one-
sample t-test against zero: t(49) = 7.539, p = 1e-9, Cohen’s
d = 1.066), indicating that participants could reliably identify
the set containing easier trials.

Set-size effect on metacognitive sensitivity In general, confi-
dence choice d’ increased as set size increased (Fig. 2B). To
quantify the effects for each observer, we defined the “set-size
effect” as the change in metacognitive sensitivity over set
sizes. For each observer, we measured the set-size effect by
computing the simple linear regression slope of metacognitive
sensitivity (measured in d’ units) against set size (in natural-
log units). A positive slope represents an increase in
metacognitive sensitivity with set size, as one would expect
if observers were able to integrate metacognitive signals over
multiple perceptual decisions.

Out of all 50 observers, the set-size effect was positive in
32 observers. The average set-size effect was significantly
different from zero (Fig. 2C, M = 0.106, SD = 0.264, 95%
CI = [0.111, 0.688]; t(49) = 2.839, p = 0.007, Cohen’s d =
0.40, Bayes Factor = 5.399, favoring the alternative). This
result still holds even after removing one potential outlier on
the positive side (set-size effect = 1.0504, Z score > 3.58; see
Online Supplementary Material for the statistics). Although
set-size effects of Experiments 1B and 1C appeared to be
smaller than that of Experiment 1A, which could be related
to the difference in set sizes used in respective experiments,
we found that set-size effects did not differ across
Experiments 1A, 1B, and 1C (one-way ANOVA, F(2, 47) =
0.178, p = 0.87; Bayes Factor = 0.177, favoring the null). We
have performed further analyses to verify that the set-size
effect was not correlated with local metacognitive sensitivity
(when set size = 1; see Online Supplementary Materials, Fig.
S1).

In summary, in this first Experiment, we found that ob-
servers were able to reliably choose the set that contained
easier trials. Most importantly, the performance in this glob-
al-confidence, forced-choice task improved as set size in-
creased, suggesting observers integrated confidence informa-
tion over multiple stimuli.

However, because observers made the confidence choice
before making a perceptual decision in Experiment 1, we
could not assess how individual stimuli within the sets might
have influenced the global confidence choice. In Experiment
2, we instructed observers to make the confidence choice after
they had made a perceptual decision on every stimulus in both
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sets. This would allow us to measure perceptual performance
across multiple decisions and examine the relationship be-
tween individual perceptual decisions and the global confi-
dence choice.

Experiment 2

Method

The general method, including the stimuli, apparatus, percep-
tual task, and global-confidence task were the same as
Experiment 1, except for the following.

Participants Twenty observers participated in the experiment.
Based on Experiment 1A, which used the same set sizes [1, 2,
4, 8] as Experiment 2 (see Procedure of main experiment
below), the effect size for the set-size effect in Experiment
1A was d = 0.757. So, at power = 0.90, alpha = 0.05, a one-
sample, one-tailed t-test requires a sample size of at least 17.
All observers were naive to the purpose of the experiment, and
had normal or correct-to-normal vision when they participated
in the experiments. Informed consent was obtained from all
participants. All experimental procedures were in compliance
with the Declaration of Helsinki.

Procedure of initial calibration Before the main experiment,
each observer went through the same initial calibration phase
with the identical procedure to that in Experiment 1, except
that there were exactly 60 calibration trials in each of the four
calibration blocks (240 trials in total), so that none of the four
interleaved staircases terminated before the end of the
calibration.

Procedure of main experiment Figure 1B illustrates the pro-
cedure of a sample confidence-comparison trial in Experiment
2. In each trial, we presented two sets of stimuli, first set A and

then set B. Each set was preceded by a prompt for 500 ms,
which indicated the set label and the set size (e.g., “A:4”), i.e.,
the number of stimuli to appear task on this stimulus. The
response keypress triggered the presentation of the second
stimulus, and the procedure repeated until the participant
had performed the orientation-discrimination task on all stim-
uli within the set. After Set A, the same procedure repeated for
the presentation and orientation-discrimination task for the
stimuli in Set B. There was a 500-ms interval between the
two sets.

After participants had viewed and completed the
orientation-discrimination task on all stimuli in both sets, they
were instructed to choose the set with stimuli on which they
were more confident in being able to correctly perform the
orientation-discrimination task, by pressing either “1” (for
set A) or “2” (for set B) on the computer keyboard.

Participants completed the whole experiment in two sepa-
rate sessions (maximum gap = 8 days), with a calibration
session followed by seven blocks of experimental trials (with
32 confidence-comparison trials per block) in each session.
The four set sizes (1, 2, 4, and 8) were randomly interleaved
within each block. In total, each participant made 448 confi-
dence comparisons (i.e., 112 comparisons on each set size)
over 3,360 perceptual decisions.

Stimulus difficulty of the orientation-discrimination task
for the first block of Experiment 2 was calibrated based on
the psychometric curve fitted from the initial calibration ses-
sion. Starting from the second block of Experiment 2, stimulus
difficulty was calibrated based on the expected performance
computed from the preceding 480 orientation-discrimination
trials. This allowed the calibration to closely follow changes in
perceptual sensitivity across responses (corresponding to d’
levels of 1.0 and 2.0). The two sets always had different target
accuracy levels. The target accuracy for individual stimuli
within the set was then defined as p=0.5+q/2, where q was
independently sampled from a beta distribution: Beta(10q,
10(1-q)). This procedure produces sampling distributions

Fig. 2 Results of Experiment 1. (A) Histogram of overall confidence-
choice d’ across observers. Solid horizontal line with notches shows the
95% confidence interval for the mean. (B) Change in confidence-choice
d’ as a function of set size across Experiments 1A, 1B, and 1C. Error bars

represent ± 1 standard error of the mean. (C) Histogram of set-size effects
across observers. Solid horizontal line with notches shows the 95% con-
fidence interval for the mean
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resembling two normal distributions N(1.0, 0.48) and N(2.0,
0.63) on d’, while avoiding negative d’ values.

Model comparison To further investigate the computational
processes underlying confidence integration, we conducted
two model-comparison analyses. In the first analysis, we
sought to identify the best summary statistics employed by
observers for confidence integration. In the second analysis,
we evaluated the position-specific weight strategy for integrat-
ing individual perceptual decisions for making a global-
confidence choice.

We used the same logistic-regression framework for
both analyses. Under this framework, we considered two
cues for individual perceptual decisions that an observer
could potentially use for making a global-confidence
choice. The first cue is an internal confidence estimate
for each perceptual decision, based on a standardized mea-
sure of stimulus strength. We standardized stimulus
strength based on individual perceptual sensitivity and bi-
as, such that the mean strength of the sensory sample was
set equal to a standardized form of the physical orientation
difference of the stimulus relative to the reference (see
Equation 4 in Online Supplementary Material for details
about the standardization). Because this cue is an estimate
based on the distance between the stimulus and the deci-
sion criterion (in units of d’), we denote it as DIST.

The second cue is the response speed for each perceptual
decision. We used the reciprocal of the response time for each
perceptual decision and denote this cue as RT. For each cue, we
computed the summary statistic across all perceptual decisions
within each set, and then took the difference between two sets as
a predictor of global confidence choices in a logistic regression.
We considered the following three regression models: DIST-on-
ly, RT-only, and DIST-and-RT. For the details of model formu-
lation, see Online Supplementary Material.

For the first analysis on summary statistics, we compared
three different summary statistic strategies, namely, mini-
mum, simple average, and maximum. The minimum and
maximum strategies refer, respectively, to taking the mini-
mum and maximum value across decisions within a set as the
set’s statistic. The simple-average strategy refers to taking
the arithmetic mean across the values within the set as the
set’s statistic. Combined with the three types of models
(DIST-only, RT-only, DIST-and-RT), this leads to nine
regressions.

For the second analysis, we considered six models, which
varied in terms of which cue to include (DIST only, RT only,
or both DIST and RT) and the position-specific weights (uni-
form or exponential weights) on the values from individual
perceptual decisions. Every model contained the intercept pa-
rameter in the logistic regression. Details for the formulation
of the weighting profile are presented in the Online
Supplementary Material.

For each model, we found the best-fitted parameters by
maximum-likelihood estimation. For each observer, we
computed the Bayesian Information Criterion (BIC) for
each of the six models as an approximation of –2 ×
log(model evidence). We then computed the overall evi-
dence for each model by taking the average model evi-
dence across observers. Finally, we derived the Bayes
Factor (as a ratio of model evidence between two models)
to compare the best model (the one with the highest av-
eraged model evidence) with all other models.

Experiment 2: Results

Set-size effect on metacognitive sensitivity Confidence-
choice d’ increased as set size increased (Fig. 3A). Using the
same definition for the set-size effect as in Experiment 1, we
found that 19 out of 20 observers had a positive set-size effect,
with the average significantly different from zero (M = 0.200,
SD = 0.132, 95% CI = [0.138, 0.262]; t(19) = 6.787, p = 2 ×
10-6, Cohen’s d = 1.518, Bayes Factor = 1 × 105, favoring the
alternative).

Retrospective versus prospective global confidence
Comparing the set-size effects between Experiments 1 (pro-
spective global confidence) and 2 (retrospective global confi-
dence), we found that set-size effect was significantly higher
when observers made the global-confidence choice retrospec-
tively than prospectively (because of the unequal sample sizes
and variances, we used the independent-samples Welch’s t-
test, t(59.004) = 2.579, p = .012, Cohen’s d = 0.608; Bayes
Factor = 1.585, slightly favoring the alternative).
Nevertheless, overall confidence choice d’ between the two
experiments appeared to be similar (Experiment 2:M = 0.505,
SD = 0.259, Welch’s t-test, t(56.180) = -0.152, p = .778;
Bayes Factor = 0.270, moderately favoring the null).

Position-specific weighting during confidence integration In
Experiment 2, each element within a set carried the same
information, on average, for the observer to make the global
confidence choice. Therefore, if the observer weighted the
elements optimally, global confidence should not depend on
the serial position of elements within a set.

To test this hypothesis, for each observer, we separately
fitted two logistic regression models, one using actual accura-
cy of each perceptual decision to predict confidence choice,
and the other using the reciprocal of response time (1/RT;
Noorani & Carpenter, 2016) for each perceptual decision to
predict confidence choice. In each logistic regression, we set
the position-specific evidence to be the independent variables,
so that each regression coefficient βwas fitted to the evidence
computed at each serial position within the set. This would
allow us to use the regression coefficients to quantify the
weights that the observer placed on specific positions within
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the set. Detailed formulation of the logistic regression model
can be found in the Online Supplementary Material.

We chose accuracy and RT because they are related to
perceptual confidence. For accuracy, it is directly related to
the global-confidence choice task, because observers were
asked to choose the set in which their perceptual-task perfor-
mance was better (i.e., their accuracy was higher). For RT,
previous studies have shown that it is related to confidence
judgments (e.g., Kiani et al., 2014).

Figure 3B shows the regression coefficients for each posi-
tion, separately for analyses based on accuracy (in orange) and
on response times (1/RTs, in light blue). Coefficients were
positive for the accuracy analysis, indicating metacognitive
sensitivity (i.e., participants chose the set with higher percep-
tual accuracy). In addition, as expected from studies showing
that response times are a good proxy for confidence (Kiani,
Corthell, & Shadlen, 2014), coefficients were also positive for
the analysis based on 1/RT (i.e., participants chose the set with
shorter RTs).

For an ideal confidence integrator, all weights should be
equal for a given set size, but for human observers, a large
magnitude of βi weight indicates that position i was contrib-
uting heavily to their inference of global confidence. In Fig.
3B, the accuracy-based analysis (orange lines) shows that no
specific positions were weighted more heavily than others.
However, the RTs-based analysis (blue lines) shows that ob-
servers assigned heavier weights to later positions within a set
for set sizes of 2 and larger. We conducted further analyses
and found that the weights were constant across set positions
for accuracy (all ps > 0.392, all Cohen’s ds < 0.20; all Bayes
Factors < 0.327, favoring the null) but heavier in later posi-
tions for RT (all ps < 0.05, all Cohen’s ds > 0.47, all Bayes
Factors > 1, favoring the alternative). For detailed statistics

and an additional analysis to rule out the possibility that such
RT recency effect is due to a generic response pattern, see the
Online Supplementary Material.

In summary, we found that global confidence judgment
was more influenced by the more recent RTs than by the
earlier ones. It should be clarified that, in the above position
analyses, we aimed at identifying potential statistical relation-
ships between serial positions of elements and global confi-
dence choices across trials. Our goal was not to assess whether
observers actually used accuracy or RT information in making
global-confidence choices. In order to examine the confidence
integration process, for example, assessing whether position-
weighted RTs of individual decisions could explain global
confidence choices, we conducted the following model-
comparison analyses.

Model comparison To examine further the computation un-
derlying global confidence across a set of perceptual trials, we
compared three possible summary statistics (minimum, sim-
ple average, and maximum) that could be used by observers.
Using a logistic-regression approach, we found that confi-
dence choices were better predicted by a simple averaging
strategy than a maximum or a minimum strategy over the set
(Table 1). This was true irrespective of whether global confi-
dence was predicted on the basis of stimulus strength (the
DIST-only model), response-speed (the RT model), or both
(the DIST-and-RT model).

The proportion of observers with the simple-average strat-
egy yielding the maximum likelihood was significantly above
chance (1/3 or 0.33) for all models. This suggests that the
summary statistics that observers used for global-confidence
integration was best described as simple averaging across
multiple perceptual decisions.

Fig. 3 Results of Experiment 2. (A) Changes in metacognitive
sensitivities with set size. Global metacognitive sensitivity as a function
of set size for participants. Open circles (light lines) represent results of
individual participants, filled circles (dark line) represent the means. The
set-size effect is the slope of the regression of metacognitive sensitivity
against set size (in log-units). (B) Weights for each position within a set to

favor the first set. Weights were extracted from logistic regression anal-
yses predicting the probability of confidence choice based on perceptual
accuracy (in orange) and the reciprocal of response time (in blue) for each
set size (1, 2, 4, and 8). Weights for the overall bias to choose systemat-
ically the first set are small and are shown in darker colors to the right of
each panel. Error bars represent 1 SEM
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Here, we did not consider summation as a possible sum-
mary statistic, which could produce different results than the
simple average when set sizes differed between the two com-
parison sets. As we matched set size between the two compar-
ison sets in the present study, summation and simple average
would produce the same results. Future studies can explore the
difference between averaging and summation by presenting
different set sizes in the two comparison sets.

In a subsequent analysis, we considered how observers
might put different weights on the different trials as a function
of their temporal positions in the sequence. We found that the
model evidence (ME) was the highest for a model featuring
uniform weights on DIST and exponential weights on RT
(Model 5; see Table 2). All Bayes Factors comparing Model
5 against the other models (BF5i = ME5 / MEi) provide mod-
erate or strong evidence in favor of Model 5, except for the
one against Model 3, which only provides weak evidence in
favor of Model 5. See Online Supplementary Material for
more detailed comparison.

For the best-fit model, the temporal weight parameter was
above zero on average (M = 1.272, SD = 3.941, 95% CI = [-
0.572, 3.117]), suggesting that observers could have weighted
later items heavier in general. Because the fitted parameter for
one observer appeared to be an outlier (over 4 standard devi-
ations above the mean; see Online Supplementary Material,
Fig. S3, for the full distribution of the fitted parameter values),

we performed the nonparametric Wilcoxon signed-rank test
and found that the median was significantly above zero (Z =
2.0533, signed-rank sum = 160, two-tailed p = 0.04).

Overall, the results frommodel comparison suggest that the
integration of confidence over multiple perceptual decisions is
best described with a model that includes two cues: one as the
average across local confidence estimates, the other as the
position-weighted promptness for individual decisions.

Discussion

Recent studies have suggested that confidence regarding our
current decision may be estimated by carrying over informa-
tion from past trials in the task (e.g., Aguilar-Lleyda et al.,
2021; Meyniel et al., 2015; Purcell & Kiani, 2016; Rahnev
et al., 2015). These studies thus hint at the notion of a global
confidence, which was inferred from the observers’ decisions
using computational modelling. In the present study, we ad-
dressed this issue more directly by asking observers to make
global-confidence judgments over sets of trials. By evaluating
metacognitive sensitivity across set sizes, we found that ob-
servers made better global-confidence judgments when more
information (i.e., more items) was available, suggesting that
the metacognitive system integrates confidence information
across multiple perceptual decisions. In the Online

Table 1 Log-likelihoods of the three summary statistics for each model, averaged across observers

Log-likelihoods averaged across observers (n=20)

Summary statistics

Minimum Simple average Maximum

Models DIST-only -276.38 (1/20) -268.02 (*17/20) -273.47 (2/20)

RT-only -271.32 (5/20) -268.38 (*14/20) -283.59 (1/20)

DIST-and-RT -258.78 (3/20) -250.88 (*16/20) -264.77 (1/20)

Parentheses indicate the number of observers (out of 20 for each model) with the specific summary statistic yielding the maximum likelihood. Asterisks
indicate the above-chance proportions among all 20 observers. Regardless of the model, simple average provides the best fit among the three summary
statistics across observers

Table 2 Results of comparing models with different cues and position
weights. The model featuring uniform weights on DIST and exponential
weights on RT (Model 5) has the highest model evidence among all

models. The Bayes Factors (BF5i) are all in favor of Model 5 (i.e., BF5i
> 1 for i = 1, 2, 3, 4, and 6)

Model DIST Factor RT factor log(Model evidence)
averaged across observers

BF5i (Bayes Factors for comparing the
best model (Model 5) against Model i)

1 uniform absent -274.12 2.36e+6

2 absent uniform -274.48 3.38e+6

3 uniform uniform -260.04 1.80

4 exponential uniform -262.16 15.01

5 uniform exponential -259.45 1

6 exponential exponential -261.70 9.48
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Supplementary Material, we also rule out the possibility that
the set-size effect on metacognitive sensitivity would be due
to the representation of confidence becoming more normal
(and thus better suited to sensitivity analysis) as set size in-
creases. Our analyses showed that although the fidelity of the
normality assumption indeed improved with set size, this was
not the cause of our results. Instead, the increase in
metacognitive sensitivity with set size was mediated by the
enhanced signal-to-noise ratio in the internal representation of
global evidence (see Figs. S4–S6 and Table S2 in Online
Supplementary Material).

Our results are also consistent with recent findings that
information from “local” confidence is used when generating
“global” estimates of performance (Rouault et al., 2019).
However, Rouault et al. (2019) did not find a significant set-
size effect (unless feedback was given following the local
perceptual decisions). There are multiple possible explana-
tions for this discrepancy with the present study. First, their
set sizes were larger on average, creating longer continuous
streaks than in the present study. Second, their easy and diffi-
cult trials were randomly interleaved. Observers could only
categorize trials into the sets based on a pre-trial cue. This
could create more noise in representing and storing local con-
fidence estimates compared with the present study, in which
easy and hard trials were always grouped and presented con-
secutively within the same set. Third, in Rouault et al., trials
with feedback and without feedback were interleaved, where-
as in the present study, no trial-by-trial feedback was provid-
ed. The presence of feedback could have led participants to
adopt a different integration strategy over all trials, which
could affect the without-feedback trials.

Our results also show that global confidence was influ-
enced by RTs from past decisions. Specifically, our findings
suggest a recency effect for RTs (i.e., greater influence from
RTs in more recent decisions), and in comparison, the influ-
ence from perceptual accuracy was uniform across serial po-
sitions. This may appear to be contrary to Rouault et al.’s
(2019) findings, as neither accuracy nor RT seemed to have
influenced global confidence choices. However, this could be
due to the fact that our analysis on accuracy and RT was
specific to the position at which each item was presented in
the set, and theirs was on the overall influence from average
accuracy and RT. While RTs could be partially accessible to
participants (e.g., Gorea et al., 2010) and are related to confi-
dence judgments (e.g., Baranski & Petrusic, 1994; Kiani et al.,
2014), the present study is, to our knowledge, the first to
identify a position-specific weighting of RT information dur-
ing confidence integration. If observers used RTs to estimate
global confidence, this explicit use would be more heavily
affected by memory limitations and could explain the RT
recency effect. Nevertheless, the observation that recent RTs
contributed more than early ones suggests that the confidence-
integration mechanism is not optimal. The benefits, if any, of

this overweighting of recent decisions for global confidence
remain to be explored.

The suboptimality of global confidence integration de-
scribed in the present study may require further investigation.
For instance, if memory limitations could explain the RT re-
cency effect, leading to suboptimal global confidence integra-
tion, then why would memory limitations not affect the posi-
tion weights on accuracy? We did not find such a recency
effect in the integration of sensory evidence either (i.e., the
finding that the best model weighs DIST uniformly). This
suggests that the degree of suboptimality may vary when ob-
servers integrate different types of evidence. Future studies
can explore this evidence-specific suboptimality in confidence
integration.

Finally, the present study demonstrates that confidence in-
tegration takes place for both prospective and retrospective
global-confidence judgments. The apparently stronger set-
size effect in retrospective judgments suggests that explicit
perceptual decisions made before global confidence judg-
ments could facilitate confidence integration. Interestingly,
despite this stronger set-size effect for retrospective global
confidence, the overall global-confidence sensitivity was sim-
ilar between retrospective and prospective conditions. This
contrasts with previous work showing that metacognitive sen-
sitivity in an anagram task was lower when confidence ratings
were given before responding to the task (Siedlecka et al.,
2016). However, we acknowledge that our study was not
originally designed to compare global retrospective and pro-
spective confidence in the same participants under the same
experimental conditions. Also, Experiments 1 and 2 differ in
terms of many other factors. In particular, the procedure in
Experiment 2 was more engaging, which could lead to better
confidence integration and thus a stronger set-size effect. As
the present study may not allow us to make a strong claim on
this issue, future studies can systematically examine the ef-
fects of retrospective/prospective judgments on confidence
integration. In general, one important avenue for future re-
search is to clarify the relations among local, global, retrospec-
tive, and prospective confidence judgments.

Supplementary Information The online version contains supplementary
material available at https://doi.org/10.3758/s13423-020-01869-7.
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