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Sparse recovery by reduced variance stochastic approximation

Anatoli Juditsky*,1 Andrei Kulunchakov2 Hlib Tsyntseus3,1

March 31, 2022

Abstract

In this paper, we discuss application of iterative Stochastic Optimization routines to the
problem of sparse signal recovery from noisy observation. Using Stochastic Mirror Descent
algorithm as a building block, we develop a multistage procedure for recovery of sparse
solutions to Stochastic Optimization problem under assumption of smoothness and quadratic
minoration on the expected objective. An interesting feature of the proposed algorithm is
linear convergence of the approximate solution during the preliminary phase of the routine
when the component of stochastic error in the gradient observation which is due to bad
initial approximation of the optimal solution is larger than the “ideal” asymptotic error
component owing to observation noise “at the optimal solution.” We also show how one can
straightforwardly enhance reliability of the corresponding solution by using Median-of-Means
like techniques.

We illustrate the performance of the proposed algorithms in application to classical prob-
lems of recovery of sparse and low rank signals in the generalized linear regression framework.
We show, under rather weak assumption on the regressor and noise distributions, how they
lead to parameter estimates which obey (up to factors which are logarithmic in problem
dimension and confidence level) the best known to us accuracy bounds.
Keywords: sparse recovery, stochastic approximation, robust estimation
2000 Math Subject Classification: 62G08, 62G35, 62J07, 90C15

1 Introduction

In this paper, we consider the Stochastic Optimization problem of the form

g∗ = min
x∈X

{
g(x) = E{G(x, ω)}

}
(1)

where X is a given convex and closed subset of a Euclidean space E, G : X×Ω→ R is a smooth
convex mapping, and E stands for the expectation with respect to unknown distribution of ω ∈ Ω
(we assume that the corresponding expectation exists for every x ∈ X). As it is usual in this
situation, we suppose that we have access to a stochastic “oracle” supplying “randomized”
information about g; we assume that the problem is solvable with the optimal solution x∗ which
is sparse (we consider a general notion of sparsity structure of x∗ as defined in Section 2.1 which
comprises “usual” sparsity, group sparsity, and low rank matrix structures as basic examples).
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Our interest in (1) is clearly motivated by statistical applications. Recently, different tech-
niques of estimation and selection under sparsity and low rank constraints gained a lot of at-
tention, in particular, in relation with the sparse linear regression problem in which unknown
s-sparse (i.e., with at most s nonvanishing components) vector x∗ ∈ Rn of regression coefficients
is to be recovered from the linear noisy observation

η = ΦTx∗ + σξ, (2)

where Φ ∈ Rn×N is the regression matrix, and ξ ∈ RN is zero-mean noise with unit covariance
matrix; we are typically interested in the situation where the problem dimension is large, i.e.
when n � N . Note that the problem of sparse recovery from observation (2) with random
regressors (columns of the regression matrix Φ) φi, i = 1, ..., N can be cast as Stochastic Opti-
mization. For instance, assuming that regressors φi and noises ξi, i = 1, ..., N , are identically
distributed, we may consider Stochastic Optimization problem

min
x∈X

{
g(x) = 1

2E{(η1 − φT1 x)2}
}

(3)

over s-sparse x ∈ X. There are essentially two approaches to solving (3). Note that observations
ηi and φi provide us with unbiased estimates G(x, ωi = [φi, ηi]) = 1

2‖ηi − φTi x‖22 of the problem
objective g(x). Therefore, one can build a Sample Average Approximation (SAA)

ĝ(x) =
1

N

N∑
i=1

G(x, ωi) = 1
2N ‖η − ΦTx‖22

of the objective g(x) of (3) and then solve the resulting Least Squares problem by a deterministic
optimization routine. A now standard approach to enhancing the sparsity of solutions is to use
iterative thresholding [7, 22, 26, 41]. When applied to the linear regression problem (3), this
technique amounts to using a gradient descent to minimize the Least Squares objective ĝ in
combination with thresholding of approximate solutions to enforce sparsity. Another approach
which refers to `1- and nuclear norm minimization allows to reduce problems of sparse or low
rank recovery to convex optimization. In particular, sparse recovery by Lasso and Dantzig
Selector has been extensively studied in the statistical literature [3, 12, 13, 14, 15, 16, 17, 19,
21, 28, 33, 44, 52, 54, 57], among others). For instance, the celebrated Lasso estimate x̂N,lasso

in the sparse linear regression problem is a solution to the `1-penalized Least Squares problem

x̂N,lasso ∈ Argmin
x

{
1

2N ‖η − ΦTx‖22 + λ‖x‖1
}

(4)

where λ ≥ 0 is the algorithm parameter. Several conditions which ensure recovery with “small
error” of any sparse or low rank signal using `1- and nuclear norm minimization are proposed.
In particular, recovery of any s-sparse (i.e., with at most s nonvanishing components) vector x∗
is possible with “small error” if the empirical regressor covariance matrix Σ̂ = 1

NΦΦT verifies
a certain restricted conditioning assumption, e.g., Restricted Eigenvalue (RE) [3] or Compat-
ibility condition [57]. The latter conditions very roughly mean that for all vectors z which
are “approximately sparse,” i.e., which are close to vectors with only s nonvanishing entries,
‖Σ̂z‖2 ≥ λ‖z‖2. The good news is that although these conditions are typically difficult to verify
for individual matrices Φ, they are satisfied for several families of random matrices, such as
Rademacher (with independent random ±1 entries) and Gaussian matrices, matrices uniformly
sampled from Fourier or Hadamard bases of Rn, etc. For instance, when columns φi of Φ are
sampled independently from normal distribution φi ∼ N (0,Σ) with covariance matrix Σ with
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bounded diagonal elements which satisfies κΣI � Σ (here I is the n × n-identity matrix),1

κΣ > 0, RE condition holds with high probability for s as large as O
(
NκΣ
ln[n]

)
[52].2

The Restricted Strong Convexity (RSC) condition, analogous to the RE or Compatibility
condition also ensure that iterative thresholding procedures converge linearly to an approximate
solution with accuracy which is similar to that of Lasso or Dantzig Selector estimation [22, 41]
in this case.

Another approach to solving (1) which refers to Stochastic Approximation (SA) may be
used whenever there is a “stochastic oracle” providing an unbiased stochastic observation of the
gradient∇g of the objective g of (1). For instance, note that the observable quantity∇G(x, ωi) =
φi(φ

T
i x − ηi) is an unbiased estimate of the gradient ∇g(x) of the objective of (3), and so an

iterative algorithm of Stochastic Approximation type can be used to build approximate solutions
to (3). In particular, different versions of Stochastic Approximation procedure were applied to
solve (3) under `1 and sparsity constraint. Recall, that we are interested in high-dimensional
problems, we are looking for bounds for recovery error which are “essentially independent”
(logarithmic, at most) in problem dimension n. This requirement rules out the use of standard
“Euclidean” Stochastic Approximation. Indeed, typical bounds for the expected inaccuracy
E{g(x̂N )}− g∗ of Stochastic Approximation contains the term proportional to σ2E{‖φ1‖22} and
thus proportional to n in the case of “dense” regressors with E{‖φ1‖22} = O(n). Therefore,
unless regressors φ are sparse (or possess a special structure, e.g., when φi are low rank matrices
in the case of low rank matrix recovery), standard Stochastic Approximation leads to accuracy
bounds for sparse recovery which are proportional to dimension n of the parameter vector [50].
In other words, our application calls for non-Euclidean Stochastic Approximation procedures,
such as Stochastic Mirror Descent algorithm [46].

In particular, [55, 56] study the properties of Stochastic Mirror Descent algorithm under
sub-Gaussian noise assumption and show that approximate solution x̂N after N iterations of

the method attains the bound g(x̂N )− g∗ = O
(
σ
√
s ln(n)/N

)
, often referred to as “slow rate”

of sparse recovery. In order to improve the error estimates of Stochastic Approximation one may
use multistage algorithm under strong or uniform convexity assumption [24, 29, 30]. However,
such assumptions do not hold in the problems such as sparse linear regression problem,3 where
they are replaced by Restricted Strong Convexity conditions. For instance, the authors of [2, 23]
develop a multistage procedure targeted at sparse recovery stochastic optimization problem (1)
based on SMD algorithm of [31, 47] under bounded regressor and sub-Gaussian noise assumption.
They show, for instance, that when applied to the sparse linear regression, the `2-error ‖x̂N−x∗‖2
of the approximate solution x̂N after N iterations of the proposed routine converges at the rate

O

(
σ
κΣ

√
s lnn
N

)
with high probability. While this “asymptotic” rate coincides with the best

1Here and in the sequel, we use notation A � B for n× n symmetric matrices A and B such that B −A � 0,
i.e. B −A is positive semidefinite.

2The reader acquainted with the compressive sensing theory will notice that the setting of the `1-recovery
problem considered in this paper is different from the s“tandard setting,” but is rather similar in spirit to that in
[1, 5, 8, 13, 17]. Although, unlike [1, 5, 8] we do not assume any special structure of x∗ apart from its sparsity, we
suppose random regressors to be independent of x∗, while in the “standard setting” one allows for the “worst case
x∗” which may depend on the particular realization of the matrix of regressors. Nevertheless, we do not know
any result stating that a recovery in the present setting is possible under “essentially less restrictive” assumptions
than those for the “standard” `1 recovery.

3More generally, strong convexity of the objective associated with smoothness is a feature of the Euclidean
setup. For instance, the conditioning of a smooth objective (the ratio of the Lipschitz constant of the gradient to
the constant of strong convexity) when measured with respect to the `1-norm cannot be less than n (the problem
dimension) [30].
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rate attainable by known to us algorithms for solving (3) the algorithm in [2, 23] requires at

least s2 ln[n]
κ2

Σ
SMD iterations per stage, implying that the method in question can be used only

if the number of nonvanishing entries in the parameter vector is O

(
κΣ

√
N

lnn

)
4 (recall that the

corresponding limit is O
(
NκΣ
ln[n]

)
for Lasso [52] and iterative thresholding procedures [22, 41]).

Our goal in the present paper is to provide a refined analysis of Stochastic Approximation
algorithms for computing sparse solutions to (1) exploiting a variance reduction scheme utilizing
in a special way smoothness of the problem objective.5 It allows to build a new accelerated
multistage Stochastic Approximation algorithm. To give a flavor of the results we present below,
we summarize the properties of the proposed procedure—Stochastic Mirror Descent for Sparse
Recovery (SMD-SR)—in the case of stochastic optimization problem (3) associated with sparse
linear regression estimation problem. Let us assume that regressors φi are a.s. bounded, i.e.,
‖φi‖∞ = O(1), the covariance matrix Σ = E{φ1φ

T
1 } of regressors satisfies Σ � κΣI; we suppose

that the noises σξi are zero-mean with E{ξ2
i } ≤ 1, and that we are given R < ∞ and x0 ∈ Rn

such that E{‖x0 − x∗‖21} ≤ R2.

• The SMD-SR algorithm is organized in stages. On the k-th stage of the method we run
Nk iterations of the Stochastic Mirror Descent recursion and then “sparsify” the obtained
approximate solution by zeroing out all but s entries of largest amplitudes.

• Stages of the algorithm are organized into two groups (phases). At the first (preliminary)

phase we perform a fixed number Nk = O
(
s lnn
κΣ

)
of SMD iterations per stage to guarantee

that the expected quadratic error E{‖ŷk − x∗‖21} of the sparse approximate solution ŷk
of the k-th stage is smaller than the expected error E{‖ŷk−1 − x∗‖21} of the previous
stage solution yk−1 by a fixed factor. Thus, the error of the approximate solution after
(total) N iterations decreases linearly with the exponent proportional to κΣ

s lnn . When the

expected quadratic error becomes O
(
σ2s2

κΣ

)
, we pass to the second (asymptotic) phase of

the method.

• During the stages of the asymptotic phase, the number of iterations per stage grows as
Nk = 2kN0 where k is the stage index, and the expected quadratic error decreases as

O
(
σ2s2 lnn
κ2

ΣN

)
where N is total iteration count.

It may appear surprising that a stochastic algorithm converges linearly during the preliminary
phase, when the component of the error due to the observation noise is small (for instance, it
converges linearly in the “noiseless” case, cf. [50]) eliminating fast the initial error; its rate
of convergence is similar to that of the deterministic gradient descent algorithm, when “full
gradient observation” ∇g(x) is available. On the other hand, in the asymptotic regime, the
procedure attains the rate which is equivalent to the best known rates in this setting, and under
the model assumptions which are close to the weakest known today [41, 52].

The paper is organized as follows. The analysis of the SMD-SR in the general setting is in
Section 2. We define the general problem setting and introduce key notions used in the paper
in Section 2.1. Then in Section 2.3 we reveal the multistage algorithm and study its basic
properties. Next, in Section 2.4 we show how sub-Gaussian confidence bounds for the error of

4That being said, [2], for instance, deals with nonsmooth stochastic optimization, so the scope of corresponding
algorithms is much larger than the framework of smooth problems considered in this paper.

5In hindsight, the underlying idea can be seen as a generalization of the variance reduction device in [4].
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approximate solutions can be obtained using an adopted analog of Median-of-Means approach.
Finally, in Section 3 we discuss the properties of the method and conditions in which it leads
to “small error” solution when applied to sparse linear regression and low rank linear matrix
recovery problems.

2 Sparse solutions to stochastic optimization problem

2.1 Problem statement

Let E be a finite-dimensional real vector (Euclidean) space. Consider a Stochastic Optimization
problem

min
x∈X

[E{G(x, ω)}] (5)

where X ⊂ E is a convex set with nonempty interior (a solid), ω is a random variable on a
probability space Ω with distribution P , and G : X × Ω → R. We suppose that the expected
objective

g(x) = E{G(x, ω)}

is finite for all x ∈ X and is convex and differentiable on X. Let ‖ · ‖ be a norm on E, and let
‖ · ‖∗ be the conjugate norm, i.e.,

‖s‖∗ = max
x
{〈s, x〉 : ‖x‖ ≤ 1}, s ∈ E.

We suppose that gradient ∇g(·) of g(·) is Lipschitz-continuous on X:

‖∇g(x′)−∇g(x)‖∗ ≤ L‖x− x′‖, ∀x, x′ ∈ X, (6)

that the problem is solvable with optimal value g∗ = minx∈X g(x). Furthermore, we suppose
that the optimal solution x∗ to the problem is unique, and that g(·) satisfies quadratic growth
condition on X with respect to the Euclidean norm ‖ · ‖2 [43], i.e., for all x ∈ X

g(x)− g∗ ≥ 1
2κ‖x− x∗‖

2
2 (7)

where ‖ · ‖2 is the Euclidean norm: ‖z‖2 = 〈z, z〉1/2. In what follows, we assume that we have at
our disposal a stochastic (gray box) oracle—a device which can generate ω ∼ P and compute,
for any x ∈ X a random unbiased estimation of ∇g(x). From now on we make the following
assumption about the structure of the gradient observation:

Assumption [S1]. G(·, ω) is differentiable on X for almost all ω ∈ Ω, and6

E{∇G(x, ω)} = ∇g(x) and E{‖∇G(x, ω)−∇g(x)︸ ︷︷ ︸
=:ζ(x,ω)

‖2∗} ≤ ς2(x), ∀x ∈ X.

Furthermore, there are 1 ≤ κ,κ′ <∞ and L ≤ ν <∞ such that the bound holds:

ς2(x) ≤ κν[g(x)− g∗ − 〈∇g(x∗), x− x∗〉] + κ′E{‖ζ(x∗, ω)‖2∗}︸ ︷︷ ︸
=:ς2∗

. (8)

6In what follows ∇G(·, ω) replaces notation ∇xG(·, ω) for the gradient of G w.r.t. the first argument.
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Remarks. Assumption S1 and, in particular, bound (8) are essential to the subsequent de-
velopments and certainly merit some comments. We postpone the corresponding discussion
to Section 3 where we present several examples of observation models in which this assump-
tion naturally holds. For now, let us consider a simple example of the Stochastic Optimization
problem (3) arising in sparse regression estimation where regressors φi are a.s. bounded, i.e.,
‖φi‖∞ ≤ r < ∞ with identity covariance matrix E{φ1φ

T
1 } = I, and noises σξi are zero-mean

with “small” variance. In the situation in question, the error ζ(x, ω) = ∇G(x, ω) − ∇g(x),
ω = [φ, ξ], of the stochastic oracle can be decomposed as in

ζ(x, ω) = [φφT − I](x− x∗)︸ ︷︷ ︸
=:ζ1(x,ω)

+ σξφ︸︷︷︸
=:ζ2(ω)

.

Note that the “variance” ς2
1 (x) of the first component satisfies

ς2
1 (x) = E{‖ζ1(x, ω)‖2∞} ≤ 2(r2 + 1)‖x− x∗‖22 ≤ 4(r2 + 1)(g(x)− g∗),

while the “variance” ς2
2 of the second,

ς2
2 = E{‖ζ2(ω)‖2∞} = σ2E{‖φ‖2∞} ≤ σ2r2,

does not depend on x. As a result, the bound

ς2(x) = E{‖ζ(x, ω)‖2∞} ≤ 4(r2 + 1)‖x− x∗‖22 + 2σ2r2

implies that in this case the stochastic gradient observation ∇G(x, ω) satisfies Assumption S1
with ς2

∗ = σ2r2, ν = r2 + 1, κ = 8 and κ′ = 2.
More generally, relation (8) is rather characteristic to the case of smooth stochastic ob-

servation. Indeed, let us consider the situation where the stochastic gradient G(·, ω) itself is
Lipschitz-continuous on X with a.s. bounded Lipschitz constant L(ω) with respect to the norm
‖ · ‖, L(ω) ≤ ν. In this case we have

ς2(x) = E
{
‖∇G(x, ω)−∇g(x)‖2∗

}
≤
(
E
{
‖∇G(x, ω)−∇G(x∗, ω)‖2∗

}1/2

+‖∇g(x)−∇g(x∗)‖∗ + E
{
‖∇G(x∗, ω)−∇g(x∗)‖2∗

}1/2
)2
.

However, due to the Lipschitz continuity of ∇G(·, ω)

G(x, ω)−G(x∗, ω) ≥ 〈∇G(x∗, ω), x− x∗〉+ (2ν)−1‖∇G(x, ω)−∇G(x∗, ω)‖2∗,

implying that

ς2(x) ≤
(

[2νE{G(x, ω)−G(x∗, ω)− 〈∇G(x∗, ω), x− x∗〉}]1/2

+ [2ν(g(x)− g(x∗)− 〈∇g(x∗), x− x∗〉)]1/2 + ς∗

)2

≤ 16ν[g(x)− g∗ − 〈∇g(x∗), x− x∗〉] + 2ς2
∗ .

Sparsity structure. In what follows we assume to be given a sparsity structure [32] on E—a
family P of projector mappings P = P 2 on E with associated nonnegative weights π(P ). For a
nonnegative real s we set

Ps = {P ∈ P : π(P ) ≤ s}.
Given s ≥ 0 we call x ∈ E s-sparse if there exists P ∈ Ps such that Px = x. We will make the
following standing assumption.
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Assumption [S2] The optimal solution x∗ to problem (5) is s-sparse.
Furthermore, given x ∈ X one can efficiently compute a “sparse approximation” of x—an

optimal solution xs = sparse(x) to the optimization problem

min ‖x− z‖2 over s-sparse z ∈ X. (9)

Moreover, for any s-sparse z ∈ E the norm ‖ · ‖ satisfies ‖z‖ ≤
√
s‖z‖2.

In what follows we refer to xs as “sparsification of x.” We are mainly interested in the
following “standard examples”:

1. “Vanilla” sparsity: in this case E = Rn with the standard inner product, P is comprised
of projectors on all coordinate subspaces of Rn, π(P ) = rank(P ), and ‖ · ‖ = ‖ · ‖1.

Assumption S2 clearly holds, for instance, when X is orthosymmetric, e.g., a ball of `p-
norm on Rn, 1 ≤ p ≤ ∞.

2. Group sparsity: E = Rn, and we partition the set {1, ..., n} of indices into K nonoverlap-
ping subsets I1, ..., IK , so that to every x ∈ Rn we associate blocks xk with corresponding
indices in Ik, k = 1, ...,K. Now P is comprised of projectors P = PI onto subspaces
EI = {[x1, ..., xK ] ∈ Rn : xk = 0 ∀k /∈ I} associated with subsets I of the index set
{1, ...,K}. We set π(PI) = cardI, and define ‖x‖ =

∑K
k=1 ‖xk‖2—block `1/`2-norm.

Same as above, Assumption S2 holds in this case when X is “block-symmetric,” for in-
stance, is a ball of block norm ‖ · ‖.

3. Low rank sparsity structure: in this example E = Rp×q with, for the sake of definiteness,
p ≥ q, and the Frobenius inner product. Here P is the set of mappings P (x) = P`xPr
where P` and Pr are, respectively, q × q and p× p orthoprojectors, and ‖ · ‖ is the nuclear
norm ‖x‖ =

∑q
i=1 σi(x) where σ1(x) ≥ σ2(x) ≥ ... ≥ σq(x) are singular values of x.

In this case Assumption S2 holds due to the Eckart–Young approximation theorem, it

suffices that X is a ball of a Schatten norm ‖x‖r = (
∑q

i=1 σ
r
i (x))

1/r
, 1 ≤ r ≤ ∞.

Our objective is to build approximate solutions x̂N to problem (5) utilizing N queries to the
stochastic oracle. We quantify the performance of such solutions on the class X = X (X,L, ..., P, s)
of Sparse Stochastic Optimization problems (5) described in the beginning of this section satisfy-
ing Assumptions S1 and S2, with domain X, by the following worst-case over X risk measures:

• Recovery risks: maximal over X expected squared error

Risk|·|(x̂|X ) = sup
X

E{|x̂− x∗|2}1/2

where | · | stands for ‖ · ‖2- or ‖ · ‖-norm, and ε-risk of recovery—the smallest maximal over
X radius of (1− ε)-confidence ball of norm | · | centered at x̂:

Risk|·|,ε(x̂|X ) = inf

{
r : sup

X
Prob{|x̂− x∗| ≥ r} ≤ ε

}
• Prediction risks: maximal over X expected suboptimality

Riskg(x̂|X ) = sup
X

E{g(x̂)} − g∗,

of x̂ and the smallest maximal over X (1− ε)-confidence interval

Riskg,ε(x̂|X ) = inf

{
r : sup

X
Prob{g(x̂)− g∗ ≥ r} ≤ ε

}
. (10)

7



In what follows, we use a generic notation c and C for absolute constants; notation a . b means
that the ratio a/b is bounded by an absolute constant.

2.2 Stochastic Mirror Descent algorithm

Notation and definitions. Let ϑ : E → R be a continuously differentiable convex function
which is strongly convex with respect to the norm ‖ · ‖, i.e.,

〈∇ϑ(x)−∇ϑ(x′), x− x′〉 ≥ ‖x− x′‖2, ∀x, x′ ∈ E.

From now on, w.l.o.g. we assume that ϑ(x) ≥ ϑ(0) = 0. We say that Θ is the constant of
quadratic growth of ϑ(·) if

∀x ∈ E ϑ(x) ≤ Θ‖x‖2.

Clearly, Θ ≥ 1
2 . If, in addition, Θ is “not too large,” and for any x ∈ X, a ∈ E and β > 0 a high

accuracy solution to the minimization problem

min
z∈X
{〈a, z〉+ βϑ(z − x)}

can be easily computed, following [29, 30, 45, 49] we say that distance-generating function (d.-
g.f.) ϑ is “prox-friendly.” We present choices of prox-friendly d.-g.f.’s relative to the norm used
in application sections.

We also utilize associated Bregman divergence

Vx0(x, z) = ϑ(z − x0)− ϑ(x− x0)− 〈∇ϑ(x− x0), z − x〉, ∀ z, x, x0 ∈ X.

For Q ∈ Rp×q we denote
‖Q‖∞ = max

ij
|[Q]ij |;

for symmetric positive-definite Q ∈ Rn×n and x ∈ Rn we denote

‖x‖Q =
√
xTQx.

Stochastic Mirror Descent algorithm. For x, x0 ∈ X, u ∈ E, and β > 0 consider the
proximal mapping

Proxβ(u, x;x0) := argminz∈X
{
〈u, z〉+ βVx0(x, z)

}
= argminz∈X

{
〈u− β〈∇ϑ(x− x0), z〉+ βϑ(z − x0)

}
. (11)

For i = 1, 2, . . . , consider Stochastic Mirror Descent recursion, cf. [29, 36, 45],

xi = Proxβi−1
(∇G(xi−1, ωi), xi−1;x0), x0 ∈ X, (12)

Here βi > 0, i = 0, 1, . . . , is a stepsize parameter to be defined later, and ω1, ω2, . . . are inde-
pendent identically distributed (i.i.d.) realizations of random variable ω, corresponding to the
oracle queries at each step of the algorithm.

The approximate solution to problem (5) after N iterations is defined as weighted average

x̂N =

[
N∑
i=1

β−1
i−1

]−1 N∑
i=1

β−1
i−1xi. (13)

The next result describes some useful properties of the recursion (12).
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Proposition 2.1 Suppose that SMD algorithm is applied to problem (5) in the situation de-
scribed in this section. We assume that Assumption S1 holds and that initial condition x0 ∈ X
is independent of ωi, i = 1, 2, ... and such that E{‖x0 − x∗‖2} ≤ R2; we use constant stepsizes

βi ≡ β ≥ 2κν, i = 1, 2, ...,m.

Then approximate solution x̂m = 1
m

∑m
i=1 xi after m steps of the algorithm satisfies

E{g(x̂m)} − g∗ ≤
2R2

m

(
Θβ +

κν2

2β

)
+

2κ′ς2
∗

β
. (14)

2.3 Multistage SMD algorithm

We assume to be given R < ∞ and x0 ∈ X such that ‖x∗ − x0‖ ≤ R, along with problem
parameters κ,κ′, ν, ς2

∗ , κ and an upper bound s̄ for signal sparsity. We are using the Stochastic
Mirror Descent algorithm and apply the multistage modification of [27, 30] to improve its accu-
racy bounds. The proposed Stochastic Mirror Descent algorithm for Sparse Recovery (SMD-SR)
works in stages—runs of the Stochastic Mirror Descent algorithm followed by subsequent “spar-
sification” of the approximate solution delivered by the SMD. The stages are split into two
groups—phases—corresponding to two different regimes of the method. This organization of
the algorithm allows to treat differently two components in the bound (14) for the error of the
Stochastic Mirror Descent algorithm.

During the first preliminary phase of the algorithm, the first term in the right-hand side of
(14) is dominant. This term is proportional to the bound R2 on the expected squared `1-norm of
the error of the initial solution, and decreases as 1/m where m is the iteration count. During the
stages of the preliminary phase, the stepsize parameter β and the number of iterations per stage
are set constant in such a way that the bound for the expected squared error of the approximate
solution decreases by a constant factor at the end of the stage. Therefore, during this phase,
the error of approximate solution converges linearly as a function of the total number of calls to
stochastic oracle.

Preliminary phase terminates when the first term in the error bound (14) becomes dominated
with the second, independent of the initial error of the algorithm. During the second asymptotic
phase of the method, the choice of the stepsize parameter and the length of the stage are
“standard” for multistage Stochastic Mirror Descent (cf., e.g., [30]) and the method converges
sublinearly, with the “standard” rate O(1/N) where N is the total number of oracle calls.

Algorithm 1 [SMD-SR]

1. Preliminary phase

Initialization: Set y0 = x0 ∈ X, R0 = R,

β0 = 2κν, m0 =
⌈
16κ−1s̄(8Θκ + 1)ν

⌉
(15)

(here dae stands for the smallest integer greater or equal to a). Put

K =

⌈
ln2

(
R2

0κνκ
32ς2
∗ s̄κ′

)⌉
and run

K = min

{⌊
N

m0

⌋
,K

}
9



stages of the preliminary phase (here bac stands for the “usual” integer part – the
largest integer less or equal to a).

Stage k = 1, ...,K: Compute approximate solution x̂m0(yk−1, β0) after m0 iterations of
SMD algorithm with constant stepsize parameter β0, corresponding to the initial
condition x0 = yk−1. Then define yk as “s-sparsification” of x̂m0(yk−1, β0), i.e.,
yk = sparse(x̂m0(yk−1, β0)).

Output: define ŷ(1) = yK and x̂(1) = x̂m0(yK−1, β) as approximate solutions at the end
of the phase.

2. Set M = N −m0K and

mk =

⌈
512

s̄Θνκ
κ

2k
⌉
, k = 1, ...

If m1 > M terminate and output ŷN = ŷ(1) and x̂N = x̂(1) as approximate solutions by
the procedure; otherwise, continue with stages of the asymptotic phase.

Asymptotic phase

Initialization: Set

K ′ = max

{
k :

k∑
i=1

mi ≤M

}
,

y′0 = ŷ(1), and βk = 2kνκ, k = 1, ...,K ′.

Stage k = 1, ...,K ′: Compute x̂mk(y′k−1, βk); same as above, define y′k = sparse(x̂mk(y′k−1, βk)).

Output: After K ′ stages, output ŷN = y′K′ and x̂N = x̂mK′ (y
′
K′−1, βK′).

Properties of the proposed procedure are summarized in the following statement.

Theorem 2.1 In the situation of this section, suppose that N ≥ m0 so at least one preliminary
stage of Algorithm 1 is completed. Then approximate solutions x̂N and ŷN produced by the
algorithm satisfy

Riskg(x̂N |X ) ≤ κR2

s̄
exp

{
− cNκ

Θκs̄ν

}
+ C

ς2
∗ s̄κ′Θ
κN

, (16)

Risk‖·‖(ŷN |X ) ≤
√

2sRisk‖·‖2(ŷN |X ) ≤
√

8sRisk‖·‖2(x̂N |X )

. R exp

{
− cNκ

Θκs̄ν

}
+
ς∗s̄

κ

√
Θκ′
N

. (17)

2.4 Enhancing the reliability of SMD-SR solutions

In this section, our objective is to build approximate solutions to problem (5) utilizing Algorithm
1 which obey “sub-Gaussian type” bounds on their ε-risks. Note that bounds (16) and (17) of
Theorem 2.1 do allow only for Chebyshev-type bounds for risks of ŷN and x̂N . Nevertheless,
their confidence can be easily improved by applying, for instance, an adapted version of “median-
of-means” estimate [42, 46].
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Reliable recovery utilizing geometric median of SMD-SR solutions. Suppose that
available sample of length N can be split into L independent samples of length M = N/L
(for the sake of simplicity let us assume that N is a multiple of L). We run Algorithm 1 on

each subsample thus obtaining L independent recoveries x̂
(1)
M , ..., x̂

(L)
M and compute “enhanced

solutions” using an aggregation procedure of geometric median-type. Note that we are in the

situation where Theorem 2.1 applies, meaning that approximate solutions x̂
(1)
M , ..., x̂

(L)
M satisfy

∀` E{g(x̂
(`)
M )} − g∗ ≤ τ2

M :=
κR2

s̄
exp

{
− cMκ

Θκs̄ν

}
+ C

ς2
∗ s̄κ′Θ
κM

, (18)

and so

∀` E{‖x̂(`)
M − x∗‖

2
2} ≤ θ2

M :=
2

κ
τ2
M .

R2

s̄
exp

{
− cMκ

Θκs̄ν

}
+

Θκ′ς2
∗ s̄

κ2M
. (19)

We are to select among x̂
(`)
M the solution which attains similar bounds “reliably.”

1. The first reliable solution x̂N,1−ε of x∗ is a “pure” geometric median of x̂
(1)
M , ..., x̂

(L)
M : we

put

x̂N,1−ε ∈ Argmin
x

L∑
`=1

‖x− x̂(`)
M ‖2, (20)

and then define ŷN,1−ε = sparse(x̂N,1−ε).
7

Computing reliable solutions x̂N,1−ε and ŷN,1−ε as optimal solutions to (20) amounts to
solving a nontrivial optimization problem. A simpler reliable estimation can be computed
by replacing the geometric median x̂N,1−ε by its “empirical counterparts” (note that, num-
ber L of solutions to be aggregated is not large—it is typically order of ln[1/ε]).

2. We can replace x̂N,1−ε with

x̂′N,1−ε ∈ Argmin
x∈{x̂(1)

M ,...,x̂
(L)
M }

L∑
`=1

‖x− x̂(`)
M ‖2

and compute its sparse approximation ŷ′N,1−ε = sparse(x̂′N,1−ε).

3. Another reliable solution (with slightly better guarantees) was proposed in [25]. Let i ∈
{1, ..., L}, we set

rij = ‖x̂(i)
M − x̂

(j)
M ‖2

and denote ri(1) ≤ r
i
(2) ≤ ... ≤ r

i
(L−1) corresponding order statistics (i.e., ri·’s sorted in the

increasing order). We define reliable solution x̂′′N,1−ε = x̂
(̂i)
M where

î ∈ Argmin
i∈{1,...,L}

rieL/2d (21)

(here ead= bac+1 stands for the smallest integer strictly greater than a), and put ŷ′′N,1−ε =
sparse(x̂′′N,1−ε).

7Reliable solution we consider here explicitly depend on the confidence level; for instance, parameter L in the
definition (20) of x̂N,1−ε will be chosen depending on ε. Hence, the presence of the index 1− ε in the notation of
these estimates.
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Theorem 2.2 Let ε ∈ (0, 14 ], and let xN (resp. yN ) be one of reliable solutions x̂N,1−ε, x̂
′
N,1−ε

and x̂′′N,1−ε (resp., ŷN,1−ε, ŷ
′
N,1−ε and ŷ′′N,1−ε) described above using L = dα ln[1/ε]e8 independent

approximate solutions x̂
(1)
M , ..., x̂

(L)
M by Algorithm 1. When N ≥ Lm0 we have

Risk‖·‖,ε(yN |X ) ≤
√

2sRisk‖·‖2,ε(yN |X ) ≤ 2
√

2sRisk‖·‖2,ε(xN |X )

. R exp

{
− cNκ

Θκs̄ν ln[1/ε]

}
+
ς∗s̄

κ

√
Θκ′ ln[1/ε]

N
. (22)

Remark. Notice that the term ln[1/ε] enters the bound (22) as a multiplier which is typical for
accuracy estimates of solutions which relies upon median to enhance confidence; at the moment,
we do not know if this dependence on reliability tolerance parameter may be improved.

Reliable solution aggregation. Let us assume that two independent observation samples
of lengths N and K are available. In the present approach, we use the first sample to compute,
same as in the construction presented above, L independent approximate SMD-SR solutions

x̂
(`)
M , ` = 1, ..., L, M = N/L. Then we “aggregate” x̂

(1)
M , ..., x̂

(L)
M —select the best of them in terms

of the objective value g(x̂
(`)
M ) by computing reliable estimations of differences g(x̂

(i)
M ) − g(x̂

(j)
M )

using observations of the second subsample.

The proposed procedure for reliable selection of the “best” solution x̂
(`)
M is as follows.

Algorithm 2 [Reliable aggregation]

Initialization: Algorithm parameters are ε ∈ (0, 12 ], L′ ∈ Z+ and m = K/L′ (for the
sake of simplicity we assume, as usual, that K = mL′). We assume to be given L points

x̂
(1)
M , ..., x̂

(L)
M (approximate solution of the first step).

We compute x̂′′N,1−ε = x̂
(̂i)
M the reliable solution as defined in (21) and denote Î = {i1, ..., ieL/2d},

the set of indices of eL/2d closest to x̂′′N,1−ε in the Euclidean norm points among x̂
(1)
M , ..., x̂

(L)
M .

Comparison procedure: We split the (second) sample ωK into L′ independent subsamples
ω`, ` = 1, ..., L′ of size m. For all i ∈ Î we compute the index

v̂i = max
j∈Î, j 6=i

{
median

`
[v̂`ji]− ρij

}
where

v̂`ji =
1

m

m∑
k=1

〈
∇G(x̂

(j)
M + tk(x̂

(i)
M − x̂

(j)
M ), ω`k), x̂

(i)
M − x̂

(j)
M

〉
, ` = 1, ..., L′,

are estimates of vji = g(x̂
(i)
M )− g(x̂

(j)
M ), tk = 2k−1

2m , k = 1, ...,m, and coefficients ρij > 0 to

be defined depend on rij = ‖x̂(i)
M − x̂

(j)
M ‖2.

• Output: We say that x
(i)
M is admissible if v̂i ≤ 0. When the set of admissible x̂

(i)
M ’s is

nonempty we define the procedure output xN+K,1−ε as one of admissible x̂
(i)
M ’s, and define

xN+K,1−ε = x̂
(1)
M otherwise.

Now, consider the following (cf. Assumption S1)

8The exact value of the numeric constant α is specific for each construction, and can be retrieved from the
proof of the theorem.
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Assumption [S3]. There are 1 ≤ χ, χ′ <∞ such that for any x ∈ X and z ∈ E the following
bound holds:

E{〈ζ(x, ω), z〉2} ≤ ‖z‖22[χL2(g(x)− g∗) + χ′ς2
∗ ] (23)

where L2 is the Lipschitz constant of the gradient ∇g of g with respect to the Euclidean norm,

‖∇g(x′)−∇g(x′′)‖2 ≤ L2‖x′ − x′′‖2, ∀x′, x′′ ∈ X.

Let now X be the class of Sparse Stochastic Optimization problems as described in Section 2.1
satisfying Assumptions S1–S3, with domain X. Assume that risk Riskg,ε(·|X ) is defined as in
(10) with X replaced with X .

Theorem 2.3 Let Assumption S3 hold, and let τM and θM be as in (18) and (19) respectively.
Further, in the situation of this section, let ε ∈ (0, 12 ], L = dα ln[1/ε]e for large enough α, and

let xN+K,1−ε be an approximate solution by Algorithm 2 in which we set L′ ≥
⌈
7 ln[2/ε]

⌉
and

ρij = 2rij

√
L2χ

m
(γ(rij) + τM ) + 2rijς∗

√
χ′

m

where

γ(r) =

([
4r

√
χL2

m
+ τM

]2
+ 4rζ∗

√
χ′

m

)1/2

. (24)

Then
Riskg,ε(xN+K,1−ε|X ) ≤ γ̄2 := γ2(8θM ),

In particular, when K = mL′ ≥ cmax
{
χL2 ln[1/ε]

κ , Nχ
′

Θκ′s̄

}
for an appropriate absolute c > 0, one

has

Riskg,ε(xN+K,1−ε|X ) .
κR2

s̄
exp

{
− cNκ

Θκs̄ν ln[1/ε]

}
+
ς2
∗ s̄Θκ′ ln[1/ε]

κN
.

3 Applications

3.1 Sparse generalized linear regression by stochastic approximation

Let us consider the problem of recovery of a sparse signal x∗ ∈ Rn, n ≥ 3, from independent
and identically distributed observations

ηi = u(φTi x∗) + σξi, i = 1, 2, ..., N, (25)

where “activation” u : R → R, φi ∈ Rn and ξi ∈ R are mutually independent and such that
E{φiφTi } = Σ, κΣI � Σ, and ‖Σ‖∞ ≤ υ, with known κΣ > 0 and υ;9 we also assume that
E{ξi} = 0 and E{ξ2

i } ≤ 1.
We suppose that x∗ is s-sparse and that we are given a convex and closed subset X of Rn

(e.g., a large enough ball of `1- or `2-norm centered at the origin) such that x∗ ∈ X, along with
R <∞ and x0 ∈ X such that ‖x∗ − x0‖1 ≤ R. Furthermore, the mapping u(·) is assumed to be
known, strongly monotone and Lipschitz continuous, i.e., for some 0 < ` ≤ ` and all t ≥ t′

`(t− t′) ≤ u(t)− u(t′) ≤ `(t− t′). (26)

9Recall that for a matrix Q we denote ‖Q‖∞ = maxij |[Q]ij |.
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We are about to apply Stochastic Optimization approach described in Section 2. To this
end, let v be the primitive of u, i.e., v′(t) = u(t), and let us consider the Stochastic Optimization
problem

min
x∈X

g(x) = 1
2E
{
v(φTx)− φTxη︸ ︷︷ ︸

=:G(x,ω=[φ,η])

} . (27)

Note that x∗ is the unique optimal solution to the above problem. Indeed, observe that
∇G(x, ω) = φ(u(φTx)− η) and Eξ{η} = u(φTx∗). We have ∇g(x∗) = 0; furthermore,

g(x)− g(x∗) =

∫ 1

0
∇g(x∗ + t(x− x∗))T (x− x∗)dt

=

∫ 1

0
E
{
φ[u(φT (x∗ + t(x− x∗))− u(φTx∗)]

}T
(x− x∗)dt

[by (26)] ≥
∫ 1

0
`E
{

[φT (x− x∗)]2
}
tdt = 1

2`‖x− x∗‖
2
Σ ≥ 1

2`κΣ‖x− x∗‖22,

and we conclude that g is quadratically minorated with parameter κ = `κΣ.
We set ‖ · ‖ = ‖ · ‖1 with ‖ · ‖∗ = ‖ · ‖∞, and we use “`1-proximal setup” of the SMD-SR

algorithm with quadratically growing for n > 2 distance-generating function (cf. [49, Theorem
2.1])

ϑ(x) = 1
2e ln(n)n(p−1)(2−p)/p‖x‖2p, p = 1 +

1

lnn
,

the corresponding Θ satisfying Θ ≤ 1
2e

2 lnn.
Note that, due to (26), for all z ∈ Rn such that ‖z‖1 ≤ 1

|zT (∇g(x)−∇g(x′))| =
∣∣E{φT z(u(φTx)− u(φTx′))

}∣∣ ≤ `E{|φT z| |φT (x− x′)|}

≤ `E{(φT z)2}1/2E
{

(φT (x− x′))2
}1/2 ≤ `υ1/2‖x− x′‖Σ,

i.e., ‖∇g(x)−∇g(x′)‖∞ ≤ `υ1/2‖x− x′‖Σ. Thus,

ς(x) = E
{
‖∇G(x, ω)−∇g(x)‖2∞

}1/2 ≤ E
{

[‖φ(u(φTx)− u(φTx∗))−∇g(x)‖∞ + ‖φξ‖∞]2
}1/2

≤ `E
{
‖φ‖2∞(φT (x− x∗))2

}1/2
+ `υ1/2‖x− x′‖Σ + νσ

where ν = E{‖φ‖2∞}1/2. In other words, Assumption S1 holds whenever

ς2(x) ≤
(
`E
{
‖φ‖2∞(φT (x− x∗))2

}1/2
+ `υ1/2‖x− x′‖Σ + νσ

)2
≤ κν(g(x)− g∗) + κ′ς2

∗ (28)

which is the case if, for instance,

`
2
E
{
‖φ‖2∞(φT (x− x∗))2

}
. ν`‖x− x′‖2Σ. (29)

and ς∗ satisfies ς2
∗ ≥ ν2σ2.
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Remark. In the special case of u(t) = t, one has

g(x) = E
{

1
2(φTx)2 − φTxη︸ ︷︷ ︸

=G(x,ω)

}
= 1

2E
{

[φT (x∗ − x)]2 − (φTx∗)
2
}

= 1
2(x− x∗)TΣ(x− x∗)− 1

2x
T
∗ Σx∗ = 1

2‖x− x∗‖
2
Σ − 1

2‖x∗‖
2
Σ

with ∇g(x) = Σ(x− x∗) = E
{
φφT (x− x∗)− σξφ︸ ︷︷ ︸

=:∇G(x,ω)

}
. In this case,

ζ(x, ω) = ∇G(x, ω)−∇g(x) = [φφT − Σ](x− x∗)− σξφ,

and
ς2(x) = E

{
‖[φφT − Σ](x− x∗)− σξφ‖2∞

}
.

In this situation, Assumption S1 simplifies to

E
{
‖[φφT − Σ](x− x∗)− σξφ‖2∞

}
≤ 1

2κν‖x− x∗‖
2
Σ + κ′ς2

∗

which is satisfied with ς2
∗ = ν2σ2 whenever E

{
‖φ‖2∞(φT (x− x∗))2

}
. ν‖x− x′‖2Σ.

Our present goal is to describe the properties of approximate solutions by Algorithm 1 when
applied to the optimization problem in (27). We assume that the problem parameters—values
κ, ν, κΣ, σ

2 and an upper bound s̄ on sparsity of x∗—are known. We consider the following
performance characteristics of approximate solutions x̂—analogues of risks measures defined in
Section 2.1—in our present situation:

• Recovery risks: maximal over x∗ ∈ X expected squared error

Risk|·|(x̂|X) = sup
x∗∈X

E{|x̂− x∗|2}1/2 (30)

where |·| stands for ‖·‖2- or ‖·‖-norm (which is ‖·‖1-norm in the sparse regression setting),
and ε-risk of recovery—the smallest maximal over x∗ ∈ X radius of (1− ε)-confidence ball
of norm | · | centered at x̂:

Risk|·|,ε(x̂|X) = inf

{
r : sup

x∗∈X
Prob{|x̂− x∗| ≥ r} ≤ ε

}
(31)

• Prediction risks: maximal over x∗ ∈ X expected suboptimality

Riskg(x̂|X) = sup
x∗∈X

E{g(x̂)} − g∗, (32)

of x̂ and the smallest maximal over x∗ ∈ X (1− ε)-confidence interval

Riskg,ε(x̂|X) = inf

{
r : sup

x∗∈X
Prob{g(x̂)− g∗ ≥ r} ≤ ε

}
. (33)

The following statement is a straightforward corollary of Theorems 2.1 and 2.2.

Proposition 3.1 Suppose that (28) holds.
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(i) Let the sample size N satisfy

N ≥ m0 =

⌈
16νs̄

`κΣ
(4e2κ ln[n] + 1)

⌉
so at least one preliminary stage of Algorithm 1 is completed. Then approximate solutions x̂N
and ŷN produced by the algorithm satisfy

Risk‖·‖(ŷN |X) ≤ 2
√

2sRisk‖·‖2(x̂N |X) . R exp

{
− cN`κΣ

κs̄ν lnn

}
+

σs̄

`κΣ

√
ν lnn

N
(34)

Riskg(x̂N |X) .
`κΣR

2

s̄
exp

{
− cN`κΣ

κs̄ν lnn

}
+
νσ2s̄κ′ lnn
`κΣN

.

(ii) Furthermore, when observation size satisfies N ≥ αm0 ln[1/ε] with large enough absolute
α > 0, 1− ε reliable solutions ŷN,1−ε and x̂N,1−ε as defined in Section 2.4 satisfy

Risk‖·‖,ε(ŷN,1−ε|X) ≤
√

2sRisk‖·‖2,ε(ŷN,1−ε|X) ≤ 2
√

2sRisk‖·‖2,ε(x̂N,1−ε|X)

. R exp

{
− cN`κΣ

κs̄ν ln[1/ε] lnn

}
+

σs̄

`κΣ

√
ν ln[1/ε] lnn

N
, (35)

with x̂′N,1−ε, x̂
′′
N,1−ε and ŷ′N,1−ε, ŷ

′′
N,1−ε verifying similar bounds.

Let σ1(Σ) be the principal eigenvalue (the spectral norm) of Σ. Then, for all z such that‖z‖2 = 1
one has

zT (∇g(x)−∇g(x′)) = E
{
zTφ(u(φTx)− u(φTx′))

}
≤ `E

{
|zTφ| |φT (x− x′)|

}
≤ `E{(φT z)2}1/2E

{
(φT (x− x′))2

}1/2 ≤ `σ1(Σ)‖x− x′‖2,
implying that the Lipschitz constant of ∇g with respect to the Euclidean norm can be set as
L2 = `σ1(Σ). Thus, Assumption S3 holds when for some 1 ≤ χ <∞ and all x ∈ X, z ∈ Rn

`−1`E
{(
zTφ

)2(
φT (x− x∗)

)2} ≤ 1
2χ‖z‖

2
2σ1(Σ)‖x− x∗‖2Σ. (36)

Indeed, in this case one has for all z ∈ Rn:

E
{

(zT ζ(x, ω))2
}

= E
{

(zTφ)2
[
(u(φTx)−E{u(φTx)})− (u(φTx∗)−E{u(φTx∗)})− σξ

]2}
≤ E

{(
zTφ

)2(
u(φTx)− u(φTx∗)

)2}
+ σ2E{ξ2(φT z)2}

≤ `
2
E
{(
zTφ

)2(
φT (x− x∗)

)2}
+ σ2‖z‖22σ1(Σ)

[by (36)] ≤ 1
2``‖x− x∗‖

2
Σχ‖z‖22σ1(Σ) + σ2‖z‖22σ1(Σ)

≤ (g(x)− g∗)χ‖z‖22L2 + σ1(Σ)σ2‖z‖22
implying (23) with χ′ = σ1(Σ)/ν2 .

The following result is a corollary of Theorem 2.3.

Proposition 3.2 Suppose that (28) and (36) hold true, and let

N ≥ cmax

{
κνs̄
`κΣ

ln[1/ε] lnn,
χσ1(Σ)

`κΣ
ln[1/ε]

}
with large enough c > 0. Then aggregated solution x2N,1−ε (with K = N) by Algorithm 2 satisfies

Riskg,ε(x2N,1−ε|X) .
`κΣR

2

s̄
exp

{
− cN`κΣ

κs̄ν ln[1/ε] lnn

}
+
σ2νs̄ ln[1/ε] lnn

`κΣN
. (37)

Note that when σ1(Σ) = O(ν lnn) and κ and χ are both O(1) bounds (35) and (37) hold for
N ≥ c νs̄`κΣ

ln[1/ε] lnn.
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Remark. Results of Propositions 3.1 and 3.2 merit some comments. If compared to now
standard accuracy bounds for sparse recovery by `1-minimization [3, 9, 10, 13, 28, 52, 54, 57],
to the best of our knowledge, (28) and (36) provide the most relaxed conditions under which
the bounds such as (34)–(37) can be established. An attentive reader will notice a degradation
of bounds (35) and (37) with respect to comparable results [19, 28, 52] as far as dependence in
factors which are logarithmic in n and ε−1 is concerned—bound (22) depends on the product
ln[n] ln[1/ε] of these terms instead of the sum ln[n] + ln[ε−1] in the “classical” results.10 This
seems to be a technical “artifact” of the analysis of non-Euclidean stochastic approximation
algorithm and the reliability enhancement approach using median of estimators we have adopted
in this work, cf. the comment after Theorem 2.2. Nevertheless, it is rather surprising to see
that conditions on the regressor model in Proposition 3.1, apart from positive definiteness of
regressor covariance matrix, essentially amount to (cf. (29))

E
{
‖φ‖2∞(φT z)2

}
. ν‖z‖2Σ ∀z ∈ Rn.

Below we consider some examples of situations where bounds (29) and (36) hold with constants
which are “almost” dimension-independent, i.e. are, at most, logarithmic in problem dimension.
When this is the case, and when observation count N satisfies N ≥ αm0 ln[1/ε] ln[R/(sσ)] for
large enough absolute α, so that the preliminary phase of the algorithm is completed, the bounds
of Propositions 3.1 and 3.2 coincide (up to already mentioned logarithmic in n and 1/ε factors)
with the best accuracy bound available for sparse recovery in the situation in question.11

1. Sub-Gaussian regressors: suppose now that φi ∼ SubG(0, S), i.e., regressors φi are sub-
Gaussian with zero mean and matrix parameter S, meaning that

E
{
eu

Tφ
}
≤ e

uT Su
2 for all u ∈ Rn.

Let us assume that sub-Gaussianity matrix S is “similar” to the covariance matrix Σ of φ,
i.e. S � µΣ with some µ <∞. Note that E{(φT z)4} ≤ 16(zTSz)2 ≤ 16µ2‖z‖4Σ, and thus

E{(zTφφTx)2} ≤ E{(zTφ)4}1/2E{(xTφ)4}1/2 ≤ 16zTSz xTSx ≤ 16µ2σ1(Σ)‖z‖22‖x‖2Σ,

which is (36) with χ = 16µ2`−1`. Let us put ῡ = maxi[S]ii. One easily verifies that in this
case

ν
2 = E{‖φ‖2∞} ≤ 2ῡ(ln[2n] + 1) ≤ 2µυ(ln[2n] + 1),

and
E{‖φ‖4∞} ≤ 4ῡ2(ln2[2n] + 2 ln[2n] + 2) ≤ 4µ2υ2(ln2[2n] + 2 ln[2n] + 2).

As a result, we have, cf. (28),

ς2(x) ≤
[
`(E{‖φ‖4∞})1/4(E{(φT (x− x∗))4})1/4 + σ(E{‖φ‖2∞})1/2 + `

√
υ‖x− x∗‖Σ

]2

≤
[
`
√

8ῡ(ln[2n] + 2)‖x− x∗‖S + σ
√

2ῡ(ln[2n] + 1) + `
√
υ‖x− x∗‖Σ

]2

≤ 2`
2(
µ
√

8(ln[2n] + 2) + 1
)2
υ‖x− x∗‖2Σ + 4µυ(ln[2n] + 1)σ2,

whence, Assumption S1 holds with κν . `2`−1µ2υ lnn, κ′ . 1, and ς2
∗ . µυσ

2 lnn.

10Note that a similar deterioration was noticed in [13].
11In the case of “isotropic sub-Gaussian” regressors, see [38], the bounds of Proposition 3.1 are comparable to

bounds of [37, Theorem 5] for Lasso recovery under relaxed moment assumptions on the noise ξ.
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2. Bounded regressors: we assume that ‖φi‖∞ ≤ µ a.s.. One has

ς2(x) ≤
(
`µE{(φT (x− x∗))2}1/2 + `υ1/2‖x− x∗‖Σ + µσ

)2

≤ 2`
2
(µ+ υ1/2)2‖x− x∗‖2Σ + 2µ2σ2,

implying the second inequality of (28) and also (8) with κν ≤ 4`
2
`−1(µ +

√
υ)2 and

ς2
∗ ≤ µ2σ2. In particular, this condition is straightforwardly satisfied when φj are sampled

from an orthogonal system with uniformly bounded elements, e.g., φj =
√
nψκj where

{ψj , j = 1, ..., n} is a trigonometric or Hadamard basis of Rn, and κj are independent and
uniformly distributed over {1, ..., n}. On the other hand, in the latter case, for z = x = ψ1

we have
E{(zTφφTx)2} = E{(ψ1φφ

Tψ1)2} = n = n‖ψ1‖42 = n‖x‖22‖z‖22,

implying that (36) can only hold with χ = O(n) in this case.

Besides this, when φ is a linear image of a Rademacher vector, i.e. φ = Aη whereA ∈ Rm×n

and η has independent components [η]i ∈ {±1} with Prob{[η]i = 1} = Prob{[η]i = −1} =
1/2, one has Σ = AAT , and E{(φTx)4} ≤ 3‖ATx‖42 (cf. the case of sub-Gaussian regressors
above). Thus, we have

E{(zTφφT (x− x∗))2} ≤ E{(zTφ)4}1/2E{((x− x∗)Tφ)4}1/2

≤ 3zTΣz (x− x∗)TΣ(x− x∗) ≤ 3σ1(Σ)‖z‖22‖x− x∗‖2Σ

implying (36) with χ = 6`−1`. On the other hand, when denoting µ = maxj ‖Rowj(A)‖2,

we get Prob{‖φ‖4∞ ≥ tµ} ≤ 2ne−t
2/2 with

E{‖φ‖2∞} ≤ 2µ2[ln[2n] + 1] and E{‖φ‖4∞} ≤ 4µ4[ln2[2n] + 2 ln[2n] + 2].

Thus, by (28),

ζ2(x) ≤
(
`(E{‖φ‖4∞})1/4(E{(φT (x− x∗))4})1/4 + σ(E{‖φ‖2∞})1/2 + `

√
υ‖x− x∗‖Σ

)2

≤
(
`

√
2
√

3(ln[2n] + 2)µ‖x− x∗‖Σ + σ
√

2(ln[2n] + 1)µ+ `
√
υ‖x− x∗‖Σ

)2

≤ 2µ2`
2(√

2
√

3(ln[2n] + 2) + 1
)2‖x− x∗‖2Σ + 4µ2(ln[2n] + 1)σ2

which is (8) with κν . µ2`−1`
2

lnn and κ′ς2
∗ . µ

2σ2 lnn.

3. Scale mixtures: Let us now assume that

φ ∼
√
Zη, (38)

where Z is a scalar a.s. positive random variable, and η ∈ Rn is independent of Z with
covariance matrix E{ηηT } = Σ0. Because

E
{
‖φ‖2∞

}
= E{Z}E

{
‖η‖2∞

}
, E

{
‖φφT z‖2∞

}
= E{Z2}E

{
‖ηηT z‖2∞

}
and

[Σ :=] E{φφT } = E{Z}E{ηηT },
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we conclude that if random vector η satisfies (28) with Σ0 substituted for Σ and E{Z2} is
finite then a similar bound also holds for φ. It is obvious that if η satisfies (36) then

E
{

(zTφφTx)2
}

= E{Z2}E
{

(zT ηηTx)2
}
≤ E{Z2}

E{Z}2
χ‖z‖2Σ‖x‖2Σ ≤ χ

E{Z2}
E{Z}2

σ1(Σ)‖z‖22‖x‖2Σ,

and (36) holds for φ with χ for η replaced with χE{Z2}
E{Z}2 .

Let us consider the situation where η ∼ N (0,Σ0) with positive definite Σ0. In this case
φ is referred to as Gaussian scale mixture with a standard example provided by n-variate
t-distributions tn(q,Σ0) (multivariate Student distributions with q degrees of freedom, see
[34] and references therein). Here, by definition, tn(q,Σ0) is the distribution of the random
vector φ =

√
Zη with Z = q/ζ, where ζ is the independent of η χ2-random variable with q

degrees of freedom. One can easily see that all one-dimensional projections eTφ, ‖e‖2 = 1,
of φ are random variables with univariate tq-distribution. When φi ∼ tn(q,Σ0) with q > 4,
we have for ζ ∼ χ2

q

E

{
q

ζ

}
=

q

q − 2
, E

{
q2

ζ2

}
=

3q2

(q − 2)(q − 4)
,

so that Σ = q
q−2Σ0, and

ς2(x) . `
2 q − 2

q − 4
υ ln[n]‖x− x∗‖Σ + σ2υ lnn

implying (8) with κν . `2`−1υ lnn, κ′ . 1, and ς2
∗ . σ

2υ lnn. Moreover, in this case

E{(zTφφTx)2} = E{Z2}E{zT ηηTx)2} ≤ 3
E{Z2}
E{Z}2

‖z‖2Σ‖x‖2Σ ≤ 9
q − 2

q − 4
σ1(Σ)‖z‖22‖x‖2Σ.

Another example of Gaussian scale mixture (38) is the n-variate Laplace distribution
Ln(λ,Σ0) [20] in which Z has exponential distribution with parameter λ. In this case
all one-dimensional projections eTφ, ‖e‖2 = 1, of φ are Laplace random variables. If
φi ∼ Ln(λ,Σ0) one has

ς2(x) . `
2
υ ln[n]‖x− x∗‖Σ + σ2υ lnn

and
E{(zTφφTx)2} . σ1(Σ)‖z‖22‖x‖2Σ.

3.2 Stochastic Mirror Descent for low-rank matrix recovery

In this section we consider the problem of recovery of matrix x∗ ∈ Rp×q, from independent and
identically distributed observations

ηi = 〈φi, x∗〉+ σξi, i = 1, 2, ..., N, (39)

with φi ∈ Rp×q which are random independent over i with covariance operator Σ (defined
according to Σ(x) = E{φ〈φ, x〉}). We assume that ξi ∈ R are mutually independent and
independent of φi with E{ξi} = 0 and E{ξ2

i } ≤ 1.
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In this application, E is the space of p × q matrices equipped with the Frobenius scalar
product

〈a, b〉 = Tr
(
aT b
)

with the corresponding norm ‖a‖2 = 〈a, a〉1/2. For the sake of definiteness, we assume that
p ≥ q ≥ 2. Our choice for the norm ‖ · ‖ is the nuclear norm ‖x‖ = ‖σ(x)‖1 where σ(x) is the
singular spectrum of x, so that the conjugate norm is the spectral norm ‖y‖∗ = ‖σ(y)‖∞. We
suppose that

κΣ‖x‖22 ≤ 〈x,Σ(x)〉 ≤ υ‖x‖22 ∀x ∈ Rp×q,

with known κΣ > 0 and υ, we write κΣI � Σ � υI; for x ∈ Rp×q we denote ‖x‖Σ =
√
〈x,Σ(x)〉.

Finally, we assume that matrix x∗ is of rank s ≤ s̄ ≤ q, and moreover, that we are given a
convex and closed subset X of Rp×q such that x∗ ∈ X, along with R <∞ and x0 ∈ X satisfying
‖x∗ − x0‖ ≤ R.

Consider the Stochastic Optimization problem

min
x∈X

g(x) = 1
2E
{

(η − 〈φ, x〉)2︸ ︷︷ ︸
=:G(x,ω=[φ,η])

} . (40)

We are to apply SMD algorithm to solve (40) with the proximal setup associated with the nuclear
norm with quadratically growing for q ≥ 2 distance-generating function

ϑ(x) = 2e ln(2q)

 q∑
j=1

σ1+r
j (x)

 2
1+r

, r =
(
12 ln[2q]

)−1

(here σj(x) are singular values of x), with the corresponding parameter Θ ≤ C ln[2q] (cf. [49,
Theorem 2.3]). Note that, in the premise of this section,

g(x) = 1
2E
{

(σξ + 〈φ, x∗ − x〉)2
}

= 1
2(‖x− x∗‖2Σ + σ2),

with
∇g(x) = Σ(x− x∗) = E

{
φ(〈φ, x− x∗〉 − σξ)︸ ︷︷ ︸

=∇G(x,ω)

}
and

ζ(x, ω) = ∇G(x, ω)−∇g(z) = [φ〈φ, x− x∗〉 − Σ(x− x∗)]− σφξ.

Let us now consider the case regressors φi ∈ Rp×q drawn independently from a sub-Gaussian
ensemble, φi ∼ SubG(0, S) with sub-Gaussian operator S. The latter means that

E
{
e〈x,φ〉

}
≤ e

1
2 〈x,S(x)〉 ∀x ∈ Rp×q

with linear positive definite S(·). To show the bound of Theorems 2.1–2.3 in this case we need
to verify that relationships (8) and (23) of Assumptions S1 and S3 are satisfied. To this end,
let us assume that S is “similar” to the covariance operator Σ of φ, namely, S � µΣ with some
µ <∞. This setting covers, for instance, the situation where the entries in the regressors matrix
φ ∈ Rp×q are standard Gaussian or Rademacher i.i.d. random variables (in these models, S = Σ
is the identity, and g(x)− g∗ = 1

2‖x− x∗‖22).
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Note that, more generally, when S � µΣ we have S � µυI with

E{‖φ‖4∗} ≤ C2µ2υ2(p+ q)2,

cf. Lemma A.3 of the appendix, and

E{〈φ, x− x∗〉4} ≤ 16〈x− x∗, S(x− x∗)〉2 ≤ 16µ2‖x− x∗‖2Σ

for sub-Gaussian random variable 〈φ, x− x∗〉 ∼ SubG(0, 〈x− x∗, S(x− x∗)〉). Therefore,

E
{
‖φ〈φ, x− x∗〉 − Σ(x− x∗)‖2∗

}
≤ 2E

{
‖φ〈φ, x− x∗〉‖2∗

}
+ 2υ‖x− x∗‖2Σ

≤ 2E
{
‖φ‖4∗

}1/2
E
{
〈φ, x− x∗〉4

}1/2
+ 2υ‖x− x∗‖2Σ

≤ 8Cµ2(p+ q)υ‖x− x∗‖2Σ + 2υ‖x− x∗‖2Σ.

Taking into account that ν = E{‖φ‖2∗} ≤ Cµυ(p+ q) in this case, we have

ς2(x) = E
{
‖ζ(x, ω)‖2∗

}
≤ 2E

{
‖φ〈φ, x− x∗〉 − Σ(x− x∗)‖2∗

}
+ 2σ2E

{
‖φ‖2∗

}
≤ 8(4Cµ2(p+ q) + 1)υ[g(x)− g∗] + 2Cµυ(p+ q)σ2︸ ︷︷ ︸

=ς2∗

implying (8) with κ . µ and κ′ . 1.
Similarly, we estimate ∀x ∈ X, z ∈ Rp×q

E
{
〈φ, z〉2 〈φ, x〉2

}
≤ E

{
〈z, φ〉4

}1/2
E
{
〈φ, x〉4

}1/2
≤ 16〈z, S(z)〉〈x, S(x)〉 ≤ 16µ2υ‖z‖22‖x‖2Σ,

so that

E
{
〈z, ζ(x, ω)〉2

}
= E

{
〈z, φ〈φ, x− x∗〉 − Σ(x− x∗)− σφξ〉2

}
= E

{(
〈z, φ〉〈φ, x− x∗〉 − 〈z,Σ(x− x∗)〉

)2}
+ σ2E{ξ2〈z, φ〉2}

≤ E
{
〈z, φ〉2〈φ, x− x∗〉2

}
+ σ2υ‖z‖22

≤ 16µ2υ[g(x)− g∗]‖z‖22 + σ2υ‖z‖22

implying the bound (23) with χ . µ(p + q)−1 and χ′ . µ−1(p + q)−1. When substituting
the above bounds for problem parameters into statements of Theorems 2.1–2.3 we obtain the
following statement summarizing the properties of the approximate solutions by the SMD-SR
algorithm utilizing observations (39); the corresponding risks are defined in (30)–(33).

Proposition 3.3 In the situation of this section,

(i) let the sample size N satisfy

N ≥ α
[
µ2υ(p+ q)s̄ ln q

κΣ

]
for an appropriate absolute α, implying that at least one preliminary stage of Algorithm 1 is
completed. Then there is an absolute c > 0 such that approximate solutions x̂N and ŷN produced
by the algorithm satisfy

Risk‖·‖(ŷN |X) ≤ 2
√

2sRisk‖·‖2(x̂N |X) . R exp

{
− cNκΣ

µ2υ(p+ q)s̄ ln q

}
+
σs̄

κΣ

√
µυ(p+ q) ln q

N
,

Riskg(x̂N |X) .
κΣR

2

s̄
exp

{
− cNκΣ

µ2υ(p+ q)s̄ ln q

}
+
σ2µυ(p+ q)s̄ ln q

κΣN
.
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(ii) Furthermore, when observation size satisfies

N ≥ α′
[
µ2υ(p+ q)s̄ ln[1/ε] ln q

κΣ

]
with large enough α′, (1 − ε)-reliable solutions ŷN,1−ε and x̂N,1−ε defined in Section 2.4 satisfy
for some c′ > 0

Risk‖·‖,ε(ŷN,1−ε|X) ≤
√

2sRisk‖·‖2,ε(ŷN,1−ε|X) ≤ 2
√

2sRisk‖·‖2,ε(x̂N,1−ε|X)

. R exp

{
− c′NκΣ

µ2υ(p+ q)s̄ ln[1/ε] ln q

}
+
σs̄

κΣ

√
µυ(p+ q) ln[1/ε] ln q

N
, (41)

with solutions x̂′N,1−ε, x̂
′′
N,1−ε and ŷ′N,1−ε, ŷ

′′
N,1−ε verifying analogous bounds. Finally, the fol-

lowing bound holds for the aggregated solution x2N,1−ε (with K = N) by Algorithm 2:

Riskg,ε(x2N,1−ε|X) .
κΣR

2

s̄
exp

{
− c′NκΣ

µ2υ(p+ q)s̄ ln[1/ε] ln q

}
+
σ2µυ(p+ q)s̄ ln[1/ε] ln q

κΣN
.

Remark. Let us now compare the bounds of the proposition to available accuracy estimates
for low rank matrix recovery. Notice first, that when assuming that µ . 1 the bounds of the
proposition hold if (the upper bound on unknown) signal rank s̄ satisfies

s̄ .
NκΣ

(p+ q)υ ln[1/ε] ln q
.

The above condition is essentially the same, up to logarithmic in 1/ε factor, as the best condition
on rank of the signal to be recovered under which the recovery is exact in the case of exact—
noiseless—observation [11, 53]. The risk bounds of Proposition 3.3 can be compared to the
corresponding accuracy bounds for recovery x̂N,Lasso by Lasso with nuclear norm penalization,
as in [33, 44]. For instance, when regressors φi have i.i.d. N (0, 1) entries they state (cf. [44,
Corollary 5]) that the ‖ · ‖2,ε-risk of the recovery satisfies the bound

Risk‖·‖2,ε(x̂N,Lasso|X) .
σ2r(p+ q)

N

for ε ≥ exp{−(p + q)}. Observe that the above bound coincides, up to logarithmic in q and
1/ε factors with the second—asymptotic—term in the bound (41). This result is all the more
surprising if we recall that its validity is not limited to sub-Gaussian regressors—what we need
in fact is the bound (cf. the remark after Proposition 3.2)

E
{
‖φ〈φ, z〉‖2∗

}
. (p+ q)‖x− x∗‖2Σ. (42)

For instance, one straightforwardly verifies that the latter bound holds, for instance, in the
case where regressor φ is a scale mixtures of matrices satisfying (42) (e.g., scale mixture of
sub-Gaussian matrices).

4 Numerical illustration

We present results of a preliminary simulation study illustrating performance of the SMD-SR
algorithm.
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Experimental setting. We present results of simulated experiments of sparse linear regres-
sion (25) with linear activation u(t) = t and i.i.d. random (φi, ξi) in the setting N ≤ n with
(n, s) = (100 000, 50). In our experiments, covariance matrix Σ of regressors is diagonal with
diagonal entries Σ11 ≤ Σ22 ≤ · · · ≤ Σnn evenly spaced over [κΣ, ν], parameters (κΣ, ν) being
specific for each experiment. The indices of nonvanishing components of the optimal solution x∗
are evenly spaced in [1, n] with the non-zero entries being sampled from the standard Gaussian
distribution. The number s of nonzero components of x∗ and the value κΣ are assumed to be
known.

We compare the performance of the SMD-SR procedure to that of the “vanilla” non-Euclidean
SMD algorithm utilizing the same proximal setup when solving stochastic optimization problem
(27). Another contender is the coordinate descent algorithm (CDA) of the Python package
sklearn solving the Lasso problem

min
x∈Rn

{
1

2N

N∑
i=1

[ηi − φTi x]2 + λ‖x‖1
}

(43)

with the “theoretically optimal” choice λ = 2σ
√

2 lnn
N of the penalty parameter (cf. [3, 33]).

Parameter setting for SMD-SR. As it is often the case, the theoretical choice of algorithm
parameters as given in Sections 2.3 and 3.1 is too conservative in practice. We give a brief
overview of the workarounds used in our simulations.

• We use stages of fixed length and mini-batches of exponentially increasing size during
the asymptotic phase of the method, cf. [35, Section 4.5]. This allows to significantly
accelerate computations at the asymptotic regime alleviating the computational burden of
prox-evaluations.

• We use variable stepsize parameters βi = β0‖φi‖2∞ with constant β0 = 1.0 both for SMD-
SR and SMD. This choice of β0 corresponds to the condition β0 ≥ ν but neglects the
constants factors arising in the theoretical analysis. In order to compute the current
approximate solution, the estimates of the SMD algorithm are then weighted with the
corresponding βi.

• The number of steps m0 to be performed by the SMD algorithm on each stage is set to
m0 = d(1/2)sν(ln[n] + 1)e, which corresponds to (15) in the case of κΣ = 1.0.

• In our simulations, we utilize the CUSUM test for monitoring a change detection (see, e.g.,
[39, 51]) to decide upon switching from preliminary (“linear trend”) to asymptotic phase
(“sublinear trend”) of the algorithm; however, we perform at least 4 preliminary stages.

Experimental results. We present results of two series of experiments, experiments in each
series corresponding to 4 combinations of parameters κΣ and σ with κΣ ∈ {0.1, 1.0} and σ ∈
{0.001, 0.1}; we run 20 simulations for each parameter combination. In the figures below, for
each “contender” we plot the median value of the prediction error ‖x̂t − x∗‖Σ as a function of
t = 1, ..., N along with the tubes of 25% and 75% quantiles.

In the first series of simulations, noises (ξi) are standard Gaussian, and regressors (φi) are
normally distributed with zero mean and covariance matrix Σ. The results for the first series
are presented in Figures 1 and 2. Plots in Figure 1 illustrate the improvement by the SMD-SR
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Figure 1: Comparison of SMD-SR (solid line) and SMD (dashed line) in the Gaussian setting;
(n, s) = (100 000, 50).

procedure over the plain SMD algorithm in the considered settings. The acceleration of the
initial error convergence is clearly seen on the plots for σ=0.001.

Figure 2: Comparison of SMD-SR (solid line) and Lasso by CDA (dashed line) in the Gaussian
setting; (n, s) = (50 000, 50).

Results of a comparison with the CDA Lasso implementation of in the case of σ = 0.1 are
given in Figure 2. Because of the memory limitations of the CDA, we present the results of
simulations for (n, s) = (50 000, 50) and N ≤ 10 000. The CDA is restarted for different sizes of
the observation sample, each time the number of iterations of the algorithm is limited to 30 000.
While Lasso estimate outperforms the SMD-SR for smaller observation samples, the statistical
performance of the proposed algorithm appears to be competitive for large N .

Similar results were obtained in the experiments with other types of distributions of φi and ξi.
For instance, in Figure 3 we present the results of simulation utilizing Student’s t4-distribution
(i.e., multivariate Student distribution with 4 degrees of freedom, cf., e.g., [34]) of noises and
regressors.
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Figure 3: Comparison of SMD-SR (solid line) and SMD (dashed line) in the case of Student t4
noise distribution; (n, s) = (100000, 50).

A Proofs

A.1 Proof of Proposition 2.1

We start with a technical result on the SMD algorithm which we formulate in a more general
setting of composite minimization. Specifically, assume that we aim at solving the problem

min
x∈X

[f(x) = E{G(x, ω)}+ h(x)] , (44)

where X and G are as in Section 2.1 and h is convex and continuous. We consider a more
general composite proximal mapping [48, 49] for ζ ∈ E, x, x0 ∈ X, and β > 0 we define

Proxβ(ζ, x;x0) := argminz∈X
{
〈ζ, z〉+ h(z) + βVx0(x, z)

}
= argminz∈X

{
〈ζ − β∇ϑ(x− x0), z〉+ h(z) + βϑ(z − x0)

}
(45)

and consider for i = 1, 2, . . . Stochastic Mirror Descent recursion (12). Same as before, the
approximate solution after N iterations of the algorithm is defined as weighted average of xi’s
according to (13). Obviously, to come back to the situation of Section 2.2 it suffices to put
h(x) ≡ 0. To alleviate notation we denote V (x, z) = Vx0(x, z); we also denote

ζi = ∇G(xi−1, ωi)−∇g(xi−1)

and

ε(xN , z) =

N∑
i=1

β−1
i−1[〈∇g(xi−1), xi − z〉+ h(xi)− h(z)] + 1

2V (xi−1, xi), (46)

with xN = (x0, . . . , xN ). In the sequel we use the following well known result which we prove
below for the sake of completeness.
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Proposition A.1 In the situation of this section, let βi ≥ 2L for all i = 0, 1, ..., and let x̂N be
defined in (13), where xi are iterations (12). Then for any z ∈ X we have[

N∑
i=1

β−1
i−1

]
[f(x̂N )− f(z)] ≤

N∑
i=1

β−1
i−1[f(xi)− f(z)] ≤ ε(xN , z)

≤ V (x0, z)− V (xN , z) +

N∑
i=1

[〈ζi, z − xi−1〉
βi−1

+
‖ζi‖2∗
β2
i−1

]
(47)

≤ 2V (x0, z) +

N∑
i=1

[〈ζi, zi−1 − xi−1〉
βi−1

+
3

2

‖ζi‖2∗
β2
i−1

]
, (48)

where zi is a random vector with values in X depending only on x0, ζ1, . . . , ζi.

Proof of Proposition A.1. 1o. Let x0, . . . , xN be some points of X; let

εi+1(z) := 〈∇g(xi), xi+1 − z〉+ 〈h′(xi+1), xi+1 − z〉+ LV (xi, xi+1)

(here h′(x) stands for a subgradient of h at x). Note that V (x, z) ≥ 1
2‖x− z‖2 due to the strong

convexity of V (x, ·). Thus, by convexity of g and h and the Lipschitz continuity of ∇g we get
for any z ∈ X

f(xi+1)− f(z) = [g(xi+1)− g(z)] + [h(xi+1)− h(z)]

= [g(xi+1)− g(xi)] + [g(xi)− g(z)] + [h(xi+1)− h(z)]

≤ [〈∇g(xi), xi+1 − xi〉+ LV (xi, xi+1)] + 〈∇g(xi), xi − z〉+ h(xi+1)− h(z)

≤ 〈∇g(xi), xi+1 − z〉+ 〈h′(xi+1), xi+1 − z〉+ LV (xi, xi+1) = εi+1(z);

i.e., the following inequality holds for any z ∈ X:

f(xi+1)− f(z) ≤ εi+1(z). (49)

2o. Let us first prove inequality (47). The optimality condition for xi+1 in (45) implies (cf.
Lemma A.1 of [49]) that there is h′(xi+1) ∈ ∂h(xi+1) such that

〈∇G(xi, ωi+1) + h′(xi+1) + βi〈[∇ϑ(xi+1)−∇ϑ(xi)], z − xi+1〉 ≥ 0, ∀ z ∈ X,

or, equivalently,

〈∇G(xi, ωi+1) + h′(xi+1), xi+1 − z〉 ≤ βi〈∇ϑ(xi+1)−∇ϑ(xi), z − xi+1〉
= βi〈∇Vxi+1(xi, xi+1), z − xi+1〉 = βi[V (xi, z)− V (xi+1, z)− V (xi, xi+1)], ∀ z ∈ X

where the concluding equality follows from the following remarkable identity (see, for instance,
[18]): for any u, u′ and w ∈ X

〈∇u′V (u, u′), w − u′〉 = V (u,w)− V (u′, w)− V (u, u′).

This results in

〈∇g(xi), xi+1 − z〉+ 〈h′(xi+1), xi+1 − z〉 ≤ βi[V (xi, z)− V (xi+1, z)− V (xi, xi+1)]

−〈ζi+1, xi+1 − z〉. (50)
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It follows from (49) and condition βi ≥ 2L that

f(xi+1)− f(z) ≤ εi+1(z) ≤ 〈∇g(xi), xi+1 − z〉+ 〈h′(xi+1), xi+1 − z〉+
βi
2
V (xi, xi+1).

Together with (50), this inequality implies

εi+1(z) ≤ βi[V (xi, z)− V (xi+1, z)− 1
2V (xi, xi+1)]− 〈ζi+1, xi+1 − z〉.

On the other hand, due to the strong convexity of V (x, ·) we have

〈ζi+1, z − xi+1〉 −
βi
2
V (xi, xi+1) = 〈ζi+1, z − xi〉+ 〈ζi+1, xi − xi+1〉 −

βi
2
V (xi, xi+1)

≤ 〈ζi+1, z − xi〉+
‖ζi+1‖2∗
βi

.

Combining these inequalities, we obtain

f(xi+1)− f(z) ≤ εi+1(z) ≤ βi[V (xi, z)− V (xi+1, z)]− 〈ζi+1, xi − z〉+
‖ζi+1‖2∗
βi

(51)

for all z ∈ X. Dividing (51) by βi and taking the sum over i from 0 to N − 1 we obtain (47).
3o. We now prove the bound (48). Applying Lemma 6.1 of [45] with z0 = x0 we get

∀z ∈ X,
N∑
i=1

β−1
i−1〈ζi, z − zi−1〉 ≤ V (x0, z) + 1

2

N∑
i=1

β−2
i−1‖ζi‖

2
∗, (52)

where zi = argminz∈X
{
− β−1

i−1〈ζi, z〉+ V (zi−1, z)
}

depend only on z0, ζ1, . . . , ζi. Further,

N∑
i=1

β−1
i−1〈ζi, z − xi−1〉 =

N∑
i=1

β−1
i−1[〈ζi, zi−1 − xi−1〉+ 〈ζi, z − zi−1〉]

≤ V (x0, z) +

N∑
i=1

β−1
i−1〈ζi, zi−1 − xi−1〉+ 1

2β
−2
i−1‖ζi‖

2
∗.

Combining this inequality with (47) we arrive at (48). �

Proof of Proposition 2.1. Note that, by definition, ν ≥ L and κ ≥ 1, thus, Proposition A.1
can be applied to the corresponding SMD recursion. When applying recursively bound (47) of
the proposition with z = x∗ and h(x) ≡ 0 we conclude that E{Vx0(xi, x∗)} is finite along with
E{‖xi − x∗‖2}, and so E{〈ζi+1, xi − x∗〉} = 0. Thus, after taking expectation we obtain

m∑
i=1

[E{g(xi)} − g∗] ≤ βE{Vx0(x0, x∗)− Vx0(xm, x∗)}+ β−1
m∑
i=1

E{‖ζi‖2∗}

≤ E{Vx0(x0, x∗)− Vx0(xm, x∗)}

+β−1
m∑
i=1

(
κν[E{g(xi−1)− 〈∇g(x∗), xi−1 − x∗〉} − g∗] + κ′ς2

∗
)
,

which, thanks to convexity of g, leads to[
1− κν

β

] m∑
i=1

[E{g(xi)} − g∗] + βE{Vx0(xm, x∗)}

≤ βE{Vx0(x0, x∗)}+
κν
β

[E{g(x0)− 〈∇g(x∗), x0 − x∗〉} − g∗] +
mκ′ς2

∗
β

.
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Because, due to convexity of g, g(x̂m) ≤ 1
m

∑m
i=1 g(xi) and

E{g(x0)− 〈∇g(x∗), x0 − x∗〉} − g∗ ≤ 1
2νE{‖x0 − x∗‖2} ≤ 1

2νR
2

we conclude that when β ≥ 2κν

E{g(x̂m)} − g∗ ≤
2R2

m

(
Θβ +

κν2

2β

)
+

2κ′ς2
∗

β

which is (14). �

A.2 Proof of Theorem 2.1

We start with the following straightforward result:

Lemma A.1 Let x∗ ∈ X ⊂ E be s-sparse, x ∈ X, and let xs = sparse(x)—an optimal solution
to (9). We have

‖xs − x∗‖ ≤
√

2s‖xs − x∗‖2 ≤ 2
√

2s‖x− x∗‖2. (53)

Proof. Indeed, we have

‖xs − x∗‖2 ≤ ‖xs − x‖2 + ‖x− x∗‖2 ≤ 2‖x− x∗‖2

(recall that x∗ is s-sparse). Because xs − x∗ is 2s-sparse we have by Assumption S2

‖xs − x∗‖ ≤
√

2s‖xs − x∗‖2 ≤ 2
√

2s‖x− x∗‖2. �

Proof of the theorem relies upon the following characterization of the properties of approximate
solutions yk, xk, x

′
k and y′k.

Proposition A.2 Under the premise of Theorem 2.1,

(i) after k preliminary stages of the algorithm one has

E{‖yk − x∗‖2} ≤ 2sE{‖yk − x∗‖22} ≤ 2−kR2 + 32
ς2
∗ s̄κ′

κνκ
, (54)

E{g(x̂m0(yk−1, β))} − g∗ ≤ 2−k−4κR
2
0

s̄
+

2κ′ς2
∗

κν
. (55)

In particular, upon completion of K = K preliminary stages approximate solutions x̂(1) and ŷ(1)

satisfy

E{‖ŷ(1) − x∗‖2} ≤ 2sE{‖ŷ(1) − x∗‖22} ≤ 64
ς2
∗ s̄κ′

κνκ
, (56)

E{g(x̂(1))} − g∗ ≤
4κ′ς2

∗
κν

. (57)

(ii) Suppose that at least one asymptotic stage is complete. Let r2
k = 2−kr2

0 where r2
0=64 ς

2
∗ s̄κ′
κνκ .

Then after k stages of the asymptotic phase one has

E{‖y′k − x∗‖2} ≤ 2sE{‖y′k − x∗‖22} ≤ r2
k = 2−kr2

0, (58)

E{g(x̂mk(y′k−1, β))} − g∗ ≤
4ς2
∗κ′

βk
≤ 2−k+2 ς

2
∗κ′

κν
. (59)
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Proof of the proposition. 1o. We first show that under the premise of the proposition the
following relationship holds for 1 ≤ k ≤ K:

E{‖yk − x∗‖2} ≤ R2
k := 1

2R
2
k−1 +

16ς∗s̄κ′

κνκ
, R0 = R. (60)

Obviously, (60) implies (54) for all 1 ≤ k ≤ K. Observe that (60) clearly holds for k = 1. Let us
now perform the recursive step k − 1 → k. Indeed, bound (14) of Proposition 2.1 implies that
after m0 iterations of the SMD with the stepsize parameter satisfying (15) and initial condition
x0 such that E{‖x0 − x∗‖2} ≤ Rk−1 one has

E{g(x̂m0)} − g∗ ≤
2

m0

[
2Θκν +

ν

4

]
R2
k−1 +

κ′ς2
∗

κν

≤ [8Θκ + 1]ν

2m0
R2
k−1 +

κ′ς2
∗

κν
. (61)

Note that when m0 ≥ 16κ−1s̄(8Θκ + 1)ν we have

8s̄

κ

[8Θκ + 1]ν

m0
≤ 1

2 .

Therefore, when utilizing the bound (53) of Lemma A.1 we get

E{‖yk − x∗‖2} ≤ 2s̄E{‖yk − x∗‖2} ≤ 8s̄E{‖x̂m0 − x∗‖22} ≤
16s̄

κ
[E{g(x̂m0)} − g∗]

≤ 16s̄

κ

(
[8Θκ + 1]ν

2m0
R2
k−1 +

κ′ς2
∗

κν

)
≤ R2

k := 1
2R

2
k−1 +

16ς2
∗ s̄κ′

κκν

which is (60). Finally, when using (61) along with (54) we obtain

E{g(x̂m0(yk−1, β))} − g∗ ≤
κR2

k−1

32s̄
+

κ′ς2
∗

κν
≤ 2−k−4κR

2
0

s̄
+

2κ′ς2
∗

κν
what implies (55). Now, (56) and (57) follow straightforwardly by applying (54) and (55) with
K = K.
2o. Let us prove (58). Recall that at the beginning of the first stage of the second phase we
have E{‖ȳ0−x∗‖} ≤ r2

0. Now, let us do the recursive step, i.e., assume that (58) holds for some

0 ≤ k < K ′, and let us show that it holds for k+1. Because Θ ≥ 1 and κ ≥ 1 we have β2
k ≥

κν2

2Θ ,
k = 1, ..., and, by (14),

E{g(x̂mk(y′k−1, βk))} − g∗ ≤
2r2
k−1

mk

(
Θβk +

κν2

2βk

)
+

2κ′ς2
∗

βk
≤

4Θβkr
2
k−1

mk
+

2κ′ς2
∗

βk

≤ 2−k
r2

0κ

64s̄
+ 21−kκ′ς2

∗
κν
≤ 2−k

r2
0κ

16s̄
≤ 2−k+2κ′ς2

∗
κν

. (62)

Observe that

E{‖xmk(y′k−1, βk)− x∗‖22} ≤
2

κ
[E{g(x̂mk(y′k−1, βk))} − g∗] ≤ 2−k

r2
0

8s̄
,

so that by Lemma A.1

E{‖y′k − x∗‖2} ≤ 8sE{‖xmk(y′k−1, βk)− x∗‖22} ≤ 2−kr2
0 = r2

k,

and (58) follows. Now (59) is an immediate consequence of (58) and (62). �
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Proof of the theorem. 1o. Let us start with the situation where no asymptotic stage takes
place. Because we have assumed that N is large enough so that at least one preliminary stage
took place this can only happen when either m0K ≥ N

2 or m1 ≥ N
2 . Due to m0 > 1, by (56) we

have in the first case:

E{‖yK − x∗‖2} ≤ R2
K := 2−KR2

0 +
32ς2
∗ s̄κ′

κνκ
≤ 2−K+1R2

0 ≤ R2
0 exp

{
− cNκ

Θκs̄ν

}
for some absolute c > 0. Furthermore, due to (55) we also have in this case

E{g(x̂m0(yK−1, β))} − g∗ ≤ 2−K−4κR
2
0

s̄
+

2κ′ς2
∗

κν
≤ 2−K−3κR

2
0

s̄
≤ κR2

0

s̄
exp

{
− cNκ

Θκs̄ν

}
.

Next, m1 ≥ N
2 implies that

s̄

κ
≥ cN

Θνκ
(63)

for some absolute constant c, so that approximate solution yK at the end of the preliminary
phase satisfies (cf. (56))

E{‖ŷ − x∗‖2} ≤ C
ς2
∗ s̄κ′

κνκ
≤ CΘκ′ς2

∗ s̄
2

κ2N
.

Same as above, using (56) and (63) we conclude that in this case

E{g(x̂)} − g∗ ≤ C
κ′ς2
∗

κν
≤ CΘκ′ς2

∗ s̄

κN
.

2o. Now, let us suppose that at least one stage of the asymptotic phase was completed. Applying
the bound (58) of Proposition A.2 we have E{‖y′K − x∗‖2} ≤ r2

0. When M < N/2, same as
above, we have

E{‖ŷN − x∗‖2} ≤ r2
0 ≤ R2

0 exp

{
− cNκ

Θκs̄ν

}
and

E{g(x̂mK′ (yK′−1, β))} − g∗ ≤ E{g(x̂)} − g∗ ≤
κR2

0

s̄
exp

{
− cNκ

Θκs̄ν

}
. (64)

When M ≥ N/2, since mk ≤ Cm̄k where m̄k = 512 s̄Θνκκ 2k we have

N

2
≤ C

K′∑
k=1

m̄k ≤ C2K
′+1m̄1 ≤ C2K

′ s̄Θνκ
κ

.

We conclude that 2−K
′ ≤ C s̄Θνκ

κN so that

E{‖ŷN − x∗‖2} = E{‖ŷK′ − x∗‖2} ≤ 2−K
′
r2

0 ≤ C
Θκ′ς2

∗ s̄
2

κ2N
.

Finally, by (59),

E{g(x̂mK′ (yK′−1, β))} − g∗ ≤ 2−K
′+2 ς

2
∗κ′

κν
≤ C ς

2
∗ s̄κ′Θ
κN

;

together with (64) this implies (16). �
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A.3 Proof of Theorem 2.2

1o. By the Chebyshev inequality,

∀` Prob{‖x̂(`)
M − x∗‖2 ≥ 2θM} ≤ 1

4 ; (65)

applying [42, Theorem 3.1] we conclude that

Prob{‖x̂N,1−ε − x∗‖2 ≥ 2CαθM} ≤ e−Lψ(α, 1
4

)

where

ψ(α, β) = (1− α) ln
1− α
1− β

+ α ln
α

β
(66)

and Cα = 1−α√
1−2α

. When choosing α =
√

3
2+
√

3
which corresponds to Cα = 2 we obtain ψ(α, 14) =

0.1070... > 0.1 so that
Prob{‖x̂N,1−ε − x∗‖2 ≥ 4θM} ≤ ε

if L ≥ 10 ln[1/ε]. When combining this result with that of Lemma A.1 we arrive at the theorem
statement for solutions x̂N,1−ε and ŷN,1−ε.
2o. The corresponding result for x̂′N,1−ε and its “sparsification” ŷ′N,1−ε is due to the following
simple statement.

Proposition A.3 Let 0 < α < 1
2 , | · | be a norm on E, z ∈ E, and let z`, ` = 1, ..., L be

independent and satisfy
Prob{|z` − z| ≥ δ} ≤ β

for some δ > 0 and β < α. Then for ẑ,

ẑ ∈ Argmin
u∈{z1,...,zL}

L∑
`=1

|u− z`|, (67)

it holds
Prob{|ẑ − z| ≥ C ′αδ} ≤ e−Lψ(α,β)

with C ′α = 2+α
1−2α .

Proof. W.l.o.g. we may put δ = 1 and z = 0. Proof of the proposition follows that of [42,
Theorem 3.1] with Lemma 2.1 of [42] replaced with the following result.

Lemma A.2 Let z1, ..., zL ∈ E, and let ẑ be an optimal solution to (67). Let 0 < α < 1
2 , and

let |ẑ| ≥ C ′α. Then there exists a subset I of {1, ..., L} of cardinality cardI > αL such that for
all ` ∈ I |z`| > 1.

Proof of the lemma. Let us assume that |z`| ≤ 1, ` = 1, ..., L̄ for L̄ ≥ (1− α)L. Then∑L
`=1 |z` − ẑ| =

∑
`≤L̄ |z` − ẑ|+

∑
`>L̄ |z` − ẑ| ≥ L̄(Cα − 1) +

∑
`>L̄[|z`| − Cα]

≥
∑

`≤L̄ |z`|+ L̄(Cα − 2) +
∑

`>L̄ |z`| − (L− L̄)Cα
≥

∑L
`=1 |z`|+ L̄(Cα − 2)− (L− L̄)Cα

≥
∑L

`=1 |z` − z1|+ L̄(2Cα − 2)− LCα + L− 1 >
∑L

`=2 |z` − z1|

for L̄ > LCα+L−1
2(Cα−1) . We conclude that 1− α ≤ Cα+1

2(Cα−1) , same as Cα ≤ 2+α
1−2α . �
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For instance, when choosing α = 1/6 with Cα = 13/4, and β such that Cα/
√
β = 10 we

obtain ψ(α, β) = 0.0171... so that for L = d58.46 ln[1/ε]e we have Lψ(α, β) ≥ ln[1/ε]. Because

Prob

{
‖x̂(`)

M − x∗‖2 ≥
θM√
β

}
≤ β, ` = 1, ..., L,

by Lemma A.2 we conclude that

Prob
{
‖x̂′1−ε,N − x∗‖2 ≥ 10θM

}
≤ ε,

implying statement of the theorem for x̂′1−ε,N and ŷ′1−ε,N .
3o. The proof of the claim for solutions x̂′′1−ε,N and ŷ′′1−ε,N follows the lines of that of [25,
Theorem 4]. We reproduce it here (with improved parameters of the procedure) to meet the
needs of the proof of Theorem 2.3.

Let us denote I(τM ) the subset of {1, ..., L} ∪ ∅ such that g(x̂
(i)
M ) − g∗ ≤ 2τM and thus

‖x̂(i)
M−x∗‖2 ≤ 2θM for i ∈ I(τM ). Assuming the latter set is nonempty we have for all i, j ∈ I(τM )

‖x̂(i)
M − x̂

(j)
M ‖2 ≤ 4θM . On the other hand, using (65) and independence of x̂

(i)
M we conclude that

(cf. e.g., [40, Lemma 23])

Prob {|I| ≥eL/2d} ≥ Prob
{
B(L, 14) ≥eL/2d

}
≥ 1− exp

{
−Lψ

(
cL/2b
L

,
1

4

)}
where cab= dae−1 is the largest integer strictly less than a, B(N, p) is a (N, p)-binomial random
variable and ψ(·, ·) is as in (66). When ε ≤ 1

4 and L = d12.05 ln[1/ε]e ≥ 16 we have

Prob{|I| ≥eL/2d} ≥ 1− e−Lψ( 7
16
, 1
4

) ≥ 1− e−0.083L ≥ 1− ε.

Therefore, if we denote Ωε a subset of ΩN such that |I(τM )| > L/2 for ωN ∈ Ωε we have

P{Ωε} ≥ 1 − ε. Let now ωN ∈ Ωε be fixed. Observe that the optimal value r̂ = rîeL/2d of (21)

satisfies r̂ ≤ 4θM , and that among eL/2d closest to x̂′′N,1−ε points there is at least one, let it be

x̂
(̄i)
M satisfying g(x̂

(̄i)
M )− g∗ ≤ 2τM and ‖x̂(̄i)

M − x∗‖2 ≤ 2θM . We conclude that whenever ωN ∈ Ω
one has

‖x̂′′N,1−ε − x∗‖2 ≤ ‖x̂′′N,1−ε − x̂
(̄i)
M ‖2 + ‖x̂(̄i)

M − x∗‖2 ≤ 4θM + 2θM ≤ 6θM ,

implying that
Prob{‖x̂′′N,1−ε − x∗‖2 ≥ 6θM} ≤ ε

whenever L ≥ d12.05 ln[1/ε]e. �

A.4 Proof of Theorem 2.3

The proof of the theorem relies on the following statement which may be of independent interest.

Proposition A.4 Let U : [0, 1] × Ω → R be continuously differentiable and such that u(t) =
E{U(t, ω)} is finite for all t ∈ [0, 1], convex and differentiable with Lipschitz-continuous gradient:

|u′(t′)− u′(t)|∗ ≤M|t− t′|, ∀ t, t′ ∈ [0, 1].

In the situation in question, let ε ∈ (0, 14 ], J ≥
⌈
7 ln[2/ε]

⌉
, and ti = 2i−1

2m , i = 1, ...,m. Consider

the estimate

v̂ = median
j

[v̂j ], v̂j =
1

m

m∑
i=1

U ′(ti, ω
j
i ) j = 1, ..., J
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of the difference v = u(1) − u(0) using M = mJ independent realizations ωji , i = 1, ...,m, j =
1, ..., L. Then

Prob{|v̂ − v| ≥ ρ} ≤ ε (68)

where

ρ =
1

4m

[√
2M(u(1)− u∗) +

√
2M(u(0)− u∗)

]
+

2

m

√√√√ m∑
i=1

E {[ζ1(ti)]2},

(here and below, ζj(ti) = U ′(ti, ω
j
i )− u′(ti) and u∗ = min0≤t≤1 u(t)).

In particular, if for µ ≥M

E{[ζ1(t)]2} ≤ µ(u(t)− u∗) + ς2 (69)

then

Prob{|v̂ − v| ≥ ρ̄} ≤ ε (70)

where

ρ̄ = 2

√
µ

m

[√
u(1)− u∗ +

√
u(0)− u∗

]
+

2ς√
m
.

We postpone the proof of the proposition to the end of this section.
1o. Let ωN ∈ Ωε/2 defined as in 3o of the proof of Theorem 2.2; we choose L ≥ d12.05 ln[2/ε]e
so that Prob{Ωε/2} ≤ ε/2. We denote r̂ the optimal value of (21); recall that r̂ ≤ 4θM . Then

for any i, j ∈ Î we have

‖x̂(i)
M − x̂

(j)
M ‖2 ≤ 2r̂ ≤ 8θM , (71)

and for some ī ∈ Î we have

g(x̂
(̄i)
M )− g∗ ≤ 2τ2

M (72)

where τM and θM are defined in (18) and (19) respectively. W.l.o.g. we can assume that x̂
(̄i)
M is

the minimizer of g(x) over x̂
(i)
M , i ∈ Î.

Let us consider the aggregation procedure. From now on all probabilities are assumed to
be computed with respect to the distribution PK of the (second) sample ωK , conditional to
realization ωN of the first sample (independent of ωK). To alleviate notation we drop the
corresponding “conditional indices.”

2o. Denote v̂ji = median`[v̂
`
ji]. For j ∈ Î, j 6= ī let x(t) = x̂

(j)
M + t

(
x̂

(̄i)
M − x̂

(j)
M

)
. Note that

U(t, ω) = G(x(t), ω) and u(t) = g(x(t)) satisfy the premise of Proposition A.4 with M = r2
jī
L2

where rjī = ‖x̂(̄i)
M − x̂

(j)
M ‖2, µ = χL2r

2
jī

, and ς2 = χ′ς2
∗r

2
jī

. When applying the proposition with

ε = ε/L, J = L′, and K = mL′ we conclude that

∀j ∈ Î , j 6= ī Prob{|v̂jī − vjī| ≥ %jī} ≤
ε

L
,

implying that

Prob{ max
j∈Î,j 6=ī

|v̂jī − vjī| ≥ %jī} ≤
ε

2
(73)
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where

%ij = 2rjī

√
L2χ

m

[√
g(x̂

(i)
M )− g∗ +

√
g(x̂

(j)
M )− g∗

]
+ 2rjīς∗

√
χ′

m
.

Let now Ω′ε/2 ⊂ ΩK such that for all

max
ī 6=j∈Î

|v̂jī − vjī| ≤ %jī, ∀ωK ∈ Ω′ε/2;

by (73) Prob{Ω′ε/2} ≥ 1− ε/2.

3o. Let us fix ωK ∈ Ω′ε/2; our current objective is to show that in this case the set of admissi-

ble x̂
(i)
M ’s is nonempty—it contains x̂

(̄i)
M—and, moreover, all admissible x̂

(j)
M ’s satisfy the bound

g(x̂
(j)
M ) ≤ γ2(rīj) with γ(r) defined as in (24).
Let α, β, τ > 0, and let v(γ) = γ2 − τ2 − 2[α(γ + τ) + β]; then v(γ) > 0 for γ ≥√

(2α+ τ)2 + 4β. Indeed, v(·) being nondecreasing for γ ≥ α, it suffices to verify the inequality
for γ =

√
(2α+ τ)2 + 4β. Because

2α+ τ + β/α >
√

(2α+ τ)2 + 4β

we have
4α2 + 4ατ + 2β > 2α

(√
(2α+ τ)2 + 4β + τ

)
,

and
v(γ) = [(2α+ τ)2 + 4β]− τ2 − 2α

(√
(2α+ τ)2 + 4β + τ

)
− 2β > 0.

Applying the above observation to α = 2rjī

√
L2χ
m , β = 2rjīς∗

√
χ′

m , and τ = τM we conclude that

whenever g(x̂
(j)
M )− g∗ ≥ γ2(rjī)

vjī = g(x̂
(̄i)
M )− g(x̂

(j)
M ) ≤ τ2

M − g(x̂
(j)
M ) < −2%jī. (74)

Therefore, for g(x̂
(j)
M ) ≥ γ2(rjī)

median
`

[v̂`jī]− ρīj = [median
`

[v̂`jī]− vjī] + vjī − ρīj < %jī − 2%jī − ρīj < 0 ∀ωK ∈ Ω′ε/2.

Furthermore, for g(x̂
(j)
M )− g∗ < γ2(rjī) we have

median
`

[v̂`jī]− ρīj ≤ %īj − ρīj < 0 ∀ωK ∈ Ω′ε/2,

and we conclude that x̂
(̄i)
M is admissible.

On the other hand, whenever g(x̂
(j)
M )− g∗ ≥ γ2(rjī) we have vīj > 2%īj (cf. (74)), and

median
`

[v̂`īj ]− ρjī = [median
`

[v̂`jī]− vīj ] + vīj − ρīj > −%īj + 2%īj − ρīj ≥ 0 ∀ωK ∈ Ω′ε/2.

We conclude that x̂
(j)
M is not admissible if g(x̂

(j)
M ) ≥ γ2(rjī) and ωK ∈ Ω′ε/2.

4o. Now we are done. So, assume that [ωN , ωK ] ∈ Ωε/2×Ω′ε/2 (what is the case with probability

≥ 1 − ε). We have rij ≤ 8θM for i, j ∈ Î by (71), and g(x
(̄i)
M ) ≤ τ2

M for some admissible ī ∈ Î
by (72). In this situation, all x̂

(j)
M such that g(x̂

(j)
M ) − g∗ ≥ γ2(rjī), j ∈ Î, are not admissible,

implying that the suboptimality of the selected solution xN+K,1−ε is bounded with γ2(8θM ),
thus

Riskg,ε(xN+K,1−ε|X) ≤ γ̄2 = γ2(8θM ).

The “in particular” part of the statement of the theorem can be verified by direct substitution
of the corresponding values of m, θM , and τM into the expression for γ̄2. �
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Proof of Proposition A.4. Let us denote

v̄ = E{v̂j} =
1

m

m∑
i=1

u′(ti);

we have

|v̂ − v| ≤ |v̂ − v̄|+ |v̄ − v|. (75)

1o. Note that

v̂j − v̄ =
1

m

m∑
i=1

U ′(ti, ω
j
i )− u

′(ti) =
1

m

m∑
i=1

ζj(ti),

and

E{(v̂j − v̄)2} ≤ 1

m2

m∑
i=1

E{[ζj(ti)]2} =: υ2.

By the Chebyshev inequality, Prob{|v̂j − v̄| ≥ 2υ} ≤ 1
4 , and

Prob{median
j

[v̂j ]− v̄ ≥ 2υ} ≤ Prob
{∑

j

1{v̂j − v̄ ≥ 2υ} ≥ J/2
}

≤ Prob{B(J, 14) ≥ J/2} ≤ e−Jψ( 12 ,
1
4 ) ≤ e−0.1438J

where ψ(·, ·) is defined in (66). Because the same bound holds for Prob{medianj [v̂
j ]− v̄ ≤ −2υ}

we conclude that

Prob{|v̂ − v̄| ≥ 2υ} = Prob{|median
j

[v̂j ]− v̄| ≥ 2υ} ≤ 2e−J/7 ≤ ε (76)

for J ≥ 7 ln(2/ε). Furthermore, if (69) holds we have

E{(v̂j − v̄)2} ≤ 1

m2

m∑
i=1

[µ(u(ti)− g∗) + ς2] ≤ 1

2m
[(u(1)− u∗) + (u(0)− u∗)] +

ς2

m
=: ῡ2

implying (76) with υ replaced with ῡ:

Prob{|v̂ − v̄| ≥ 2ῡ} ≤ 2e−J/7 ≤ ε (77)

2o. Next, we bound the difference v̄ − v. Let si = i/m, i = 0, ...,m, and ri = u′(si)− u′(si−1).
Let us show that

v − v̄ ≤ 1

4m

[√
2M(u(1)− u∗) +

√
2M(u(0)− u∗)

]
.

Note that

δi =

∫ si

si−1

[u′(s)− u′(ti)]ds ≤ 1
4ri(si − si−1) = (4m)−1ri,

so that

v − v̄ ≤
m∑
i=1

δi ≤ (4m)−1[u′(1)− u′(0)].
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Let now t∗ ∈ [0, 1] be a minimizer of u on [0, 1]. Due to the smoothness and convexity of u we
have

|u′(0)− u′(t∗)|2 ≤ 2M[u(0)− u∗ + t∗u
′(t∗)] ≤ 2M[u(0)− u∗]

and
|u′(1)− u′(t∗)|2 ≤ 2M[u(1)− u∗ − (1− t∗)u′(t∗)] ≤ 2M[u(1)− u∗].

We conclude that

u′(1)− u′(0) ≤ u′(1)− u′(t∗) + u′(t∗)− u′(0) ≤
√

2M[u(0)− u∗] +
√

2M[u(1)− u∗],

and

v − v̄ ≤ (4m)−1[u′(1)− u′(0)] ≤ 1

4m

[√
2M[u(0)− u∗] +

√
2M[u(1)− u∗]

]
.

The proof of the corresponding bound for v̄ − v is completely analogous, implying that

|v − v̄| ≤ 1

4m

[√
2M(u(1)− u∗) +

√
2M(u(0)− u∗)

]
.

When substituting the latter bound and the bound (76) into (75) we obtain

Prob{|v̂ − v| ≥ 2υ + υ′} ≤ ε

for J ≥ 7 ln(2/ε), what implies (68). When replacing (76) with (77) in the above derivation we
obtain (70). �

A.5 Proofs for Section 3.2

The following statement is essentially well known:

Lemma A.3 Let φ ∈ Rp×q with q ≤ p for the sake of definiteness, be a random sub-Gaussian
matrix φ ∼ SubG(0, S) implying that

∀x ∈ Rp×q, E
{
e〈x,φ〉

}
≤ e

1
2
〈x,S(x)〉. (78)

Suppose that S � s̄I; then

E{‖φ‖2∗} ≤ Cs̄(p+ q) and E{‖φ‖4∗} ≤ C ′s̄2(p+ q)2

where C and C ′ are absolute constants.

Proof of the lemma.

1o. Let u ∈ Rq be such that ‖u‖2 = 1. Then the random vector ζ = φu ∈ Rp is sub-Gaussian
with ζ ∼ SubG(0, Q), that is for any v ∈ Rp

E
{
ev
T ζ
}

= E
{
ev
Tφu
}

= E
{
e〈uv

T ,φ〉} ≤ e 1
2 〈uv

T ,S(uvT )〉 = e
1
2v
TQv

where Q = QT ∈ Rp×p. Note that

max
‖v‖2=1

vTQv = max
‖v‖2=1

〈uvT , S(uvT )〉 ≤ max
‖w‖2=1

〈w, S(w)〉.

Therefore, we have Q � s̄I, and Tr(Q) ≤ s̄p.
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2o. Let Γ = {u ∈ Rq : ‖u‖2 = 1}, and let Dε be a minimal ε-net, w.r.t. ‖ · ‖2, in Γ, and let Nε
be the cardinality of Dε. We claim that{

uTφTφu ≤ υ ∀u ∈ Dε
}
⇒
{
‖φTφ‖∗ ≤ (1− 2ε)−1υ

}
. (79)

Indeed, let the premise in (79) hold true; φTφ is symmetric, so let v̄ ∈ Γ be such that v̄TφTφv̄ =
‖φTφ‖∗. There exists u ∈ Dε such that ‖v̄ − u‖2 ≤ ε, whence

‖φTφ‖∗ = |v̄TφTφv̄| ≤ 2‖φTφ‖∗‖v̄ − u‖2 + |uTφTφu| ≤ 2‖φTφ‖∗ε+ υ

(note that the quadratic form zTQz is Lipschitz continuous on Γ, with constant 2‖Q‖∗ w.r.t.
‖ · ‖2), whence ‖φTφ‖∗ ≤ (1− 2ε)−1υ.

30. We can straightforwardly build an ε-netD′ in Γ in such a way that the ‖·‖2-distance between
every two distinct points of the net is > ε, so that the balls Bv = {z ∈ Rp : ‖z−v‖2 ≤ ε/2} with
v ∈ D′ are mutually disjoint. Since the union of these balls belongs to B = {z ∈ Rq : ‖z‖2 ≤
1 + ε/2}, we get Card(D′)(ε/2)q ≤ (1 + ε/2)q, that is, Nε ≤ Card(D′) ≤ (1 + 2/ε)q.

Now we need the following well-known result (we present its proof at the end of this section
for the sake of completeness).

Lemma A.4 Let ζ ∼ SubG(0, Q) be a sub-Gaussian random vector in Rn, i.e.

∀t ∈ Rn E
{
et
T ζ
}
≤ e

1
2 t
TQt (80)

where Q = QT ∈ Rn×n. Then for all x ≥ 0

Prob{‖ζ‖22 ≥ Tr(Q) + 2
√
xv + 2xq̄} ≤ e−x (81)

where q̄ = maxi σi(Q) is the principal eigenvalue of Q and v = ‖Q‖22 =
∑

i σ
2
i (Q) is the squared

Frobenius norm of Q. Thus, for any α > 0

Prob{‖ζ‖22 ≥ Tr(Q)(1 + α−1) + (2 + α)xq̄} ≤ e−x. (82)

Utilizing (82) with α = 1 we conclude that ∀u ∈ Γ the random vector ζ = φu satisfies

Prob{‖ζ‖22 ≥ 2s̄p+ 3s̄x} ≤ e−x. (83)

Let us set ε = 1
4 ; utilizing (83), we conclude that the probability of violating the premise in (79)

with υ = 2s̄p+ 3s̄x does not exceed exp{−x+ q ln[1 + 2ε−1]} = exp{−x+ q ln 9}, so that

Prob
{
‖φTφ‖∗ ≥ 2s̄(2p+ 3x)

}
≤ exp{−x+ q ln 9}.

Now we are done: recall that

E{‖φ‖4∗} = E{‖φTφ‖2∗} = 2

∫ ∞
0

Prob{‖φTφ‖∗ ≥ u}u du

≤ 2

∫ ∞
0

umin
{

exp
{4s̄p− u

6s̄
+ q ln 9

}
, 1
}
du

≤ 2

∫ s̄(4p+6q ln 9)

0
udu+ 2

∫ ∞
s̄(4p+6q ln 9)

u exp
{4s̄p− u

6s̄
+ q ln 9

}
du

≤ s̄2(4p+ 6q ln 9)2 + 12s̄2(4p+ 6q ln 9) + 72s̄2 ≤ C ′s̄2(p+ q)2.

Similarly we get E{‖φ‖2∗} ≤ Cs̄(p+ q) for an appropriate C.
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4o. Let us now prove Lemma A.4.
Note that for t < 1/(2s̄) and η ∈ Rn, η ∼ N (0, I) independent of ζ we have by (78)

E
{
et〈ζ,ζ〉

}
= E

{
Eη

{
e
√

2t〈ζ,η〉}} = Eη

{
E
{
e
√

2t〈ζ,η〉}} ≤ Eη

{
et〈η,Sη〉

}
= Eη

{
et〈η,Dη〉

}
=

∏
i

Eηi

{
etη

2
i si
}

=
∏
i

(1− 2tsi)
−1/2

where D = Diag(si) is the diagonal matrix of eigenvalues. Recall that one has, cf. [6, Lemma
8],

− 1
2 ln(1− 2tsi)− tsi ≤

t2s2
i

1− 2tsi
≤ t2s2

i

1− 2ts̄

for t < 1/(2s̄). On the other hand, ∀t < 1/(2s̄)

Prob{‖ζ‖22 − Tr(S) ≥ u} ≤ E
{

exp
{
t
[
‖ζ‖22 −

∑
i

si − u
]}}

≤ exp
{
− tu+

t2

1− 2ts̄

∑
i

s2
i

}
= exp

{
− tu+

t2v

1− 2ts̄

}
.

When choosing t =
√
x

v+2s̄
√
x

(
< 1

2s̄

)
and u = 2

√
xv + 2xs̄ we obtain

Prob{‖ζ‖22 ≥ Tr(S) + 2
√
xv + 2xs̄} ≤ e−x

which is (81). Because v ≤ Tr(S)s̄ the latter bound also implies (82). �
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