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Convex Parameter Recovery for Interacting

Marked Processes

Anatoli Juditsky, Arkadi Nemirovski, Liyan Xie, Yao Xie

Abstract

We introduce a new general modeling approach for multivariate discrete event data with categorical

interacting marks, which we refer to as marked Bernoulli processes. In the proposed model, the probabil-

ity of an event of a specific category to occur in a location may be influenced by past events at this and

other locations. We do not restrict interactions to be positive or decaying over time as it is commonly

adopted, allowing us to capture an arbitrary shape of influence from historical events, locations, and

events of different categories. In our modeling, prior knowledge is incorporated by allowing general

convex constraints on model parameters. We develop two parameter estimation procedures utilizing the

constrained Least Squares (LS) and Maximum Likelihood (ML) estimation, which are solved using

variational inequalities with monotone operators. We discuss different applications of our approach and

illustrate the performance of proposed recovery routines on synthetic examples and a real-world police

dataset.

I. INTRODUCTION

Discrete events are a type of sequential data, where each data point is a tuple consisting of

event time, location, and possibly category. Such event data is ubiquitous in modern applications,

such as police data [1], electronic health records [2], and social network data [3], [4]. In modeling

discrete events, we are particularly interested in estimating the interactions of events, such as

triggering or inhibiting effects of past events on future events. For example, in crime event

modeling, the triggering effect has been empirically verified; when a crime event happens, it

makes future events more likely to happen in the neighborhood. Similar empirical observations
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have been made for other applications such as in biological neural networks, social networks

[5], [6], financial networks [7], and spatio-temporal epidemiological processes [8].

A popular model for capturing interactions between discrete events is the so-called Hawkes

processes [9]–[12]. The Hawkes process is a type of mutually-exciting non-homogeneous point

process with intensity function consisting of a deterministic part and a stochastic part depending

on the past event. The stochastic part of the intensity function can capture the interactions of

past events and the current event, and it may be parameterized in different ways. In a certain

sense, Hawkes processes may be viewed as a point process analog to classical autoregression in

time series analysis. Hawkes process has received much attention since it is quite general and

can conveniently model interactions. For instance, in a network Hawkes process,1 interactions

between nodes are modeled using a directed weighted graph in which direction and magnitude

of edges indicate direction and strength of influence of one node on another. Along this line,

there are various generalizations that allow for other types of point process modeling, where

different “link” functions are considered, such as self-correcting process, reactive process, and

specialized process (see [12] for an overview).

Estimating the interactions of the past events and the current event is a fundamental problem

for Bernoulli processes since it reveals the underlying temporal and spatial structures and predicts

future events. There has been much prior work in estimating model parameters, assuming

that interactions are shift-invariant and captured through kernel functions. Furthermore, various

simplifying assumptions are typically made for the kernel functions, e.g., that the spatio-temporal

interactions are decoupled (e.g., [5]), implying that the interaction kernel function is a product

of the interaction over time and interaction over locations and can be estimated separately. It is

often assumed that the temporal kernel function decays exponentially over time with an unknown

decay rate [6], or it is completely specified [13]; thus, the problem focus is on estimating spatial

interaction between locations. It is also commonly assumed that the interactions are positive, i.e.,

the interaction triggers rather than inhibit future events [14]. Such simplification, however, may

impede capturing complex interaction effects between events. For instance, negative interaction

or inhibition is well known to play a major role in neuronal connectivity [15]. The study of more

complex modeling of spatial aspects, especially jointly with discrete marks, is still in infancy.

In this paper, we present a general computational framework for estimating marked spatio-

1When space is discretized, the spatio-temporal point process of a grid can be modeled as a network point process.
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temporal processes with categorical marks. Motivated by Hawkes processes, we consider a model

of a discrete-time process on a finite spatio-temporal grid, which we refer to as Bernoulli

processes. A brief description of the proposed modeling is as follows. At each time t a site

k of the grid of the M -state Bernoulli process can be in one of M + 1 states – a ground state,

in which “nothing happens,” or an event state if an event of one of M given types at every

(discrete) time instant t takes place at the site. We assume that the probability distribution of

the events at each location at time t is a (linear or nonlinear) function on the process history

– past events at different sites at times from t − d to t − 1, d being the memory parameter of

the process. For instance, each site of a 1-state linear (vanilla) Bernoulli process can be in one

of two states – 0 (no event) or 1 (event takes place). From the point of view of time series,

this process can be seen as a vector autoregressive process. The observations at sites of the grid

at time t are Bernoulli random variables with the conditional expectation (what is the same as

the conditional probability of an event to take place) being a linear combination of historical

states of the process at times t − d to t − 1. The linear combination coefficients are unknown

process parameters. This model can be seen as a natural simplification of the continuous-time

Hawkes process, where spatio-temporal cells are so small that one can ignore the chances for

two or more events occurring in a cell. A notable feature of our model is that prior information

on the structure of interactions is represented by general convex constraints on the parameters,2

allowing for very general types of structures of interactions. For instance, we can relax the

nonnegativity restrictions on interaction parameters and/or avoid assumptions of monotone or

exponential time decay of interactions commonly used in the literature. When the situation has a

“network component” allowing to assume that interacting sites are pairs of neighboring nodes in

a known graph, we can incorporate this information, for instance, by restricting the interaction

coefficients for non-neighboring pairs of sites to be zero.

The considered model is related to information diffusion processes over continuous time, for

example, nonlinear Hawkes model [16], self-exciting processes over networks (see [12] for an

overview), information diffusion networks [17], and multivariate stationary Hawkes processes

[15]. Compared to these well-known models, time and space discretization leading to the spatio-

temporal Bernoulli process is a considerable simplification that, nonetheless, leads to practical

estimation routines that can be used in “real world” scenarios.

2Convexity is assumed for the sake of computational tractability.
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Various approaches to parametric and nonparametric estimation of spatio-temporal processes

have been proposed in the literature. A line of work [14], [18], [19] consider non-parametric

Hawkes process estimation based on the Expectation-Maximization (EM) algorithms and the

Kernel method. Least-square estimates for link functions of continuous-time multivariate sta-

tionary Hawkes process are studied in [15]. There is also much work [20]–[22] considering

the estimation in the Bayesian framework. In particular, [23] considers estimation in a Bernoulli

model similar to the one we promote in this paper using the Bayesian approach and impose prior

distributions on parameters. Several authors consider the problem of sparse model estimation for

point processes, see, e.g., [24], etc.

An important feature of the proposed models is that they allow for simple “computation-

friendly” statistical inferences. Our approach to processing the resulting estimation problems is

based on convex optimization, which leads to computationally efficient procedures. Our primary

tools here are variational inequalities (VI) with monotone operators.3 Specifically, we show that

the parameters of spatio-temporal models can be recovered in a computationally efficient fashion

by solving inequalities of this type, both in the cases of linear models (Sections II-A–II-E) and

of nonlinear models satisfying certain monotonicity restrictions (Section II-F). In the linear case,

our approach results in the usual Least Squares estimate4 which, of course, could be motivated

without any references to VI’s. However, these references explain how to act in the nonlinear

cases, where Least Squares, if applied, “as is” typically lose computational tractability. Aside

from the VI-based approach, we consider the standard Maximum Likelihood estimation (Section

III). In the linear case, computing the Maximum Likelihood estimate amounts to solving a convex

optimization problem and thus is computationally efficient. On the other hand, in the nonlinear

case, Maximum Likelihood estimation typically becomes problematic computationally, including

the cases where the VI-based approach remains computation-friendly. (A notable exception is the

spatio-temporal logistic model in which the Maximum Likelihood estimation reduces to solving

the convex problem.) It should be added that finite-sample theoretical results on the statistical

performance of the estimates we develop do not favor Maximum Likelihood as compared with

the VI-based estimation.

3Utilizing VI’s with monotone operators for statistical estimation is the main novelty in our paper; to the best of our knowledge

in statistics, this approach was used only once (see paper [25] on Generalized Linear Models).
4This, in hindsight, is resembling but not identical to what is done in [15].
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Finally, we also demonstrate the good performance of our method on synthetic and real data.

In particular, we study a real crime dataset in Atlanta, USA, to demonstrate the promise of

our methods to recover interesting structures from real-data and predict the probability of crime

incidents.

The paper is organized as follows. We discuss the LS estimation of the network Bernoulli

process in Section II, by introducing the model of the simplest Bernoulli process with {0, 1}-

valued mark in Section II-A. We then derive the Least Squares estimate (which under the

circumstances is what VI-estimate boils down to) for this model in Section II-C and building

data-driven confidence sets for the estimated parameters in Section II-D. We describe the general

model of the M -state Bernoulli process and discuss the Least Squares estimation in Section

II-E. The nonlinear modeling of the process and the corresponding VI estimate are presented

in Section II-F. In Section III, we discuss the Maximum Likelihood estimate of parameters of

the general Bernoulli process. The application of the proposed approach is illustrated by various

simulation examples in Section IV-A. Finally, Section IV-B shows an application of our modeling

to “real-world” data analysis of crime events in Atlanta.

II. ESTIMATING PARAMETERS OF SPATIO-TEMPORAL BERNOULLI PROCESS

Here we consider spatio-temporal Bernoulli process with discrete-time over discrete locations.

Specifically, we assume that the discrete-time and location grid we deal with is fine enough so

that we can neglect the possibility for more than one event to occur in a cell of the grid. We

will model the interactions of these events in the grid. In Sections II-C–II-E we develop and

process linear models; nonlinear extensions are considered in Section II-F.

A. Single-state model

Define a spatio-temporal Bernoulli process with memory depth d as follows. We assume the

memory depth is a pre-specified hyper-parameter (e.g., it can be estimated using cross-validation

as explained in Section IV-B when we study real data). We observe on discrete time horizon

{t : −d+1 ≤ t ≤ N} random process as follows. At time t we observe Boolean vector ωt ∈ RK

with entries ωtk ∈ {0, 1}, 1 ≤ k ≤ K. Here ωtk = 1 and ωtk = 0 mean, respectively, that at time

t in location k an event took/did not take place. We set

ωt = {ωsk,−d+ 1 ≤ s ≤ t, 1 ≤ k ≤ K} ∈ R(t+d)×K ,

ωtτ = {ωsk, τ ≤ s ≤ t, 1 ≤ k ≤ K} ∈ R(t−τ+1)×K .
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In other words, ωt denotes all observations (at all locations) until current time t, and ωtτ contains

observations on time horizon from τ to t.

!

"

#

"!" , $ = $(', ()

Fig. 1. Illustration of the discretized process. Observation ωtk, at the location of a three-dimensional spatio-temporal grid.

We assume that for t ≥ 1 the conditional probability of the event ωtk = 1, given the history

ωt−1, is specified as

βk +
d∑
s=1

K∑
`=1

βsk`ω(t−s)`, 1 ≤ k ≤ K, (1)

where β = {βk, βsk` : 1 ≤ s ≤ d, 1 ≤ k, ` ≤ K} is a collection of coefficients. Here

• βk corresponds to the baseline intensity at the k-th location (i.e., the intrinsic probability for

an event to happen at a location without the exogenous influence, also called the birthrate);

• βsk` captures the magnitude of the influence of an event that occurs at time t− s at the `-th

location on chances for an event to happen at time t in the k-th location; so the sum in (1)

represents the cumulative influence of past events at the k-th location.

Since the probability of occurrence is between 0 and 1, we require the coefficients to satisfy

0 ≤ βk +
∑d

s=1

∑K
`=1 min [βsk`, 0] , ∀ k ≤ K,

1 ≥ βk +
∑d

s=1

∑K
`=1 max [βsk`, 0] , ∀ k ≤ K.

(2)

Note that constraints in (2) allow some of the coefficients βsk` to be negative, permitting the

corresponding model to capture the inhibitive effect of past events. Fig. 2 illustrates a realization

of the sample path of a simple Bernoulli process in the considered setting with different memory

depths (5 for the top figure and 0 for the bottom). Note that in the bottom plot, the events are

more spread out due to the memoryless nature of the process.

Our goal is to recover the collection of parameters β using a set of observations ωN over a

time horizon N .
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Fig. 2. Realizations of spatio-temporal Bernoulli processes with memory depths 5 (top) and 0 (bottom) on time horizon N = 32

with three locations represented with y-axis 1, 2, and 3. “1” events in different locations are marked by different colors.

B. Preliminaries on variational inequalities with monotone operators

Variational inequalities (VI’s) with monotone operators is the principal computational tool

of the approach we are about to describe. We start with the related preliminaries. A vector

field F : X → RN defined on a nonempty convex subset X of RN is called monotone, if

〈F (x) − F (y), x − y〉 ≥ 0 whenever x, y ∈ X . When N = 1, monotonicity means that the

scalar function F is nondecreasing on X ; a basic example (by far not the only useful one) of

a multivariate monotone vector field is the gradient field of a differentiable convex function

f : X → R. We say that α ≥ 0 is a modulus of strong monotonicity of vector field F , when

〈F (x)− F (y), x− y〉 ≥ α‖x− y‖22 ∀x, y ∈ X ;

when α > 0, F is called strongly monotone. A pair (X , F ) comprised of nonempty convex

domain X and monotone vector field F on this domain gives rise to variational inequality

VI(F,X ). A weak solution to this VI is any point x̄ ∈ X such that

〈F (x), x− x̄〉 ≥ 0 ∀x ∈ X .

Whenever F is strongly monotone, weak solution, if exists, is unique.

A strong solution is a point x̄ ∈ X such that

〈F (x̄), x− x̄〉 ≥ 0 ∀x ∈ X .

Every strong solution is a weak one; when F is continuous on X , the inverse also is true. When

X is a convex compact set, VI(F,X ) always has weak solutions. When F is the gradient field

of a continuously differentiable convex function f on X , the weak and the strong solutions

to VI(F,X ) are exactly the minimizers of f on X . Finally, we should stress that variational
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inequalities with monotone operators are the most general “problems with convex structure;”

under mild computability assumptions, that can be efficiently solved to a high accuracy.

C. Least Squares (LS) estimation

As applied to the simple spatio-temporal model described in Section II-A the VI-based

approach we are developing boils down to the Least Squares (LS) estimation. Let κ = K+dK2;

we arrange all reals from the collection β in (1) into a column vector (still denoted β):

β = [β1, . . . , βK , β
1
11, . . . , β

d
11, β

1
1K , . . . , β

d
1K , . . . , β

1
KK , . . . , β

d
KK ]T ∈ Rκ.

Note that constraints (2) above state that β must reside in the polyhedral set B given by explicit

polyhedral representation.5 Assume that we are given a convex compact set X ⊂ B such that

β ∈ X ; we introduce this set to account for additional to the obvious inclusion β ∈ B a priori

information, if any, on the vector of model’s parameters. Our model says that for t ≥ 1, the

conditional expectation of ωt given ωt−1 is ηT (ωt−1t−d)β,

Probωt−1 {ωt = 1} = ηT (ωt−1t−d)β,

with a known to us function η(·) which is defined on the set of all zero-one arrays ωt−1t−d ∈

{0, 1}d×K and takes values in the matrix space Rκ×K :

ηT (ωt−1t−d) =
[
IK , IK ⊗ vec(ωt−1t−d)

T

]
∈ RK×κ, (3)

where IK is a K × K identity matrix, ⊗ denotes the standard Kronecker product, and vec(·)

vectorizes a matrix by stacking all columns. Note that the matrix η(ωt−1t−d) is Boolean and has at

most one nonzero entry in every row.6

Consider a vector field F : X → Rκ, defined as

F (x) =
1

N
EωN

{
N∑
t=1

[η(ωt−1t−d)η
T (ωt−1t−d)x− η(ωt−1t−d)ωt]

}
: X → Rκ,

5Polyhedral representation of a set X ⊂ Rn is a representation of the form

X = {x ∈ Rn : ∃w ∈ Rm : Px+Qw ≤ r},

that is, representation of X as a projection of the solution set of a system of linear inequalities in the space of (x,w)-variables

on the plane of x-variables. When X is polyhedrally representable, it automatically is polyhedral — can be represented by a

finite system of linear inequalities in x-variables only. This system, however, can be much larger than the one in the polyhedral

representation in question, making explicit polyhedral representations the standard descriptions of polyhedral sets in optimization.
6Indeed, (1) says that a particular entry in β, βk or βs

k`, affects at most one entry in ηT (ωt−1
t−d)β, namely, the k-th entry,

implying that each column of ηT (·) has at most one nonzero entry.
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where EωN denotes expectation taken with respect to the distribution of ωN (notation Eωt is

similarly defined). Below, all expectations and probabilities are conditional given a specific

realization of the initial fragment ω0
−d+1 of observations.

Observe that we have

〈F (x)− F (y), x− y〉 =
1

N

N∑
t=1

EωN

{
(x− y)Tη(ωt−1t−d)η

T (ωt−1t−d)(x− y)
}
≥ 0, ∀x, y ∈ X .

Thus, the vector field F is monotone. Moreover, we have F (β) = 0, since

F (β) = 1
N
EωN

{∑N
t=1 η(ωt−1t−d)[η

T (ωt−1t−d)β − ωt]
}

= 1
N

∑N
t=1Eωt

{
η(ωt−1t−d)[η

T (ωt−1t−d)β − ωt]
}

= 1
N

∑N
t=1Eωt−1

{
η(ωt−1t−d)

[
ηT (ωt−1t−d)β − E|ωt−1{ωt}

]}
= 1

N

∑N
t=1Eωt−1

{
η(ωt−1t−d)[η

T (ωt−1t−d)β − ηT (ωt−1t−d)β]
}

= 0,

where E|ωt−1 denotes the conditional expectation given ωt−1. Therefore, β ∈ X is a zero of the

monotone operator F and therefore it is a solution to the variational inequality VI[F,X ].

Now consider the empirical version

FωN (x) =

[
1

N

∑N

t=1
η(ωt−1t−d)η

T (ωt−1t−d)

]
︸ ︷︷ ︸

A[ωN ]

x− 1

N

∑N

t=1
η(ωt−1t−d)ωt︸ ︷︷ ︸

a[ωN ]

(4)

of vector field F . Note that FωN (x) monotone and affine, and its expected value is F (x) at every

point x.

We propose to use, as an estimate of β, a weak solution to the Sample Average Approximation

of VI[F,X ], i.e., the variational inequality

find z ∈ X : 〈FωN (w), w − z〉 ≥ 0, ∀w ∈ X . VI[FωN ,X ]

The monotone vector field FωN (·) is continuous (even affine), so that weak solutions to VI[FωN ,X ]

are exactly the same as strong solutions, i.e., points x̄ ∈ X such that 〈FωN (x̄), x − x̄〉 ≥ 0 for

all x ∈ X . Moreover, the empirical vector field FωN (x) is just the gradient field of the convex

quadratic function

ΨωN (x) =
1

2N

N∑
t=1

‖ηT (ωt−1t−d)x− ωt‖
2
2, (5)

so that weak (same as strong) solutions to VI[FωN ,X ] are just minimizers of this function on

X . In other words, our estimate based on solving variational inequality is an optimal solution

to the Least Squares (LS) formulation: the constrained optimization problem

min
x∈X

ΨωN (x) (6)
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with a convex quadratic objective. Problem (6), the same as a general variational inequality with

a monotone operator, can be routinely and efficiently solved by convex optimization algorithms.

D. Toward performance guarantees

Our objective in this section is to construct non-asymptotic confidence sets for parameter

estimates built in the previous section. Utilizing concentration inequalities for martingales, we

can express these sets in terms of the process observations in the spirit of results of [24], [26],

[27].

Observe that the vector of true parameters β underlying our observations not only solves

variational inequality VI[F,X ], but also solves the variational inequality VI[F ωN ,X ], where

F ωN (x) = A[ωN ]x− 1

N

∑N

t=1
η(ωt−1t−d)η

T (ωt−1t−d)β︸ ︷︷ ︸
a[ωN ]

with A[ωN ] defined in (4).

In fact, β is just a root of F ωN (x): F ωN (β) = 0. Moreover, the monotone affine operators

FωN (x) and F ωN (x) differ only in the value of constant term: in FωN (x) this term is a[ωN ], and

in F ωN (x) this term is a[ωN ]. Thus, equivalently, β is the minimizer on X of the quadratic form

ΨωN (x) :=
1

2N

N∑
t=1

‖ηT (ωt−1t−d)x− η
T (ωt−1t−d)β‖

2
2,

and the functions Ψ in (5) and Ψ above differ only in the constant terms (which do not affect

the results of minimization) and in the linear terms. Moreover, the difference of the vectors of

coefficients of linear terms is given by (due to F ωN (β) = 0):

∆F := FωN (β)− F ωN (β) = FωN (β) = a[ωN ]− a[ωN ] =
1

N

N∑
t=1

η(ωt−1t−d)[η
T (ωt−1t−d)β − ωt]︸ ︷︷ ︸
ξt

. (7)

Note that this is the same as the difference of constant terms in FωN (·) and F ωN (·).

Concentration bounds for FωN (β) can be obtained by applying general Bernstein-type inequal-

ities for martingales.

Lemma 1. For all ε ∈ (0, 1) vector FωN (β) = ∆F in (7) satisfies

ProbωN

{
‖FωN (β)‖∞ ≥

√
ln(2κ/ε)

2N
+

ln(2κ/ε)

3N

}
≤ ε. (8)
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Proof. Since the conditional expectation of ωt given ωt−1 is ηT (ωt−1t−d)β, we have E|ωt−1 [ξt] =

0. Thus, ξt is a martingale-difference. Also, because both ωt and ηT (ωt−1t−d)β are vectors with

nonnegative entries not exceeding 1, we have ‖ηT (ωt−1t−d)β−ωt‖∞ ≤ 1. Besides this, η(ωt−1t−d) is a

Boolean matrix with at most one nonzero in every row, whence ‖ηT (ωt−1t−d)z‖∞ ≤ ‖z‖∞ for all z.

The bottom line is that ‖ξt‖∞ ≤ 1. Furthermore, the conditional variance of components of ωt is

bounded by 1/4, so, applying the Azuma-Hoeffding inequality [28] to components (FωN (β))k,

k = 1, ..., κ, of FωN (β) we conclude that

ProbωN

{
|(FωN (β))k| ≥

√
x

2N
+

x

3N

}
≤ 2 exp{−x}, ∀1 ≤ k ≤ κ, x ≥ 0.

The latter bound results in (8) by application of the total probability formula. �

A somewhat finer analysis allows to establish more precise data-driven deviation bounds for

components of FωN (β).

Lemma 2. For all y > 1 entries FωN (β)k, k = 1, ..., κ, of FωN (β) satisfy, with probability at

least 1− 2e
(
y
[

ln((y − 1)N
)

+ 2
]

+ 2
)
e−y,

a[ωN ]k − ψ(a[ωN ]k, N ; y) ≤ FωN (β)k ≤ a[ωN ]k − ψ(a[ωN ]k, N ; y) (9)

where a[ωN ]k is the k-th component of a[ωN ] as in (4) and lower and upper functions ψ(·), ψ(·)

are defined in relation (35), see appendix.

Proof of Lemma 2 is postponed till the appendix. We are about to extract from this lemma

upper bounds on the accuracy of recovered coefficients.

1) Upper-bounding risk of recovery: Recall that our estimate β̂ := β̂(ωN) solves the varia-

tional inequality VI[FωN ,X ] with FωN (x) = A[ωN ]x−a[ωN ], see (4). Note that A[ωN ] is positive

semidefinite (we write A � 0, and we write A � 0 for positive definite A). Given A ∈ Rκ×κ,

A � 0, and p ∈ [1,∞], define the “condition number”

θp[A] := max
{
θ ≥ 0 : gTAg ≥ θ‖g‖2p, ∀g ∈ Rκ

}
. (10)

Observe that θp[A] > 0 whenever A � 0, and that for p, p′ ∈ [1,∞] one has

gTAg ≥ 1

2

{
θp[A]‖g‖2p + θp′ [A]‖g‖2p′

}
≥
√
θp[A]θp′ [A]‖g‖p‖g‖p′ . (11)

The following result is immediate:
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Theorem 1 (Bounding `p estimation error). For every p ∈ [1,∞] and every ωN one has

‖β̂(ωN)− β‖p ≤ ‖FωN (β)‖∞/
√
θp[A[ωN ]]θ1[A[ωN ]]. (12)

As a result, for every ε ∈ (0, 1), the probability of the event

‖β̂(ωN)− β‖p ≤
(
θp[A[ωN ]]θ1[A[ωN ]]

)−1(√ ln(2κ/ε)

2N
+

ln(2κ/ε)

3N

)
, ∀p ∈ [1,∞] (13)

is at least 1− ε.

Proof. Let us fix ωN and set β̂ = β̂[ωN ], A = A[ωN ]. Since FωN (·) is continuous and β̂ is a

weak solution to VI[FωN ,X ], β̂ is also a strong solution: 〈FωN (β̂), z− β̂〉 ≥ 0 for all z ∈ X ; in

particular, 〈FωN (β̂), β − β̂〉 ≥ 0. On the other hand, FωN (β̂) = F (β) − A(β − β̂). As a result,

0 ≤ 〈FωN (β̂), β − β̂〉 = 〈FωN (β)− A(β − β̂), β − β̂〉, whence

(β − β̂)TA(β − β̂) ≤ 〈FωN (β), β − β̂〉 ≤ ‖FωN (β)‖∞‖β − β̂‖1. (14)

Setting p′ = 1 in (11), we obtain

(β − β̂)TA(β − β̂) ≥
√
θ1[A]θp[A]‖β − β̂‖1‖β − β̂‖p.

This combines with (14) to imply (12); then (12) together with (8) imply (13). �

Remark [Evaluating the condition number]. To assess the upper bound (13) one needs to compute

“condition numbers” θp[A] of a positive definite matrix A. The computation is easy when p = 2,

in which case θ2[A] is the minimal eigenvalue of A, and when p =∞:

θ∞[A] = min
1≤i≤κ

{
xTAx : ‖x‖∞ ≤ 1, xi = 1

}
is the minimum of κ efficiently computable quantities. In general, θ1[A] is difficult to compute,

but this quantity admits an efficiently computable tight within the factor π/2 lower bound.

Specifically, for a symmetric positive definite A, minz{zTAz : ‖z‖1 = 1} is the largest r > 0

such that the ellipsoid {z : zTAz ≤ r} is contained in the unit ‖ · ‖1-ball, or, passing to polars,

the largest r such that the ellipsoid yTA−1y ≤ r−1 contains the unit ‖ · ‖∞-ball. Because of this,

the definition of θ1[A] in (10) is equivalent to θ1[A] =
[
max‖x‖∞≤1 x

TA−1x
]−1. It remains to

note that when Q is a symmetric positive semidefinite κ× κ matrix, the efficiently computable

by semidefinite relaxation upper bound on max‖x‖∞≤1 x
TQx, given by

min
λ

{∑
i

λi : λi ≥ 0, ∀i; Diag{λ1, ..., λκ} � Q

}
,
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is tight within the factor π/2, see [29].

Under favorable circumstances, we can expect that for large N the minimal eigenvalue of

A[ωN ] will be of the order of one with overwhelming probability implying that the lengths

of the confidence intervals (16) go to 0 as N → ∞ at the rate O(1/
√
N). Note, however, that

inter-dependence of the “regressors” η(ωt−1t−d) across t makes it difficult to prove something along

these lines.

2) Estimating linear forms of β: We can use concentration bounds of Lemmas 1 and 2 to

build confidence intervals for linear functionals of β. For instance, inequality (9) of Lemma 2

leads to the following estimation procedure of the linear form e(β) = eTβ, e ∈ Rκ. Given y > 1,

consider the pair of optimization problems

e[ωN , y] = min
x

eTx :
x ∈ X ,

ψ(a[ωN ]k, N ; y) ≤ (A[ωN ]x)k ≤ ψ(a[ωN ]k, N ; y), k = 1, ..., κ,


e[ωN , y] = max

x

eTx :
x ∈ X ,

ψ(a[ωN ]k, N ; y) ≤ (A[ωN ]x)k ≤ ψ(a[ωN ]k, N ; y), k = 1, ..., κ


(15)

where ψ(·) and ψ(·) are defined as in (35) of the appendix. These problems clearly are convex,

so e[ωN , y] and e[ωN , y] are efficiently computable. Immediately, we have the following

Lemma 3. Given y > 1, the probability of the event

e[ωN , y] ≤ eTβ ≤ e[ωN , y], ∀e, (16)

is at least 1− 2κe
(
y
[

ln((y − 1)N
)

+ 2
]

+ 2
)
e−y.

Indeed, when events

a[ωN ]k − ψ(a[ωN ]k, N ; y) ≤ FωN (β)k ≤ a[ωN ]k − ψ(a[ωN ]k, N ; y), k = 1, ..., κ,

take place, β is a feasible solution to optimization problems in (15). Due to Lemma 2, this

implies that (16) takes place with probability at least 1− 2κe
(
y
[

ln((y − 1)N
)

+ 2
]

+ 2
)
e−y.

E. Estimating parameters of multi-state spatio-temporal processes

In this section, we consider the multi-state spatio-temporal process in which an event outcome

contains additional information about its category [19]. So far, we considered the case where

at every time instant t every location k maybe be either in the state ωtk = 0 (“no event”), or
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ωtk = 1 (“event”). We are now extending the model by allowing the state of a location at a

given time instant to take M ≥ 2 “nontrivial” values on the top of the zero value “no event.”

In other words, observation of the multi-state Bernoulli process is categorical — we can either

observe no event or observe one of M possible event outcomes.

We define M -state spatio-temporal process with memory depth d as follows:

• We observe a random process on time horizon {t : −d+ 1 ≤ t ≤ N}, observation at time

t being

ωt = {ωtk ∈ {0, 1, . . . ,M}, 1 ≤ k ≤ K}.

• For every t ≥ 1, the conditional, ωt−1 = (ω−d+1, ω−d+2, . . . , ωt−1) given, distribution of ωtk

is defined as follows. With every location k, we associate an array of (baseline) parameters

βk = {βk(p), 1 ≤ p ≤ M}, and with every pair of locations k, ` and every s ∈ {1, . . . , d}

— an array of (interaction) parameters βsk` = {βsk`(p, q), 1 ≤ p ≤ M, 0 ≤ q ≤ M}. Then

induced by ωt−1 probability of ωtk to be of category p, 1 ≤ p ≤M , is given by

Probωt−1 {ωtk = p} = βk(p) +
d∑
s=1

K∑
`=1

βsk`(p, ω(t−s)`), (17)

and the probability for ωtk to take value 0 (no event or “ground event”) is the complementary

probability

Probωt−1 {ωtk = 0} = 1−
M∑
p=1

[
βk(p) +

d∑
s=1

K∑
`=1

βsk`(p, ω(t−s)`)

]
.

In other words, βsk`(p, q) is the contribution of the location ` in state q ∈ {0, 1, . . . ,M} at

time t − s to the probability for the location k to be in state p ∈ {1, . . . ,M} at time t,

and βk(p), p ∈ {1, . . . ,M} is the “endogenous” component of the probability of the latter

event.

Of course, for this description to make sense, the β-parameters should guarantee that for

every ωt−1, that is, for every collection {ωτ` ∈ {0, 1, . . . ,M} : τ < t, 1 ≤ ` ≤ K}, the

prescribed by (17) probabilities are nonnegative and their sum over p = 1, . . . ,M is ≤ 1.

Thus, the β-parameters should satisfy the system of constraints

0 ≤ βk(p) +
∑d

s=1

∑K
`=1 min

0≤q≤M
βsk`(p, q), 1 ≤ p ≤M, 1 ≤ k ≤ K,

1 ≥
∑M

p=1 βk(p) +
∑d

s=1

∑K
`=1 max

0≤q≤M

∑M
p=1 β

s
k`(p, q), 1 ≤ k ≤ K.

(18)

The solution set B of this system is a polyhedral set given by explicit polyhedral represen-

tations.
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• We are given convex compact set X in the space of parameters β = {βk, βsk`(p, q), 1 ≤ s ≤

d, 1 ≤ k, ` ≤ K, 1 ≤ p ≤M, 0 ≤ q ≤M} such that X contains the true parameter β of the

process we are observing, and X is contained in the polytope B given by constraints (18).

We arrange the collection of β-parameters associated with a M -state spatio-temporal process

with memory depth d into a column vector (still denoted β) and denote by κ the dimension of

β.7 Note that (17) says that the M -dimensional vector of conditional probabilities for ωtk to take

values p ∈ {1, . . . ,M} given ωt−1 is

[ηTk (ωt−1t−d)β]p

with known to us function ηk(·) defined on the set of arrays ωt−1t−d ∈ {0, 1, . . . ,M}d×K and taking

values in the space of κ×M matrices. Note that the value of ωtk is the index of the category,

and does not mean magnitude. Same as above, ηk(ωt−1d−1) is a Boolean matrix.

To proceed, for 0 ≤ q ≤ M , let χq ∈ RM be defined as follows: χ0 = 0 ∈ RM , and χq,

1 ≤ q ≤ M , is the q-th vector of the standard basis in RM . In particular, the state ωtk can be

encoded by vector ω̄tk = χωtk
, and the state of our process at time t — by the block vector

ωt ∈ RMK with blocks ω̄tk ∈ RM , k = 1, ..., K. In other words: the k-th block in ωt is an

M -dimensional vector which is the p-th basic orth of RM when ωtk = p ≥ 1, and is the zero

vector when ωtk = 0. Arranging κ×M matrices ηk(·) into a matrix

η(·) = [η1(·), ..., ηK(·)] ∈ {0, 1}κ×MK ,

we obtain

E|ωt−1 {ωt} = ηT (ωt−1t−d)β ∈ RMK ,

where E|ωt−1 is the conditional expectation given ωt−1. Note that similarly to Section II-A, (17)

says that every particular entry in β, βk(p) or βsk`(p, q), affects at most one of the entries in the

block vector [ηT1 (ωt−1t−d)β; ...; ηTK(ωt−1t−d)β] specifically, the p-th entry of the k-th block, so that the

Boolean matrix η(ωt−1t−d) has at most one nonzero entry in every row.

Note that the spatio-temporal Bernoulli process with memory depth d, as defined in Section

II-A, is a special case of M -state (M = 1) spatio-temporal process with memory depth d, the

7In general, κ = KM + dK2M2. However, depending on application, it could make sense to postulate that some of the

components of β are zeros, thus reducing the actual dimension of β; for example, we could assume that βk`(·, ·) = 0 for some

“definitely non-interacting” pairs k, ` of locations.
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case where state 0 at a location contributes nothing to probability of state 1 in another location

at a later time, that is, βsk`(1, 0) = 0 for all s, k, `.

Motivating example: Different types of crime events. As an illustration, consider a spatio-temporal

model of crime events of different types, e.g., burglary and robbery, in a geographic area of

interest. We split the area into K non-overlapping cells, which will be our locations. Selecting

the time step in such a way that we can ignore the chances for two or more crime events to

occur in the same spatio-temporal cell, we can model the history of crime events in the area as a

M = 2-state spatio-temporal process, with additional to (18) convex restrictions on the vector of

parameters β expressing our a priori information on the probability βk(p) of a “newborn” crime

event of category p to occur at time instant t at location k and on the contribution βsk`(p, q) of

a crime event of category q in spatio-temporal cell {t − s, `} to the probability of crime event

of category p, p ≥ 1, to happen in the spatio-temporal cell {t, k}.

The problem of estimating parameters β of the M -state spatio-temporal process from obser-

vations of this process can be processed exactly as in the case of the single state spatio-temporal

Bernoulli process. Specifically, observations ωN give rise to two monotone and affine vector

fields on X , the first observable and the second unobservable:

FωN (x) =

[
1

N

N∑
t=1

η(ωt−1t−d)η
T (ωt−1t−d)

]
︸ ︷︷ ︸

A[ωN ]

x− 1

N

N∑
t=1

η(ωt−1t−d)ωt︸ ︷︷ ︸
a[ωN ]

,

F ωN (x) = A[ωN ]x− A[ωN ]β.

(19)

The two fields differ only in constant term, β is a root of the second field, and the difference

of constant terms, same as the vector FωN (β) due to F ωN (β) = 0, are zero-mean satisfying, for

exactly the same reasons as in Section II-D, concentration bounds (8) and (9) of Lemmas 1 and

2. To recover β from observations, we may use the Least Squares (LS) estimate obtained by

solving variational inequality VI[FωN ,X ] with the just defined FωN , or, which is the same, by

solving

min
x∈X

{
ΨωN (x) :=

1

2N

N∑
t=1

‖ηT (ωt−1t−d)x− ωt‖
2
2

}
. (20)

Note that (8) and (9), by the same argument as in Section II-D, imply the validity in our present

situation of Theorem 1 and Lemma 3.
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F. Nonlinear link function

So far, our discussion focused on “linear” link functions, where past events contribute addi-

tively to the probability of a specific event in a given spatio-temporal cell. We now consider

the case of non-linear link functions. This generalizes our model to allow more complex spatio-

temporal interactions.

1) Single-state process: Let φ(·) : D → RK be a continuous monotone vector field defined

on a closed convex domain D ⊂ RK such that

y ∈ D ⇒ 0 ≤ φ(y) ≤ [1; . . . ; 1].

For example, we may consider “sigmoid field” φ(u) = [φ1(u); ...;φK(u)] with

[φ(u)]k =
exp{uk}

1 + exp{uk}
, k ≤ K, D = RK .

Given positive integer N , we define a spatio-temporal Bernoulli process with memory depth d

and link function φ as a random process with realizations {ωtk ∈ {0, 1}, k ≤ K,−d+1 ≤ t ≤ N}

in the same way it was done in Section II-A with assumptions of Section II-A replaced with the

following:

• we are given a convex compact set X ⊂ Rκ such that the vector of parameters β underlying

the observed process belongs to X and every β ∈ X satisfies

ηT (ωt−1t−d)β ∈ D, ∀1 ≤ t ≤ N (21)

with given functions η(ωt−1t−d) taking values in the space of κ×K matrices;

• the conditional expectation of ωt ∈ {0, 1}K given ωt−1 is φ(ηT (ωt−1t−d)β).

Let us set

F (x) = 1
N
EωN

{∑N
t=1

[
η(ωt−1t−d)φ

(
ηT (ωt−1t−d)x

)
− η(ωt−1t−d)ωt

]}
: X → Rκ,

FωN (x) =
1

N

∑N

t=1
η(ωt−1t−d)φ

(
ηT (ωt−1t−d)x

)︸ ︷︷ ︸
A

ωN (x)

− 1

N

∑N

t=1
η(ωt−1t−d)ωt︸ ︷︷ ︸

a[ωN ]

: X → Rκ,

F ωN (x) = AωN (x)− 1

N

∑N

t=1
η(ωt−1t−d)φ

(
ηT (ωt−1t−d)β

)︸ ︷︷ ︸
a[ωN ]

: X → Rκ.

(22)

We are now essentially in the situation of Section II-C (where we considered the special case

φ(z) ≡ z of our present situation). Specifically, F (·) is a monotone (albeit not affine) vector

field on X , F (β) = 0. The empirical version FωN (x), for every x ∈ X , is a monotone on

X vector field which is an unbiased estimate of F (x). Besides this, F ωN (x) is a monotone
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on X vector field, and the true vector of parameters β underlying our observations solves the

variational inequality VI[F ωN ,X ](is a root of F ωN ). These observations suggest estimating β by

weak solution to the variational inequality VI[FωN ,X ].

Note that, same as above, vector fields FωN and F ωN differ only in the constant terms, and this

difference is nothing but FωN (β) due to F ωN (β) = 0; moreover ξt = η(ωt−1t−d)ωt − ηT (ωt−1t−d)β is

a martingale difference. Though deviation probabilities for FωN (β) do not obey the same bound

as in the case of φ(z) ≡ z (since the matrices η(ωt−1t−d) now not necessarily are Boolean with

at most one nonzero in a row), the reasoning which led us to (8) demonstrates that the vector

FωN (β) in our present situation does obey the bound

ProbωN

{
‖FωN (β)‖∞ ≥ Θ

[√
ln(2κ/ε)

2N
+

ln(2κ/ε)

3N

]}
≤ ε, ∀ε ∈ (0, 1), (23)

where Θ is the maximum, over all possible ωt−1d−1, of the ‖ · ‖1-norm of rows of η(ωt−1t−d). Note

that in the situation of this section, our O(1/
√
N) exponential bounds on large deviations of

FωN (β) from zero, while being good news, do not result in easy-to-compute on-line upper-risk

bounds and confidence intervals for linear functions of β. Indeed, in order to adjust to our present

situation Theorem 1, we need to replace the condition numbers θp[·] with constants of strong

monotonicity of the vector field FωN (·) on X . On the other hand, to adopt the result of Lemma

3 in the present setting, we need to replace the quantities e and e, see (15), with the maximum

(resp., minimum) of the linear form eTx over the set {x ∈ X : ‖FωN (x)‖∞ ≤ δ}. Both these

tasks for a nonlinear operator FωN (·) seem to be problematic.

2) Multi-state processes: The construction in the previous paragraph can be extended to M -

state processes. Below, with a slight abuse of notation, we redefine notation for the multi-state

processes.

Let us identify two-dimensional K ×M array {ak` : 1 ≤ k ≤ K, 1 ≤ ` ≤ M} with KM -

dimensional block vector with K blocks [ak1; ak2; . . . ; akM ], 1 ≤ k ≤ K, of dimension M each.

With this convention, a parametric K ×M array ψ(z) = {ψkp(z) ∈ R : k ≤ K, 1 ≤ p ≤ M}

depending on KM -dimensional vector z of parameters becomes a vector field on RKM . Assume

that we are given an array φ(·) = {φkp(·) ∈ R : k ≤ K, 1 ≤ p ≤ M} of the outlined structure

such that vector field φ(·) is continuous and monotone on a closed convex domain D ⊂ RKM ,

and for all y ∈ D

0 ≤ φkp(y) ≤ 1, 1 ≤ p ≤M, 1 ≤ k ≤ K &
M∑
p=1

φkp(y) ≤ 1, 1 ≤ k ≤ K. (24)
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We assume that the conditional probability for location k at time t to be in state p ∈ {1, . . . ,M}

(i.e., to have ωtk = p) given ωt−1 is

φkp(η
T (ωt−1t−d)β)

for some vector of parameters β ∈ Rκ and known to us function η(·) taking values in the space

of κ×KM matrices and such that ηT (ωt−1d−1)β ∈ D whenever ωτk ∈ {0, 1, ...,M} for all τ and

k. As a result, the conditional probability to have ωtk = 0 is

1−
M∑
p=1

φkp(η
T (ωt−1t−d)β).

In addition, we assume that we are given a convex compact set X ⊂ Rκ such that β ∈ X

and for all such β

ηT (ωt−1t−d)β ∈ D, ∀{ωτk ∈ {0, 1, ...,M}, ∀τ, k}.

Same as in Section II-E, we encode the collection {ωtk : 1 ≤ k ≤ K} of locations’ states at

time t by block vector ωt with K blocks of dimension M each, with the k-th block equal to

the ωtk-th vector of the standard basis in RM when ωtk > 0 and equal to 0 when ωtk = 0. We

clearly have

E|ωt−1 {ωt} = φ(ηT (ωt−1t−d)β).

Setting

F (x) = 1
N
EωN

{∑N
t=1

[
η(ωt−1t−d)φ

(
ηT (ωt−1t−d)x

)
− η(ωt−1t−d)ωt

]}
: X → Rκ,

FωN (x) =
1

N

∑N

t=1
η(ωt−1t−d)φ

(
ηT (ωt−1t−d)x

)︸ ︷︷ ︸
A

ωN (x)

− 1

N

∑N

t=1
η(ωt−1t−d)ωt︸ ︷︷ ︸

a[ωN ]

: X → Rκ

F ωN (x) = AωN (x)− 1

N

∑N

t=1
η(ωt−1t−d)φ

(
ηT (ωt−1t−d)β

)︸ ︷︷ ︸
a[ωN ]

: X → Rκ,

(25)

(cf. equation (22)), we can repeat word by word the comment at the end of Section II-F1.

III. MAXIMUM LIKELIHOOD ESTIMATE

In the previous sections, we have discussed the Least Squares estimate of the parameter vector

β. Now, we consider commonly used in statistics alternative approach based on the Maximum

Likelihood (ML) estimation. ML estimate is obtained by maximizing over β ∈ X the conditional

likelihood of what we have observed, the condition being the actually observed values of ωtk

for −d+ 1 ≤ t ≤ 0 and 1 ≤ k ≤ K. In this section, we study the properties of the ML estimate

and show that its calculation reduces to a convex optimization problem.
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A. ML estimation: case of linear link function

a) Single state model: Assume, in addition to what has been already assumed, that for every
t random variables ωtk are conditionally independent across k given ωt−1. Then the negative log-
likelihood, conditioned by the value of ω0, is given by

L(β) =
1

N

N∑
t=1

K∑
k=1

[
−ωtk ln

(
βk +

∑d

s=1

∑K

`=1
βs
k`ω(t−s)`

)
− (1− ωtk) ln

(
1− βk −

∑d

s=1

∑K

`=1
βs
k`ω(t−s)`

)]
.

Note that L(·) is a convex function, so the ML estimate in our model reduces to the convex

program

min
x∈X

L(x). (26)

b) Multi-state model: Assume that states ωtk at locations k at time t are conditionally

independent across k ≤ K given ωt−1. Then the ML estimate is given by minimizing, over

β ∈ X , the conditional negative log-likelihood of collection ωN of observations (the condition

being the initial segment ω0 of the observation). The objective in this minimization problem is

the convex function

LωN (β) = − 1

N

N∑
t=1

K∑
k=1

ψtk(β, ω
N),

where

ψtk(β, ω
N) =

 ln
(
[ηTk (ωt−1t−d)β]ωtk

)
, ωtk ∈ {1, . . . ,M},

ln
(

1−
∑M

j=1[η
T
k (ωt−1t−d)β]j

)
, ωtk = 0.

(27)

c) Toward performance guarantees: We are about to show that the ML estimate has a

structure similar to the LS estimator that we have dealt within Section II, and obeys bounds

similar to (23). Given a small positive tolerance %, consider M -state spatio-temporal process

with K locations and vector of parameters β ∈ Rκ, as defined in Section II-E, restricted to

reside in the polyhedral set B% cut off Rκ by “%-strengthened” version of constraints (18),

specifically, the constraints

% ≤ βk(p) +
∑d

s=1

∑K
`=1 min

0≤q≤M
βsk`(p, q), 1 ≤ p ≤M , 1 ≤ k ≤ K,

1− % ≥
∑M−1

p=1 βk(p) +
∑d

s=1

∑K
`=1 max

0≤q≤M

∑M
p=1 β

s
k`(p, q), 1 ≤ k ≤ K.

(28)

The purpose of strengthening the constraints on β is to make the maximum likelihood, to be

defined below, continuously differentiable on the given parameter domain.

In what follows, we treat vectors from RKM as block vectors with K blocks of dimension

M each. For such a vector z, [z]kp stands for the p-th entry in the k-th block of z. Let

Z0 =

{
ω ∈ RMK : ω ≥ 0,

M∑
p=1

[ω]kp ≤ 1, ∀k ≤ K

}
.
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Similarly, for a small positive tolerance %, define

Z% =

{
z ∈ RMK : [z]kp ≥ %, ∀k, p,

M∑
p=1

[z]kp ≤ 1− %, ∀k

}
⊂ Z0.

We associate with a vector w ∈ Z0 the convex function Lw : Z% → R,

Lw(z) := −
∑K

k=1

[∑M
p=1[w]kp ln([z]kp) + [1−

∑M
p=1[w]kp] ln(1−

∑M
p=1[z]kp)

]
. (29)

From now on, assume that we are given a convex compact set X ⊂ B% known to contain the true

vector β of parameters. Then the problem of minimizing the negative log-likelihood becomes

min
x∈X

{
LωN (x) =

1

N

N∑
t=1

Lωt(η
T (ωt−1t−d)x)

}
, (30)

where ωt = ωt(ω
t) encodes, as explained in Section II-E, the observations at time t, and η(ωt−1t−d)

are as defined in Section II-E.

Note that by construction, ωt belongs to Z0. Moreover, by construction, we have ηT (ωt−1t−d)x ∈

Z% whenever x ∈ B% and ωtk ∈ {0, 1, ...,M} for all t and k. Now, minimizers of LωN (x) over

x ∈ X are exactly the solutions of the variational inequality stemming from X and the monotone

and smooth vector field (the smoothness property is due to LωN (x) being convex and smooth

on X ):

FωN (x) = ∇xLωN (x) =
1

N

N∑
t=1

η(ωt−1t−d)θ(η
T (ωt−1t−d)x, ωt(ω

t))

with

θ(z, ω) = ∇zLw(z) = −
K∑
k=1

[
M∑
p=1

[w]kp
[z]kp

ekp −
1−

∑M
p=1[w]kp

1−
∑M

p=1[z]kp

M∑
p=1

ekp

]
, [w ∈ Z0]

where ekp ∈ RKM is the block-vector with the p-th vector of the standard basis in RM as the

k-th block and all other blocks equal to 0.

Note that we clearly have

w ∈ Z% ⇒ φw(w) = 0. (31)

Let us show that FωN (β) is “typically small”: its magnitude obeys the large deviation bounds

similar to (8) and (23). Indeed, let us set zt(ωt−1) = ηT (ωt−1t−d)β, so that zt ∈ Z% due to β ∈ B%.

Invoking (31) with w = zt(ω
t−1), we have

FωN (β) =
1

N

N∑
t=1

η(ωt−1t−d)ϑt[ω
t]︸ ︷︷ ︸

ξt

,
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where

ϑt[ω
t] = −

K∑
k=1

[
M∑
p=1

[ωt(ω
t)]kp − [zt(ω

t−1)]kp
[zt(ωt−1)]kp

ekp +

∑M
p=1 [[zt]kp − [ωt(ω

t)]kp]

1−
∑M

p=1[zt(ω
t−1)]kp

M∑
p=1

ekp

]
.

Since the conditional expectation of [ωt(ω
t)]kp given ωt−1 equals [zt(ω

t−1)]kp the conditional

expectation of ξt given ωt−1 is zero. Besides this, random vectors ξt take their values in a

bounded set (of size depending on %). As a result, ‖FωN (β)‖∞ admits bound on probabilities of

large deviations of the form (23), with properly selected (and depending on %) factor Θ. However,

for the reasons presented in Section II-F, extracting from this bound meaningful conclusions on

the accuracy of the ML estimate is a difficult task, and it remains an open problem.

Remark [Decomposition of LS and ML estimation]. In the models we have considered, the

optimization problems (6), (20), (26), and (30), we aim to solve when building the LS and the

ML estimates under mild assumptions are decomposable (in spite of the fact that the observations

are dependent). Indeed, vector

β = {βkp, βsk`(p, q), 1 ≤ k, ` ≤ K, 1 ≤ p ≤M, 0 ≤ q ≤M, 1 ≤ s ≤ d}

of the model parameters can be split into K subvectors

βk = {βkp, βsk`(p, q), 1 ≤ ` ≤ K, 1 ≤ p ≤M, 0 ≤ q ≤M, 1 ≤ s ≤ d}, k = 1, ..., K.

It is immediately seen that the objectives to be minimized in the problems in question are sums

of K terms, with the k-th term depending only on xk. As a result, if the domain X summarizing

our a priori information on β is decomposable: X = {x : xk ∈ Xk, 1 ≤ k ≤ K}, the optimiza-

tion problems yielding the LS and the ML estimates are collections of K uncoupled convex

optimization problems in variables xk. Moreover, under favorable circumstances optimization

problem (20) admits even finer decomposition. Namely, splitting βk into subvectors

βkp = {βkp, βsk`(p, q), 1 ≤ ` ≤ K, 1 ≤ s ≤ d, 0 ≤ q ≤M},

it is easily seen that the objective in (20) is the sum, over k ≤ K and p ≤ M , of functions

Ψkp
ωN (xkp). As a result, when X = {x : xkp ∈ Xkp, 1 ≤ k ≤ K, 1 ≤ p ≤M}, (20) is a collection

of KM uncoupled convex problems minxkp∈Xkp
Ψkp
ωN (xkp).

The outlined decompositions may be used to accelerate the solution process.
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B. ML estimate: General link functions

Let us now derive ML estimate for the case of nonlinear link function considered in Section

II-F2. In this situation, we strengthen constraints (24) on D to

y ∈ D ⇒ % ≤ φkp(y),
M∑
p=1

φkp(y) ≤ 1− %, 1 ≤ k ≤ K, 1 ≤ p ≤M,

with some % > 0. Assuming that ωtk’s are conditionally independent across k given ωt−1,

computing ML estimate for the general link-function reduces to solving problem (30) with

Lw(z) : D → R, w ∈ Z0, given by

Lw(z) = −
K∑
k=1

[
M∑
p=1

[w]kp ln(φkp(z)) + [1−
M∑
p=1

[w]kp] ln(1−
M∑
p=1

φkp(z))

]
.

Assuming φ continuously differentiable on D and Lw(·) convex on D, we can repeat, with

straightforward modifications, everything that was said above (that is, in the special case of

φ(z) ≡ z), including exponential bounds on probabilities of large deviations of FωN (β). However,

in general, beyond the case of affine φkp(·), function Lw(·) becomes nonconvex. This is due to

the fact that convexity on D of functions

− ln(φkp(·)), − ln
(

1−
∑
p

φkp(·)
)

is a rare commodity. Nevertheless, convexity of these functions does take place in the case

logistic link function

φkp(z) =
exp{akp(z)}∑M
q=0 exp{akq(z)}

with functions akq(z), 0 ≤ q ≤M that are affine in z.

IV. NUMERICAL EXPERIMENTS

A. Experiments with simulated data

This section presents the results of several simulation experiments illustrating applications of

the proposed Bernoulli process models. We compare performances of Least Squares (LS) and

Maximum Likelihood (ML) estimates in terms of `1, `2, and `∞ norms of the error of parameter

vector recovery. We assume that d (or a reasonable upper bound on it) is known in our simulation

examples. The bracket percentage inside the table below shows the norm of the error relative to

the norm of the corresponding true parameter vector.
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1) Single state spatio-temporal processes: First, consider a single state setting with the

memory depth d = 8 and the number of locations K = 8. The true parameter values are

selected randomly from the set X0 as follows:

• βk ≥ 0, βskl ≥ 0; and βk +
∑d

s=1

∑K
`=1 β

s
k` ≤ 1, ∀k;

• βsk` = 0 when |k − `| > 1 (interactions are local);

• For every 1 ≤ k, ` ≤ K, βsk` is a non-increasing convex function of s.8

Note that we have imposed additional to (2) constraints on β.

We report the performance of the LS estimate (obtained by solving VI[FωN ,X ]) and the

ML estimate (obtained by solving (26)). To ensure a fair comparison, we do not introduce

any additional constraints on the interaction coefficients in our estimation procedure (meaning

that the LS and ML estimates do not have any prior knowledge about X0 and their assumed

admissible set X is much larger than X0). Utilizing the Matlab implementation [30] of the EM

algorithm, we also compute estimations of parameters of the commonly used model of Hawkes

process with exponential temporal kernel (see, e.g., [5]). The latter is equivalent to assuming that

βsk` = ak`τe
−τs, s = 1, 2, . . ., where τ > 0 is the decay rate parameter and ak` > 0 represents

the interactions between two locations.

Fig. 3 shows the recovered interaction coefficients using various methods with N = 10, 000

observations, for a single (randomly generated) instance. The associated error metrics are pre-

sented in Table I. The confidence intervals in Fig. 4 are computed according to (15) by letting

e be standard basis vectors in Rκ and restricting the parameter space to X . We also repeat

the experiment 100 times (each time, generate new true parameters), and the average errors are

reported in Table II. The experiments show that ML and LS estimates exhibit similar performance

(ML outperforming slightly the LS estimates). Both of them outperform the recovery by EM

algorithm based on the exponential kernel, which may be due to a more flexible parameterization

of our model.

2) Multi-state spatio-temporal processes: Now consider a multi-state spatio-temporal Bernoulli

process with the number of states M = 2. Here the possible states p = 0 represents no event,

p = 1, 2 represent the event of category 1 and 2, respectively. We assume memory depth d = 8

8 Here, the convexity of a function f(s) in s ∈ G = {1, . . . , d} means that the function is the restriction of a convex function

on the segment [1, d] onto the grid G or, which is the same, that f(s− 1)− 2f(s) + f(s+ 1) ≥ 0, s = 2, 3, . . . , d− 1. This

translates into the constraint βs−1
k,` − 2βs

k,` + βs+1
k,` ≥ 0, s = 2, 3, . . . , d− 1, ∀k, `.
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Fig. 3. Single-state process: estimates for baseline intensity βk and interactions parameters βs
k` for one random instance.

TABLE I

SINGLE-STATE PROCESS: ERROR OF ML, LS, AND EM ESTIMATION FOR THE ONE INSTANCE SHOWN IN FIG. 3.

Estimate `1 error `2 error `∞ error

ML 1.7150 (22.57%) 0.1534 (17.67%) 0.0342 (13.64%)

LS 1.8849 (24.80%) 0.1714 (19.73%) 0.0372 (14.84%)

EM (exponential kernel) 6.3127 (83.06%) 0.6413 (73.83%) 0.2105 (83.97%)
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Fig. 4. Computed 90% confidence intervals corresponding to Fig. 3.

TABLE II

SINGLE-STATE PROCESS: ERROR OF ML, LS, AND EM ESTIMATION AVERAGED OVER 100 TRIALS.

Estimate `1 error `2 error `∞ error

ML 1.1482 (15.11%) 0.1112 (12.60%) 0.0336 (11.87%)

LS 1.9776 (26.02%) 0.1831 (20.72%) 0.0472 (16.62%)

EM (exponential kernel) 6.4725 (85.16%) 0.6695 (75.72%) 0.2209 (75.17%)

and the number of locations K = 10. The true parameters are randomly generated from the set

X0 specified by (again, we impose additional constraints as in Section IV-A1):
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• βk(p) ≥ 0, βskl(p, q) ≥ 0;
∑M

p=1 βk(p)+
∑d

s=1

∑K
`=1 max0≤q≤M

∑M
p=1 β

s
k`(p, q) ≤ 1, ∀k ≤ K;

• βsk`(p, q) = 0 when |k − `| > 1, ∀p, q (interactions are local);

• For every 1 ≤ k, ` ≤ K and 1 ≤ p ≤ M, 0 ≤ q ≤ M , βsk`(p, q) is a non-increasing convex

function of s.

Furthermore, we consider two scenarios, with additional constraints on the parameters

• Scenario 1: events can only trigger future events of the same category, i.e., βsk`(p, q) ≡ 0,

q 6= p;

• Scenario 2: events of category q = 0, . . . ,M , only trigger events with category p ≤ q. This

can happen, for example, when modeling earthquakes aftershocks: events are marked using

M categories according to their magnitudes: u1 < . . . < uM . Set u0 = 0 and treat the

event “no earthquake” as “earthquake of magnitude 0.” Then each earthquake can trigger

“aftershocks” with the same or smaller magnitudes.

We generate a synthetic data sequence of length N = 20, 000. For a single (randomly

generated) instance, recovery of baseline and interaction parameters are presented in Fig. 5.

The associated recovery errors of the LS estimate (solution to (20)) and the ML estimate

(solution to (30)) are reported in Table III. In addition, we also report the recovery errors

separately for (i) the baseline intensity vector (referred to as “birthrates”) βbirth = {βk(p), k ≤

K, 1 ≤ p ≤ M} ∈ RKM×1; and (ii) the vector of interactions between different locations

βinter = {βsk`(p, q)} ∈ RdK2M(M+1)×1. As shown in Table III, the `1 recovery error for estimating

birthrate is smaller than that for the interaction parameters. Thus, the recovery error for β is

dominated by the error for interaction parameters. This could be explained because the magnitude

of the baseline intensity is higher than the influence parameters (which is usually needed to have

stationary processes).

Finally, to assess the predictive capability of our model, we did the following experiment.

Generate one sequence of discrete events, with length N = 20, 000, using randomly selected

parameters. We divide the sequence in half: use half for “training” and the other half for “testing”.

In particular, we (1) use the first half of the sequence for estimating the Bernoulli process model

parameter, (2) use the “trained” model to generate a new “synthetic” sequence of length N/2,

and (3) compare the “synthetic” sequence with the “test” sequence, in terms of the frequency of

events, for each category, at each location. The results in Fig. 6 show that the synthetic sequence

has a reasonably good match with the testing sequence, based on the LS and the ML estimates.
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TABLE III

MULTI-STATE PROCESS RECOVERY: NORMS OF RECOVERY ERROR FOR LS ESTIMATE β̂LS AND ML ESTIMATE β̂ML .

Estimate
Scenario 1 Scenario 2

`1 error `2 error `1 error `2 error

β̂ML 0.3524 (4.7%) 0.0532 (2.5%) 1.0179 (13.6%) 0.1146 (5.9%)

β̂LS 0.4947 (6.6%) 0.0744 (3.4%) 1.0854 (14.5%) 0.1230 (6.3%)

β̂ML, birth 0.0106 (2.7%) 0.0028 (3.1%) 0.0226 (5.7%) 0.0060 (6.7%)

β̂LS, birth 0.0160 (4.0%) 0.0044 (5.0%) 0.0237 (5.9%) 0.0066 (7.4%)

β̂ML, inter 0.3419 (4.8%) 0.0531 (2.5%) 0.9952 (14.0%) 0.1144 (5.9%)

β̂LS, inter 0.4786 (6.7%) 0.0743 (3.4%) 1.0617 (15.0%) 0.1228 (6.3%)
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Fig. 5. Multi-state process: examples of LS and ML estimates for baseline intensity βk(p) and interactions parameters βs
k`(p, q).
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Fig. 6. Multi-state process: experiment to compare the frequency of events from a synthetic sequence (generated using models

estimated from training sequence using LS and ML estimates) with that from the testing sequence.

3) Sparse network recovery with negative and non-monotone interactions: In the last synthetic

example, we consider an example to recover a network with “non-conventional” interactions:
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non-monotonic temporal interactions and negative interactions. Consider a sparse, directed, and

non-planar graph (meaning that this cannot be embedded on a two-dimensional Euclidean space

and, thus, this does not correspond to discretized space) with K = 8 nodes. The interaction

functions are illustrated in Fig. 7.

2
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Fig. 7. Sparse non-planar graph with non-monotonic and negative interaction. Note that the interaction 1→ 8 is negative.

The baseline intensities are all positive at all 8 nodes. The directed edge (arrows) means there

is a one-directional “influence” from one node to its neighbor, e.g., 1→ 5. The self-edges, e.g.,

2→ 2 and 5→ 5, denote that these nodes have a self-exciting effect: events happen at the node

will trigger future events at itself. The true parameters of the model are generated as follows.

• Baseline parameters values at all locations are drawn independently from a uniform distri-

bution on [0, 0.2];

• For each directed edge ` → k, the interaction βsk,` is given by βsk` = 0.05e−0.25(s−τk`)
2 ,

s ≥ 0, and the peak τk` is randomly chosen from {1, . . . , d}, except for one edge 1 → 8,

whose interaction function is set to be negative: βs8,1 = −0.05e−0.25(s−τ8,1)
2 .

In our implementation, we consider two scenarios: (1) the graph structure is unknown: we do not

impose sparsity constraints while obtaining the LS and ML estimates; (2) the graph structure is

known, and then we impose the sparsity constraints by setting the interactions to be 0 when there

is no edge; this illustrate the scenario when we have some prior information about the network

structure. We report recovery errors for the two scenarios in Table IV and compare the recovery

of interaction parameters under scenario (1) with the true values in Fig. 8. From the experiment

results, we observe that both the LS and ML estimates match closely with the true parameters,

even when the underlying graph structure is unknown. The comparison in Table IV shows a

significant improvement in the estimation error when the graph structure is known a priori. This

is consistent with our previous remark that knowing the network structure allows for a better

choice of the feasible region resulting in reduced estimation error. Moreover, by examining the
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TABLE IV

SPARSE NETWORK RECOVERY WITH NON-CONVENTIONAL INTERACTIONS: ERRORS OF LS AND ML ESTIMATES β̂LS , β̂ML .

Estimate
Unknown Graph Known Graph

`1 error `2 error `∞ error `1 error `2 error `∞ error

β̂ML 1.7694 (58.71%) 0.1128 (24.65%) 0.0224 (13.79%) 0.4715 (15.64%) 0.0593 (12.95%) 0.0173 (10.68%)

β̂LS 1.8757 (62.23%) 0.1166 (25.48%) 0.0211 (13.01%) 0.4773 (15.84%) 0.0606 (13.23%) 0.0204 (12.58%)

β̂ML, birth 0.0367 (3.84%) 0.0162 (4.42%) 0.0111 (6.84%) 0.0126 (1.32%) 0.0068 (1.85%) 0.0061 (3.75%)

β̂LS, birth 0.0378 (3.95%) 0.0172 (4.69%) 0.0129 (7.94%) 0.0126 (1.32%) 0.0069 (1.89%) 0.0061 (3.75%)

β̂ML, inter 1.7327 (84.20%) 0.1117 (40.69%) 0.0224 (44.73%) 0.4589 (22.30%) 0.0589 (21.46%) 0.0173 (34.65%)

β̂LS, inter 1.8379 (89.31%) 0.1153 (42.02%) 0.0211 (42.19%) 0.4648 (22.58%) 0.0602 (21.92%) 0.0204 (40.81%)
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Fig. 8. Sparse network identification when graph is unknown: examples of LS and ML estimates of baseline intensity and

vectors of interaction parameters; interactions β6,1 and β8,2 correspond to edges 1 → 6 and 2 → 8 which do not exist in the

graph in Fig. 7.

histogram of the maximum interaction between each pair, i.e., {maxds=1 |βsk,`|, 1 ≤ k, ` ≤ K} as

shown in Fig. 9, we observe that we can indeed accurately recover the support of the graph: the

estimates of the edges with non-zero interactions, are completely separable from the estimates

Fig. 9. Sparse network support recovery: histogram of the recovered interaction parameters {maxd
s=1 |βs

k,`|, 1 ≤ k, ` ≤ K}.

Edges with non-zero interactions can be perfectly separated from those with zero interactions.

of the edges with zero interactions. This indicates that we can apply an appropriate threshold (in
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this case, e.g., 0.03) to recover precisely the unknown graph structure completely. This example

also shows that even when prior information about the spare structure of the underlying network

is not available, LS and ML estimates can recover the underlying network reasonably well, which

opens possibilities of applying the proposed approach to perform casual inference [31] using

discrete-event data.

B. Real data studies: Crime in Atlanta

Finally, we study a real crime dataset in Atlanta, USA, to demonstrate the promise of our

methods to recover interesting structures from real-data. We consider two categories of crime

incidents, “burglary” and “robbery”. These incidents were reported to the Atlanta Police Depart-

ment from January 1, 2015, to September 19, 2017. The dataset contains 47,245 “burglary” and

3,739 “robbery” incidents. As mentioned in the introduction, it is believed that crime incidents

are related and have “self-exciting” patterns: once crime incidence happens, it triggers similar

crimes more likely to happen in the neighborhood in the near future [32]. Here, we model the

data using a multi-state Bernoulli process with two states: no event (p = 0), burglary (p = 1),

and robbery (p = 2).
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Fig. 10. Raw data map: burglary and robbery incidents in Atlanta. Left: the full map; Right: zoom-in around downtown Atlanta.

We extract crime events around the Atlanta downtown area, as shown in Fig. 10, which contains

6031 “burglary” events and 454 “robbery” events. The whole time horizon (788 days) is split

into discrete time intervals of four hours. The memory depth d is set to 6 in this example.

This value was obtained using a simple “cross-validation-like” procedure utilizing predictions of

frequencies of the burglary and robbery incidents in various spatial cells. The downtown region

is divided uniformly into 16 sub-regions.
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We compute the LS estimates of the parameters {βk(p), βsk,l(p, q)}, in two different ways

to set up the constraints: in the first setup, we do not impose additional constraints on the

parameters apart from “basic” constraints (18); in the second setup, we impose constraints

to only consider temporal interaction function, βsk`, with monotonic and convex “shapes”.9

The estimated parameters are shown in Fig. 11. In the figure, the size of the red dot in each

region is proportional to the magnitude of the estimated birthrate βk(p), k = 1, . . . , K, for

Burglary/Robbery, respectively; the width of the arrow is proportional to the magnitude of the

interaction βsk,l(p, q) between locations. It is interesting to notice that our model recovers the

dynamic of the interactions and how they change over time. There also seem to be strong

interactions between burglary and robbery at different locations.

To validate the model, we experiment similar to we did for the simulated data in Section

IV-A2. We take the two-year duration of data, divide the sequence in half, use the first half of

the sequence to estimate a multi-state Bernoulli process model, generate a synthetic sequence,

and compare with the second half of the sequence reserved for testing. We compare the frequency

of Burglary and Robbery events across all locations, for the synthetic and testing sequence. The

results are shown in Table V. The results look to be a reasonably good match, considering that

the crime events are relatively rare and with highly complex (and unknown) dynamics: predicting

their frequency in the first place is a highly challenging task and an essential research task of

criminology.

We also note that the prediction for burglary seems to be better since the frequencies from

the synthetic sequence are very close, and the relative error is smaller. This is expected since

the number of burglary cases is much larger than the number of robbery cases in our dataset,

and the frequency of robbery cases is very small (typically below 0.01, as shown in Table V).

The experiment serves as a sanity check and shows that for challenging and noisy real-world

datasets, there could be a certain truth to the proposed methods.
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TABLE V

CRIME EVENT MODEL RECOVERY: FREQUENCY OF BURGLARY AND ROBBERY EVENTS AT EACH LOCATION.

Locations
Burglary Robbery

True With constr Without constr True With constr Without constr

1 0.1499 0.1707 0.1766 0.0102 0.0195 0.0186

2 0.0284 0.0373 0.0445 0.0017 0.0203 0.0212

3 0.0483 0.0580 0.0606 0.0021 0.0254 0.0195

4 0.0407 0.0364 0.0356 0.0017 0.0178 0.0224

5 0.0508 0.0529 0.0648 0.0042 0.0220 0.0165

6 0.1957 0.2088 0.1834 0.0131 0.0208 0.0144

7 0.0970 0.1368 0.1224 0.0068 0.0229 0.0191

8 0.0419 0.0580 0.0563 0.0021 0.0127 0.0182

9 0.0148 0.0161 0.0220 0.0013 0.0165 0.0212

10 0.0584 0.0729 0.0805 0.0055 0.0258 0.0178

11 0.1266 0.1525 0.1529 0.0106 0.0195 0.0169

12 0.1364 0.1266 0.1186 0.0102 0.0191 0.0169

13 0.0322 0.0521 0.0445 0.0021 0.0229 0.0224

14 0.0627 0.0868 0.0834 0.0055 0.0212 0.0195

15 0.0208 0.0224 0.0280 0.0008 0.0241 0.0216

16 0.0144 0.0203 0.0178 0.0013 0.0203 0.0212

REFERENCES

[1] G. O. Mohler, M. B. Short, P. J. Brantingham, F. P. Schoenberg, and G. E. Tita, “Self-exciting point process modeling of

crime,” Journal of the American Statistical Association, vol. 106, no. 493, pp. 100–108, 2011.

[2] A. E. Johnson, T. J. Pollard, L. Shen, H. L. Li-wei, M. Feng, M. Ghassemi, B. Moody, P. Szolovits, L. A. Celi, and R. G.

Mark, “MIMIC-III, a freely accessible critical care database,” Scientific data, vol. 3, no. 1, pp. 1–9, 2016.

[3] A. Stomakhin, M. B. Short, and A. L. Bertozzi, “Reconstruction of missing data in social networks based on temporal

patterns of interactions,” Inverse Problems, vol. 27, no. 11, p. 115013, 2011.

[4] E. L. Lai, D. Moyer, B. Yuan, E. Fox, B. Hunter, A. L. Bertozzi, and P. J. Brantingham, “Topic time series analysis of

microblogs,” IMA Journal of Applied Mathematics, vol. 81, no. 3, pp. 409–431, 2016.

[5] K. Zhou, H. Zha, and L. Song, “Learning social infectivity in sparse low-rank networks using multi-dimensional Hawkes

processes,” in Artificial Intelligence and Statistics, 2013, pp. 641–649.

[6] S. Li, Y. Xie, M. Farajtabar, A. Verma, and L. Song, “Detecting changes in dynamic events over networks,” IEEE

Transactions on Signal and Information Processing over Networks, vol. 3, no. 2, pp. 346–359, 2017.

[7] P. Embrechts, T. Liniger, and L. Lin, “Multivariate Hawkes processes: an application to financial data,” Journal of Applied

Probability, vol. 48, no. A, pp. 367–378, 2011.

[8] M. Kuperman and G. Abramson, “Small world effect in an epidemiological model,” Physical Review Letters, vol. 86,

no. 13, p. 2909, 2001.



33

[9] A. G. Hawkes, “Spectra of some self-exciting and mutually exciting point processes,” Biometrika, vol. 58, no. 1, pp. 83–90,

1971.

[10] ——, “Point spectra of some mutually exciting point processes,” Journal of the Royal Statistical Society: Series B

(Methodological), vol. 33, no. 3, pp. 438–443, 1971.

[11] A. G. Hawkes and D. Oakes, “A cluster process representation of a self-exciting process,” Journal of Applied Probability,

vol. 11, no. 3, pp. 493–503, 1974.

[12] A. Reinhart, “A review of self-exciting spatio-temporal point processes and their applications,” arXiv preprint

arXiv:1708.02647, 2017.

[13] E. C. Hall and R. M. Willett, “Tracking dynamic point processes on networks,” IEEE Transactions on Information Theory,

vol. 62, no. 7, pp. 4327–4346, 2016.

[14] B. Yuan, H. Li, A. L. Bertozzi, P. J. Brantingham, and M. A. Porter, “Multivariate spatiotemporal Hawkes processes and

network reconstruction,” SIAM Journal on Mathematics of Data Science, vol. 1, no. 2, pp. 356–382, 2019.

[15] M. Eichler, R. Dahlhaus, and J. Dueck, “Graphical modeling for multivariate Hawkes processes with nonparametric link

functions,” Journal of Time Series Analysis, vol. 38, no. 2, pp. 225–242, 2017.

[16] S. Chen, A. Shojaie, E. Shea-Brown, and D. Witten, “The multivariate Hawkes process in high dimensions: Beyond mutual

excitation,” arXiv preprint arXiv:1707.04928, 2017.

[17] M. Gomez-Rodriguez, J. Leskovec, and B. Schölkopf, “Modeling information propagation with survival theory,” in

International Conference on Machine Learning, 2013, pp. 666–674.

[18] E. W. Fox, F. P. Schoenberg, and J. S. Gordon, “Spatially inhomogeneous background rate estimators and uncertainty

quantification for nonparametric Hawkes point process models of earthquake occurrences,” The Annals of Applied Statistics,

vol. 10, no. 3, pp. 1725–1756, 2016.

[19] J. Moller and R. P. Waagepetersen, Statistical inference and simulation for spatial point processes. CRC Press, 2003.

[20] G. Mohler et al., “Modeling and estimation of multi-source clustering in crime and security data,” The Annals of Applied

Statistics, vol. 7, no. 3, pp. 1525–1539, 2013.
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APPENDIX

We start with describing an application of the Bernstein inequality for martingales (cf., e.g., [28], [33]–[35]) in

our situation. Let ωi i = ..., 0, 1, 2, ... be a sequence of random binary vectors in Rm such that the conditional

distribution of the j-th component ωij , j = 1, ...,m, of ωi given ωi−1 is Bernoulli distribution with parameter

µij = E|ωi−1{ωij}. Now, consider the sequence of Boolean vectors γi, i = 1, 2, ..., γi ∈ Rm, such that γi is

|ωi−1-measurable with
∑

j γ
j
i ≤ 1 a.s.. Finally, let ζi = γTi ωi − γTi µi; note that, in this case,

E|ωi−1{ζi} = 0, σ2
i := E|ωi−1{ζ2i } = γTi µi(1− γTi µi) ≤ 1

4 , and |ζi| ≤ 1 a.s..

Denote µ̄N = 1
N

∑N
i=1 γ

T
i µi, ν̄N = 1

N

∑N
i=1 γ

T
i ωi, s̄N = 1

N

∑N
i=1 σ

2
i , and ζ̄N = 1

N

∑N
i=1 ζi.

Lemma 4. Let 0 < s < s <∞, and let y > 1. One has

Prob

{
|ζ̄N | ≥

√
2ys̄N
N

+
y

3N
, s ≤ s̄N ≤ s

}
≤ 2e

(
y ln

(
s/s
)

+ 1
)
e−y. (32)

and, as a consequence,

Prob

{
|ζ̄N | ≥

√
2ys̄N
N

+
y

3N

}
≤ 2e

(
y
[

ln((y − 1)N
)

+ 2
]

+ 2
)
e−y. (33)

Moreover, we have

Prob
{
ψ(ν̄N , N ; y) ≤ µ̄N ≤ ψ(ν̄N , N ; y)

}
≥ 1− 2e

(
y
[

ln((y − 1)N
)

+ 2
]

+ 2
)
e−y (34)

where

ψ(ν,N ; y) =

 (N + 2y)−1
[
Nν + 2y

3 −
√

2Nνy + y2

3 −
2y
N

(
y
3 − νN

)2]
if ν > y

3N ,

0 otherwise;

ψ(ν,N ; y) =

 (N + 2y)−1
[
Nν + 4y

3 +

√
2Nνy + 5y2

3 −
2y
N

(
y
3 + νN

)2]
if ν < 1− y

3N ,

1 otherwise,

(35)

so that

Prob
{
ν̄N − ψ(ν̄N , N ; y) ≤ ζ̄N ≤ ν̄N − ψ(ν̄N , N ; y)

}
≥ 1− 2e

(
y
[

ln((y − 1)N
)

+ 2
]

+ 2
)
e−y. (36)
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Proof of the lemma. Utilizing Bernstein’s inequality for martingales (cf., e.g., [35, Theorem 3.14]) we obtain for

all z > 0 and s > 0,

Prob

{∣∣∣∣∣
N∑
i=1

ζi

∣∣∣∣∣ ≥ √2zs+
z

3
,

N∑
i=1

σ2
i ≤ s,

}
≤ 2e−z. (37)

We conclude that

Prob

{
|ζ̄N | ≥

√
2s̄N
N

z(1 + z−1) +
z

3N
, s̄N ∈ [s, (1 + z−1)s]

}
≤ 2e−z,

implying that for y = z + 1 > 1

Prob

{
|ζ̄N | ≥

√
2ys̄N
N

+
y

3N
, s̄N ∈

[
s, (y − 1)−1ys

]}
≤ 2e−y+1. (38)

Let now sj = min

{
s,
(

y
y−1

)j
s0
}

, j = 0, ..., J , with s0 = s, sJ = s, and J =
⌋
ln
(
s/s
)

ln−1
(
(y − 1)−1y

)⌊
.

Note that ln
(
1 + 1/(y − 1)

)
≥ 1/y for y > 1, so that

J ≤ ln
(
s/s
)

ln−1
(
(y − 1)−1y

)
+ 1 ≤ y ln

(
s/s
)

+ 1.

On the other hand, due to (38),

Prob

{
|ζ̄N | ≥

√
2ys̄N
N

+
y

3N
, s ≤ s̄N ≤ s

}
≤

J∑
j=1

Prob

{
|ζ̄N | ≥

√
2ys̄N
N

+
y

3N
, s̄N ∈

[
sj , sj+1

]}

≤ 2Je−y+1 ≤ 2e
(
y ln

(
s/s
)

+ 1
)
e−y

what is (32). Let us put s = (18z)−1 in (37); together with y = z + 1 > 1, we get

Prob

{
|ζ̄N | ≥

y

3N
, s̄N ≤

1

18N(y − 1)

}
≤ 2e−y+1. (39)

Furthermore, we have s̄N ≤ 1/4 a.s.. When substituting s = (18(y − 1))−1 and s = N/4 into (32) we obtain

Prob

{
|ζ̄N | ≥

√
2ys̄N
N

+
y

3N
, s̄N ≥

1

18N(y − 1)

}
≤ 2e

(
y ln

(
9
2 (y − 1)N

)
+ 1
)
e−y.

Finally, when taking into account (39) we conclude with

Prob

{
|ζ̄N | ≥

√
2ys̄N
N

+
y

3N

}
≤ 2e

(
y ln

(
9
2 (y − 1)N

)
+ 2
)
e−y ≤ 2e

(
y
[

ln((y − 1)N
)

+ 2
]

+ 2
)
e−y.

Next, we observe that s̄N ≤ µ̄N (1− µ̄N ), and replacing s̄N in (33) with this upper bound come to the inequality:

Prob

{
|ζ̄N | ≥

√
2yµ̄N (1− µ̄N )

N
+

y

3N

}
≤ 2e

(
y
[

ln((y − 1)N
)

+ 2
]

+ 2
)
e−y.

In other words, there exist a subset Ω
N

of the space ΩN of realizations ωN of probability at least 1−2e
(
y ln

(
(y−

1)n
)

+ 4
)
e−y and such for all ωN ∈ Ω

N
one has

|ζ̄N | ≤
√

2yµ̄N (1− µ̄N )

N
+

y

3N
. (40)
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Observe that µ̄n can be eliminated from the above inequalities: when denoting νi = γTi ωi with ν̄N = 1
N

∑N
i=1 νi =

ζ̄N + µ̄N , by simple algebra we deduce from (40) that

ψ(ν̄N , I; y) ≤ µ̄N ≤ ψ(ν̄N , I; y)

where ψ(·) and ψ(·) are as in (35). We conclude that for ωN ∈ Ω
N

ν̄N − ψ(ν̄N , I; y) ≤ ζ̄N ≤ ν̄N − ψ(ν̄N , I; y)

what implies (36). �

Proof of Lemma 2. Now, in the premise of Lemma 2, let us fix k ∈ {1, ..., κ}, and let us denote γTi = [η(ωi−1
i−d)]k =

Rowk[η(ωi−1
i−d)], the k-th row of η(ωi−1

i−d). We set νi = γTi ωi = [η(ωi−1
i−d)]kωi. Note that conditional distribution of

the r.v. νi given ωi−1 is Bernoulli distribution with parameter µi = E|ωi−1{νi} = [η(ωi−1
i−d)]kη

T (ωi−1
i−d)β. Defining,

as above, ζi = νi−µi, ζ̄N = 1
N

∑N
i=1 ζi = FωN (β)k, the k-th component of the field FωN (β), ν̄N = 1

N

∑N
i=1 νi =

a[ωN ]k, and µ̄N = 1
N

∑N
i=1 µi = 1

N

∑N
i=1[η(ωi−1

i−d)]kη
T (ωi−1

i−d)β = (A[ωN ]β)k, the k-th component of A[ωN ]β,

and utilizing bound (36) of Lemma 4 we conclude that for any y > 1 FωN (β)k, k = 1, ..., κ, satisfy, with probability

at least 1− 2e
(
y
[

ln((y − 1)N
)

+ 2
]

+ 2
)
e−y , the bound

ν̄N − ψ(ν̄N , N ; y) ≤ FωN (β)k ≤ ν̄N − ψ(ν̄N , N ; y)

where ψ(·) and ψ(·) are as in (35). �
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Fig. 11. Robbery and burglary in downtown Atlanta: recovered spatio-temporal interactions, using LS estimates without

additional constraint on the shapes of the interaction functions.
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