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Abstract

Modal separation logics are formalisms that combine modal operators to reason locally,
with separating connectives that allow to perform global updates on the models. In this
work, we design Hilbert-style proof systems for the modal separation logics MSL(∗, 〈6=〉) and
MSL(∗,3), where ∗ is the separating conjunction, 3 is the standard modal operator and 〈6=〉
is the difference modality. The calculi only use the logical languages at hand (no external
features such as labels) and can be divided in two main parts. First, normal forms for formulae
are designed and the calculi allow to transform every formula into a formula in normal form.
Second, another part of the calculi is dedicated to the axiomatisation for formulae in normal
form, which may still require non-trivial developments but is more manageable.

1 Introduction

Separation logics with epistemic flavour. Modal logic [8, 9] is a family of languages extending
propositional logic with operators to describe and reason about different modes of truth. Such
operators are usually called modalities. For instance, this family includes alethic (describing
necessity and possibility), deontic (for permissions and obligations), epistemic (to reason about
knowledge) and temporal modalities. On the other hand, separation logic [48, 45] is a family of
assertion languages originally conceived to perform Hoare-style verification [39] of programs with
mutable data structures. The key components of separation logic are its non-classical connectives,
that allow us to reason about updates of the models. For example, the formula φ ∗ ψ uses the
separating conjunction ∗, which requires to split a model into two disjoint pieces, one satisfying φ
and the other one satisfying ψ. Nowadays, there exists a wide variety of such languages, including
propositional separation logic, first-order separation logic, and other variants with reachability
predicates, just to name a few. Over the past years, several approaches combining modal and
separation logics have appeared. In most cases, the modal and the separation dimensions are
orthogonal (see e.g. [14, 18, 10, 17]), allowing us to design decision procedures by combinations of
procedures from each dimension. However, recently, combinations of such operators interpreted
over the same structures have been considered, such as the Modal Logics of Heaps (MLH) from [23],
and the Modal Separation Logics (MSL) from [24]. In this way, the underlying modal relational
model can be also seen as a memory state from separation logic: states can be seen as memory
locations, and edges can be seen as links between these locations.

These efforts on combining separation and modal logics witness the numerous attempts to
use separation logic in different contexts. When interpreted on sets, separation logic can be
used to model some particular phenomena in belief revision [38]. A separation logic combined
with modalities is introduced in [17] to capture how resources evolve not only in one particular
state, but also in different states. In epistemic separation logic [19], models have equivalence
relations representing possible worlds, which are resources that can be separated. This logic is
extended in [20] with public announcements. These announcements are logical formulae that
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restrict the model to those states satisfying such formulae. Lastly, in [41] operators from temporal
and separation logics are combined, allowing to express both temporal and spatial conditions in
search control knowledge for AI planning (see also [11]). All these examples illustrate the wealth of
combinations of modal and separating connectives. Our present work contributes to this line of
research, but is theoretical in nature and is rather focused on the design of internal proof systems.

From a logical perspective, modal operators to perform updates on a relational model can be
seen as weaker versions or variants of separating connectives, since they all have similar effects:
updating the model (by adding, removing or changing some feature of the model) while evaluating
a formula. For example, consider the sabotage modal logic SML introduced in [53] (see [37] for
application in formal learning theory). SML is an extension of the basic modal language with a
so-called sabotage operator which (in one of its variants) deletes one arrow of the model when it is
evaluated. This operator can be seen as a weak version of the separating conjunction that separates
only one edge from the rest of the model (see [24] for details). Other examples of dynamic logics
that perform changes on the accessibility relation of a model are investigated in [3, 4], whereas
examples of logics used to describe graph evolution in games can be found in [21, 51].

Proof systems and model updates. Due to their ability to perform updates on a relational
model, designing proof methods for separation logics and for its aforementioned relatives is known
to be a non-trivial task. As a matter of fact, no proof system without features external from the
logical language was known for the above-mentioned logics until the recent works [28, 27]. For
instance, there exist tableaux-based procedures to check satisfiability of sabotage logics [5] and for
other modal logics with update operators [3], but model updates are handled with labels. Similarly,
there exist labeled tableaux calculi for the epistemic separation logics from [19, 20, 17]. On the
other hand, there are no Hilbert-style calculi apart from [28, 27], as it is extremely challenging to
axiomatise these logics that do not satisfy the uniform substitution rule (see e.g. [4]), since most
proof-theoretical techniques rely on closure under this rule.

It is also worth noting that Boolean BI [43, 35, 12] and its variants such as the logic of bunched
implications BI, are known as being the logical kernel of separation logics. The idea of adding
modalities to Boolean BI, to its variants or, to related logical formalisms taking advantage of the
computational interpretation of BI already appeared in [44, 46] (see also [43, Chapter 9]). It has
been further developped in several directions, for instance by providing a modal extension to BI to
reason about dynamic resources [16], see also related extensions in [15, 18, 1]. All these foundational
works about BI, its variants and its extensions with modalities (including the design of proof
systems and the quest for finding adequate semantical structures [36]) could be reused to study
modal separation logics. At least, these works could inspire the developments of proof-theoretical
tools for logical formalisms that mix modalities and composition/separation operators.

Herein, we pursue a research program about modal separation logics. We aim to better
understand the computational complexity of their decision problems and to design proof systems,
typically sequent-style calculi or Hilbert-style calculi. These calculi clearly have an historical value
but also provide essential means to grasp what are the core validities and rules of the logical
formalisms, see a recent illustration in [2]. It should be noted that not all modal separation logics
admit finite axiomatisation, see e.g. [24], and sometimes, the axiomatisation of abstract separation
logics requires the need for external features such as nominals or labels, see e.g. [13, 40]. In this
work, we adopt a puristic approach to design internal Hilbert-style proof systems for the very
logical language without any external help. In the context of modal separation logics, this is a
requirement that happens to be rewarding for understanding their expressive power, considering
that such logics freely mix modal operators and separating connectives having global effects on
the models. However, in this work we use the assertion language component of separation logics
without considering the components related to the extension of Hoare logic.

Our contribution. We design sound and complete Hilbert-style proof systems for the modal
separation logics MSL(∗,3) and MSL(∗, 〈6=〉) [24], where ∗ is the separating conjunction, 3 is the
standard modal operator and 〈6=〉 is the difference modality. In addition, the two logics contain
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the emptiness constant emp. So, in this paper, we rather focus on the design of adequate internal
proof systems without addressing the question of efficient mechanisation. For both logics, we
provide a syntactical treatment to the semantical abstractions used to decide the satisfiability
problem of such logics in [24], leading to NP-completeness. Each formula is shown equivalent to
a Boolean combination of core formulae (also called test formulae): simple formulae of the logic
expressing elementary properties about the models. More precisely, each elementary property
consists of a “modal part” (describing partially the structure of the model), and a “size part”
(related to the number of edges). Thus, we show how to introduce axioms to transform every
formula into a Boolean combination of core formulae, together with axioms to deal with these simple
formulae. This result borrows some ideas from the Gaifman’s Theorem in first-order logic [31],
which states that every first-order sentence is logically equivalent to a Boolean combination of
so-called local formulae. A similar strategy is rather standard for axiomatising dynamic epistemic
logics [55, 54, 56, 33] with the introduction of reduction axioms. In this technique, it is essential to
translate each formula containing a dynamic operator into a formula without it, by using provably
equivalent formulae. Then, completeness follows from the completeness of the system for the
‘basic’ language (see also a similar approach for the linear µ-calculus in [30]). In our case, another
difficulty arises as we also have to design an axiomatisation for such Boolean combinations. The
proof system for MSL(∗,3) (Sec. 3) uses only partially the standard machinery for modal logic,
for example the modal part differs from the Hilbert-style axiomatisation for the modal logic Alt1,
i.e., the modal logic over deterministic frames, characterised by the axiom 3p⇒ 2p (see e.g. [6]).
For MSL(∗, 〈6=〉) (Sec. 4), the modal part extends results from [50] to infinite models (a peculiarity
of modal separation logics as the set of locations is infinite). These constructions give us an
exact characterisation of the properties that can be expressed on each logic. Moreover, it is also
remarkable to have axiomatisations for these two NP-complete logics, since the full logic MSL
(including the separating implication) is not (finitely) axiomatisable [24].

This paper is an extended version of [25] with more explanations, more examples and with all
the derivations and proofs.

2 Preliminaries about modal separation logics

We briefly recall the definition of the modal separation logic MSL(∗,3, 〈6=〉) introduced in [24].
The full version MSL [24] with the separating implication −∗ is omitted as it is not part of our
investigation, apart from the fact that it is known not to admit a finite axiomatisation [24].

Let PROP = {p, q, . . .} be a countably infinite set of propositional symbols. Formulae of the
language MSL(∗,3, 〈6=〉) are defined by the grammar:

φ ::= p | emp | ¬φ | φ ∧ φ | 3φ | 〈6=〉φ | φ ∗ φ,

where p ∈ PROP. Other connectives are defined as usual, in particular:

⊥def
= emp ∧ ¬emp; > def

= ¬ ⊥; φ ∨ ψ def
= ¬(¬φ ∧ ¬ψ); φ⇒ ψ

def
= ¬φ ∨ ψ;

2φ
def
= ¬3¬φ; [6=]φ

def
= ¬〈6=〉¬φ; 〈U〉φ def

= φ ∨ 〈6=〉φ; [U]φ
def
= ¬〈U〉¬φ.

A model is a tuple M = 〈N,R,V〉 such that

• the set of locations is the set of natural numbers N,

• R ⊆ N× N is finite and weakly functional (i.e. (l, l′) ∈ R and (l, l′′) ∈ R imply l′ = l′′) and,

• V : PROP→ P(N) is a valuation.

In the rest of the document, by ‘functional’, we mean ‘weakly functional’. Since separation logics
are interpreted on structures representing heaps [7], this explains why in the models, the domain
is N (an infinite set of locations), and the accessibility relation is finite and functional (formal
relationships with separation logics can be found in [24, Sec. 2.2]). The models M1 = 〈N,R1,V〉
and M2 = 〈N,R2,V〉 are disjoint if R1 ∩R2 = ∅; when this holds, M1 ]M2 denotes the model
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corresponding to the disjoint union of M1 and M2, i.e., M1 ]M2 = 〈N,R1 ] R2,V〉. We say
{R1,R2} is a partition of R, if R1 ∩R2 = ∅ and R = R1 ∪R2. Given M = 〈N,R,V〉 and l ∈ N,
the satisfaction relation |= is defined below:

M, l |= p
def⇔ l ∈ V(p)

M, l |= emp
def⇔ R = ∅

M, l |= ¬φ def⇔ M, l 6|= φ

M, l |= φ ∧ ψ def⇔ M, l |= φ and M, l |= ψ

M, l |= 3φ
def⇔ M, l′ |= φ, for some l′ ∈ N such that (l, l′) ∈ R

M, l |= 〈6=〉φ def⇔ M, l′ |= φ, for some l′ ∈ N such that l′ 6= l

M, l |= φ1 ∗ φ2
def⇔ 〈N,R1,V〉, l |= φ1 and 〈N,R2,V〉, l |= φ2,

for some partition {R1,R2} of R.

The semantics for the modal operators and the separating connectives is the standard one,
see e.g. [8, 48]. We always consider the Boolean part and the emptiness constant emp, and we
put between parentheses the rest of (separating or modal) connectives we are considering. The
main two logics we consider are MSL(∗,3) and MSL(∗, 〈6=〉). Notice that even though emp can be
taken as a shortcut for [U]2⊥, it is not expressible in any of the mentioned fragments, since it
uses modalities from both logics. Therefore, we need to include it as a primitive in the language.
The computational complexity of the satisfiability problems for the logics considered here has been
characterised. Recall that the class Tower mentioned in Prop. 1, is the class of problems of time
complexity bounded by a tower of exponentials, whose height is an elementary function of the
input (see [49] for details).

Proposition 1 ([24]). The satisfiability problems for MSL(∗,3) and MSL(∗, 〈6=〉) are NP-complete,
whereas the problem for MSL(∗,3, 〈6=〉) is Tower-complete.

Refinements about Tower-hardness can be found in [42, Section 4.3]. To illustrate the
expressive power of MSL(∗,3), let us define loop1, which states that the model consists of a single
reflexive edge at the evaluation point l:

¬emp ∧ ¬(¬emp ∗ ¬emp) ∧33>

l

By way of example, let us show that for all models M = 〈N,R,V〉 and l ∈ N, we have 〈N,R,V〉, l |=
loop1 iff R = {(l, l)}. First note that 〈N,R,V〉, l |= ¬emp iff R 6= ∅. Similarly, one can show that
〈N,R,V〉, l |= ¬(¬emp∗¬emp) iff card(R) ≤ 1. Consequently, 〈N,R,V〉, l |= ¬emp∧¬(¬emp∗¬emp)
iff card(R) = 1. Now, suppose that 〈N,R,V〉, l |= loop1. Consequently, card(R) = 1. Because
〈N,R,V〉, l |= 33>, there are l1 and l2 such that (l, l1) ∈ R and (l1, l2) ∈ R. As R contains a
unique element, we get l = l1 and l1 = l2, whence R = {(l, l)}. Conversely, let 〈N,R,V〉 and l ∈ N be
such that R = {(l, l)}. Obviously, card(R) = 1 and therefore 〈N,R,V〉, l |= ¬emp∧¬(¬emp ∗ ¬emp).
Moreover, we have 〈N,R,V〉, l |= 33> as (l, l) ∈ R and 〈N,R,V〉, l |= 3>. Consequently,
〈N,R,V〉, l |= loop1.

Moreover, it is possible to define the formula loop2 whose satisfaction on a location l means
that the model contains exactly a loop of length 2 visiting l:

(¬emp ∗ ¬emp) ∧ ¬(¬emp ∗ ¬emp ∗ ¬emp) ∧333> ∧ ¬(¬emp ∗333>) ∧ ¬3(¬emp ∗333>)

l

Notice that ∗ is associative. Obviously, these properties cannot be expressed in the modal logic
Alt1 (for instance, we cannot express global properties in Alt1).

So, in this paper, we aim at providing Hilbert-style axiomatisations for the logics MSL(∗,3)
and MSL(∗, 〈6=〉), which amounts to characterise syntactically the set of valid formulae by means
of a proof system. By contrast, the complexity results from [24] are obtained semantically, without
any proof-theoretical analysis.
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3 Axiomatising MSL(∗,3) with core formulae

In this section, we define HMSL(∗,3), an axiomatic proof system for MSL(∗,3), i.e. the modal
separation logic restricted to the separating conjunction ∗ and to the modal diamond 3.

To do so, we introduce a set of core formulae that are simple MSL(∗,3) formulae capturing
essential properties of the models. As shown later on, every MSL(∗,3) formula is logically
equivalent to a Boolean combination of core formulae. However, as every core formula is shown to
be an MSL(∗,3) formula, (and therefore we remain in the original object language), we can derive
an axiomatisation of MSL(∗,3) by axiomatising Boolean combinations of core formulae. This idea
is similar, for instance, to the strategy followed in dynamic epistemic logics with the introduction
of reduction axioms [55, 54, 56]: each formula containing a dynamic modality is equivalent to a
formula without it, so completeness follows from the completeness of the system for the language
without dynamic modalities. In our case, we will provide a complete system for core formulae. So,
we define three sets of axioms and inference rules:

1. those dedicated to the propositional logic of core formulae,

2. those that, given a Boolean combination of core formulae φ, allow to derive a Boolean
combination of core formulae that is equivalent to 3φ (a property called herein 3-elimination,
see Lemma 8), and

3. those that, given two Boolean combinations of core formulae φ1, φ2, allow to derive a
Boolean combination of core formulae that is equivalent to φ1 ∗ φ2 (a property called herein
∗-elimination, see Lemma 12).

3.1 Core formulae for MSL(∗,3)

Core formulae are divided into two families: a set of size formulae that express properties about the
size of the model (i.e. the number of edges) and a set of graph formulae describing the shape of the
model that is observable from the current location (typically linked lists, see e.g. [29, 47, 57, 52]).
As the relation R in models is functional, the number of distinct shapes is limited, ranging from
lasso shapes to segments with dead-end.

Let us introduce expressions of the form size ≥ β that hold true whenever the accessibility
relation R has at least β elements (the symbol β always refers to a natural number throughout
the paper). A size literal is a formula of the form size ≥ β or ¬size ≥ β. Every Boolean
combination of size literals is a size formula. We also use size = β as an abbreviation for
size ≥ β ∧¬size ≥ β+1. At this stage, it is worth noting that size ≥ β should be understood as
a built-in atomic formula enriching the logical language for MSL(∗,3). However, as it will quickly
appear below, size ≥ β can be characterised with a formula of MSL(∗,3) and later on in the
document, such occurrences of size ≥ β should be understood as mere abbreviations. The same
distinction applies to the graph formulae defined below.

Graph formulae describe the shape of a portion of the model, partly inspired from the semantical
notion of abstract frame from [24] but with constraints on propositional variables. Formally, every
graph formula is an expression derived from the non-terminal G of the grammar below:

` := > |⊥| p | ¬p Q := ` | Q ∧Q G := |Q,..., Q〉 | |Q,..., Q] | |Q,..., Q,..., Q ,

where p ∈ PROP, and G must contain at least one conjunction Q. By slightly abusing the standard
terminology, expressions of the form ` are called literals . A conjunction Q is contradictory whenever
⊥ occurs in Q or there is some p such that both p and ¬p occur in Q. Note that Q is contradictory iff
Q is unsatisfiable. By convention, contradictory conjunctions are denoted by Q⊥. A graph formula
is contradictory if at least one of its conjunctions is contradictory. Note also that the semantics for
graph formulae shall guarantee that a graph formula is contradictory iff it is unsatisfiable.

Since we are working on weakly functional and finite relations, graph formulae represent paths
satisfying a conjunction of literals Q at each position. A formula of the form |Q1,..., Qn〉 expresses
that there exists a path of length n in which all the locations are distinct of each other, and we do
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not know whether it continues after. The formula |Q1,..., Qn] states that there is a path of length
n− 1, all the locations are distinct, and the last location has no successor. Finally, the formula of

the form |Q1,..., Qi,..., Qn expresses that there is a path of size n− 1 with all distinct locations,
and there is an edge from the location in position n and the one in the position i (lasso shape).
The figure below illustrates which models are related to the graph formulae defined above.

Q1 Q2

. . .
Qn

. . .
Q1 Q2

. . .
Qn Q1

. . .
Qi

. . .
Qn

Figure 1: Models for the graph formulae |Q1,..., Qn〉, |Q1,..., Qn] and |Q1,..., Qi,..., Qn , respectively.

We write |Q1,..., Qn? to refer to graph formulae of any kind. Moreover, we write |Q,..., Q′?(n) to
express that the last argument Q′ of the corresponding graph formula is at position n. For example,
|>,...,>](4) stands for |>,>,>,>]. Lastly, we define the graph size ](|Q1,..., Qn?) of |Q1,..., Qn?
as follows:

](|Q1,..., Qn〉)
def
= n ](|Q1,..., Qn])

def
= n−1 ](|Q1,..., Qi,..., Qn )

def
= n.

Given a model M = 〈N,R,V〉 and l ∈ N, the satisfaction relation |= is extended to core formulae:

M, l |= size ≥ β def⇔ card(R) ≥ β
M, l |= |Q1,..., Qn〉

def⇔ there are distinct l1,..., ln+1 such that l=l1Rl2R ... lnRln+1,
and for all j ∈ [1, n], M, lj |= Qj

M, l |= |Q1,..., Qn]
def⇔ there are distinct l1,..., ln such that l=l1Rl2R ... ln−1Rln,

R(ln) = ∅ and for all j∈ [1, n], M, lj |= Qj

M, l |= |Q1,..., Qi,..., Qn
def⇔ there are distinct l1,..., ln such that l=l1Rl2R...lnRli,

and for all j ∈ [1, n], M, lj |= Qj .

Below, we establish that every core formula has a logically equivalent counterpart in MSL(∗,3)
(Lemma 2). This is an essential property as these formulae are the building blocks of the
axiomatisation of MSL(∗,3). Consequently, we obtain that our axioms are only made of MSL(∗,3)
formulae, with no need of external properties or extra machinery such as nominals or labels.

For every core formula ψ, we define its extension ext(ψ) in MSL(∗,3).

• ext(size ≥ 0)
def
= > and ext(size ≥ β)

def
=

β times︷ ︸︸ ︷
¬emp ∗ · · · ∗ ¬emp for β > 0.

• ext(|Q])
def
= Q ∧ ¬3>. For n ≥ 2, ext(|Q1, Q2,..., Qn])

def
= Q1 ∧3ext(|Q2,..., Qn]).

• ext(|Q1,..., Qn〉)
def
= ext(|Q1,..., Qn,>]) ∗ >. So, ext(|Q1,..., Qn〉) is equal to the formula below:

(3(Q1 ∧3(Q2 ∧...3(Qn ∧3(> ∧ ¬3>))))) ∗ >.

• ext(|Q1,..., Qn ) is defined as the formula

> ∗ (ext(size = n) ∧3n+1> ∧ (ext(|Q1,..., Qn]) ∗ >) ∧ ¬3(ext(size = 1) ∗3n>))

where 30φ
def
= φ and 3i+1φ

def
= 33iφ.

• For i > 1, ext(|Q1,..., Qi,..., Qn ) is defined as the formula

> ∗
(
ext(size = n) ∧3n+1>∧(ext(|Q1,..., Qn]) ∗ >)

∧3i−1(ext(size = i−1) ∗ ext(|>,...,>
(n−i+1)

))
)
.

Lemma 2. Every core formula ψ is logically equivalent to ext(ψ).

Proof. Let us start with the case ψ = size ≥ β, which is completely standard. For the base case
β = 0, obviously M, l |= size ≥ 0 always holds, as well as M, l |= ext(size ≥ 0) = >. Similarly,
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note that M, l |= size ≥ 1 iff card(R) ≥ 1 (by definition of |= for size ≥ β) iff M, l |= ¬emp (by
definition of |= for emp) iff M, l |= ext(size ≥ 1) (by definition of ext(·)). Suppose that the property
holds for size ≥ β, and let us show that M, l |= size ≥ β + 1 iff M, l |= ext(size ≥ β + 1). Let
M = 〈N,R,V〉 be a model, and l ∈ N be a location. The statements below are equivalent:

i. M, l |= size ≥ β + 1,

ii. card(R) ≥ β + 1 (by definition of |= on core formulae),

iii. there is a partition {R1,R2} of R such that card(R1) ≥ 1 and card(R2) ≥ β,

iv. there is a partition {R1,R2} of R such that 〈N,R1,V〉, l |= ¬emp and 〈N,R2,V〉, l |= size ≥
β (by definition of |= on core formulae),

v. there is a partition {R1,R2} of R such that 〈N,R1,V〉, l |= ¬emp and 〈N,R2,V〉, l |=
ext(size ≥ β) (by the induction hypothesis),

vi. M, l |= ¬emp ∗ ext(size ≥ β) (by definition of |= for the separating conjunction),

vii. M, l |= ext(size ≥ β + 1) (by definition of ext(·)).

Let us consider the case ψ = |Q1, Q2,..., Qn]. The proof is by induction on n with the base
case n = 1. Let M = 〈N,R,V〉 be a model, and l ∈ N be a location. The statements below are
equivalent:

i. M, l |= |Q],

ii. M, l |= Q and there is no l′ such that lRl′ (by definition of |= on core formulae),

iii. M, l |= Q ∧ ¬3> (by definition of |=),

iv. M, l |= ext(|Q]) (by definition of ext(·)).

Now, suppose that the property holds for graph formulae of graph size n− 2, and let us show that
M, l |= |Q1, Q2,..., Qn] iff M, l |= ext(|Q1, Q2,..., Qn]) (remember that |Q1, Q2,..., Qn] is of graph
size n− 1). The statements below are equivalent:

i. M, l |= |Q1, Q2,..., Qn],

ii. there are distinct l1, l2..., ln such that l=l1 R l2 R ... ln−1R ln, there is no l′ such that lnRl′

and for each j ∈ [1, n], M, lj |= Qj (by definition of |= on core formulae),

iii. M, l |= Q1 and there are distinct l2,..., ln such that l = l1 R l2 R ... ln−1 R ln, there is no l′

such that lnRl′, and for each j ∈ [2, n], M, lj |= Qj , by definition and noticing that “there is
no l′ such that lnRl′” implies that l1 is different from any lj , j ∈ [2, n];

iv. M, l |= Q1 and M, l |= 3|Q2,..., Qn] (by definition of |= on core formulae),

v. M, l |= Q1 and M, l |= 3ext(|Q2,..., Qn]) (by the induction hypothesis),

vi. M, l |= Q1 ∧3ext(|Q2,..., Qn]),

vii. M, l |= ext(|Q1, Q2,..., Qn]) (by definition of ext(·)).

Let us consider the case ψ = |Q1,..., Qn〉. We have the following equivalences:

i. M, l |= |Q1,..., Qn〉,

ii. there are distinct l1,..., ln+1 such that l=l1 R l2 R ... ln R ln+1, and for all j ∈ [1, n], M, lj |= Qj
(by definition of |= on core formulae),
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iii. there are distinct l1,..., ln+1 and there exists a partition {R1,R2} of R such that R1 =
{(l, l2),..., (ln, ln+1)} (and therefore there is no l′ such that ln+1R1l

′) and for all j ∈ [1, n],
〈N,R1,V〉, lj |= Qj ,

iv. there is a partition {R1,R2} of R such that 〈N,R1,V〉, l |= |Q1,..., Qn,>] (by definition of
|= on core formulae),

v. there is a partition {R1,R2} of R such that 〈N,R1,V〉, l |= ext(|Q1,..., Qn,>]) (by the proof
of the previous case),

vi. M, l |= ext(|Q1,..., Qn,>]) ∗ > (by definition on |= for the separating conjunction),

vii. M, l |= ext(|Q1,..., Qn〉) (by definition of ext(·)).

Now let us treat the case ψ = |Q1,..., Qn . Again, let M = 〈N,R,V〉 be a model, and l ∈ N be

a location, suppose M, l |= |Q1,..., Qn .

i. By definition of |=, there are distinct l1,..., ln such that l=l1 R l2 R...ln R l1 and for all j ∈ [1, n],
M, lj |= Qj . We partition R into R1 and R2 such that R1 = {(l, l2),..., (ln−1, ln), (ln, l)}.

ii. By definition of R1, it trivially holds that 〈N,R1,V〉, l |= size = n and 〈N,R1,V〉, l |=
3n+1>. By the previous cases, we also have 〈N,R1,V〉, l |= ext(size = n).

iii. R1 can be partitioned into R′1 and R′′1 such that R′1 = {(l, l2),..., (ln−1, ln)}. By (i), we
conclude 〈N,R′1,V〉, l |= |Q1,..., Qn], then 〈N,R1,V〉, l |= |Q1,..., Qn] ∗ >. By the previous
cases, we also get 〈N,R1,V〉, l |= ext(|Q1,..., Qn]) ∗ >.

iv. Lastly, ad absurdum, suppose 〈N,R1,V〉, l |= 3(ext(size = 1)∗3n>). Then, as lR1l2, it holds
that 〈N,R1,V〉, l2 |= (ext(size = 1) ∗3n>). However, this is contradictory, as by splitting
R1 = {(l, l2),..., (ln−1, ln), (ln, l)} into two non-empty relations, it is not possible to have a
path of length at least n, starting from l2. Then, 〈N,R1,V〉, l |= ¬3(ext(size = 1) ∗3n>).

v. Since R1 ⊆ R, from (ii), (iii) and (iv) we conclude that M, l satisfies > ∗ (ext(size =
n) ∧3n+1>∧ (ext(|Q1,..., Qn]) ∗ >) ∧ ¬3(ext(size = 1) ∗3n>)), which is precisely equal to

ext(|Q1,..., Qn ) by definition.

Conversely, suppose now that M, l satisfies

> ∗ (ext(size = n) ∧3n+1> ∧ (ext(|Q1,..., Qn]) ∗ >) ∧ ¬3((ext(size = 1) ∗3n>))).

Then,

i. there is a relation R1 ⊆ R such that

〈N,R1,V〉, l |= ext(size = n) ∧3n+1> ∧ (ext(|Q1,..., Qn]) ∗ >) ∧ ¬3(ext(size = 1) ∗3n>).

ii. As 〈N,R1,V〉, l |= (ext(|Q1,..., Qn]) ∗ >), by the previous cases and by definition, there are
distinct l1,..., ln such that l=l1 R1 l2 R1...R1 ln and for each j∈ [1, n], we have M, lj |= Qj .

iii. From (ii) and since 〈N,R1,V〉, l |= ext(size = n) ∧3n+1>, we conclude that R1 must be
of the form R1 = {(l, l2),..., (ln−1, ln), (ln, l)}. As 〈N,R1,V〉, l |= 3n+1>, necessarily l is an

element among l, l2,..., ln. Therefore, it holds that 〈N,R1,V〉 |= |Q1,..., Qi,..., Qn for some i.
It remains to prove that i = 1.

iv. Suppose i 6= 1. Then consider the partition {R′1,R′′1} of R1 such that

R′1 = {(l, l2)} R′′1 = {(l2, l3),..., (li, li+1),..., (ln−1, ln), (ln, li)}.

Then, trivially 〈N,R′1,V〉, l2 |= ext(size = 1) and 〈N,R′′1 ,V〉, l2 |= 3n>, as in R′′1 there
is a loop involving li,..., ln. Then 〈N,R1,V〉, l2 |= ext(size = 1) ∗ 3n> as R′1 ] R′′1 = R1.
Lastly, since lR1l2 by definition, it holds that 〈N,R1,V〉, l |= 3(ext(size = 1) ∗ 3n>); a

contradiction. Then, it must be that i = 1 and 〈N,R1,V〉, l |= |Q1,..., Qn .
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v. From (iv) and since R1 ⊆ R, by definition of |Q1,..., Qn we conclude that 〈N,R,V〉, l |=
|Q1,..., Qn .

Lastly, let us treat the case ψ = |Q1,..., Qi,..., Qn with n ≥ i ≥ 2. Suppose M, l |=
|Q1,..., Qi,..., Qn .

i. By definition of |=, there are distinct l1,..., ln such that l=l1 R l2 R...ln R li and for
all j ∈ [1, n] M, lj |= Qj . Then, we partition R into R1 and R2 such that R1 =
{(l, l2),..., (li, li+1),..., (ln−1, ln), (ln, li)}.

ii. From the previous cases and by definition, we have 〈N,R1,V〉, l |= ext(size = n) and
〈N,R1,V〉, l |= 3n+1>.

iii. R1 can be partitioned into R′1 and R′′1 such that R′1 = {(l, l2),..., (ln−1, ln)}. By (i), we
conclude 〈N,R′1,V〉, l |= |Q1,..., Qn], then 〈N,R1,V〉, l |= |Q1,..., Qn] ∗ >. By the previous
cases, this also leads to 〈N,R1,V〉, l |= ext(|Q1,..., Qn]) ∗ >.

iv. We partition R1 into R′1 and R′′1 such that

R′1 = {(l, l2),..., (li−1, li)} R′′1 = {(li, li+1),..., (ln−1, ln), (ln, li)}

We have 〈N,R′1,V〉, li |= ext(size = i−1). Moreover, it holds that 〈N,R′′1 ,V〉, li |=
|>,...,> (n−i+1). Then, 〈N,R1,V〉, li |= ext(size = i−1) ∗ |>,...,> (n−i+1) as R′1 ]R′′1 = R1.

Lastly, since lRi−1
1 li by definition, 〈N,R1,V〉, l |= 3i−1(ext(size = i−1) ∗ |>,...,> (n−i+1)).

By the previous cases, we get 〈N,R1,V〉, l |= 3i−1(ext(size = i−1) ∗ ext(|>,...,> (n−i+1)).

v. From (ii), (iii), (iv) and since R1 ⊆ R, we conclude that (M, l) satisfies

> ∗ (ext(size = n) ∧3n+1> ∧ (ext(|Q1,..., Qn]) ∗ >)∧

3i−1(ext(size = i−1) ∗ ext(|>,...,>
(n−i+1)

))).

Conversely, suppose now that M, l satisfies

>∗(ext(size = n)∧3n+1>∧(ext(|Q1,..., Qn])∗>)∧3i−1(ext(size = i−1)∗ext(|>,...,>
(n−i+1)

))).

i. There is a relation R1 ⊆ R such that 〈N,R1,V〉, l satisfies

ext(size = n)∧3n+1>∧(ext(|Q1,..., Qn])∗>)∧3i−1(ext(size = i−1)∗ext(|>,...,>
(n−i+1)

)).

ii. As 〈N,R1,V〉, l |= ext(|Q1,..., Qn]) ∗ >, by definition and by the previous cases, there are
distinct l1,..., ln such that l=l1 R1 l2 R1...R1 ln and for each j∈ [1, n], we have M, lj |= Qj .

iii. From (ii) and since 〈N,R1,V〉, l |= ext(size = n) ∧3n+1> we conclude that R1 must be of
the form R1 = {(l, l2),..., (ln−1, ln), (ln, l)}, where l is an element among l, l2,..., ln. Therefore,

it holds that 〈N,R1,V〉 satisfies |Q1, . . . Qj , . . . , Qn for some j ∈ [1, n]. It remains to prove

that l corresponds to li.

iv. First, suppose l = lj for some j < i. Let {R′1,R′′1} be a partition of R1 such that
〈N,R′1,V〉, li |= ext(size = i−1). Since j < i there are only j − 1 locations (i.e. l, l2,..., lj−1)
that are not part of the loop involving lj ,..., ln. Then, since i − 1 > j − 1, it cannot be

that R′′1 contains a loop and therefore 〈N,R′1,V〉, li 6|= ext(|>,...,> (n−i+1)). This leads to a

contradiction as it holds that 〈N,R1,V〉, l |= 3i−1(ext(size = i−1) ∗ ext(|>,...,> (n−i+1)))

and therefore 〈N,R1,V〉, li |= ext(size = i−1) ∗ ext(|>,...,> (n−i+1)). Then, j ≥ i.
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v. Suppose now that l = lj for j > i. Then for any relation R′1 ⊆ R1 it cannot hold that

〈N,R′1,V〉, li |= ext(|>,...,> (n−i+1)). Again, this leads to a contradiction as it holds that

〈N,R1,V〉, l |= 3i−1(ext(size = i−1) ∗ ext(|>,...,> (n−i+1))) and therefore 〈N,R1,V〉, li |=

ext(size = i−1) ∗ ext(|>,...,> (n−i+1)). Then, j ≤ i.

vi. From (iii), (iv) and (v), it follows that 〈N,R1,V〉, l |= |Q1,..., Qi,..., Qn . Since R1 ⊆ R, by

definition of |Q1,..., Qi,..., Qn we conclude that 〈N,R,V〉, l |= |Q1,..., Qi,..., Qn .

Hence, every core formula can be expressed in MSL(∗,3).

From now on, for any occurrence of a core formula ψ, including occurrences in the axioms or
inference rules, we mean the MSL(∗,3) formula ext(ψ) so that their provisory status of built-in
atomic formula is upgraded to a permanent abbreviation.

3.2 Preliminaries about Hilbert-style proof systems

In forthcoming Sec. 3.3, we design the Hilbert-style proof system HMSL(∗,3) for the logic
MSL(∗,3) (see also other calculi in Sec. 4). In this current short section, we present the main
conventions we adopt along the paper, in order to present such Hilbert-style proof systems. Most
probably, for the readers familiar with such proof systems, this part can be skipped. A Hilbert-style
proof system HL for a logic L consists of a set of axiom schemas Axioms and a set of inference
rules Rules. In this paper, both sets are always finite.

An axiom schema (simply called an axiom) is an expression that can be instantiated by formulae
from L, for example by replacing metavariables by formulae. In the sequel, the metavariables
that can substituted by any L formula are denoted by φ, ψ or γ. The axiom schemas can be
also more specific by adding side-conditions or by enforcing syntactically the constraints. For
instance, |Q1,..., Qn? refers to any graph formula, whereas Q (resp. Q⊥) refers to a non-empty
(resp. contradictory) conjunction of literals as defined in Sec. 3.1. Other conventions shall be used
for the axiom schemas but the associated set of instantiations should be clear from the context.
Note that an axiom schema in HL′ where the set of L′ formulae extends the set of L formulae
possibly leads to more instantiations than for the same axiom schema in some proof system HL.

An inference rule is an expression of the form φ1, . . . , φn
φn+1

where φ1, . . . , φn+1 are axiom schemas

and n ≥ 1. A proof of a formula φ in HL is a finite sequence (ψ1, . . . , ψN ) such that ψN = φ and
for every i ∈ [1, N ]:

• either ψi is an instantiation of an axiom schema from Axioms,

• or γ1, . . . , γn
ψi

is an instantiation of some inference rule φ1, . . . , φn
φn+1

in Rules, for some subset

{γ1, . . . , γn} ⊆ {ψ1, . . . , ψi−1}.

In that case, we write `HL φ (the subscript is omitted when the context is clear). An axiom schema

is valid for L whenever all its instantiations are valid for L. An inference rule φ1, . . . , φn
φn+1

is valid

for L whenever, for all its instantiations γ1, . . . , γn
γn+1

, if γ1, . . . , γn are L valid, then γn+1 is L valid.
We will introduce axiomatic systems that are weakly complete. We say that a system HL is

weakly complete if for all L formulae φ, φ is valid implies `HL φ. However, our systems are not
strongly complete, as they will not allow us to prove that a formula φ is derived from a set of
formulae Φ, i.e., that Φ `HL φ. In the rest of the paper, we will use the term ’complete’ instead of
’weakly complete’.

3.3 Hilbert-style proof system for MSL(∗,3)

To obtain an axiomatisation of MSL(∗,3), we start by introducing the proof system Hc dedicated
to Boolean combinations of core formulae. As MSL(∗,3) includes the propositional logic, Hc and
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all the subsequent Hilbert-style proof systems contain the axiom schemas and modus ponens for
the propositional calculus (the details are omitted here). The axioms whose name is of the form
G?
i handle graph formulae, whereas those with names of the form S?

i handle size formulae. We
start with the axioms for size ≥ β, its interactions with graph formulae and one axiom schema for
inconsistent graph formulae.

Axioms for size formulae and for inconsistent graph formulae

(Sc1) size ≥ 0

(Sc2) size ≥ β+1⇒ size ≥ β
(Gc

1) |Q1,..., Qn? ⇒ size ≥ ](|Q1,..., Qn?)

(Gc
2) ¬|..., Q⊥,...?

The semantical meaning of these axioms is straightforward. The axiom (Sc1) states that the
accessibility relation of every model has always at least 0 elements. The axiom (Sc2) states that
if the accessibility relation of a model has at least β+1 elements, then it has at least β elements.
The axiom (Gc

1) is the first one handling graph formulae, and it states that if a model satisfies
a graph formula G, then its accessibility relation cannot have less elements than its graph size.
The axiom (Gc

2) states that a contradiction in a conjunction of literals, leads to a contradiction
for the whole formula. We complete the definition of Hc for core formulae with two families of
axioms, involving graph formulae. The first family (with the axioms from (Gc

3) to (Gc
13)) concerns

conjunctions of graph formulae. In particular, given two graph formulae, these axioms allow us to
derive an equivalent graph formula. Similarly, the second family (with the axioms from (Gc

14) to
(Gc

16)) concerns the negation of a graph formula. With these axioms, every negation of a graph
formula is shown equivalent to a disjunction of graph formulae. Let us begin with the first family.

Axioms for conjunction of graph formulae

(Gc
3) ¬(| . . . ](n) ∧ | . . . (m))

(Gc
4) ¬(| . . . 〉(n) ∧ | . . . ](m)) with n ≥ m

(Gc
5) ¬(| . . . 〉(n) ∧ | . . . (m)) with n ≥ m

(Gc
6) ¬(| . . . ](n) ∧ | . . . ](m)) with n 6= m

(Gc
7) |Q1,..., Qn〉 ∧ |Q′1,..., Q′m〉 ⇔ |Q1 ∧Q′1,..., Qn ∧Q′n, Q′n+1,..., Q

′
m〉 with n ≤ m,

(Gc
8) |Q1,..., Qn〉 ∧ |Q′1,..., Q′m] ⇔ |Q1 ∧Q′1,..., Qn ∧Q′n, Q′n+1,..., Q

′
m] with n < m,

(Gc
9) |Q1,..., Qn] ∧ |Q′1,..., Q′n] ⇔ |Q1 ∧Q′1,..., Qn ∧Q′n]

(Gc
10) ¬(|Q1,..., Qi,..., Qn ∧ |Q′1,..., Q′j ,..., Q′m ) with n 6= m or i 6= j

(Gc
11) |Q1,..., Qi,..., Qn ∧ |Q′1,..., Q′i,..., Q′n ⇔ |Q1 ∧Q′1,..., Qi ∧Q′i,..., Qn ∧Q′n

(Gc
12) if n < i ≤ m,

|Q1,..., Qn〉 ∧ |Q′1,..., Q′i,..., Q′m ⇔ |Q1 ∧Q′1,..., Qn ∧Q′n, Q′n+1,..., Q
′
i,..., Q

′
m

(Gc
13) if i ≤ n < m,

|Q1,..., Qn〉 ∧ |Q′1,..., Q′i,..., Q′m ⇔ |Q1 ∧Q′1,..., Qi ∧Q′i,..., Qn ∧Q′n, Q′n+1,..., Q
′
m

Thanks to these axioms, any conjunction of two graph formulae is valid only if it expresses

properties that can be found together in a single model. For instance, | . . . ](n) ∧ | . . . (m) is clearly

contradictory (see the axiom (Gc
3)), as the existence of a loop contradicts the fact that there is a

dead-end (i.e. a location without successors). To ease the readability of the axioms for negation,
we first define some auxiliary formulae.

ρn
def
= |>,...,>〉(n) τn

def
=
∨
i∈[1,n] |>,...,>](i) λn

def
=
∨
i∈[1,n]
j∈[1,i]

|>,...,>
j
,...,>

(i)

In λn, the index j below > indicates that the loop begins at the j-th position. We introduce the

involution (.) on literals so that for every p ∈ PROP, p
def
= ¬p, ¬p def

= p, > def
=⊥ and ⊥ def

= >. This
development is needed since graph formulae do not admit doubly negated literals. We write ` ∈ Q
to denote that ` is a literal occurring in Q with the same polarity. So, ¬p appearing in Q does not
imply p ∈ Q. The axioms for dealing with negation are defined as follows.
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Axioms for negation of graph formulae

(Gc
14) ¬|Q1,..., Qn〉 ⇔ λn ∨ τn ∨

∨
i∈[1,n]
`∈Qi

|>,..., `
i
,...,>〉(n)

(Gc
15) ¬|Q1,..., Qn] ⇔ ρn ∨ τn−1 ∨ λn ∨

∨
i∈[1,n]
`∈Qi

|>,..., `
i
,...,>](n)

(Gc
16) ¬|Q1,..., Qi,..., Qn ⇔ ρn ∨ τn ∨ λn−1 ∨

∨
i∈[1,n−1]
`∈Qi

|>,..., `
i
...,>〉(n−1)

∨
∨
k∈[1,n]\{i} |>,...,>k

,...,>
(n)
∨
∨
`∈Qn

|>,...,>
i
,..., `

(n)

These axioms characterise the shape of the accessibility relation when one particular shape is
excluded. The general principle of the axioms (Gc

14)-(Gc
16) is rather simple: the negation of a

graph formula holds if the shape is not respected or if a literal at a given position of the shape
does not hold. A case analysis for the different shapes is performed (using a disjunction). For
example, if M, l |= ¬|>,>,>], then the path can be of any length but the only possible path from
l of length 2 is then a lasso. These cases are captured by the axiom (Gc

15).

Lemma 3. Every axiom in Hc is valid for MSL(∗,3).

Proof. Let us start with the axioms for size formulae. The validity of the axioms (Sc1)-(Sc2) is
straightforward from the definition of the semantics for size ≥ β. For the axiom (Gc

1), suppose
M, l |= |Q1,..., Qn?. From the definition of the semantics of graph formulae, for |Q1,..., Qn? =

|Q1,..., Qn〉 or |Q1,..., Qn? = |Q1,..., Qi,..., Qn we conclude that card(R) ≥ n = ](|Q1,..., Qn?).
Similarly, when |Q1,..., Qn? is actually equal to |Q1,..., Qn] we can conclude that card(R) ≥ n−1 =
](|Q1,..., Qn?). Then M, l |= size ≥ ](|Q1,..., Qn?).

For proving the validity of the axiom (Gc
2), we know that a conjunction Q is contradictory

(i.e. it contains a contradictory formula) iff it is unsatisfiable, and this can be extended to graph
formulae, namely, a graph formula φ is contradictory iff it is unsatisfiable. So, obviously, the
axiom (Gc

2) is valid. We proceed now with the axioms for conjunction. The axiom (Gc
3) is valid

since the existence of a loop contradicts the fact that there is a dead-end (i.e., a location without
successors), and the axiom (Gc

4) is valid since by n ≥ m, the existence of a dead-end at position
m contradicts the fact that there exists a path on length n, and also for the loop case from the
axiom (Gc

5). The validity of the axioms (Gc
6)-(Gc

9) is direct from the semantics of graph formulae.
For proving the validity of the axiom (Gc

10), we reason ad absurdum. Suppose M, l |=
|Q1,..., Qi,..., Qn ∧|Q′1,..., Q′j ,..., Q′m with i 6= j or n 6= m. By definition of the satisfaction
relation |=, there exist distinct locations l = l1,..., ln and distinct locations l = l′1,..., l

′
m, such that

l1Rl2R...RlnRli and l′1Rl′2R...Rl′mRl′j .

• If n 6= m, then w.l.o.g. we can assume n < m. Then for all k ∈ [1, n], we have lk = l′k as R is
weakly functional. Moreover, l′n+1 = li by (weak) functionality of R, which contradicts the
fact that l′1,..., l

′
m must be all distinct.

• Otherwise, n = m and i 6= j. Then ln = l′m, so lnRli and lnRl′j , which by (weak) functionality
of R implies li = l′j , a contradiction.

Therefore, M, l |= ¬(|Q1,..., Qi,..., Qn ∧ |Q′1,..., Q′j ,..., Q′m ).

For the axiom (Gc
11) suppose M, l |= |Q1,..., Qi,..., Qn ∧ |Q′1,..., Q′i,..., Q′n . Then, there exist

distinct locations l = l1,..., ln such that l1Rl2R...RlnRli, and for every j ∈ [1, n], M, lj |= Qj ∧Q′j .
Hence, M, l |= |Q1 ∧Q′1,..., Qi ∧Q′i,..., Qn ∧Q′n . The proof for the other direction is similar.

For the axiom (Gc
12), notice that we simply take the conjunction at every position n < i ≤ m,

and after i, we keep the path from the loop formula. The validity of the axiom (Gc
13) is proved in

a similar way but considering also the overlap between the loop part and the other path.
As far as negation is concerned, let us start by proving the validity of the axiom (Gc

14), i.e.,
we need to show that the disjunction on the right is logically equivalent to the negation on the
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left. First, notice that M, l 6|= |Q1,..., Qn〉 iff there are no l1,..., ln+1 such that the following three
conditions hold:

i. l = l1,..., ln+1 are all distinct;

ii. l1Rl2...lnRln+1; and

iii. for all j ∈ [1, n], M, lj |= Qj .

On the other hand, notice that:

iv. M, l |= λn iff there is i ∈ [1, n] and j ∈ [1, i] such that there are distinct locations l1,..., li with
l1Rl2...Rli and liRlj . This condition contradicts the condition (i) above.

v. M, l |= τn iff there is some j ∈ [1, n] such that Rj(l) = ∅, which contradicts the condition (ii).

vi. M, l |=
∨
i∈[1,n]
`∈Qi

|>,..., `
i
,...,>〉(n), iff there is j ∈ [1, n] such that {lj} = Rj(l) and M, lj 6|= Qj ,

which contradicts the condition (iii).

Therefore, as all the cases are treated, the axiom is valid.
For the axiom (Gc

15), first notice that M, l 6|= |Q1,..., Qn] iff there are no l1,..., ln such that the
following conditions hold:

i. l = l1,..., ln are all distinct;

ii. l1 R l2 ... ln−1 R ln;

iii. there is no l′ such that lnRl′; and

iv. for all j ∈ [1, n], M, lj |= Qj .

On the other hand, notice that:

v. M, l |= λn ∨ τn−1 contradicts the conditions (i)-(ii) above.

vi. M, l |= ρn obviously contradicts condition (iii).

vii. Finally, if M, l |=
∨
i∈[1,n]
`∈Qi

|>,..., `
i
,...,>](n), then by applying a similar reasoning as for the

previous axiom, it leads to a contradiction by the condition (iv).

Therefore, as all the cases are treated, the axiom is valid.

For the axiom (Gc
16), first notice that M, l 6|= |Q1,..., Qi,..., Qn iff there are no l1,..., ln such that

the following conditions hold:

i. l = l1,..., ln are all distinct;

ii. l1 R l2...ln R li; and

iii. for all j ∈ [1, n], we have M, lj |= Qj .

On the other hand, notice that:

iv. M, l |= λn−1 contradicts the condition (i) above, since it establishes that there is a loop
before the location ln.

v. M, l |= ρn ∨ τn ∨
∨
k∈[1,n]\{i} |>,...,>

k
,...,>

(n)
contradicts the condition (ii): ρn says that

i /∈ [1, n]; τn establishes that R(lk) = ∅, for some k ≤ n; and
∨
k∈[1,n]\{i} |>,...,>

k
,...,>

(n)

indicates that R(ln) 6= {li}.

vi. Finally, if M, l |=
∨
i∈[1,n−1]
`∈Qi

|>,..., `
i
...,>〉(n−1)∨

∨
`∈Qn

|>,...,>
i
,..., `

(n)
(⊗), then it contradicts

the condition (iii), since for some i ∈ [1, n] and ` ∈ Qj , M, lj |= ` ∧ ` (notice that both
disjuncts in (⊗) cover all the possible positions of such contradictory literal).

Therefore, as all the cases are treated, the axiom is valid.
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To show the completeness of Hc, we exploit its ability to eliminate negations and conjunctions
of graph formulae. Together with propositional calculus, this is enough to show that every
Boolean combination of core formulae is equivalent to a disjunction of formulae of the form either
G ∧ size ≥ β or G ∧ size ≥ β ∧¬size ≥ β′, where G is a graph formula. Such formulae are called
elementary shapes.

Lemma 4. Let φ be a Boolean combination of core formulae. There is a disjunction of elementary
shapes ψ such that `Hc φ⇔ ψ.

By Lemma 3, `Hc
is sound and therefore `Hc

φ⇔ ψ implies that the formulae φ and ψ are
logically equivalent.

Proof. By propositional reasoning, there exists a formula φ′ =
∨
i ψi in disjunctive normal form

(DNF) such that `Hc φ⇔ φ′. Each ψi is of the form

ψi =
∧
j∈[1,n] Gj ∧

∧
j∈[1,m] ¬G′j ∧

∧
j∈[1,k] size ≥ βj ∧

∧
j∈[1,l] ¬size ≥ β′j

where the Gj ’s and G′j ’s are graph formulae. Some additional work is required in the case n = 0 or
k = 0 but the axioms from Hc can help a lot.

• By the axiom (Sc1), `Hc
ψi ⇔ (ψi ∧ size ≥ 0) and therefore, without loss of generality, we

can assume that k ≥ 1.

• By the axiom (Gc
14), `Hc

¬|>〉 ⇔ (|>]∨|> ∨| ⊥ 〉) and therefore by propositional reasoning

`Hc
|>] ∨ |> ∨ | ⊥ 〉 ∨ |>〉 and therefore `Hc

|>] ∨ |> ∨ |>〉 by taking advantage of the
axiom (Gc

2). Without loss of generality, we can assume that n ≥ 1, as

`Hc ((|>] ∨ |> ∨ |>〉) ∧
∧

j∈[1,m]

¬G′j ∧
∧

j∈[1,k]

size ≥ βj ∧
∧

j∈[1,l]

¬size ≥ β′j)⇔

∧
j∈[1,m]

¬G′j ∧
∧

j∈[1,k]

size ≥ βj ∧
∧

j∈[1,l]

¬size ≥ β′j)

Indeed, by distributing the elements of (|>] ∨ |> ∨ |>〉), we can obtain conjunctions with
at least one positive occurrence of a graph formula.

Let βL
def
= max{βj | j ∈ [1, k]}. If l ≥ 1, then let βU

def
= min{β′j | j ∈ [1, l]}. If ψi has no negative

occurrences of size ≥ β, let γ = >, otherwise let γ = ¬size ≥ βU . By the axiom (Sc2), we easily
obtain the equivalence

`Hc ψi ⇔
∧
j∈[1,n] Gj ∧

∧
j∈[1,m] ¬G′j ∧ size ≥ βL ∧ γ.

Now, let us manipulate the graph formulae. By the axioms (Gc
14)-(Gc

16), each negative occurrence
of a graph formula ¬G′j can be rewritten as a disjunction of positive occurrences of graph formulae∨
k∈[1,bj ] G

j
k, leading to the equivalence

`Hc
ψi ⇔

∧
j∈[1,n] Gj ∧

∧
j∈[1,m](

∨
k∈[1,bj ] G

j
k) ∧ size ≥ βL ∧ γ

which by distribution of conjunctions over disjunctions leads to

`Hc
ψi ⇔

∨
j1∈[1,b1],...,jm∈[1,bm]

∧
j∈[1,n] Gj ∧

∧
j∈[1,m] G

j
j1
∧ size ≥ βL ∧ γ.

Lastly, by the axioms (Gc
7)-(Gc

11), each G ∧ G′ is equivalent to ⊥ or to a graph formula G?. Then,
the conjunction

∧
j∈[1,n] Gj ∧

∧
j∈[1,m] G

j
j1

of ψi is equivalent to ⊥, or equivalent to a graph formula
G. In both cases we obtain a disjunct of the form G ∧size ≥ βL ∧γ. We conclude that `Hc

φ⇔ ψ,
for some formula ψ equal to a disjunction of elementary shapes of the form either G ∧ size ≥ β or
G ∧ size ≥ β ∧ ¬size ≥ β′.

We prove that Hc is complete for the restricted case of elementary shapes.
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Lemma 5. Let φ be an elementary shape. φ is satisfiable iff 6 `Hc¬φ.

Proof. Let φ be an elementary shape G ∧ size ≥ β ∧ γ where either γ = > or γ = ¬size ≥ β′.
The proof from left to right follows from the correctness of Hc (Lemma 3). In order to prove the
direction from right to left, let us suppose that 6`Hc

¬φ. Let us build a model satisfying φ by an
iterative process starting from the empty model M = 〈N,R = ∅,V = ∅〉 and by considering l ∈ N
as the location where φ is evaluated. Any element of N that does not occur yet in R is understood
as a fresh location. Let us analyse the elementary shape φ.

1. If G = |Q1,..., Qn〉, let l=l1..., ln+1 be n+ 1 distinct fresh locations. For every i ∈ [1, n], we
update R by adding (li, li+1) to it. For every propositional variable p appearing positively in
Qi, we update V by adding li to V(p). Nothing is done for negative literals of the form ¬q.

2. If G = |Q1,..., Qn], let l=l1..., ln be n distinct fresh locations. We update R by adding (li, li+1)
to it, for every i ∈ [1, n − 1]. Then, for every i ∈ [1, n] and every propositional symbol p
appearing positively in Qi, we update V by adding li to V(p).

3. Lastly, if G = |Q1,..., Qi,..., Qn , let l=l1..., ln be n distinct fresh locations. We update R by
adding (ln, li) and (lj , lj+1), for every j ∈ [1, n− 1], to it. Then, for every j ∈ [1, n] and every
propositional symbol p appearing positively in Qj , we update V by adding lj to V(p).

We conclude the construction by considering the formula size ≥ β.

• If β ≤ card(R) (i.e. ](G) ≥ β), the construction of M is complete.

• If β > card(R), let l′1,..., l
′
β−card(R) be (β − card(R)) distinct fresh locations different from l.

For every i ∈ [1, β − card(R)], we update R by adding (l′i, l
′
i) to it. In this step, the following

property holds:

(?) As every newly introduced location is fresh and different from the evaluation point l, it
does not reach nor is reached by l.

Now, we show that M, l1 |= φ. By hypothesis, 6`Hc ¬φ. We start by considering the graph formula G
of the elementary shape φ and we distinguish three cases, as above (all cases are handled similarly).
First, note that 6`Hc

¬φ implies 6`Hc
¬G by propositional reasoning and by the axiom (Gc

2), all
the conjunctions Qi occurring in G are not contradictory (and therefore are satisfiable). Moreover,
given a non-contradictory conjunction Q, a valuation v : PROP → {⊥,>} satisfying Q can be

defined so that v(p)
def
= > iff p occurs in Q. This is precisely the principle used to define V in M.

• If G = |Q1,..., Qn〉, then by definition M, l |= G iff there are distinct l1,..., ln+1 such that
l=l1 R l2 R ... R ln+1 and for all j ∈ [1, n], we have M, lj |= Qj . By the point (1) of the
construction, the constraints on R are trivially satisfied. Note that for every j ∈ [1, n], V
restricted to the propositional variables occurring in Qj and to lj satisfies the conditions of
the valuations v above. Hence, M, lj |= Qj .

• If G = |Q1,..., Qn], then by definition M, l |= G iff there are distinct l1,..., ln such that
l=l1 R l2 R ... R ln, there is no l′ such that lnRl′ and for each j ∈ [1, n], we have M, lj |= Qj .
By the point (2) of the construction, together with (?), the constraints on R are trivially
satisfied. As in the previous case, one can show that for every j ∈ [1, n], M, lj |= Qj .

• Lastly, if G = |Q1,..., Qi,..., Qn then by definition M, l |= G iff there are distinct l1,..., ln such
that l=l1 R l2 R ... ln R li and for all j ∈ [1, n], M, lj |= Qj . Again, by the point (3) of the
construction, together with (?), the constraints on R are trivially satisfied whereas the proof
that for every j ∈ [1, n] it holds that M, lj |= Qj is performed as above.

For size ≥ β formulae, from the last step of the construction, it trivially holds that M, l |= size ≥ β.
If γ = >, the proof is completed. Otherwise γ = ¬size ≥ β′ and it remains to show that
M, l |= ¬size ≥ β′. Let us recall the semantics: M, l |= ¬size ≥ β′ if and only if card(R) < β′.
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Let us distinguish different cases. If β′ ≤ β, then by propositional reasoning and by using
the axiom (Sc2) (β − β′) times, we can conclude that `Hc size ≥ β ⇒ size ≥ β′ and therefore
`Hc
¬(size ≥ β∧¬size ≥ β′). Consequently, `Hc

¬φ by propositional reasoning, which leads to a
contradiction. Otherwise β′ > β and again we distinguish two cases. If card(R) = β, then obviously,
M, l |= ¬size ≥ β′. Otherwise (i.e. card(R) > β and β′ > β), we are in the case ](G) = card(R).
Ad absurdum, let us suppose that card(R) ≥ β′, i.e. ](G) ≥ β′. By the axiom (Gc

1), we obtain
`Hc G ⇒ size ≥ ](G). By propositional reasoning and by using the axiom (Sc2) (](G)− β′) times,
we can conclude that `Hc size ≥ ](G)⇒ size ≥ β′ and therefore `Hc G ⇒ size ≥ β′. Again by
propositional reasoning, we get `Hc

¬(G ∧ ¬size ≥ β′). Consequently, `Hc
¬φ by propositional

reasoning, which leads to a contradiction.

From this result, we can establish the completeness of Hc with respect to Boolean combinations
of core formulae. This is an essential step to get a complete proof system for MSL(∗,3) (its
definition is to be completed in the rest of Sec. 3).

Theorem 6. A Boolean combination of core formulae φ is valid iff `Hc
φ.

Proof. Let φ be a Boolean combination of core formulae. By Lemma 3, `Hc
φ implies that φ is

valid. Conversely, let us assume that φ is valid and ad absurdum, let us suppose that 6`Hc
φ. By

propositional calculus, there exists a formula φ′ in conjunctive normal form (CNF) such that the
“literals” are core formulae or their negations, and `Hc φ ⇔ φ′. As 6`Hc φ, there is a conjunct
of φ′, say ψ, such that 6`Hc

ψ. As φ′ is valid, this implies that ψ is valid too. By Lemma 4,
`Hc
¬ψ ⇔ (γ1 ∨ · · · ∨ γn) where γ1 ∨ · · · ∨ γn is a disjunction of elementary shapes and therefore

(γ1 ∨ · · · ∨ γn) is unsatisfiable. Consequently, for all i ∈ [1, n], the formula γi is unsatisfiable and
by Lemma 5, we get that `Hc ¬γi. By propositional reasoning, we get `Hc ¬γ1 ∧ · · · ∧ ¬γn and
again by propositional reasoning using `Hc ¬ψ ⇔ (γ1 ∨ · · · ∨ γn), we obtain `Hc ψ, which leads to
a contradiction.

3.3.1 3-elimination.

We enrich the proof system Hc by adding axioms and one inference rule that handle the modality
3. This leads to the extended proof system Hc(3) dedicated to the set of formulae obtained by
closing core formulae under Boolean connectives and 3.

Axioms and inference rule for Hc(3)

(3DISTR) 3(φ ∨ ψ)⇔ 3(φ) ∨3(ψ) (G3
17) 3(|Q1,..., Qn])⇔ |>, Q1,..., Qn]

(S3
3 ) 3(φ ∧ S)⇔ 3(φ) ∧ S where S is a size formula,

(G3
18) 3(|Q1, . . . , Qn〉)⇔ |>, Q1,..., Qn ∨ |>, Q1,..., Qn〉

(G3
19) 3(|Q1,..., Qi,..., Qn )⇔ |>, Q1,..., Qi,..., Qn with i ≥ 2,

(G3
20) 3(|Q1,..., Qn−1, Qn )⇔ |Qn, Q1,..., Qn−1 ∨ |>, Q1,..., Qn−1, Qn

Regularity rule:
φ⇒ ψ

3φ⇒ 3ψ

Lemma 7. The axioms and rules in Hc(3) are valid for MSL(∗,3).

Proof. Let M = 〈N,R,V〉 be a model and l ∈ N. The axiom (3DISTR) is valid since M, l |=
3(φ ∨ ψ)⇔ 3φ ∨3ψ for any Kripke-style structure (3(φ ∨ ψ)⇔ 3φ ∨3ψ is valid for the modal
logic K). As far as the axiom (G3

17) is concerned, M, l |= 3(|Q1,..., Qn]), iff there exists l′ such
that lRl′ and M, l′ |= |Q1,..., Qn]. This is the case if and only if, there are distinct l1,..., ln such
that l′=l1 R l2 R · · · R ln, there is no l′ such that lnRl′ and for each i∈ [1, n], we have M, li |= Qi.
Moreover, for all i ∈ [1, n], we have li 6= l.

But we know that lRl′ and also trivially M, l |= >, so by definition of the satisfaction relation
|= on graph formulae again, M, l |= |>, Q1,..., Qn] (notice that each step is in both directions).
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Let us deal with the axiom (S3
3 ). Suppose M, l |= 3(φ ∧ S). There is l′ such that lRl′ and

M, l′ |= φ ∧ S. As S is a size formula, the evaluation of S on M, l′ does not require the use of l′

(and V) and therefore M, l |= S too. Consequently, M, l |= (3φ) ∧ S. Conversely, suppose that
M, l |= (3φ)∧S. There is l′ such that lRl′ and M, l′ |= φ. As S is a size formula, the evaluation of
S on M, l does not require the use of l and therefore M, l′ |= S too. Consequently, M, l |= 3(φ∧S).

For the axiom (G3
18), M, l |= 3(|Q1, . . . , Qn〉), iff there exists l′ such that lRl′ and M, l′ |=

|Q1, . . . , Qn〉. This is the case iff there are distinct l1,..., ln+1 such that l′=l1Rl2R...Rln+1 and
for all i ∈ [1, n], we have M, li |= Qi. Notice that since R is (weakly) functional, and the fact
that l′ = l1 6= l2 and l1Rl2, necessarily l 6= l′. Then we have two cases to consider. If l 6= ln+1,
then we have M, l |= |>, Q1, . . . , Qn〉. Otherwise, since l = ln+1, then we have that lnRl, so

M, l |= |>, Q1,..., Qn . The other direction can be proved in the same way.
Let us prove the validity of the axiom (G3

19), so for the left to the right direction suppose

M, l |= 3(|Q1,..., Qi,..., Qn ), for some i ≥ 2. Then there exists l′ such that lRl′ and M, l′ |=
|Q1,..., Qi,..., Qn . By the semantics for graph formulae, there are distinct l1,..., ln such that
l′=l1Rl2R...lnRli and for all j ∈ [1, n], M, lj |= Qj . But l 6= l′, otherwise l′ = l1 = l2, which we
know is false by hypothesis and the fact that i ≥ 2. So, there are distinct l, l1,..., ln such that

lRl1Rl2R...lnRli, and for all j ∈ [1, n], M, lj |= Qj . Therefore, M, l |= |>, Q1,..., Qi,..., Qn . The
proof in the other direction is done similarly (and even simpler).

Now, let us prove the validity of the axiom (G3
20). For the left to the right direction suppose

M, l |= 3(|Q1,..., Qn−1, Qn ), and so there exists l′ such that lRl′ and M, l′ |= |Q1,..., Qn−1, Qn .
By the semantics for graph formulas, there are distinct l1,..., ln such that l′=l1Rl2R...lnRli and for
all j ∈ [1, n], M, lj |= Qj . Again, notice l 6= l′, so we have to consider two cases. If l = ln, then there

exist ln, l1,..., ln−1 all distinct, and lnRl1...Rln−1, then M, l |= |Qn, Q1,..., Qn−1 . Otherwise, we

have l, l1,..., ln all distinct and lRl1...lnRl1, then M, l |= |>, Q1,..., Qn−1, Qn . The other direction
uses similar steps.

Finally, we will show that the Regularity rule is valid. Suppose that φ ⇒ ψ is valid and
M, l |= 3φ. Then, there exists l′ such that lRl′ and M, l′ |= φ. As φ ⇒ ψ is valid, we also get
M, l′ |= ψ and therefore M, l |= 3ψ.

These axioms give us some insight about the interplay between separating and modal connectives.
In the case of size formulae there is no interplay at all (see the axiom (S3

3 )). Indeed, every condition
in a formula ψ about the size of the accessibility relation R carries on independently of the structure
of R described by ψ through modalities. However, there are interplays with respect to loops (see

e.g. the axiom (G3
18) and recall that ext(|Q1,..., Qi,..., Qn ) uses the separating conjunction ∗). Note

also that no axiom of the form 3φ⇒ 2φ is explicitly present to encode weak functionality but it
is derivable by completeness. Indeed, functionality is taken care with the axioms dedicated to the
Boolean combinations of core formulae as well as with those dedicated to the interaction between core
formulae and 3. A similar situation happens with the distribution axiom 2(φ⇒ ψ)⇒ (2φ⇒ 2ψ)
that is not present in our axiomatisation. In a way, thanks to the core formulae (and more
specifically to the graph formulae), the axiomatisation “manipulates modal frames” and this is
done exhaustively thanks to the completeness for Boolean combinations of core formulae.

Lemma 8. Let φ be a Boolean combination of core formulae. There is a Boolean combination of
core formulae ψ such that `Hc(3) 3φ⇔ ψ.

Observe that the formula ψ in Lemma 8 is a combination of core formulae and therefore 3

does not occur in it. By Lemma 7 (soundness of `Hc(3)), the formulae 3φ and ψ in Lemma 8 are
logically equivalent

Proof. Before providing the proof, let us state a property used in several places.

(††) Let φ, φ′ and ψ be formulae built from core formulae, the Boolean connectives and the
modality 3 such that `Hc(3) φ ⇔ φ′. Then `Hc(3) ψ[φ]ρ ⇔ ψ[φ′]ρ where ψ[φ]ρ stands for
the formula obtained from ψ by replacing the formula at the occurrence ρ by the formula φ.
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The proof of (††) is performed along the lines of the proof of Lemma 21 and is therefore omitted
herein (the regularity rule needs to be used).

Suppose φ is a Boolean combination of core formulae. By Lemma 4, there is a disjunction of
elementary shapes

∨
i ψi such that `Hc(3) φ ⇔

∨
i ψi, as Hc(3) is an extension of Hc. By (††),

and by using the axiom (3DISTR), we can conclude that `Hc(3) 3(φ)⇔
∨
i3(ψi). In order to

prove the result, it is then sufficient to show that for every elementary shape ψ, there is a Boolean
combination of core formulae ψ′ such that `Hc(3) 3ψ ⇔ ψ′. Let γS be a size formula of the form
either size ≥ β ∧¬size ≥ β′ or size ≥ β. Indeed, in Hc(3) we can derive the following formulae:

3(|Q1, . . . , Qn] ∧ γS)⇔ |>, Q1,..., Qn] ∧ γS :

i. `Hc(3) 3(|Q1, . . . , Qn] ∧ γS)⇔ 3(|Q1, . . . , Qn]) ∧ γS by the axiom (S3
3 );

ii. `Hc(3) 3(|Q1, . . . , Qn]) ∧ γS ⇔ |>, Q1,..., Qn] ∧ γS by the axiom (G3
17);

iii. `Hc(3) 3(|Q1, . . . , Qn] ∧ γS)⇔ |>, Q1,..., Qn] ∧ γS by (i) and (ii).

3(|Q1, . . . , Qn〉 ∧ γS)⇔ (|>, Q1,..., Qn ∨ |>, Q1,..., Qn〉) ∧ γS

i. `Hc(3) 3(|Q1, . . . , Qn〉 ∧ γS)⇔ 3(|Q1, . . . , Qn〉) ∧ γS by the axiom (S3
3 );

ii. `Hc(3) 3(|Q1, . . . , Qn〉) ∧ γS ⇔ (|>, Q1,..., Qn ∨ |>, Q1,..., Qn〉) ∧ γS by the axiom (G3
18);

iii. `Hc(3)3(|Q1, . . . , Qn〉 ∧ γS)⇔(|>, Q1,..., Qn ∨|>, Q1,..., Qn〉) ∧ γS by (i), (ii).

for each i ≥ 2, 3(|Q1,..., Qi,..., Qn ∧ γS)⇔ |>, Q1,..., Qi,..., Qn ∧ γS

i. `Hc(3) 3(|Q1,..., Qi,..., Qn ∧ γS)⇔ 3(|Q1,..., Qi,..., Qn ) ∧ γS by the axiom (S3
3 );

ii. `Hc(3) 3(|Q1,..., Qi,..., Qn ) ∧ γS ⇔ |>, Q1,..., Qi,..., Qn ∧ γS by the axiom (G3
19);

iii. `Hc(3) 3(|Q1,..., Qi,..., Qn ∧ γS)⇔ |>, Q1,..., Qi,..., Qn ∧ γS by (i), (ii).

3(|Q1,..., Qn−1, Qn ∧ γS)⇔ (|Qn, Q1,..., Qn−1 ∨ |>, Q1,..., Qn−1, Qn ) ∧ γS

i. `Hc(3) 3(|Q1,..., Qn−1, Qn ∧ γS)⇔ 3(|Q1,..., Qn−1, Qn ) ∧ γS by the axiom (S3
3 );

ii. `Hc(3)3(|Q1,..., Qn−1, Qn ) ∧ γS⇔(|Qn, Q1,..., Qn−1 ∨ |>, Q1,..., Qn−1, Qn ) ∧ γS by (G3
20);

iii. `Hc(3)3(|Q1,..., Qn−1, Qn ∧ γS)⇔(|Qn, Q1,..., Qn−1 ∨ |>, Q1,..., Qn−1, Qn ) ∧ γS by (i), (ii).

This concludes the proof.

3.3.2 ∗-elimination.

Finally, we enrich the proof system Hc by adding axioms and one inference rule for the separating
conjunction. We denote the resulting proof system by Hc(∗).

Axioms and inference rule for Hc(∗)

(COM) (φ ∗ ψ)⇔ (ψ ∗ φ)
(ASSOC) (φ ∗ ψ) ∗ γ ⇔ φ ∗ (ψ ∗ γ)
(⊥) ¬(⊥ ∗φ)
(S∗4) φ⇔ (φ ∗ ¬size ≥ 1)

(∗DISTR) (φ1 ∨ φ2) ∗ ψ ⇔ (φ1 ∗ ψ) ∨ (φ2 ∗ ψ)
(G∗22) ¬(G1 ∗ G2) with ](G1)× ](G2) ≥ 1

(G∗23) |Q1,..., Qn〉 ∗ φ⇒ |Q1,..., Qn〉

(G∗24) |Q1,..., Qi,..., Qn ∗φ⇒ |Q1,..., Qi,..., Qn

(S∗5) size ≥ β1+β2 ⇒ size = β1 ∗ size ≥ β2

(S∗6) ¬size ≥ β1 ∗ ¬size ≥ β2 ⇒ ¬size ≥ (β1+β2)
.−1 (α1

.−α2
def
= max(0, α1−α2))

(G∗25) |Q1,..., Qn] ∗ size ≥ 1⇒ |Q1,..., Qn] ∨ |Q1,..., Qn〉 ∨
∨
i∈[1,n] |Q1,..., Qi,..., Qn

(G∗26) (|Q1 ∧Q,..., Qn? ∧ φ) ∗ ψ ⇔ (|Q1,..., Qn? ∧ φ) ∗ (|Q] ∧ ψ)
(G∗27) |Q1,..., Qn? ∧ size ≥ β ⇒ (|Q1,..., Qn? ∧ size = β) ∗ > with β ≥ ](|Q1,..., Qn?)

(G∗28) |Q1,..., Qn〉 ∧ size ≥ β+n⇒ (|Q1,..., Qn] ∧ size ≥ (β+n)−1) ∗ size = 1
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(G∗29) |Q1,..., Qi,..., Qn ∧ size ≥ β+n⇒ (|Q1,..., Qn] ∧ size ≥ (β+n)−1) ∗ size = 1

∗-introduction rule:
φ⇒ γ

φ ∗ ψ ⇒ γ ∗ ψ

The first property to check is the soundness of Hc(∗).

Lemma 9. The axioms and rules in Hc(∗) are valid for MSL(∗,3).

Proof. First, notice that the axioms (COM), (ASSOC), (∗DISTR), (⊥), (S∗4) and the ∗-
introduction rule are the classical axioms and inference rule for ∗ in separation logic (see e.g. [48]),
therefore their validity is straightforward.

Let M = 〈N,R,V〉 be an MSL model, and let l ∈ N.
For the validity of the axiom (G∗22), suppose G1 and G2 are graph formulae such that ](G1)×

](G2) ≥ 1. Observe that M, l |= G1 ∗ G2 iff there are R1 and R2 such that R = R1 ] R2,
〈N,R1,V〉, l |= G1 and 〈N,R2,V〉, l |= G2. As ](G1) ≥ 1 and ](G2) ≥ 1, there are l1, l2 such that
(l, l1) ∈ R1 and (l, l2) ∈ R2. As R = R1 ]R2, l1 6= l2, which is in contradiction with the fact that
R is weakly functional. Consequently, M, l |= ¬(G1 ∗ G2).

For the validity of the axiom (G∗23), suppose M, l |= |Q1,..., Qn〉∗φ, iff 〈N,R1,V〉, l |= |Q1,..., Qn〉
and 〈N,R2,V〉, l |= φ, for some partition {R1,R2} of R. Then, there exist distinct locations
l = l1,..., ln+1 such that l1R1l2R1...lnR1ln+1, and for all i ∈ [1, n], 〈N,R1,V〉, li |= Qi. Since
R1 ⊆ R, there exist distinct locations l = l1,..., ln+1 such that l1Rl2R...lnRln+1, and since each Qi
is purely propositional, M, li |= Qi, therefore M, l |= |Q1,..., Qn〉.

For the validity of the axiom (G∗24), suppose M, l |= |Q1,..., Qi,..., Qn ∗ φ, iff (by definition

of |=), 〈N,R1,V〉, l |= |Q1,..., Qi,..., Qn and 〈N,R2,V〉, l |= φ, for some partition {R1,R2} of R.
So, there exist distinct locations l = l1,..., ln and i ∈ [1, n] such that l1R1l2R1...lnR1lnR1li, and
for all j ∈ [1, n], 〈N,R1,V〉, lj |= Qj . Since R1 ⊆ R, there exist distinct locations l = l1,..., ln
and i ∈ [1, n] such that l1Rl2R...lnRlnRli, and since each Qj is purely propositional, M, lj |= Qj ,

therefore M, l |= |Q1,..., Qi,..., Qn .
Let us prove now the validity of the axiom (G∗25). Suppose M, l |= |Q1,..., Qn] ∗ size ≥ 1, iff

〈N,R1,V〉, l |= |Q1,..., Qn] and 〈N,R2,V〉, l |= size ≥ 1, for some partition {R1,R2} of R. Since
〈N,R1,V〉, l |= |Q1,..., Qn], there are distinct l1,..., ln such that l = l1R1l2R1...ln, there is no l′ such
that lnR1l

′ and for each i ∈ [1, n], 〈N,R1,V〉 |= Qi. On the other hand, we have card(R2) ≥ 1.
We have three cases to consider:

• if R2(ln) = ∅, since R1(ln) = ∅ then R(ln) = ∅. As a consequence, M, l |= |Q1,..., Qn].

• if lnR2l
′, for some l′, and l′ 6= li for all i ∈ [1, n], then l = l1Rl2R...ln by R1, and lnRl′ by

R2. Therefore, M, l |= |Q1,..., Qn〉.

• Otherwise, lnR2l
′, for some l′ such that l′ = li for some i ∈ [1, n]. Then we get M, l |=∨

i∈[1,n] |Q1,..., Qi,..., Qn .

For the validity of the axiom (G∗26), suppose M, l |= (|Q1∧Q,..., Qn?∧φ)∗ψ), iff 〈N,R1,V〉, l |=
|Q1∧Q,..., Qn?∧φ and 〈N,R2,V〉, l |= ψ, for some partition {R1,R2} of R. There exists a sequence
of distinct locations l = l1,..., lm, with l1R1...Rlm (with m = n+1 if |Q1,..., Qn? is equal |Q1,..., Qn〉
or |Q1,..., Qn? is equal to |Q1,..., Qi,..., Qn , otherwise m = n), while in the latter case, we have
R2(l) = ∅. Moreover, since Q and Q1 are purely propositional and M, l |= Q1 ∧ Q, we have
〈N,R1,V〉, l |= Q1, and 〈N,R2,V〉, l |= Q. Then, M, l |= (|Q1,..., Qn? ∧ φ) ∗ (|Q] ∧ ψ). For the
other direction suppose M, l |= (|Q1,..., Qn? ∧ φ) ∗ (|Q] ∧ψ), iff 〈N,R1,V〉, l |= |Q1,..., Qn? ∧ φ and
〈N,R2,V〉, l |= |Q] ∧ ψ, for some partition {R1,R2} of R. Since Q is purely propositional, and
moreover R2(l) = ∅, it is obvious that M, l |= (|Q1 ∧Q,..., Qn? ∧ φ) ∗ ψ).

Let us prove the validity of the axiom (G∗27). Suppose M, l |= |Q1,..., Qn?∧size ≥ β, with β ≥
](|Q1,..., Qn?). Then β ≥ m with m = n−1 if |Q1,..., Qn? is |Q1,..., Qn], or m = n otherwise. Since
M, l |= |Q1,..., Qn?, R contains at least m elements, so let us define R1 = {(l1, l2),..., (lm, lm+1)}∪R′,
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where R′ is an arbitrary set of β −m edges from R. Take the partition {R1,R \ R1}. Notice
that card(R1) = β and 〈N,R1,V〉, l |= |Q1,..., Qn? (considering the adequate m for each case).
Moreover, 〈N,R2,V〉, l |= >. Then M, l |= (|Q1,..., Qn? ∧ size = β) ∗ >.

For the validity of the axiom (G∗28), suppose M, l |= |Q1,..., Qn〉 ∧ size ≥ β + n, iff there exists
a sequence of distinct locations l = l1,..., ln+1, with l1R...lnRln+1, and for all j ∈ [1, n], we have
M, lj |= Qj , and card(R) ≥ β + n. Take the partition {R1,R2}, where R2 = {(ln, ln+1)}, and
R1 = R \R2. Since R1(ln) = ∅ (by definition of R1 and by weak functionality of R), and also
card(R1) ≥ β + n − 1, then 〈N,R1,V〉, l |= |Q1,..., Qn] ∧ size ≥ β + n − 1. On the other hand,
card(R2) = 1, therefore M, l |= (|Q1,..., Qn] ∧ size ≥ β + n− 1) ∗ size = 1.

Finally, for the validity of the axiom (G∗29), suppose M, l |= |Q1,..., Qi,..., Qn ∧size ≥ β+n, iff
there exists a sequence of distinct locations l = l1,..., ln, and i ∈ [1, n] such that l1R...lnRli, and for
all j ∈ [1, n], M, lj |= Qj , and card(R) ≥ β+n. Take the partition {R1,R2}, where R2 = {(ln, li)},
and R1 = R \R2. Since R1(ln) = ∅ (by definition of R1 and by weak functionality of R), and also
card(R1) ≥ β + n − 1, then 〈N,R1,V〉, l |= |Q1,..., Qn] ∧ size ≥ β + n − 1. On the other hand,
card(R2) = 1, therefore M, l |= (|Q1,..., Qn] ∧ size ≥ β + n− 1) ∗ size = 1.

Let us establish the validity of the axiom (S∗5), suppose M, l |= size ≥ β1 + β2, iff card(R) ≥
β1+β2. So, we can find a partition {R1,R2} of R such that card(R1) = β1 and card(R2) ≥ β2, then
〈N,R1,V〉, l |= size = β1 and 〈N,R2,V〉, l |= size ≥ β2. Therefore, M, l |= size = β1∗size ≥ β2.

For the validity of the axiom (S∗6). Suppose that M, l |= (¬size ≥ β1) ∗ (¬size ≥ β2), iff
〈N,R1,V〉, l |= ¬size ≥ β1 and 〈N,R2,V〉, l |= ¬size ≥ β2, for some partition {R1,R2} of R.
Then, we have card(R1) < β1 and card(R2) < β2, which gives us card(R) < β1 +β2, or equivalently,
card(R) ≤ (β1 + β2)− 1 ≤ (β1 + β2) .− 1. So, we get M, l |= ¬size ≥ (β1 + β2) .− 1.

Hence, all the axioms are valid.

Forthcoming Lemma 12 states that the separating conjunction φ∗ψ of two Boolean combinations
of core formulae is equivalent in Hc(∗) to some Boolean combination of core formulae γ, and
therefore by Lemma 9, φ ∗ ψ is also logically equivalent to γ. Thanks to the axioms (COM)
and (∗DISTR), the ∗-introduction rule and propositional reasoning, the satisfaction of such a
property amounts to check it in the restricted case of elementary shapes (see Lemma 11).

Let us establish a preliminary lemma that is useful to prove Lemma 11.

Lemma 10. The following formulae are derivable in Hc(∗).

R0 Let φ, φ′ and ψ be formulae built from core formulae, and using Boolean connectives and the separating
conjunction ∗ such that `Hc(∗) φ⇔ φ′. Then, `Hc(∗) ψ[φ]ρ ⇔ ψ[φ′]ρ.

L0 (φ ∧ φ′) ∗ (ψ ∧ ψ′)⇒ φ ∗ ψ.
L1 size ≥ β1 ∗ size ≥ β2 ⇔ size ≥ β1 + β2.

L2 ((φ ∧ size ≥ β) ∗ ψ) ∧ ¬size ≥ β′ ⇒ (φ ∧ size ≥ β) ∗ (ψ ∧ ¬size ≥ β′ .−β).

L3 ((φ ∧ ¬size ≥ β+1) ∗ ψ) ∧ size ≥ β′ ⇒ (φ ∧ ¬size ≥ β+1) ∗ (ψ ∧ size ≥ β′ .−β).

L4 for any β1 < β′1 and β2 < β′2,

size ≥ β1+β2 ∧ ¬size ≥ (β′1+β′2) .−1⇔ (size ≥ β1 ∧ ¬size ≥ β′1) ∗ (size ≥ β2 ∧ ¬size ≥ β′2).

The formula ψ[φ]ρ in R0 stands for the formula obtained from ψ by replacing the formula at
the occurrence ρ by the formula φ. The proof of Lemma 10 can be found in the appendix.

The validity of the axiom (G∗22) rests on the fact that the separating conjunction of two graph
formulae, each having a graph size at least one is unsatisfiable. This property can be lifted to
elementary shapes. However, what remains to be established is how to eliminate the separating
conjunction of two elementary shapes such that at least one of them has graph size equal to zero.
The following lemma is dedicated to this special type of ∗-elimination, which is then used for the
general result on arbitrary formulae (Lemma 12).

Lemma 11. The formulae listed in the table below are derivable in Hc(∗).
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Derivable formulae about separating conjunctions of elementary shapes

Notation: The formula |Q1,..., Qn 〉 denotes either a formula of the form |Q1,..., Qn〉, or a formula of the form

|Q1,..., Qi,..., Qn (this excludes graph formulae of the form |Q1,..., Qn]). Below, the occurrences of |Q1,..., Qn 〉
on the left and on the right of every equivalence are for the same form, i.e. either both |Q1,..., Qn〉 or both

|Q1,..., Qi,..., Qn (where the position i is the same).
Assumption: below, in every elementary shape ψ of the form G ∧ size ≥ β or G ∧ size ≥ β ∧ ¬size ≥ β′, we
have ](G) ≤ β and 6`Hc ¬ψ (hence e.g. β < β′).

• (|Q1,..., Qn 〉 ∧ size ≥ β1) ∗ (|Q] ∧ size ≥ β2)⇔ |Q1 ∧Q,..., Qn 〉 ∧ size ≥ β1+β2

• (|Q1,..., Qn 〉 ∧ size ≥ β1 ∧ ¬size ≥ β′1) ∗ (|Q] ∧ size ≥ β2)⇔ |Q1 ∧Q,..., Qn 〉 ∧ size ≥ β1+β2

• (|Q1,..., Qn 〉 ∧ size ≥ β1) ∗ (|Q] ∧ size ≥ β2 ∧ ¬size ≥ β′2)⇔ |Q1 ∧Q,..., Qn 〉 ∧ size ≥ β1+β2

• (|Q1,..., Qn 〉 ∧ size ≥ β1 ∧ ¬size ≥ β′1) ∗ (|Q] ∧ size ≥ β2 ∧ ¬size ≥ β′2)

⇔ |Q1 ∧Q,..., Qn 〉 ∧ size ≥ β1+β2 ∧ ¬size ≥ (β′1+β′2) .−1

• (|Q1,..., Qn] ∧ size ≥ β1) ∗ (|Q] ∧ ¬size ≥ 1)⇔ |Q1 ∧Q,..., Qn] ∧ size ≥ β1
• (|Q1,..., Qn]∧size ≥ β1∧¬size ≥ β2)∗(|Q]∧¬size ≥ 1)⇔ |Q1∧Q,..., Qn]∧size ≥ β1∧¬size ≥ β2

Let γn
def
= (|Q1 ∧Q,..., Qn] ∨ |Q1 ∧Q,..., Qn〉 ∨

∨
i∈[1,n] |Q1 ∧Q,..., Qi,..., Qn ) ∧ size ≥ β1+β2+1.

• (|Q1,..., Qn] ∧ size ≥ β1) ∗ (|Q] ∧ size ≥ β2+1)⇔ γn

• (|Q1,..., Qn] ∧ size ≥ β1 ∧ ¬size ≥ β′1) ∗ (|Q] ∧ size ≥ β2+1)⇔ γn

• (|Q1,..., Qn] ∧ size ≥ β1) ∗ (|Q] ∧ size ≥ β2+1 ∧ ¬size ≥ β′2)⇔ γn

• (|Q1,..., Qn]∧size ≥ β1∧¬size ≥ β′1)∗(|Q]∧size ≥ β2+1∧¬size ≥ β′2)⇔ γn∧¬size ≥ β′1+β′2
.−1

The long syntactic proof of Lemma 11 can be found in the appendix. It should be noted that
we could directly add these formulae to the proof system: it would avoid the lengthy proof of
Lemma 11 in favor of a simpler semantical proof. However, the resulting calculus would certainly
be redundant. From Lemmata 9 and 11, we get the main result about ∗-elimination.

Lemma 12. Let φ, ψ be Boolean combinations of core formulae. There is a Boolean combination
of core formulae γ such that `Hc(∗) (φ ∗ ψ)⇔ γ.

Observe that γ is a Boolean combination of core formulae and ∗ does not occur in it. In the
proof of Lemma 12, if `Hc(∗) ¬φ or `Hc(∗) ¬ψ, then the axiom (⊥) is used. Otherwise, the proof
amounts to prove the statement for elementary shapes only, which corresponds to Lemma 11.

Proof. Before providing the proof, let us state a property used in several places.

(††) Let φ, φ′ and ψ be formulae built from core formulae, the Boolean connectives and the
separating conjunction ∗ such that `Hc(∗) φ⇔ φ′. Then `Hc(∗) ψ[φ]ρ ⇔ ψ[φ′]ρ where ψ[φ]ρ
stands for the formula obtained from ψ by replacing the formula at the occurrence ρ by the
formula φ.

(††) is proved along the lines of the proof of Lemma 21 and is therefore omitted herein. It
corresponds also to R0 from Lemma 10.

Let φ and ψ be Boolean combinations of core formulae. By Lemma 4, there are disjunctions of
elementary shapes

∨
i φi and

∨
j ψj such that `Hc(∗) φ ⇔

∨
i φi and `Hc(∗) ψ ⇔

∨
j ψj . By (††),

and by using the axiom (∗DISTR), we can conclude that `Hc(∗) φ ∗ ψ ⇔
∨
i

∨
j φi ∗ ψj . In order

to prove the result, it is then sufficient to show that for all the elementary shapes ψ′, ψ′′, there is a
Boolean combination of core formulae γ′ such that `Hc(3) ψ

′ ∗ ψ′′ ⇔ γ′.

• In the case `Hc(3) ¬ψ′ (which amounts to unsatisfiability of ψ′ by Lemma 5), by propositional
reasoning `Hc(3) ψ

′ ⇒⊥ and by the ∗-introduction rule, we get `Hc(3) ψ
′ ∗ ψ′′ ⇒⊥ ∗ψ′′. By
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the axiom (⊥), `Hc(3) ¬(⊥ ∗ψ′′), which by propositional reasoning leads to `Hc(3) ¬(ψ′∗ψ′′).
Finally, by propositional reasoning, we get `Hc(3) ψ

′ ∗ ψ′′ ⇔⊥. A similar reasoning applies
when `Hc(3) ¬ψ′′, but this time the axiom (COM) needs to be evoked.

• In the case, ψ′ = G ∧ · · · and ψ′′ = G′ ∧ · · · with ](G)× ](G′) ≥ 1, we get `Hc(3) ¬(G ∗ G′) by
the axiom (G∗22). By L0, `Hc(3) ψ

′ ∗ ψ′′ ⇒ G ∗ G′ and therefore by propositional reasoning,
we get `Hc(3) ¬(ψ′ ∗ ψ′′), which leads again to `Hc(3) ψ

′ ∗ ψ′′ ⇔⊥.

It remains to consider the cases when if ψ′ or ψ′′ is an elementary shape of the form either
G ∧ size ≥ β or G ∧ size ≥ β ∧ ¬size ≥ β′, then ](G) ≤ β, β < β′ and more generally not
`Hc(3) ¬ψ′ and not `Hc(3) ¬ψ′′. Similarly, we assume that ](G)× ](G′) = 0 where G (resp. G′) is
the graph formula of ψ′ (resp. ψ′′). These are exactly the conditions from Lemma 11 and therefore
we are done.

3.3.3 Putting all together: axiomatising MSL(∗,3)

Let HMSL(∗,3) be the Hilbert-style proof system defined as the union of the axioms and inference
rules from Hc(3) and Hc(∗) (with the intersection Hc) augmented with the axiom below, dealing
with standalone occurrences of propositional variables (i.e., occurrences that are not part of some
graph formula):

(G30) p⇔ (|p〉 ∨ |p] ∨ |p ) with p ∈ PROP.

Theorem 13 (Adequacy of HMSL(∗,3)). The axiom system HMSL(∗,3) is sound and complete
for MSL(∗,3).

Proof. The proof can be divided in three parts, with increasing difficulty.

1. To show that the axiom (G30) is valid for MSL(∗,3) (direct).

2. To show that all the axioms and inference rules of HMSL(∗,3) are valid for MSL(∗,3).

3. To show that for every valid formula φ, we have `HMSL(∗,3) φ.

The proof of (2.) is a consequence of (1.), Lemma 7 and Lemma 9. However, one needs to
notice that the validity of the axiom schemas and inference rules can be deduced from the proofs
of Lemma 7 and Lemma 9, even though in HMSL(∗,3), the metavariables φ, ψ and γ used in the
axioms and inference rules from Hc(3) and Hc(∗), can be safely instantiated by any formula in
MSL(∗,3).

The proof of (3.) consists in showing that there is a Boolean combination of core formulae ψ
such that `HMSL(∗,3) φ⇔ ψ (and therefore φ and ψ are logically equivalent by (2.)). For instance,

loop2 from Section 2 is logically equivalent to |>,> ∧ size ≥ 2 ∧ ¬size ≥ 3 and this can be
derived in HMSL(∗,3). So, ψ is a valid combination of core formulae and by Theorem 6, we
get `Hc ψ and therefore `HMSL(∗,3) ψ as HMSL(∗,3) obviously extends Hc. By propositional
reasoning, we can conclude that `HMSL(∗,3) φ. It remains to prove that ψ exists. The proof can
be done by induction on the structure of φ.

Base case φ = p. By the axiom (G30), we have `HMSL(∗,3) p⇔ (|p〉 ∨ |p] ∨ |p ).

Case φ = ¬φ1. By the induction hypothesis, there is a Boolean combination of core formulae ψ1

such that `HMSL(∗,3) φ1 ⇔ ψ1. By propositional reasoning, we conclude that `HMSL(∗,3)

¬φ1 ⇔ ¬ψ1.

Case φ = φ1 ∧ φ2. Similar to the previous case.
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Case φ = 3φ1. By the induction hypothesis, there is a Boolean combination of core formulae ψ1

such that `HMSL(∗,3) φ1 ⇔ ψ1. By propositional reasoning and using the Regularity rule
(twice), we conclude `HMSL(∗,3) 3φ1 ⇔ 3ψ1. By Lemma 8, there is a Boolean combination
of core formula ψ′1 such that `HMSL(∗,3) 3ψ1 ⇔ ψ′1. By propositional reasoning, we get that
`HMSL(∗,3) 3φ1 ⇔ ψ′1.

Case φ = φ1 ∗ φ2. By the induction hypothesis, there are Boolean combinations of core formulae
ψ1 and ψ2 such that `HMSL(∗,3) φ1 ⇔ ψ1 and `HMSL(∗,3) φ2 ⇔ ψ2. By propositional
reasoning, and by using the ∗-introduction rule (4 times) and the axiom (COM), we
conclude `HMSL(∗,3) φ1 ∗ φ2 ⇔ ψ1 ∗ ψ2. By Lemma 12, there is a Boolean combination of
core formula ψ′1 such that `HMSL(∗,3) ψ1 ∗ ψ2 ⇔ ψ′1. By propositional reasoning, we get that
`HMSL(∗,3) φ1 ∗ φ2 ⇔ ψ′1.

We conclude this section by showing that the logic MSL(∗,3) is not compact. As a consequence,
the proof system HMSL(∗,3) (and actually, any finite axiom system) is not strongly complete.
This means that every theorem in MSL(∗,3) can be derived in the system, but it is not always
possible to prove that a formula ϕ is derived from a set of formulae Φ, i.e., to prove Φ `HMSL(∗,3) ϕ.

Theorem 14. MSL(∗,3) is not compact; therefore, HMSL(∗,3) is not strongly complete for
MSL(∗,3).

Proof. Let X∞={size ≥ β | β ∈ N}. Notice that X∞ is unsatisfiable, since MSL models have
finite accessibility relations. Strong completeness would imply that ⊥ could be derived from X∞.
As all rules are finitary, then there is a finite subset X ⊆ X∞ such that X `HMSL(∗,3)⊥, or
equivalently `HMSL(∗,3)

∨
ψ∈X ¬ψ. This leads to a contradiction by the correctness of HMSL(∗,3).

The same argument can be used for other finitary proof systems, with the same set X∞.

4 Hilbert-style proof system for MSL(∗, 〈6=〉)
In this section, we present a proof system for the modal separation logic MSL(∗, 〈6=〉). In order to
do that, we will use previous developments from Sec. 3, as well as adapting to infinite models the
proof method in [50] for axiomatising the logic of elsewhere ML(〈6=〉). The NP upper bound proof
for MSL(∗, 〈6=〉) satisfiability in [24] takes advantage of an abstraction that considers the number of
edges in the model (up to a value depending linearly on the size of the input formula) and whether
given a propositional valuation (restricted to the propositional variables occurring in the input
formula), there are none, one or two locations satisfying it. The developments below propose a
syntactic characterisation for MSL(∗, 〈6=〉) validity. Such a characterisation also witnesses that the
interplay between the number of edges and the constraints on the propositional valuations is very
weak (see the axioms (〈6=〉SEP) and (∗SEP) below). It is worth noting that the logic MSL(∗, 〈6=〉)
might appear a bit more esoteric than MSL(∗,3) and we are not aware of a killer application of
the logic. However, the treatments below illustrate how our method can be further developped
(see also [27]), though we need to take advantage of a few specific features of MSL(∗, 〈6=〉).

Below, we introduce two families of formulae that will be used in the sequel. First, we introduce
the set of pure separation formulae MSL(∗), given by the following grammar:

φ ::= emp | φ ∧ φ | ¬φ | φ ∗ φ.

The set of pure modal formulae MSL(〈6=〉) is given by:

φ ::= p | φ ∧ φ | ¬φ | 〈6=〉φ | [6=]φ,

with p ∈ PROP.
We design the Hilbert-style proof system HMSL(∗, 〈6=〉) for MSL(∗, 〈6=〉) as the union of the

proof system HMSL(〈6=〉) for MSL(〈6=〉), the proof system HMSL(∗) for MSL(∗) (no propositional
variables and modalities), and new axioms (〈6=〉SEP) and (∗SEP). Hence, we propose below a
modular approach to design HMSL(∗, 〈6=〉) that takes advantage of more elementary building
blocks.
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4.1 Axiomatising ML(〈6=〉) on MSL models

We introduce the proof system HMSL(〈6=〉) for axiomatising the logic MSL(〈6=〉), that is designed
by augmenting the Hilbert-style system for the logic of elsewhere ML(〈6=〉) from [50] by an axiom
expressing that MSL(〈6=〉) models have an infinite number of locations (namely (INF)). For
instance, the formula 〈U〉(p ∧ [6=]¬p) ∧ 〈U〉(¬p ∧ [6=]p) is satisfiable in some ML(〈6=〉) model with
two locations exactly whereas it is unsatisfiable for MSL(〈6=〉). As usual, the axiom schemas and
modus ponens for propositional calculus are part of HMSL(〈6=〉).

Axioms and inference rule for HMSL(〈6=〉)

(K) [ 6=](φ⇒ ψ)⇒ ([ 6=]φ⇒ [ 6=]ψ)

(B) φ⇒ [ 6=]〈6=〉φ
(ALIO) φ⇒ ([6=]φ⇒ [ 6=][ 6=]φ)

Necessitation rule:
φ

[6=]φ

(INF)
∨
X⊆P 〈U〉(ψX ∧ 〈6=〉ψX) for every P ⊂fin PROP, where ψX stands for (

∧
p∈X p) ∧ (

∧
p∈(P\X) ¬p).

In HMSL(〈6=〉), the axiom (K) and the necessitation rule are standard for normal modal logics,
whereas the axiom (B) (resp. (ALIO)) takes care of the symmetry (resp. the aliotransitivity) of
the difference relation (see [50]). As the MSL(〈6=〉) models are necessarily infinite (by contrast to
the models for the logic of elsewhere), we add the axiom (INF). It states that for any finite set X
of propositional variables, there exist two distinct locations with the same valuation over X.

Lemma 15. The axioms and rules in HMSL(〈6=〉) are valid for MSL(〈6=〉).

An MSL(〈6=〉) model M = 〈N,R,V〉 can be understood as the ML(〈6=〉) model 〈N, 6=,V〉 since
the language MSL(〈6=〉) does not require to use of the relation R to evaluate formulae. So, in
the sequel, we assume that the models for ML(〈6=〉) are of the form 〈W, 6=,V〉, whereas those for
MSL(〈6=〉) are the restrictions with W = N.

Proof. All the axioms and rules in HMSL(〈6=〉) except (INF) are valid for the modal logic
ML(〈6=〉) [50]. As all the MSL(〈6=〉) models are ML(〈6=〉) models, we get also validity with respect
to MSL(〈6=〉). It remains to show that (INF) is valid for MSL(〈6=〉). Let M = 〈N, 6=,V〉 be a
model for MSL(〈6=〉) and l ∈ N. Given a finite set {p1, . . . , pn}, n ≥ 0, for each X ⊆ {p1, . . . , pn},
we write YX ⊆ N to denote the set below:

YX
def
= {l ∈ N | M, l |= (

∧
p∈X

p) ∧ (
∧

p∈({p1,...,pn}\X)

¬p)}.

Obviously, the set {YX | X ∈ P({p1, . . . , pn})} defines a finite partition of N (with at most 2n

elements) and therefore there is X0 such that YX0 is infinite. So, there are l1 6= l2 such that
l1, l2 ∈ YX0 . Consequently,

M, l |= 〈U〉(ψX0
∧ 〈6=〉ψX0

),

and therefore M, l |=
∨
X⊆{p1,...,pn}〈U〉(ψX ∧ 〈6=〉ψX).

Lemma 16. HMSL(〈6=〉) is sound and complete for MSL(〈6=〉).

The completeness of HMSL(〈6=〉) is shown by adapting the completeness proof from [50] and
by taking advantage of the infinity axiom (INF).

Proof. Let MC = 〈WC ,RC ,VC〉 be the canonical model for HMSL(〈6=〉), see details of the
construction in [8]. We recall that WC is the set of maximally consistent sets of formulae (based
on HMSL(〈6=〉)). By Lemma 15, ∅ is consistent and by Lindenbaum’s Lemma, there is at least one
maximally consistent set, whence WC is non-empty. For all w,w′ ∈WC , we have wRCw

′ iff for
all [6=]φ ∈ w, we have φ ∈ w′. Furthermore, by definition, w ∈ V(p) iff p ∈ w, for all w ∈WC and
propositional variables p. As shown in [50], RC is symmetric and aliotransitive, but not necessarily
equal to the difference relation on WC .
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Let φ be a valid formula and ad absurdum, suppose that not `HMSL(〈6=〉) φ. Without loss
of generality, we can assume that φ contains at least one propositional variable, as φ is valid
iff φ ∧ p ⇔ p is valid, and `HMSL(〈6=〉) φ iff `HMSL(〈6=〉) φ ∧ p ⇔ p (by propositional reasoning).

Consequently, {¬φ} is consistent and therefore there is w† ∈WC such that ¬φ ∈ w†. By the Truth
Lemma, MC , w

† |= ¬φ but MC is not an ML(〈6=〉) model, and a fortiori, MC is not an MSL(〈6=〉)
model. Therefore, some more work is needed to lead to a contradiction.

Furthermore, as shown in [50], let us consider M = 〈W,R,V〉 such that W = {w′ ∈ WC |
(w†, w′) ∈ R∗C} and, R and V are the restriction of RC and VC to W respectively (R∗C is the
reflexive and transitive closure of RC). Consequently, M, w† |= ¬φ as M is the generated submodel
from w†.

Let M† = 〈W†,R†,V†〉 be the model such that

• W†
def
= {(w, 0) | (w,w) 6∈ R, w ∈W} ∪ {(w, 1), (w, 2) | (w,w) ∈ R, w ∈W}.

• (w, i)R†(w′, j)
def⇔ either w 6= w′ and wRw′, or w = w′ and i 6= j.

• (w, i) ∈ V†(p) iff w ∈ V(p).

It is shown in [50] that R† is the difference relation on W† and there is a p-morphism from
M† = 〈W†,R†,V†〉 to M = 〈W,R,V〉. Hence, M†, (w†, i†) |= ¬φ for some i† ∈ {0, 1, 2} as
p-morphic images preserve the satisfaction of formulae. We shall use this property even further.
Let {p1, . . . , pn} (n ≥ 1) be the set of propositional variables occurring in φ. By the axiom
(INF), we get `HMSL(〈6=〉)

∨
X⊆{p1,...,pn}〈U〉(ψX ∧ 〈6=〉ψX) and as w† is a maximally consistent

set, we have
∨
X⊆{p1,...,pn}〈U〉(ψX ∧ 〈6=〉ψX) ∈ w†. Again, as w† is maximally consistent, there

is X ⊆ {p1, . . . , pn} such that 〈U〉(ψX ∧ 〈6=〉ψX) ∈ w†. Indeed, every maximally consistent set
contains all the theorems of HMSL(〈6=〉) and a disjunction belongs to such a set iff one of its
disjuncts belongs to it. By the Truth Lemma, we get MC , w

† |= 〈U〉(ψX ∧ 〈6=〉ψX), and therefore
M, w† |= 〈U〉(ψX ∧ 〈6=〉ψX) and M†, (w†, i†) |= 〈U〉(ψX ∧ 〈6=〉ψX). In conclusion, M†, (w†, i†) |= ψ

with ψ
def
= ¬φ ∧ 〈U〉(ψX ∧ 〈6=〉ψX). So, ¬φ ∧ 〈U〉(ψX ∧ 〈6=〉ψX) is ML(〈6=〉) satisfiable and by [22,

Proposition 2], there is α ≤ 2|ψ|+1 such that M′ = 〈[0, α], 6=,V′〉 and M′, 0 |= ¬φ∧〈U〉(ψX∧〈6=〉ψX).
There are i 6= j ∈ [0, α] such that M′, i |= ψX and M′, j |= ψX .

Let M′′ = 〈N, 6=,V′′〉 be the MSL(〈6=〉) model, such that

• The restriction of V′′ to [0, α] is equal to V′.

• For all β > α and pI with I ∈ [1, n], we have β ∈ V′′(pI) iff pI ∈ X.

One can show that M′′, 0 |= ¬φ and therefore this leads to a contradiction by the validity of φ. In
order to get M′′, 0 |= ¬φ, it is sufficient to show by structural induction, that for all subformulae ψ
of ¬φ, for all β ∈ [0, α], we have M′, β |= ψ iff M′′, β |= ψ.

First, let us show that (†) for all distinct l, l′ that agree on their valuation on {p1, . . . , pn} in
M′′, we have for all formulae ψ built over {p1, . . . , pn}, M′′, l |= ψ iff M′′, l′ |= ψ. The base case
with ψ ∈ {p1, . . . , pn} or the cases in the induction step for ∧ and ¬ are by an easy verification.
Now suppose that M′′, l |= 〈6=〉ψ. There is l′′ 6= l such that M′′, l′′ |= ψ. If l′′ 6= l′ too, then
obviously there is also l′′ 6= l′ such that M′′, l′′ |= ψ and therefore M′′, l′ |= 〈6=〉ψ. Otherwise (i.e.
l′′ = l′), by the induction hypothesis, we also have M′′, l |= ψ and therefore there is l′′ 6= l′ such
that M′′, l′′ |= ψ, namely l′′ = l, whence M′′, l′ |= 〈6=〉ψ.

Now, let us establish that for all subformulae ψ of ¬φ, for all β ∈ [0, α], we have M′, β |= ψ iff
M′′, β |= ψ. The base case with ψ ∈ {p1, . . . , pn} or the cases in the induction step for ∧ and ¬
are again by an easy verification.

First, let us suppose that M′, β |= 〈6=〉ψ. There is β′ 6= β such that M′, β′ |= ψ. By the
induction hypothesis, we have M′′, β′ |= ψ and therefore M′′, β |= 〈6=〉ψ. Conversely, suppose
that M′′, β |= 〈6=〉ψ. There is β′ 6= β such that M′′, β′ |= ψ. If β′ ∈ [0, α], then by the induction
hypothesis we have M′, β′ |= ψ and therefore M′, β |= 〈6=〉ψ. Otherwise (i.e. β′ > α), in M′′, β′,
i, and j agree on the propositional variables in {p1, . . . , pn}. Moreover, either β 6= i or β 6= j.
Without lack of generality, suppose that β 6= i. Consequently, by (†), we have M′′, i |= ψ. By the
induction hypothesis, we have M′, i |= ψ and therefore M′, β |= 〈6=〉ψ.
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4.2 Axiomatising MSL(∗)
Now we present the Hilbert-style system HMSL(∗) for the logic MSL(∗). It is designed as a
fragment of the Hilbert-style system HMSL(∗,3) from Sec. 3 by simplifying the axioms and by
keeping only what is needed for MSL(∗).

Axioms and inference rules for HMSL(∗)

(⊥) ¬(⊥∗φ)
(COM) (φ ∗ ψ)⇔ (ψ ∗ φ)
(∗DISTR) (φ1 ∨ φ2) ∗ ψ ⇔ (φ1 ∗ ψ) ∨ (φ2 ∗ ψ)
(ASSOC) (φ ∗ ψ) ∗ γ ⇔ φ ∗ (ψ ∗ γ)
(S∗4) φ⇔ (φ ∗ ¬size ≥ 1)
(S∗5) size ≥ β1+β2 ⇒ size = β1 ∗ size ≥ β2

(Sc1) size ≥ 0
(Sc2) size ≥ β+1⇒ size ≥ β

∗-introduction rule:
φ⇒ γ

φ ∗ ψ ⇒ γ ∗ ψ

(S∗6) ¬size ≥ β1 ∗ ¬size ≥ β2 ⇒ ¬size ≥ (β1+β2)
.−1 (α1

.−α2
def
= max(0, α1−α2))

As MSL(∗) is a fragment of both MSL(∗,3) and MSL(∗, 〈6=〉), it should not come as a surprise
that all the axioms above were already introduced in Sec. 3.3. Before proving completeness, we
establish a few results about HMSL(∗) that can be shown along the lines of Sec. 3.3 but drastic
simplifications apply.

Lemma 17 (Correctness of MSL(∗)). The axioms and rules in HMSL(∗) are valid for MSL(∗).

This is a consequence of the correctness for HMSL(∗,3) (see Sec. 3), as derivability in HMSL(∗)
implies derivability in HMSL(∗,3).

Lemma 18. Let φ be a size formula.

(I) There is a size formula φ′ in conjunctive normal form (CNF) where the literals are size literals,
such that `HMSL(∗) φ⇔ φ′ and each conjunct of φ′ contains at most two size literals, and
they are of distinct polarity.

(II) There is a size formula φ′ in disjunctive normal form (DNF) where the literals are size literals,
such that `HMSL(∗) φ ⇔ φ′ and each disjunct of φ′ contains at most two size literals, and
they are of distinct polarity.

Proof. Let φ be a size formula. We prove (I), the proof for (II) being analogous. By propositional
reasoning in HMSL(∗), there is φ′ in conjunctive normal form (CNF) such that `HMSL(∗) φ⇔ φ′

and φ′ is a conjunction of disjunctions of size literals. Suppose that a conjunct of φ′ does not
satisfy the constraint on the number of size literals or on the polarity.

• Suppose there is a finite set I ⊆ N such that card(I) ≥ 2 and
∨
β∈I(size ≥ β) is a conjunct

of φ′. Let βmin = min(I). The case when some literal size ≥ β occurs more than twice
can be treated by removing the additional occurrences by using propositional reasoning. By
using the axiom (Sc2) and propositional reasoning, one can show that `HMSL(∗)

∨
β∈I(size ≥

β) ⇔ size ≥ βmin and therefore,
∨
β∈I(size ≥ β) can be replaced by size ≥ βmin in φ′

while preserving `HMSL(∗) φ⇔ φ′.

• Suppose there is a finite set I ⊆ N such that card(I) ≥ 2 and
∨
β∈I ¬(size ≥ β) is a conjunct

of φ′. Let βmax = max(I). By using the axiom (Sc2) and propositional reasoning, one can
show that `HMSL(∗)

∨
β∈I ¬(size ≥ β)⇔ ¬(size ≥ βmax) and therefore,

∨
β∈I ¬(size ≥ β)

can be replaced by ¬(size ≥ βmax) in φ′ while preserving `HMSL(∗) φ⇔ φ′.

• Finally, suppose there are finite sets I, I ′ ⊆ N such that card(I) × card(I ′) > 1, ψ =∨
β∈I(size ≥ β) ∨

∨
β∈I′ ¬(size ≥ β) is a conjunct of φ′. Let βmin = min(I) and βmax =

max(I ′). By using the axiom (Sc2) and propositional reasoning, one can show that

`HMSL(∗) ψ ⇔ size ≥ βmin ∨ ¬(size ≥ βmax),

and therefore, ψ can be replaced by size ≥ βmin ∨ ¬(size ≥ βmax).
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Consequently, there is a size formula φ′ in CNF when the literals are size literals, such that
`HMSL(∗) φ⇔ φ′ and each conjunct of φ′ contains at most two size literals, and there are of distinct
polarity.

Lemma 19. Given φ in MSL(∗), H̀MSL(∗)φ⇔ψ for some size formula ψ.

Proof. The essential ingredient of the proof is to show that given two size formulae φ0, φ1, there
is a size formula ψ such that `HMSL(∗) (φ0 ∗ φ1)⇔ ψ. Then, using Lemma 21 for HMSL(∗) (by
using the ∗-introduction rule) and applying recursively this transformation leads to the desired
property. For the base cases, we take advantage of the fact that `HMSL(∗) emp⇔ ¬(size ≥ 1) and
`HMSL(∗) > ⇔ size ≥ 0 (actually size ≥ 0 is equal to > by definition).

By Lemma 18(II), there are size formulae φ′0 and φ′1 in DNF when the literals are size literals,
such that for each i ∈ {0, 1}, `HMSL(∗) φi ⇔ φ′i and each disjunct of φ′i contains at most two size

literals, and they are of distinct polarity. Say, φ′0 = ψ1
0 ∨ · · · ∨ ψ

N0
0 and φ′1 = ψ1

1 ∨ · · · ∨ ψ
N1
1 . By

propositional reasoning and by using the axiom (∗DISTR), we can show that

`HMSL(∗) φ⇔
∨

i∈[1,N0],j∈[1,N1]

ψi0 ∗ ψ
j
1.

In the case ψi0 = size ≥ β ∧ ¬(size ≥ β′) with β′ ≤ β, then `HMSL(∗) ¬(ψi0 ∗ ψ
j
1) by the

axiom (⊥). Indeed, `Hc
¬ψi0 by completeness of Hc and therefore `HMSL(∗) ψ

i
0 ⇔⊥. Similarly,

if ψi0 = ¬(size ≥ 1), then `HMSL(∗) (ψi0 ∗ ψ
j
1)⇔ ψj1 by using the axiom (S∗4). As size ≥ 0 = >,

without loss of generality, we can assume that the ψi0’s and the ψj1’s always contain a positive
size literal (see the axiom (Sc1) and the adequate variant of Lemma 21). Consequently, by using
the axiom (S∗5), L1 and L4 (see Lemma 10), `HMSL(∗) ψ

i
0 ∗ ψ

j
1 ⇔ ψi,j for some size formula

ψi,j . Notice that, indeed, L1 and L4 are provable in HMSL(∗) (see the proof of Lemma 10,
where only the axioms from this system are used for their proofs). The use of these axioms and
lemmata may require first the use of the axiom (COM). Hence, there is a size formula ψ such
that `HMSL(∗) (φ0 ∗ φ1)⇔ ψ.

Proving completeness is now by an easy verification.

Lemma 20. HMSL(∗) is sound and complete for MSL(∗).

Proof. (sketch) Soundness is from Lemma 17. It remains to establish completeness. Let φ be a
formula that is valid for MSL(∗). First, notice that the following property holds: if H̀MSL(∗) φ⇔ φ′,
then H̀MSL(∗) ψ[φ]ρ ⇔ ψ[φ′]ρ, where the formula ψ[φ]ρ stands for the formula obtained from ψ by
replacing the formula at the occurrence ρ by the formula φ.

By Lemma 19, it is easy to show that there is a size formula φ′ in CNF such that H̀MSL(∗) φ⇔ φ′

in HMSL(∗) and each conjunct of φ′ contains at most 2 size literals, and they are of distinct polarity.
By the validity of the axioms and inference rules (Lemma 17), φ′ is also MSL(∗) valid and therefore
each conjunct is valid. If a conjunct is of the form size ≥ β, then β = 0 as size ≥ β should be
valid. As size ≥ 0 = >, we have `HMSL(∗) size ≥ 0. No conjunct can be of the form ¬(size ≥ β)
as no formula of the form ¬(size ≥ β) is valid. If a conjunct is of the form size ≥ β∨¬(size ≥ β′),
then β′ ≥ β as size ≥ β ∨ ¬(size ≥ β′) is required to be valid. By propositional reasoning and
by using (β′ − β) times the axiom (Sc2), we can conclude that `HMSL(∗) (size ≥ β′)⇒ (size ≥ β)
and therefore `HMSL(∗) size ≥ β ∨ ¬(size ≥ β′) by propositional reasoning. Hence, `HMSL(∗) φ

′,
and since `HMSL(∗) φ⇔ φ′, by propositional reasoning, we also get `HMSL(∗) φ.

4.3 Putting all together: axiomatising MSL(∗, 〈6=〉)
It is now time to define the Hilbert-style proof system HMSL(∗, 〈6=〉) obtained from the calculus
containing the axioms and rules from HMSL(∗) and HMSL(〈6=〉). However, we need to introduce
two more axioms, stating that pure separation formulae can be separated from pure modal formulae.
Notice that this property has some similarities with the separation theorem for Past LTL from [34].
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Separation axioms

(〈6=〉SEP) 〈6=〉(φ ∧ ψ)⇔ (〈6=〉φ) ∧ ψ where ψ is a pure separation formula

(∗SEP) φ ∗ (φ′ ∧ ψ)⇔ (φ ∗ φ′) ∧ ψ where ψ is a pure modal formula

First, we establish a preliminary result useful in the forthcoming proofs but of rather standard
nature. The formula ψ[φ]ρ below stands for the formula obtained from ψ by replacing the formula
at the occurrence ρ by the formula φ.

Lemma 21 (Replacement of equivalent formulae). Let φ, φ′, ψ be formulae in MSL(∗, 〈6=〉) such
that `HMSL(∗,〈6=〉) φ⇔ φ′. Then `HMSL(∗,〈6=〉) ψ[φ]ρ ⇔ ψ[φ′]ρ.

Proof. The following rules can be shown admissible in HMSL(∗, 〈6=〉):
φ⇔ φ′

¬φ⇔ ¬φ′
φ⇔ φ′

φ ∨ ψ ⇔ φ′ ∨ ψ
φ⇔ φ′

φ ∧ ψ ⇔ φ′ ∧ ψ
Admissibility of such rules is the direct consequence of the axioms and the modus ponens rule for
the propositional calculus. Thanks to ∗-introduction rule, the rule below is also admissible:

φ⇔ φ′

φ ∗ ψ ⇔ φ′ ∗ ψ
Finally, the rule below is admissible by using the axiom (K) and the necessitation rule:

φ⇔ φ′

[ 6=]φ⇔ [ 6=]φ′

Consequently, by structural induction on ψ, one can conclude that `HMSL(∗,〈6=〉) φ⇔ φ′ implies
`HMSL(∗,〈6=〉) ψ[φ]ρ ⇔ ψ[φ′]ρ.

Lemma 22. The axioms and rules in HMSL(∗, 〈6=〉) are valid for MSL(∗, 〈6=〉).

Proof. Correctness of the axioms and rules from HMSL(∗) and HMSL(〈6=〉) can be established
along the lines of the proofs for Lemma 15 and Lemma 20. It remains to show the validity of the
axioms (〈6=〉SEP) and (∗SEP).

(〈6=〉SEP) Let M = 〈N,R,V〉 and l ∈ N be such that M, l |= 〈6=〉(φ ∧ ψ). There is l′ 6= l such
that M, l′ |= φ∧ψ. As ψ is a pure separation formula, the evaluation of ψ on M, l′ does not require
the use of l′ (and V) and therefore M, l |= ψ too. Consequently, M, l |= (〈6=〉φ) ∧ ψ. Conversely,
suppose that M, l |= (〈6=〉φ) ∧ ψ. There is l′ 6= l such that M, l′ |= φ. As ψ is a pure separation
formula, the evaluation of ψ on M, l does not require the use of l and therefore M, l′ |= ψ too.
Consequently, M, l |= 〈6=〉(φ ∧ ψ).

(∗SEP) Let M = 〈N,R,V〉 and l ∈ N be such that M, l |= φ ∗ (φ′ ∧ ψ). There are R1,R2 such
that R = R1 ]R2, 〈N,R1,V〉, l |= φ and 〈N,R2,V〉, l |= φ′ ∧ ψ. As ψ is a pure modal formula
(with unique modality 〈6=〉), the evaluation of ψ on 〈N,R2,V〉, l does not require the use of R2 and
therefore M, l |= ψ. Consequently, M, l |= (φ ∗φ′)∧ψ. Conversely, suppose that M, l |= (φ ∗φ′)∧ψ.
There are R1,R2 such that R = R1 ]R2, 〈N,R1,V〉, l |= φ and 〈N,R2,V〉, l |= φ′. As ψ is a pure
modal formula, the evaluation of ψ on 〈N,R,V〉, l does not require the use of R and therefore
〈N,R2,V〉, l |= ψ. Consequently, M, l |= φ ∗ (φ′ ∧ ψ).

Completeness of HMSL(∗, 〈6=〉) takes advantage of the respective completeness of HMSL(〈6=〉)
and HMSL(∗), and the fact that for all pure modal (resp. separation) formulae φM (resp. φS),
φM ∨ φS is valid iff φM is valid or φS is valid.

Theorem 23 (Adequacy of HMSL(∗, 〈6=〉)). The axiom system HMSL(∗, 〈6=〉) is sound and
complete for MSL(∗, 〈6=〉).

Proof. Soundness is from Lemma 22. It remains to establish completeness. Let φ be a formula
that is valid for MSL(∗, 〈6=〉).

By using the axioms (〈6=〉SEP) and (∗SEP), there is a formula φ′ such that `HMSL(∗,〈6=〉) φ⇔
φ′ and φ′ belongs to Bool(MSL(∗) ∪MSL(〈6=〉)), the set of Boolean combinations of formulae from
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MSL(∗) ∪MSL(〈6=〉). Here, we use intensively Lemma 21 and the fact that each “application” of
(〈6=〉SEP) or (∗SEP) strictly decreases the number of alternations between the modal language
and the separation language. The core argument relies on the two following simpler properties.

1. For every formula ψ ∈ Bool(MSL(∗) ∪MSL(〈6=〉)), there is a formula ψ′ ∈ Bool(MSL(∗) ∪
MSL(〈6=〉)) such that `HMSL(∗,〈6=〉) 〈6=〉ψ ⇔ ψ′.

2. For all formulae ψ0, ψ1 ∈ Bool(MSL(∗) ∪MSL(〈6=〉)), there is a formula ψ′ ∈ Bool(MSL(∗) ∪
MSL(〈6=〉)) such that `HMSL(∗,〈6=〉) (ψ0 ∗ ψ1)⇔ ψ′.

Let us start by showing (1.). By propositional reasoning in HMSL(∗, 〈6=〉), there is γ in disjunctive
normal form (DNF) such that `HMSL(∗,〈6=〉) ψ ⇔ γ and γ is a disjunction of conjunctions of the form
φM ∧φS where φM is a pure modal formula and φS is a pure separation formula. By Lemma 21, we
have `HMSL(∗,〈6=〉) 〈6=〉ψ ⇔ 〈6=〉γ. As the disjunction distributes over 〈6=〉 (HMSL(∗, 〈6=〉) inherits
this property from HMSL(〈6=〉)), we get that

`HMSL(∗,〈6=〉) 〈6=〉ψ ⇔
∨

φM∧φS

〈6=〉(φM ∧ φS).

By application of (〈6=〉SEP) and by Lemma 21, we get that

`HMSL(∗,〈6=〉) 〈6=〉ψ ⇔
∨

φM∧φS

(〈6=〉φM ) ∧ φS ,

and therefore there is ψ′ ∈ Bool(MSL(∗) ∪MSL(〈6=〉)) such that `HMSL(∗,〈6=〉) 〈6=〉ψ ⇔ ψ′. Now
let us show (2.). By propositional reasoning in HMSL(∗, 〈6=〉), for each i ∈ {0, 1}, there is γi
in disjunctive normal form (DNF) such that `HMSL(∗,〈6=〉) ψi ⇔ γi and γi is a disjunction of
conjunctions of the form φM ∧ φS where φM is a pure modal formula and φS is a pure separation
formula. By Lemma 21, we have `HMSL(∗,〈6=〉) ψ0 ∗ ψ1 ⇔ γ0 ∗ γ1. As the disjunction distributes
over ∗ (HMSL(∗, 〈6=〉) inherits this property from HMSL(∗)), we get that

`HMSL(∗,〈6=〉) ψ0 ∗ ψ1 ⇔
∨

φM∧φS ,φ′
M∧φ′

S

(φM ∧ φS) ∗ (φ′M ∧ φ′S).

By two applications of (∗SEP) per disjunct and by Lemma 21, we get that

`HMSL(∗,〈6=〉) 〈6=〉ψ ⇔
∨

φM∧φS ,φ′
M∧φ′

S

(φS ∗ φ′S) ∧ φM ∧ φ′M ,

and therefore there is ψ′ ∈ Bool(MSL(∗) ∪MSL(〈6=〉)) such that `HMSL(∗,〈6=〉) (ψ0 ∗ ψ1)⇔ ψ′.
So, (1.) and (2.) hold true and now let us briefly explain why for every MSL(∗, 〈6=〉) formula φ,

there is a formula φ′ such that `HMSL(∗,〈6=〉) φ⇔ φ′ and φ′ belongs to Bool(MSL(∗) ∪MSL(〈6=〉)).
Given ψ in MSL(∗, 〈6=〉), let c(ψ) be the number of subformulae of ψ that do not belong to
Bool(MSL(∗) ∪MSL(〈6=〉)). Note that when ψ is in Bool(MSL(∗) ∪MSL(〈6=〉)), we have c(ψ) = 0.
Suppose that φ does not belong to Bool(MSL(∗)∪MSL(〈6=〉)). So, there is a subformula 〈6=〉ψ of φ
with ψ ∈ Bool(MSL(∗)∪MSL(〈6=〉)) or there is a subformula ψ0 ∗ψ1 with ψ0, ψ1 ∈ Bool(MSL(∗)∪
MSL(〈6=〉)). Let us treat the first case (the second one being similar). By (1.), there is a formula
ψ′ ∈ Bool(MSL(∗) ∪MSL(〈6=〉)) such that `HMSL(∗,〈6=〉) 〈6=〉ψ ⇔ ψ′. Consequently, by Lemma 21,
`HMSL(∗,〈6=〉) φ⇔ φ[〈6=〉ψ ← ψ′] where φ[〈6=〉ψ ← ψ′] is equal to φ in which all the occurrences of
〈6=〉ψ are replaced by ψ′. Note that c(φ) > c(φ[〈6=〉ψ ← ψ′]). It is here important to replace all the
occurrences of 〈6=〉ψ to have a strict decrease of c. By repeating this process a finite amout of times,
there is a formula φ′ such that `HMSL(∗,〈6=〉) φ⇔ φ′ and φ′ belongs to Bool(MSL(∗) ∪MSL(〈6=〉)).

By the validity of the axioms and inference rules (Lemma 22), we have that φ′ is MSL(∗, 〈6=〉)
valid too. By propositional reasoning in HMSL(∗, 〈6=〉), there is φ′′ in conjunctive normal form
(CNF) such that `HMSL(∗,〈6=〉) φ

′ ⇔ φ′′ and φ′′ is a conjunction of disjunctions of the form φM ∨φS
where φM is a pure modal formula and φS is a pure separation formula. Again, by the validity of
the axioms and inference rules, each disjunction φM ∨ φS is valid in MSL(∗, 〈6=〉).

One can easily show that φM ∨ φS is valid if and only if either φM is valid for MSL(〈6=〉) or φS
is valid for MSL(∗). The right-to-left direction is obvious. For the other direction, suppose that
neither φM nor φS is valid.

29



• There exist a model MM = 〈N,RM ,VM 〉 and lM ∈ N such that MM , lM 6|= φM . As the
evaluation of φM on M, does not require the use of RM , for all finite and (weakly) functional
R′, we have 〈N,R′,VM 〉, lM 6|= φM .

• There exist a model MS = 〈N,RS ,VS〉 and lS ∈ N such that M, lS 6|= φS . As the evaluation
of φS on MS , does not require the use of VS and lS , for all valuations VS and locations l′,
we have 〈N,RS ,V

′〉, l′ 6|= φS .

Consequently, 〈N,RS ,VM 〉, lM |= ¬φM ∧ ¬φS and therefore φM ∨ φS is not valid. So φM ∨ φS is
valid implies φM is valid or φS is valid.

By completeness of HMSL(〈6=〉) and HMSL(∗), we get that φM ∨ φS is valid in MSL(∗, 〈6=〉)
iff either `HMSL(〈6=〉) φM or `HMSL(∗) φS . As the rule

γ
γ ∨ γ′

is admissible thanks to the axiom schemas from propositional calculus and to the modus ponens rule,
we get that `HMSL(〈6=〉) φM implies `HMSL(∗,〈6=〉) φM ∨ φS and `HMSL(∗) φS implies `HMSL(∗,〈6=〉)
φM ∨ φS . As φM ∨ φS is valid, we conclude that `HMSL(∗,〈6=〉) φM ∨ φS . Consequently, for each
disjunct φM ∨φS of φ′′, we have `HMSL(∗,〈6=〉) φM ∨φS and therefore by propositional reasoning, we
get that `HMSL(∗,〈6=〉) φ

′′ in HMSL(∗, 〈6=〉). As `HMSL(∗,〈6=〉) φ⇔ φ′ and `HMSL(∗,〈6=〉) φ
′ ⇔ φ′′, by

propositional reasoning, we get that `HMSL(∗,〈6=〉) φ and therefore HMSL(∗, 〈6=〉) is complete.

By using the same argument as in Thm. 14 we can show the following.

Corollary 24. MSL(∗, 〈6=〉) is not compact; therefore, HMSL(∗, 〈6=〉) is not strongly complete.

5 Concluding remarks

We provided a Hilbert-style axiomatisation for the modal separation logics MSL(∗,3) and
MSL(∗, 〈6=〉), despite the well-known difficulties to axiomatise logics equipped with operators
that update the models in the evaluation process. Such operators are ubiquitous in theoretical
computer science and in knowledge representation areas, and we hope that our calculi shed some new
light on their expressive power. For the axiomatisation of MSL(∗,3), we had to identify the core
properties that can be expressed in the logic, partially following the semantical analysis from [24].
We also had to express them in the language with the so-called core formulae. Implicitly, the
axiomatisation is divided into two parts: axioms and rules to transform any formula of MSL(∗,3)
into a Boolean combination of core formulae and the axiomatisation of these Boolean combinations.
For the axiomatisation of MSL(∗, 〈6=〉), we use a similar approach, except that we had to adapt the
axiomatisation of the logic of elsewhere from [50] to infinite models and to implement syntactically
a separation principle satisfied by the logic MSL(∗, 〈6=〉). It is worth noting that the completeness
of HMSL(∗,3) and HMSL(∗, 〈6=〉) does not imply their strong completeness, as MSL(∗) is not
compact. Moreover, the same argument can be used for other finitary proof systems.

As part of future work, we aim at Hilbert-style axiomatisations for separation logics having a
notion of core formulae (see e.g. [32, 26]), or for very expressive modal separation logics such as
MSL(∗, 〈6=〉,3), or MSL(∗,3) over different class of Kripke models such as tree-models.

Additionally, the expressivity characterisation provided by core formulae appears to be handy
not only as the basic ingredient for the axiomatisations, but also for studying other problems,
such as the implementation of proof methods, or the analysis of meta-theoretical properties of
the logics. Finally, the design of proof systems better suited to automated reasoning remains
open as well as the design of real-life applications taking advantage of MSL(∗,3) or MSL(∗, 〈6=〉).
Similarly, it would be interesting to investigate how to use the insights provided by the Hilbert-style
axiomatisations introduced in this paper to design sequent-style proof systems, aiming for good
computational properties.
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[36] D. Galmiche, D. Méry, and D. Pym. The semantics of BI and resource tableaux. Mathematical
Structures in Computer Science, 15(6):1033–1088, 2005.

[37] N. Gierasimczuk, L. Kurzen, and F.R. Velázquez-Quesada. Learning and teaching as a game:
A sabotage approach. In LORI’09, volume 5834 of LNCS, pages 119–132. Springer, 2009.

32



[38] A. Herzig. A simple separation logic. In WoLLIC’13, volume 8071 of LNCS, pages 168–178.
Springer, 2013.

[39] C.A.R. Hoare. An axiomatic basis for computer programming. Communications of the ACM,
12(10):576–580, 1969.
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Appendix: Two proofs with a strong syntactic flavour

In this appendix we show the derivations in Hc(∗) of the formulae appearing in Lemmata 10 and 11.
In order to help the readability of these lengthy derivations, we introduce the following notation. A
line “j | γ A, i1, . . . , ik” states that γ is a theorem of Hc(∗) denoted by the index j and derivable
by the axiom or the rule A. If A is a rule, the indices i1, . . . , ik < j denote the theorems used as
premises in order to derive γ. Some easy steps are omitted to shorten the presentation, as for
example proofs of the following well-known tautologies and rules of propositional calculus:

(∧E) φ ∧ ψ ⇒ φ

(∧D) φ⇒ φ ∧ φ

(>I) φ⇔ φ ∧ >

(>S) > ⇔ φ ∨ ¬φ

(⊥I) ⊥⇒ φ

(∧C) φ ∧ ψ ⇒ ψ ∧ φ

(∧∨) φ ∧ (ψ ∨ γ)⇒
(φ ∧ ψ) ∨ (φ ∧ γ)

(¬I)
φ⇔ φ′

¬φ⇔ ¬φ′

(∧I)
ψ ⇒ γ

φ ∧ ψ ⇒ φ ∧ γ

(∧I2)
ψ ⇔ γ

φ ∧ ψ ⇔ φ ∧ γ

(⇒T)
φ⇒ ψ ψ ⇒ γ

φ⇒ γ

(⇔T)
φ⇔ ψ ψ ⇔ γ

φ⇔ γ

(∨L)
φ⇒ γ ψ ⇒ γ
φ ∨ ψ ⇒ γ

(∧R)
φ⇒ ψ φ⇒ γ
φ⇒ ψ ∧ γ

Proof of Lemma 10

Proof of R0. As a consequence of the ∗-introduction rule, the rule below is also admissible:

(⇔∗Intro)
φ⇔ γ

φ ∗ ψ ⇔ γ ∗ ψ
With this rule, together with (¬I), (∧I2) and (COM), one can conclude that `Hc(∗) φ⇔ φ′

implies `Hc(∗) ψ[φ]ρ ⇔ ψ[φ′]ρ by structural induction on ψ.

Proof of L0.

1 φ ∧ φ′ ⇒ φ (∧E)

2 (φ ∧ φ′) ∗ (ψ ∧ ψ′)⇒ φ ∗ (ψ ∧ ψ′) ∗-introduction rule, 1

3 φ ∗ (ψ ∧ ψ′)⇒ (ψ ∧ ψ′) ∗ φ (COM)

4 (φ ∧ φ′) ∗ (ψ ∧ ψ′)⇒ (ψ ∧ ψ′) ∗ φ (⇒T), 2, 3

5 ψ ∧ ψ′ ⇒ ψ (∧E)

6 (ψ ∧ ψ′) ∗ φ⇒ ψ ∗ φ ∗-introduction rule, 5

7 (φ ∧ φ′) ∗ (ψ ∧ ψ′)⇒ ψ ∗ φ (⇒T), 4, 6

8 ψ ∗ φ⇒ φ ∗ ψ (COM)

9 (φ ∧ φ′) ∗ (ψ ∧ ψ′)⇒ φ ∗ ψ (⇒T), 7, 8

Proof of L1. If both β1 and β2 are at least 1, then L1 is trivially proved by definition of size ≥ β
together with the axiom (ASSOC). Recall that size ≥ 0 = >, size ≥ 1 = ¬emp and

size ≥ β + 1
def
= ¬emp ∗ size ≥ β for β ≥ 1. Then, whenever β1, β2 ≥ 1, the formula

size ≥ β1 ∗ size ≥ β2 is provably equivalent to

(¬emp ∗...∗ (¬emp ∗ ¬emp))︸ ︷︷ ︸
β1 occurrences of ¬emp

∗ (¬emp ∗...∗ (¬emp ∗ ¬emp))︸ ︷︷ ︸
β2 occurrences of ¬emp

which by the axioms (ASSOC) and (COM), is provably equivalent to

¬emp ∗...∗ (¬emp ∗ ¬emp)︸ ︷︷ ︸
β1+β2 occurrences of ¬emp

which is the definition of size ≥ β1 + β2.

Suppose now β1 or β2 to be 0. We divide the proof in three cases.
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1. β1 = 0, β2 ≥ 1. We first show that size ≥ 0 ∗ size ≥ β2 ⇒ size ≥ β2.

1 size ≥ 0⇔ (size ≥ 1 ∨ ¬size ≥ 1) (>S)

2 size ≥ 0 ∗ size ≥ β2 ⇔

(size ≥ 1 ∨ ¬size ≥ 1) ∗ size ≥ β2 (⇔∗Intro), 1

3 (size ≥ 1 ∨ ¬size ≥ 1) ∗ size ≥ β2 ⇔

(size ≥ 1 ∗ size ≥ β2) ∨ (¬size ≥ 1 ∗ size ≥ β2) (∗DISTR)

4 size ≥ 0 ∗ size ≥ β2 ⇒

(size ≥ 1 ∗ size ≥ β2) ∨ (¬size ≥ 1 ∗ size ≥ β2) (⇒T), 2, 3

5 size ≥ 1 ∗ size ≥ β2 ⇒ size ≥ β2 + 1 L1, case β1, β2 ≥ 1

6 size ≥ β2 + 1⇒ size ≥ β2 (Sc2)

7 size ≥ 1 ∗ size ≥ β2 ⇒ size ≥ β2 (⇒T), 5, 6

8 ¬size ≥ 1 ∗ size ≥ β2 ⇔ size ≥ β2 ∗ ¬size ≥ 1 (COM)

9 size ≥ β2 ∗ ¬size ≥ 1⇔ size ≥ β2 (S∗4)

10 ¬size ≥ 1 ∗ size ≥ β2 ⇒ size ≥ β2 (⇒T), 8, 9

11 (size ≥ 1 ∗ size ≥ β2) ∨ (¬size ≥ 1 ∗ size ≥ β2)⇒ size ≥ β2 (∨L), 7, 10

12 size ≥ 0 ∗ size ≥ β2 ⇒ size ≥ β2 (⇒T), 4, 11

We now show the converse: `Hc(∗) size ≥ β2 ⇒ size ≥ 0 ∗ size ≥ β2. Then,
`Hc(∗) size ≥ 0 ∗ size ≥ β2 ⇔ size ≥ β2 trivially follows from propositional reasoning.

1 size ≥ β2 ⇒ size = 0 ∗ size ≥ β2 (S∗5)

2 size = 0⇒ size ≥ 0 (∧E)

3 size = 0 ∗ size ≥ β2 ⇒ size ≥ 0 ∗ size ≥ β2 ∗-introduction rule, 2

4 size ≥ β2 ⇒ size ≥ 0 ∗ size ≥ β2 (⇒T), 1, 3

2. β1 ≥ 1 and β2 = 0. Direct from the proof of the previous case and (COM).

3. β1 = β2 = 0. Directly by propositional reasoning and since size ≥ 0
by def⇔ >, we

conclude that size ≥ 0 ∗ size ≥ 0 ⇒ size ≥ 0 is derivable in Hc(∗). For the
other direction, `Hc(∗) size ≥ 0 ⇒ size ≥ 0 ∗ size ≥ 0 follows from the proof of
size ≥ β2 ⇒ size ≥ 0 ∗ size ≥ β2 shown above (first case). Hence, by propositional
reasoning we conclude `Hc(∗) size ≥ 0⇔ size ≥ 0 ∗ size ≥ 0, ending the proof of L1.

Proof of L2. In the following syntactical proof, we denote with γ̂ the formula

((φ ∧ size ≥ β) ∗ (ψ ∧ size ≥ β′ .−β)) ∨ ((φ ∧ size ≥ β) ∗ (ψ ∧ ¬size ≥ β′ .−β)).

1 ψ ⇒ ψ ∧ (size ≥ β′ .−β ∨ ¬size ≥ β′ .−β) (>I) and (>S)

2 (φ ∧ size ≥ β) ∗ ψ ⇒

(φ ∧ size ≥ β) ∗ (ψ ∧ (size ≥ β′ .−β ∨ ¬size ≥ β′ .−β)) ∗-introduction rule and (COM), 1

3 (φ ∧ size ≥ β) ∗ (ψ ∧ (size ≥ β′ .−β ∨ ¬size ≥ β′ .−β))⇒ γ̂ (∧∨) and (∗DISTR)

4 (φ ∧ size ≥ β) ∗ ψ ⇒ γ̂ (⇒T), 2, 3

5 ((φ ∧ size ≥ β) ∗ ψ) ∧ ¬size ≥ β′ ⇒ γ̂ ∧ ¬size ≥ β′ (∧I) and (∧C), 4

6 γ̂ ∧ ¬size ≥ β′ ⇒

(((φ ∧ size ≥ β) ∗ (ψ ∧ size ≥ β′ .−β)) ∧ ¬size ≥ β′)∨

(((φ ∧ size ≥ β) ∗ (ψ ∧ ¬size ≥ β′ .−β)) ∧ ¬size ≥ β′) (∧∨) and (∧C)

In the remaining part of this proof, we denote with γ̃ the formula

(((φ ∧ size ≥ β) ∗ (ψ ∧ size ≥ β′ .−β)) ∧ ¬size ≥ β′) ∨ (((φ ∧ size ≥ β) ∗ (ψ ∧ ¬size ≥ β′ .−β)) ∧ ¬size ≥ β′).
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7 ((φ ∧ size ≥ β) ∗ ψ) ∧ ¬size ≥ β′ ⇒ γ̃ (⇒T), 5, 6

8 ((φ ∧ size ≥ β) ∗ (ψ ∧ size ≥ β′ .−β))⇒ size ≥ β ∗ size ≥ β′ .−β L0

9 size ≥ β ∗ size ≥ β′ .−β ⇒ size ≥ max(β, β′) L1

10 ((φ ∧ size ≥ β) ∗ (ψ ∧ size ≥ β′ .−β))⇒ size ≥ max(β, β′) (⇒T), 8, 9

11 size ≥ max(β, β′)⇒ size ≥ β′ repeated (Sc2)

12 ((φ ∧ size ≥ β) ∗ (ψ ∧ size ≥ β′ .−β))⇒ size ≥ β′ (⇒T), 10, 11

13 ((φ ∧ size ≥ β) ∗ (ψ ∧ size ≥ β′ .−β)) ∧ ¬size ≥ β′ ⇒

size ≥ β′ ∧ ¬size ≥ β′ (∧I) and (∧C), 12

14 size ≥ β′ ∧ ¬size ≥ β′ ⇔⊥ (>S) and def >

15 ((φ ∧ size ≥ β) ∗ (ψ ∧ size ≥ β′ .−β)) ∧ ¬size ≥ β′ ⇔⊥ (⇒T) and (⊥I), 13, 14

16 ((φ ∧ size ≥ β) ∗ ψ) ∧ ¬size ≥ β′ ⇒

⊥ ∨((φ ∧ size ≥ β) ∗ (ψ ∧ ¬size ≥ β′ .−β) ∧ ¬size ≥ β′) R0, 7, 15

17 ⊥ ∨((φ ∧ size ≥ β) ∗ (ψ ∧ ¬size ≥ β′ .−β) ∧ ¬size ≥ β′)⇒

(φ ∧ size ≥ β) ∗ (ψ ∧ ¬size ≥ β′ .−β) propositional reasoning

18 ((φ ∧ size ≥ β) ∗ ψ) ∧ ¬size ≥ β′ ⇒

(φ ∧ size ≥ β) ∗ (ψ ∧ ¬size ≥ β′ .−β) (⇒T), 16, 17

Proof of L3. The proof is similar to the previous one. Let γ̂ be the formula

((φ ∧ ¬size ≥ β+1) ∗ (ψ ∧ size ≥ β′ .−β)) ∨ ((φ ∧ ¬size ≥ β+1) ∗ (ψ ∧ ¬size ≥ β′ .−β)).

1 ψ ⇒ ψ ∧ (size ≥ β′ .−β ∨ ¬size ≥ β′ .−β) (>I) and (>S)

2 (φ ∧ ¬size ≥ β+1) ∗ ψ ⇒

(φ ∧ ¬size ≥ β+1) ∗ (ψ ∧ (size ≥ β′ .−β ∨ ¬size ≥ β′ .−β)) ∗-introduction rule and (COM), 1

3 (φ ∧ ¬size ≥ β+1) ∗ (ψ ∧ (size ≥ β′ .−β ∨ ¬size ≥ β′ .−β))⇒ γ̂ (∧∨) and (∗DISTR)

4 (φ ∧ ¬size ≥ β+1) ∗ ψ ⇒ γ̂ (⇒T), 2, 3

5 ((φ ∧ ¬size ≥ β+1) ∗ ψ) ∧ size ≥ β′ ⇒ γ̂ ∧ size ≥ β′ (∧I) and (∧C), 4

6 γ̂ ∧ size ≥ β′ ⇒

(((φ ∧ ¬size ≥ β+1) ∗ (ψ ∧ size ≥ β′ .−β)) ∧ size ≥ β′)∨

(((φ ∧ ¬size ≥ β+1) ∗ (ψ ∧ ¬size ≥ β′ .−β)) ∧ size ≥ β′) (∧∨) and (∧C)

In the remaining part of this proof, we denote with γ̃ the formula

(((φ ∧ ¬size ≥ β+1) ∗ (ψ ∧ size ≥ β′ .−β)) ∧ size ≥ β′) ∨ (((φ ∧ ¬size ≥ β+1) ∗ (ψ ∧ ¬size ≥ β′ .−β)) ∧ size ≥ β′)

7 ((φ ∧ ¬size ≥ β+1) ∗ ψ) ∧ size ≥ β′ ⇒ γ̃ (⇒T), 5, 6

8 ((φ ∧ ¬size ≥ β+1) ∗ (ψ ∧ ¬size ≥ β′ .−β))⇒ ¬size ≥ β+1 ∗ ¬size ≥ β′ .−β L0

We now prove that `Hc(∗) ¬size ≥ β+1 ∗ ¬size ≥ β′ .−β ⇒ ¬size ≥ β′ by splitting the
proof on whether or not β′ ≤ β. If β′ ≤ β then β′ .−β = 0 and therefore

9 ¬size ≥ 0⇔⊥ def. of size and propositional reasoning

10 ¬size ≥ β+1 ∗ ¬size ≥ 0⇒ ¬size ≥ β+1∗ ⊥ ∗-introduction rule and (COM), 9

11 ¬size ≥ β+1∗ ⊥⇒⊥ (⊥)

12 ¬size ≥ β+1 ∗ ¬size ≥ 0⇒⊥ (⇒T), 10, 11

13 ⊥⇒ ¬size ≥ β′ (⊥I)

14 ¬size ≥ β+1 ∗ ¬size ≥ β′ .−β ⇒ ¬size ≥ β′ (⇒T), 12, 13
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If instead β′>β then β′ .−β = β′−β and `Hc(∗) ¬size ≥ β+1 ∗¬size ≥ β′−β ⇒ ¬size ≥ β′
follows by (S∗6). We are now ready to conclude the proof of L3.

15 ¬size ≥ β+1 ∗ ¬size ≥ β′ .−β ⇒ ¬size ≥ β′ as shown above

16 ((φ ∧ ¬size ≥ β+1) ∗ (ψ ∧ ¬size ≥ β′ .−β))⇒ ¬size ≥ β′ (⇒T), 8, 15

17 ((φ ∧ ¬size ≥ β+1)∗(ψ ∧ ¬size ≥ β′ .−β)) ∧ size ≥ β′ ⇒ ¬size ≥ β′∧size ≥ β′ (∧I) and (∧C), 16

18 ¬size ≥ β′ ∧ size ≥ β′ ⇔⊥ (>S) and def. >

19 ((φ ∧ ¬size ≥ β+1) ∗ (ψ ∧ ¬size ≥ β′ .−β)) ∧ size ≥ β′ ⇔⊥ (⇒T) and (⊥I), 17, 18

20 ((φ ∧ ¬size ≥ β+1) ∗ ψ) ∧ size ≥ β′ ⇒

((φ ∧ ¬size ≥ β+1) ∗ (ψ ∧ size ≥ β′ .−β) ∧ size ≥ β′)∨ ⊥ R0, 7, 19

21 ((φ ∧ ¬size ≥ β+1) ∗ (ψ ∧ size ≥ β′ .−β) ∧ size ≥ β′)∨ ⊥⇒

(φ ∧ ¬size ≥ β+1) ∗ (ψ ∧ size ≥ β′ .−β) (>I)

22 ((φ ∧ ¬size ≥ β+1) ∗ ψ) ∧ size ≥ β′ ⇒

(φ ∧ ¬size ≥ β+1) ∗ (ψ ∧ size ≥ β′ .−β) (⇒T), 20, 21

Proof of L4. Suppose 0 ≤ β1 < β′1 and 0 ≤ β2 < β′2.

(⇐=):

1 (size ≥ β1 ∧ ¬size ≥ β′1) ∗ (size ≥ β2 ∧ ¬size ≥ β′2)⇒ size ≥ β1 ∗ size ≥ β2 L0

2 size ≥ β1 ∗ size ≥ β2 ⇒ size ≥ β1 + β2 L1

3 (size ≥ β1 ∧ ¬size ≥ β′1) ∗ (size ≥ β2 ∧ ¬size ≥ β′2)⇒ size ≥ β1 + β2 (⇒T), 1, 2

4 (size ≥ β1 ∧ ¬size ≥ β′1) ∗ (size ≥ β2 ∧ ¬size ≥ β′2)⇒ ¬size ≥ β′1 ∗ ¬size ≥ β′2 L0

5 ¬size ≥ β′1 ∗ ¬size ≥ β′2 ⇒ ¬size ≥ (β1 + β2) .−1 (S∗6)

6 (size ≥ β1 ∧ ¬size ≥ β′1) ∗ (size ≥ β2 ∧ ¬size ≥ β′2)⇒ ¬size ≥ (β1 + β2) .−1 (⇒T), 4, 5

7 (size ≥ β1 ∧ ¬size ≥ β′1) ∗ (size ≥ β2 ∧ ¬size ≥ β′2)⇒

size ≥ β1 + β2 ∧ ¬size ≥ (β1 + β2) .−1 (∧R), 3, 6

(=⇒): We start this case by first proving that for every β, β′ ≥ 1

`Hc(∗) ¬size ≥ (β + β′) .−1⇒ ¬size ≥ β ∗ ¬size ≥ β′.

1 ¬size ≥ (β + β′) .−1⇒

¬size ≥ (β + β′) .−1 ∧
∧
k∈[0,(β+β′) .−2](size ≥ k ∨ ¬size ≥ k) repeated (>I) and (>S)

2 ¬size ≥ (β + β′) .−1 ∧
∧
k∈[0,(β+β′) .−2](size ≥ k ∨ ¬size ≥ k)⇒∨

k∈[0,(β+β′) .−2] size = k repeated (∧∨) + reasoning on size

3 ¬size ≥ (β + β′) .−1⇒
∨
k∈[0,(β+β′) .−2] size = k (⇒T), 1, 2

4 size ≥ k ⇒ size = min(k, β − 1) ∗ size ≥ k .− (β − 1) (S∗5)

5 size = k ⇒ (size = min(k, β − 1) ∗ size ≥ k .− (β − 1)) ∧ ¬size ≥ k+1 (∧I) and (∧C), 4

6 (size = min(k, (β − 1)) ∗ size ≥ k .− (β − 1)) ∧ ¬size ≥ k+1⇒

size = min(k, β − 1) ∗ (size ≥ k .− (β − 1) ∧ ¬size ≥ (k+1) .−min(k, (β − 1))) L2

7 size = k ⇒

size = min(k, β − 1) ∗ (size ≥ k .− (β − 1) ∧ ¬size ≥ (k+1) .−min(k, (β − 1))) (⇒T), 5, 6

8 size = min(k, β − 1) ∗ (size ≥ k .− (β − 1) ∧ ¬size ≥ (k+1) .−min(k, (β − 1)))⇒

¬size ≥ min(k + 1, β) ∗ ¬size ≥ (k+1) .−min(k, (β − 1)) L0

9 size = k ⇒ ¬size ≥ min(k + 1, β) ∗ ¬size ≥ (k+1) .−min(k, (β − 1)) (⇒T), 7, 8
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We continue the proof by showing that for every k ∈ [0, (β + β′) .−2],

`Hc(∗) ¬size ≥ min(k + 1, β) ∗ ¬size ≥ (k+1) .−min(k, (β − 1))⇒ ¬size ≥ β ∗ ¬size ≥ β′.

Indeed, for k < β the antecedent of this implication, i.e. ¬size ≥ min(k + 1, β) ∗ ¬size ≥
(k+1) .−min(k, (β − 1)), simplifies to ¬size ≥ k ∗ ¬size ≥ 1. Then, recalling that 1 ≤ β′, by
iterating the axiom (Sc2) together with ∗-introduction rule, we can conclude `Hc(∗) ¬size ≥
k ∗ ¬size ≥ 1 ⇒ ¬size ≥ β ∗ ¬size ≥ β′. If instead k ≥ β, then the antecedent becomes
¬size ≥ β ∗ ¬size ≥ (k + 1) .−(β − 1). Since k ∈ [0, (β + β′) .−2] and β, β′ ≥ 1, we have
(k+1) .−(β−1) ≤ (((β+β′) .−2)+1) .−(β−1) ≤ β′. Hence, ¬size ≥ β∗¬size ≥ (k+1) .−(β−1)
simplifies to ¬size ≥ β ∗¬size ≥ j for some j ≤ β′. Then, `Hc(∗) ¬size ≥ β ∗¬size ≥ j ⇒
¬size ≥ β ∗ ¬size ≥ β′ again by iterating the axiom (Sc2) together with ∗-introduction rule.
We can now conclude the proof of `Hc(∗) ¬size ≥ (β + β′) .−1⇒ ¬size ≥ β ∗ ¬size ≥ β′.

10 ¬size ≥ min(k + 1, β) ∗ ¬size ≥ (k+1) .−min(k, (β − 1))⇒

¬size ≥ β ∗ ¬size ≥ β′ ∀k ∈ [0, (β + β′) .−2] – just shown

11 size = k ⇒ ¬size ≥ β ∗ ¬size ≥ β′ ∀k ∈ [0, (β + β′) .−2] – (⇒T), 9, 10

12 ¬size ≥ (β + β′) .−1⇒ ¬size ≥ β ∗ ¬size ≥ β′ propositional reasoning, 3, 11

We now tackle the left-to-right direction of L4. Recall that 0 ≤ β1 < β′1 and 0 ≤ β2 < β′2.

1 size ≥ β1 + β2 ⇒ size = β1 ∗ size ≥ β2 (S∗5)

2 size ≥ β1 + β2 ∧ ¬size ≥ (β′1 + β′2) .−1⇒

(size = β1 ∗ size ≥ β2) ∧ ¬size ≥ (β′1 + β′2) .−1 (∧I) and (∧C), 1

3 (size = β1 ∗ size ≥ β2) ∧ ¬size ≥ (β′1 + β′2) .−1⇒

size = β1 ∗ (size ≥ β2 ∧ ¬size ≥ ((β′1 − β1) + β′2) .−1) L2 and β1 < β′1

4 size ≥ β1 + β2 ∧ ¬size ≥ (β′1 + β′2) .−1⇒

size = β1 ∗ (size ≥ β2 ∧ ¬size ≥ ((β′1 − β1) + β′2) .−1) (⇒T), 2, 3

5 size ≥ β2 ⇒ size = β2 ∗ size ≥ 0 (S∗5)

6 size ≥ β2 ∧ ¬size ≥ ((β′1 − β1) + β′2) .−1⇒

(size = β2 ∗ size ≥ 0) ∧ ¬size ≥ ((β′1 − β1) + β′2) .−1 (∧I) and (∧C), 5

7 (size = β2 ∗ size ≥ 0) ∧ ¬size ≥ ((β′1 − β1) + β2) .−1⇒

size = β2 ∗ (size ≥ 0 ∧ ¬size ≥ ((β′1 − β1) + (β′2 − β2)) .−1) L2 and β1 < β′1

8 size ≥ β2 ∧ ¬size ≥ ((β′1 − β1) + β′2) .−1⇒

size = β2 ∗ (size ≥ 0 ∧ ¬size ≥ ((β′1 − β1) + (β′2 − β2)) .−1) (⇒T), 6, 7

9 size ≥ 0 ∧ ¬size ≥ ((β′1 − β1) + (β′2 − β2)) .−1⇒

¬size ≥ ((β′1 − β1) + (β′2 − β2)) .−1 (∧E)

10 size = β2 ∗ (size ≥ 0 ∧ ¬size ≥ ((β′1 − β1) + (β′2 − β2)) .−1)⇒

size = β2 ∗ ¬size ≥ ((β′1 − β1) + (β′2 − β2)) .−1 ∗-introduction rule and (COM), 9

11 size ≥ β2 ∧ ¬size ≥ ((β′1 − β1) + β′2) .−1⇒

size = β2 ∗ ¬size ≥ ((β′1 − β1) + (β′2 − β2)) .−1 (⇒T), 8, 10

12 ¬size ≥ ((β′1 − β1) + (β′2 − β2)) .−1⇒

¬size ≥ β′1 − β1 ∗ ¬size ≥ β′2 − β2 previous result, as β1 < β′1 and β2 < β′2

13 size = β2 ∗ ¬size ≥ ((β′1 − β1) + (β′2 − β2)) .−1⇒

size = β2 ∗ (¬size ≥ β′1 − β1 ∗ ¬size ≥ β′2 − β2) ∗-introduction rule and (COM), 12

14 size ≥ β2 ∧ ¬size ≥ ((β′1 − β1) + β′2) .−1⇒

size = β2 ∗ (¬size ≥ β′1 − β1 ∗ ¬size ≥ β′2 − β2) (⇒T), 12, 13
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15 size = β2 ∗ (¬size ≥ β′1 − β1 ∗ ¬size ≥ β′2 − β2)⇒

¬size ≥ β′1 − β1 ∗ (size = β2 ∗ ¬size ≥ β′2 − β2) (COM) and (ASSOC)

16 size ≥ β2 ∧ ¬size ≥ ((β′1 − β1) + β′2) .−1⇒

¬size ≥ β′1 − β1 ∗ (size = β2 ∗ ¬size ≥ β′2 − β2) (⇒T), 14, 15

17 size = β2 ∗ ¬size ≥ β′2 − β2 ⇒ size ≥ β2 ∗ size ≥ 0 (Sc1) and L0

18 size ≥ β2 ∗ size ≥ 0⇒ size ≥ β2 L1

19 size = β2 ∗ ¬size ≥ β′2 − β2 ⇒ size ≥ β2 (⇒T), 17, 18

20 size = β2 ∗ ¬size ≥ β′2 − β2 ⇒ ¬size ≥ β2+1 ∗ ¬size ≥ β′2 − β2 L0

21 ¬size ≥ β2+1 ∗ ¬size ≥ β′2 − β2 ⇒ ¬size ≥ β′2 (S∗6)

22 size = β2 ∗ ¬size ≥ β′2 − β2 ⇒ ¬size ≥ β′2 (⇒T), 20, 21

23 size = β2 ∗ ¬size ≥ β′2 − β2 ⇒ size ≥ β2 ∧ ¬size ≥ β′2 (∧R), 19, 22

24 ¬size ≥ β′1 − β1 ∗ (size = β2 ∗ ¬size ≥ β′2 − β2)⇒

¬size ≥ β′1 − β1 ∗ (size ≥ β2 ∧ ¬size ≥ β′2) ∗-introduction rule and (COM), 23

25 size ≥ β2 ∧ ¬size ≥ ((β′1 − β1) + β′2) .−1⇒

¬size ≥ β′1 − β1 ∗ (size ≥ β2 ∧ ¬size ≥ β′2) (⇒T), 16, 24

26 size = β1 ∗ (size ≥ β2 ∧ ¬size ≥ ((β′1 − β1) + β′2) .−1)

size = β1 ∗ (¬size ≥ β′1 − β1 ∗ (size ≥ β2 ∧ ¬size ≥ β′2)) ∗-introduction rule and (COM), 25

27 size ≥ β1 + β2 ∧ ¬size ≥ (β′1 + β′2) .−1⇒

size = β1 ∗ (¬size ≥ β′1 − β1 ∗ (size ≥ β2 ∧ ¬size ≥ β′2)) (⇒T), 4, 26

28 size = β1 ∗ (¬size ≥ β′1 − β1 ∗ (size ≥ β2 ∧ ¬size ≥ β′2))⇒

(size = β1 ∗ ¬size ≥ β′1 − β1) ∗ (size ≥ β2 ∧ ¬size ≥ β′2) (ASSOC)

29 size ≥ β1 + β2 ∧ ¬size ≥ (β′1 + β′2) .−1⇒

(size = β1 ∗ ¬size ≥ β′1 − β1) ∗ (size ≥ β2 ∧ ¬size ≥ β′2) (⇒T), 27, 28

30 size = β1 ∗ ¬size ≥ β′1 − β1 ⇒ size ≥ β1 ∧ ¬size ≥ β′1 analogous to 23

31 (size = β1 ∗ ¬size ≥ β′1 − β1) ∗ (size ≥ β2 ∧ ¬size ≥ β′2)⇒

(size ≥ β1 ∧ ¬size ≥ β′1) ∗ (size ≥ β2 ∧ ¬size ≥ β′2) ∗-introduction rule, 30

32 size ≥ β1 + β2 ∧ ¬size ≥ (β′1 + β′2) .−1⇒

(size ≥ β1 ∧ ¬size ≥ β′1) ∗ (size ≥ β2 ∧ ¬size ≥ β′2) (⇒T), 29, 31

Proof of Lemma 11

We start by handling the cases for graph formulae of the form |Q1,..., Qn〉 and |Q1,..., Qi,..., Qn .

Recall that |Q1,..., Qn 〉 denotes only formulae of these two kinds (hence excluding |Q1,..., Qn]
formulae, that we treat separately). Moreover, recall that we are working under the hypothesis
that for any elementary shape ψ of the form either G ∧ size ≥ β or G ∧ size ≥ β ∧ ¬size ≥ β′,
we have ](G) ≤ β, 6`Hc

¬ψ (which implies β < β′). Below, this assumption is denoted by (GHyp).

(|Q1,..., Qn 〉 ∧ size ≥ β1) ∗ (|Q] ∧ size ≥ β2)⇔ |Q1 ∧Q,..., Qn 〉 ∧ size ≥ β1+β2

(=⇒):

1 (|Q1,..., Qn 〉 ∧ size ≥ β1) ∗ (|Q] ∧ size ≥ β2)⇔

(|Q1 ∧Q,..., Qn 〉 ∧ size ≥ β1) ∗ size ≥ β2 (G∗26)

2 (|Q1 ∧Q,..., Qn 〉 ∧ size ≥ β1) ∗ size ≥ β2 ⇒ |Q1 ∧Q,..., Qn 〉 (G∗23)/(G∗24) and L0

3 (|Q1,..., Qn 〉 ∧ size ≥ β1) ∗ (|Q] ∧ size ≥ β2)⇒ |Q1 ∧Q,..., Qn 〉 (⇒T), 1, 2

4 (|Q1,..., Qn 〉 ∧ size ≥ β1) ∗ (|Q] ∧ size ≥ β2)⇒ size ≥ β1 ∗ size ≥ β2 L0
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5 size ≥ β1 ∗ size ≥ β2 ⇒ size ≥ β1 + β2 L1

6 (|Q1,..., Qn 〉 ∧ size ≥ β1) ∗ (|Q] ∧ size ≥ β2)⇒ size ≥ β1 + β2 (⇒T), 4, 5

7 (|Q1,..., Qn 〉 ∧ size ≥ β1) ∗ (|Q] ∧ size ≥ β2)⇒

|Q1 ∧Q,..., Qn 〉 ∧ size ≥ β1 + β2 (∧R), 3, 6

(⇐=):

1 size ≥ β1 + β2 ⇒ size ≥ β1 repeated (Sc2)

2 |Q1 ∧Q,..., Qn 〉 ∧ size ≥ β1+β2 ⇒ |Q1 ∧Q,..., Qn 〉 ∧ size ≥ β1 (∧I), 1

3 |Q1 ∧Q,..., Qn 〉 ∧ size ≥ β1 ⇒ (|Q1 ∧Q,..., Qn 〉 ∧ size = β1) ∗ > (G∗27) and (GHyp)

4 |Q1 ∧Q,..., Qn 〉 ∧ size ≥ β1+β2 ⇒

((|Q1 ∧Q,..., Qn 〉 ∧ size = β1) ∗ >) ∧ size ≥ β1+β2 (⇒T) and (∧D), 2, 3

5 ((|Q1 ∧Q,..., Qn 〉 ∧ size = β1) ∗ >) ∧ size ≥ β1 + β2 ⇒

(|Q1 ∧Q,..., Qn 〉 ∧ size = β1) ∗ size ≥ β2 L3

6 |Q1 ∧Q,..., Qn 〉 ∧ size ≥ β1+β2 ⇒ (|Q1 ∧Q,..., Qn 〉 ∧ size = β1) ∗ size ≥ β2 (⇒T), 4, 5

7 |Q1 ∧Q,..., Qn 〉 ∧ size = β1 ⇒ |Q1 ∧Q,..., Qn 〉 ∧ size ≥ β1 (∧E)

8 (|Q1 ∧Q,..., Qn 〉 ∧ size = β1) ∗ size ≥ β2 ⇒ (|Q1 ∧Q,..., Qn 〉 ∧ size ≥ β1) ∗ size ≥ β2 ∗-introduction rule, 7

9 |Q1 ∧Q,..., Qn 〉 ∧ size ≥ β1+β2 ⇒ (|Q1 ∧Q,..., Qn 〉 ∧ size ≥ β1) ∗ size ≥ β2 (⇒T), 6, 8

10 (|Q1 ∧Q,..., Qn 〉 ∧ size ≥ β1) ∗ size ≥ β2 ⇒ (|Q1,..., Qn 〉 ∧ size ≥ β1) ∗ (|Q] ∧ size ≥ β2) (G∗26)

11 |Q1 ∧Q,..., Qn 〉 ∧ size ≥ β1+β2 ⇒ (|Q1,..., Qn 〉 ∧ size ≥ β1) ∗ (|Q] ∧ size ≥ β2) (⇒T), 9, 10

(|Q1,..., Qn 〉 ∧ size ≥ β1 ∧ ¬size ≥ β′1) ∗ (|Q] ∧ size ≥ β2)

⇔ |Q1 ∧Q,..., Qn 〉 ∧ size ≥ β1+β2

(=⇒):

1 (|Q1,..., Qn 〉 ∧ size ≥ β1 ∧ ¬size ≥ β′1)⇒ |Q1,..., Qn 〉 ∧ size ≥ β1 (∧E)

2 (|Q1,..., Qn 〉 ∧ size ≥ β1 ∧ ¬size ≥ β′1) ∗ (|Q] ∧ size ≥ β2)⇒

(|Q1,..., Qn 〉 ∧ size ≥ β1) ∗ (|Q] ∧ size ≥ β2) ∗-introduction rule, 1

3 (|Q1,..., Qn 〉 ∧ size ≥ β1) ∗ (|Q] ∧ size ≥ β2)⇒ |Q1 ∧Q,..., Qn 〉 ∧ size ≥ β1+β2 previously derived

4 (|Q1,..., Qn 〉 ∧ size ≥ β1 ∧ ¬size ≥ β′1) ∗ (|Q] ∧ size ≥ β2)⇒

|Q1 ∧Q,..., Qn 〉 ∧ size ≥ β1+β2 (⇒T), 2, 3

(⇐=):

1 |Q1 ∧Q,..., Qn 〉 ∧ size ≥ β1+β2 ⇒ (|Q1 ∧Q,..., Qn 〉 ∧ size = β1) ∗ size ≥ β2 previously derived

2 (|Q1 ∧Q,..., Qn 〉 ∧ size = β1) ∗ size ≥ β2 ⇒

(|Q1,..., Qn 〉 ∧ size = β1) ∗ (|Q] ∧ size ≥ β2) (G∗26)

3 |Q1 ∧Q,..., Qn 〉 ∧ size ≥ β1+β2 ⇒ (|Q1,..., Qn 〉 ∧ size = β1) ∗ (|Q] ∧ size ≥ β2) (⇒T), 1, 2

4 ¬size ≥ β1 + 1⇒ ¬size ≥ β′1 (Sc2) and (GHyp)

5 |Q1,..., Qn 〉 ∧ size = β1 ⇒ |Q1,..., Qn 〉 ∧ size ≥ β1 ∧ ¬size ≥ β′1 (∧I), 4

6 (|Q1,..., Qn 〉 ∧ size = β1) ∗ (|Q] ∧ size ≥ β2)⇒

(|Q1,..., Qn 〉 ∧ size ≥ β1 ∧ ¬size ≥ β′1) ∗ (|Q] ∧ size ≥ β2) ∗-introduction rule, 5

7 |Q1 ∧Q,..., Qn 〉 ∧ size ≥ β1+β2 ⇒

(|Q1,..., Qn 〉 ∧ size ≥ β1 ∧ ¬size ≥ β′1) ∗ (|Q] ∧ size ≥ β2) (⇒T), 3, 6

40



(|Q1,..., Qn 〉 ∧ size ≥ β1) ∗ (|Q] ∧ size ≥ β2 ∧ ¬size ≥ β′2)

⇔ |Q1 ∧Q,..., Qn 〉 ∧ size ≥ β1+β2

(=⇒):

1 (|Q] ∧ size ≥ β2 ∧ ¬size ≥ β′2)⇒ |Q] ∧ size ≥ β2 (∧E)

2 (|Q1,..., Qn 〉 ∧ size ≥ β1) ∗ (|Q] ∧ size ≥ β2 ∧ ¬size ≥ β′2)⇒

(|Q1,..., Qn 〉 ∧ size ≥ β1) ∗ (|Q] ∧ size ≥ β2) (COM) and ∗-introduction rule, 1

3 (|Q1,..., Qn 〉 ∧ size ≥ β1) ∗ (|Q] ∧ size ≥ β2)⇒

|Q1 ∧Q,..., Qn 〉 ∧ size ≥ β1+β2 previously derived

4 (|Q1,..., Qn 〉 ∧ size ≥ β1) ∗ (|Q] ∧ size ≥ β2 ∧ ¬size ≥ β′2)⇒

|Q1 ∧Q,..., Qn 〉 ∧ size ≥ β1+β2 (⇒T), 2, 3

(⇐=):

1 |Q1 ∧Q,..., Qn 〉 ∧ size ≥ β1+β2 ⇒ (|Q1 ∧Q,..., Qn 〉 ∧ size = β1) ∗ size ≥ β2 previously derived

2 size ≥ β2 ⇒ size = β2 ∗ size ≥ 0 (S∗5)

3 (|Q1 ∧Q,..., Qn 〉 ∧ size = β1) ∗ size ≥ β2 ⇒

(|Q1 ∧Q,..., Qn 〉 ∧ size = β1) ∗ (size = β2 ∗ size ≥ 0) ∗-introduction rule, (COM), 2

4 |Q1 ∧Q,..., Qn 〉 ∧ size ≥ β1+β2 ⇒

(|Q1 ∧Q,..., Qn 〉 ∧ size = β1) ∗ (size = β2 ∗ size ≥ 0) (⇒T), 1, 3

5 (|Q1 ∧Q,..., Qn 〉 ∧ size = β1) ∗ (size = β2 ∗ size ≥ 0)⇒

((|Q1 ∧Q,..., Qn 〉 ∧ size = β1) ∗ size ≥ 0) ∗ size = β2 (ASSOC), (COM) and (⇒T)

6 |Q1 ∧Q,..., Qn 〉 ∧ size ≥ β1+β2 ⇒

((|Q1 ∧Q,..., Qn 〉 ∧ size = β1) ∗ size ≥ 0) ∗ size = β2 (⇒T), 4, 5

7 (|Q1 ∧Q,..., Qn 〉 ∧ size = β1) ∗ size ≥ 0⇒ |Q1 ∧Q,..., Qn 〉 ∧ size ≥ β1 previously derived

8 ((|Q1 ∧Q,..., Qn 〉 ∧ size = β1) ∗ size ≥ 0) ∗ size = β2 ⇒

(|Q1 ∧Q,..., Qn 〉 ∧ size ≥ β1) ∗ size = β2 ∗-introduction rule, 7

9 |Q1 ∧Q,..., Qn 〉 ∧ size ≥ β1+β2 ⇒ (|Q1 ∧Q,..., Qn 〉 ∧ size ≥ β1) ∗ size = β2 (⇒T), 6, 8

10 ¬size ≥ β2 + 1⇒ ¬size ≥ β′2 (Sc2) and (GHyp)

11 size = β2 ⇒ size ≥ β2 ∧ ¬size ≥ β′2 (∧I2), 10

12 (|Q1 ∧Q,..., Qn 〉 ∧ size ≥ β1) ∗ size = β2 ⇒

(|Q1 ∧Q,..., Qn 〉 ∧ size ≥ β1) ∗ (size ≥ β2 ∧ ¬size ≥ β′2) ∗-introduction rule, (COM), 11

13 |Q1 ∧Q,..., Qn 〉 ∧ size ≥ β1+β2 ⇒

(|Q1 ∧Q,..., Qn 〉 ∧ size ≥ β1) ∗ (size ≥ β2 ∧ ¬size ≥ β′2) (⇒T), 9, 12

14 (|Q1 ∧Q,..., Qn 〉 ∧ size ≥ β1) ∗ (size ≥ β2 ∧ ¬size ≥ β′2)⇒

(|Q1,..., Qn 〉 ∧ size ≥ β1) ∗ (|Q] ∧ size ≥ β2 ∧ ¬size ≥ β′2) (G∗26)

15 |Q1 ∧Q,..., Qn 〉 ∧ size ≥ β1+β2 ⇒

(|Q1,..., Qn 〉 ∧ size ≥ β1) ∗ (|Q] ∧ size ≥ β2 ∧ ¬size ≥ β′2) (⇒T), 13, 14

(|Q1,..., Qn 〉 ∧ size ≥ β1 ∧ ¬size ≥ β′1) ∗ (|Q] ∧ size ≥ β2 ∧ ¬size ≥ β′2)

⇔ |Q1 ∧Q,..., Qn 〉 ∧ size ≥ β1+β2 ∧ ¬size ≥ (β′1+β′2) .−1

(=⇒):

1 (|Q1,..., Qn 〉 ∧ size ≥ β1 ∧ ¬size ≥ β′1) ∗ (|Q] ∧ size ≥ β2 ∧ ¬size ≥ β′2)⇒

(|Q1,..., Qn 〉 ∧ size ≥ β1) ∗ (|Q] ∧ size ≥ β2) L0
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2 (|Q1,..., Qn 〉 ∧ size ≥ β1) ∗ (|Q] ∧ size ≥ β2)⇒ |Q1 ∧Q,..., Qn 〉 ∧ size ≥ β1 + β2 previously derived

3 (|Q1,..., Qn 〉 ∧ size ≥ β1 ∧ ¬size ≥ β′1) ∗ (|Q] ∧ size ≥ β2 ∧ ¬size ≥ β′2)⇒

|Q1 ∧Q,..., Qn 〉 ∧ size ≥ β1 + β2 (⇒T), 1, 2

4 (|Q1,..., Qn 〉 ∧ size ≥ β1 ∧ ¬size ≥ β′1) ∗ (|Q] ∧ size ≥ β2 ∧ ¬size ≥ β′2)⇒

¬size ≥ β′1 ∗ ¬size ≥ β′2 L0

5 ¬size ≥ β′1 ∗ ¬size ≥ β′2 ⇒ ¬size ≥ (β′1 + β′2) .− 1 (S∗6)

6 (|Q1,..., Qn 〉 ∧ size ≥ β1 ∧ ¬size ≥ β′1) ∗ (|Q] ∧ size ≥ β2 ∧ ¬size ≥ β′2)⇒

¬size ≥ (β′1 + β′2) .− 1 (⇒T), 4, 5

7 (|Q1,..., Qn 〉 ∧ size ≥ β1 ∧ ¬size ≥ β′1) ∗ (|Q] ∧ size ≥ β2 ∧ ¬size ≥ β′2)⇒

|Q1 ∧Q,..., Qn 〉 ∧ size ≥ β1 + β2 ∧ ¬size ≥ (β′1 + β′2) .− 1 (∧R), 3, 6

(⇐=):

1 |Q1 ∧Q,..., Qn 〉 ∧ size ≥ β1+β2 ⇒

(|Q1 ∧Q,..., Qn 〉 ∧ size = β1) ∗ size ≥ β2 previously derived

2 |Q1 ∧Q,..., Qn 〉 ∧ size ≥ β1+β2 ∧ ¬size ≥ (β′1+β′2) .−1⇒

((|Q1 ∧Q,..., Qn 〉 ∧ size = β1) ∗ size ≥ β2) ∧ ¬size ≥ (β′1+β′2) .−1 (∧I), 1

3 ((|Q1 ∧Q,..., Qn 〉 ∧ size = β1) ∗ size ≥ β2) ∧ ¬size ≥ (β′1+β′2) .−1⇒

((|Q1 ∧Q,..., Qn 〉 ∧ size = β1) ∗ (size ≥ β2 ∧ ¬size ≥ (β′1+β′2) .−(β1 + 1)) L2 and (GHyp)

4 |Q1 ∧Q,..., Qn 〉 ∧ size ≥ β1+β2 ∧ ¬size ≥ (β′1+β′2) .−1⇒

((|Q1 ∧Q,..., Qn 〉 ∧ size = β1) ∗ (size ≥ β2 ∧ ¬size ≥ (β′1+β′2) .−(β1 + 1)) (⇒T), 2, 3

5 size ≥ β2 ∧ ¬size ≥ (β′1+β′2) .−(β1 + 1)⇒

(size ≥ 0 ∧ ¬size ≥ β′1 .−β1) ∗ (size ≥ β2 ∧ ¬size ≥ β′2) L4 and (GHyp)

6 ((|Q1 ∧Q,..., Qn 〉 ∧ size = β1) ∗ (size ≥ β2 ∧ ¬size ≥ (β′1+β′2) .−(β1 + 1))⇒

((|Q1 ∧Q,..., Qn 〉 ∧ size = β1)∗

((size ≥ 0 ∧ ¬size ≥ β′1 .−β1) ∗ (size ≥ β2 ∧ ¬size ≥ β′2)) ∗-introduction rule and (COM), 5

7 ((|Q1 ∧Q,..., Qn 〉 ∧ size = β1)∗

((size ≥ 0 ∧ ¬size ≥ β′1 .−β1) ∗ (size ≥ β2 ∧ ¬size ≥ β′2))⇒

((|Q1 ∧Q,..., Qn 〉 ∧ size = β1) ∗ (size ≥ 0 ∧ ¬size ≥ β′1 .−β1))∗

(size ≥ β2 ∧ ¬size ≥ β′2) (ASSOC)

8 (|Q1 ∧Q,..., Qn 〉 ∧ size = β1) ∗ (size ≥ 0 ∧ ¬size ≥ β′1 .−β1)⇒

|Q1 ∧Q,..., Qn 〉 ∧ size ≥ β1 ∧ ¬size ≥ β′1 previously derived

9 ((|Q1 ∧Q,..., Qn 〉 ∧ size = β1) ∗ (size ≥ 0 ∧ ¬size ≥ β′1 .−β1))∗

(size ≥ β2 ∧ ¬size ≥ β′2)⇒

(|Q1 ∧Q,..., Qn 〉 ∧ size ≥ β1 ∧ ¬size ≥ β′1) ∗ (size ≥ β2 ∧ ¬size ≥ β′2) ∗-introduction rule, 8

10 (|Q1 ∧Q,..., Qn 〉 ∧ size ≥ β1 ∧ ¬size ≥ β′1) ∗ (size ≥ β2 ∧ ¬size ≥ β′2)⇒

(|Q1,..., Qn 〉 ∧ size ≥ β1 ∧ ¬size ≥ β′1) ∗ (|Q] ∧ size ≥ β2 ∧ ¬size ≥ β′2) (G∗26)

11 |Q1 ∧Q,..., Qn 〉 ∧ size ≥ β1+β2 ∧ ¬size ≥ (β′1+β′2) .−1⇒

(|Q1,..., Qn 〉 ∧ size ≥ β1 ∧ ¬size ≥ β′1) ∗ (|Q] ∧ size ≥ β2 ∧ ¬size ≥ β′2) repeated (⇒T), 4, 6, 7, 9, 10

This ends the translation for the formulae of the form either |Q1,..., Qn〉 or |Q1,..., Qi,..., Qn .
In order to conclude the proof, it remains to handle the cases with graph formulae of the form

|Q1,..., Qn], that are quite similar to the previous ones, with some peculiarities resulting from the
axiom (G∗25). Let us start with an easy case.
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(|Q1,..., Qn] ∧ φ) ∗ (|Q] ∧ ¬size ≥ 1)⇔ |Q1 ∧Q,..., Qn] ∧ φ,
where φ = size ≥ β1 or φ = size ≥ β1 ∧ ¬size ≥ β2

1 (|Q1,..., Qn] ∧ φ) ∗ (|Q] ∧ ¬size ≥ 1)⇔ (|Q1 ∧Q,..., Qn] ∧ φ) ∗ ¬size ≥ 1 (G∗26)

2 (|Q1 ∧Q,..., Qn] ∧ φ) ∗ ¬size ≥ 1⇔ |Q1 ∧Q,..., Qn] ∧ φ (S∗4)

3 (|Q1,..., Qn] ∧ φ) ∗ (|Q] ∧ ¬size ≥ 1)⇔ |Q1 ∧Q,..., Qn] ∧ φ (⇔T), 1, 2

Notice how the right argument of the subformula headed by the operator ∗ is a formula (|Q] ∧
¬size ≥ 1) that is satisfied only by models with empty accessibility relation. Now, instead,
we consider the cases of formulae that are satisfied by models with non-empty accessibility
relation. Recall that we are working under the assumption (GHyp), hence in what follows n− 1 =
](|Q1,..., Qn]) ≤ β1, β1 < β′1 and β2 + 1 < β′2.

In the following, Gn denotes (|Q1 ∧Q,..., Qn] ∨ |Q1 ∧Q,..., Qn〉 ∨
∨
i∈[1,n] |Q1 ∧Q,..., Qi,..., Qn )

whereas γn denotes Gn ∧ size ≥ β1+β2+1 (as in the body of the paper).

(|Q1,..., Qn] ∧ size ≥ β1) ∗ (|Q] ∧ size ≥ β2+1)⇔ γn

(=⇒):

1 |Q1,..., Qn] ∧ size ≥ β1) ∗ (|Q] ∧ size ≥ β2+1)⇒ size ≥ β1 ∗ size ≥ β2+1 L0

2 size ≥ β1 ∗ size ≥ β2+1⇒ size ≥ β1+β2+1 L1

3 |Q1,..., Qn] ∧ size ≥ β1) ∗ (|Q] ∧ size ≥ β2+1)⇒ size ≥ β1+β2+1 (⇒T), 2, 3

4 |Q1,..., Qn] ∧ size ≥ β1) ∗ (|Q] ∧ size ≥ β2+1)⇒ |Q1,..., Qn] ∗ size ≥ β2+1 L0

5 size ≥ β2+1⇒ size ≥ 1 repeated (Sc2)

6 |Q1,..., Qn] ∗ size ≥ β2+1⇒ |Q1,..., Qn] ∗ size ≥ 1 ∗-introduction rule and (COM), 5

7 |Q1,..., Qn] ∧ size ≥ β1) ∗ (|Q] ∧ size ≥ β2+1)⇒ |Q1,..., Qn] ∗ size ≥ 1 (⇒T), 4, 6

8 |Q1,..., Qn] ∗ size ≥ 1⇒ Gn (G∗25)

9 |Q1,..., Qn] ∧ size ≥ β1) ∗ (|Q] ∧ size ≥ β2+1)⇒ Gn (⇒T), 7, 8

10 |Q1,..., Qn] ∧ size ≥ β1) ∗ (|Q] ∧ size ≥ β2+1)⇒ γn (∧R), 3, 9

(⇐=): By propositional reasoning we can distribute the conjunction over the disjunctions (i.e. the
axiom (∧∨)) and treat separately each disjunct. Then, to prove the right-to-left direction it is
sufficient to show that the following three formulae are derivable in Hc(∗):
• |Q1 ∧Q,..., Qn] ∧ size ≥ β1+β2+1⇒ (|Q1,..., Qn] ∧ size ≥ β1) ∗ (|Q] ∧ size ≥ β2+1)

• |Q1 ∧Q,..., Qn〉 ∧ size ≥ β1+β2+1⇒ (|Q1,..., Qn] ∧ size ≥ β1) ∗ (|Q] ∧ size ≥ β2+1)

• For all i ∈ [1, n],

|Q1 ∧Q,..., Qi,..., Qn ∧ size ≥ β1+β2+1⇒ (|Q1,..., Qn] ∧ size ≥ β1) ∗ (|Q] ∧ size ≥ β2+1)

Let us start with the first one:

1 size ≥ β1+β2+1⇒ size ≥ β1 repeated (Sc2)

2 |Q1 ∧Q,..., Qn] ∧ size ≥ β1+β2+1⇒ |Q1 ∧Q,..., Qn] ∧ size ≥ β1 (∧I), 1

3 |Q1 ∧Q,..., Qn] ∧ size ≥ β1 ⇒ (|Q1 ∧Q,..., Qn] ∧ size = β1) ∗ > (G∗27), ](|Q1,..., Qn]) ≤ β1

4 |Q1 ∧Q,..., Qn] ∧ size ≥ β1+β2+1⇒ ((|Q1 ∧Q,..., Qn] ∧ size = β1) ∗ >) (⇒T), 2, 3

5 |Q1 ∧Q,..., Qn] ∧ size ≥ β1+β2+1⇒

((|Q1 ∧Q,..., Qn] ∧ size = β1) ∗ >) ∧ size ≥ β1+β2+1 (∧D), (∧I) and (⇒T), 4

6 ((|Q1 ∧Q,..., Qn] ∧ size = β1) ∗ >) ∧ size ≥ β1+β2+1⇒

(|Q1 ∧Q,..., Qn] ∧ size = β1) ∗ size ≥ β2+1 L3

7 |Q1 ∧Q,..., Qn] ∧ size ≥ β1+β2+1⇒ (|Q1 ∧Q,..., Qn] ∧ size = β1) ∗ size ≥ β2+1 (⇒T), 5, 6

8 |Q1 ∧Q,..., Qn] ∧ size = β1 ⇒ |Q1 ∧Q,..., Qn] ∧ size ≥ β1 (∧E)
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9 (|Q1 ∧Q,..., Qn] ∧ size = β1) ∗ size ≥ β2+1⇒

(|Q1 ∧Q,..., Qn] ∧ size ≥ β1) ∗ size ≥ β2+1 ∗-introduction rule, 8

10 |Q1 ∧Q,..., Qn] ∧ size ≥ β1+β2+1⇒ (|Q1 ∧Q,..., Qn] ∧ size ≥ β1) ∗ size ≥ β2+1 (⇒T), 7, 9

11 (|Q1 ∧Q,..., Qn] ∧ size ≥ β1) ∗ size ≥ β2+1⇒

(|Q1,..., Qn] ∧ size ≥ β1) ∗ (|Q] ∧ size ≥ β2+1) (G∗26)

12 |Q1 ∧Q,..., Qn] ∧ size ≥ β1+β2+1⇒ (|Q1,..., Qn] ∧ size ≥ β1) ∗ (|Q] ∧ size ≥ β2+1) (⇒T), 10, 11

The second and third cases can be proved in an analogous way, hence we treat them as one

case. Again, we write |Q1 ∧Q,..., Qn 〉 for |Q1 ∧Q,..., Qn〉 or |Q1 ∧Q,..., Qi,..., Qn , where i ∈ [1, n].
The proof is as follows:

1 |Q1 ∧Q,..., Qn 〉 ∧ size ≥ β1+β2+1⇒

(|Q1 ∧Q,..., Qn] ∧ size ≥ β1+β2) ∗ size = 1 (G∗28)/(G∗29)

2 |Q1 ∧Q,..., Qn] ∧ size ≥ β1+β2 ⇒

(|Q1 ∧Q,..., Qn] ∧ size ≥ β1) ∗ size ≥ β2 previously derived, ](|Q1,..., Qn]) ≤ β1

3 size = 1⇒ size ≥ 1 (∧E)

4 (|Q1 ∧Q,..., Qn] ∧ size ≥ β1+β2) ∗ size = 1⇒

((|Q1 ∧Q,..., Qn] ∧ size ≥ β1) ∗ size ≥ β2) ∗ size ≥ 1 ∗-introduction rule twice, and (COM), 2, 3

5 |Q1 ∧Q,..., Qn 〉 ∧ size ≥ β1+β2+1⇒

((|Q1 ∧Q,..., Qn] ∧ size ≥ β1) ∗ size ≥ β2) ∗ size ≥ 1 (⇒T), 1, 4

6 ((|Q1 ∧Q,..., Qn] ∧ size ≥ β1) ∗ size ≥ β2) ∗ size ≥ 1⇒

(|Q1 ∧Q,..., Qn] ∧ size ≥ β1) ∗ (size ≥ β2 ∗ size ≥ 1) (ASSOC)

7 |Q1 ∧Q,..., Qn 〉 ∧ size ≥ β1+β2+1⇒

(|Q1 ∧Q,..., Qn] ∧ size ≥ β1) ∗ (size ≥ β2 ∗ size ≥ 1) (⇒T), 5, 6

8 size ≥ β2 ∗ size ≥ 1⇒ size ≥ β2+1 L1

9 (|Q1 ∧Q,..., Qn] ∧ size ≥ β1) ∗ (size ≥ β2 ∗ size ≥ 1)⇒

(|Q1 ∧Q,..., Qn] ∧ size ≥ β1) ∗ size ≥ β2+1 ∗-introduction rule and (COM), 8

10 |Q1 ∧Q,..., Qn 〉 ∧ size ≥ β1+β2+1⇒

(|Q1 ∧Q,..., Qn] ∧ size ≥ β1) ∗ size ≥ β2+1 (⇒T), 7, 9

11 (|Q1 ∧Q,..., Qn] ∧ size ≥ β1) ∗ size ≥ β2+1⇒

(|Q1,..., Qn] ∧ size ≥ β1) ∗ (|Q] ∧ size ≥ β2+1) (G∗26)

12 |Q1 ∧Q,..., Qn 〉 ∧ size ≥ β1+β2+1⇒

(|Q1,..., Qn] ∧ size ≥ β1) ∗ (|Q] ∧ size ≥ β2+1) (⇒T), 10, 11

(|Q1,..., Qn] ∧ size ≥ β1 ∧ ¬size ≥ β′1) ∗ (|Q] ∧ size ≥ β2+1)⇔ γn.

(=⇒):

1 |Q1,..., Qn] ∧ size ≥ β1) ∗ (|Q] ∧ size ≥ β2+1)⇒ γn previously derived

2 |Q1,..., Qn] ∧ size ≥ β1 ∧ ¬size ≥ β′1 ⇒ |Q1,..., Qn] ∧ size ≥ β1 (∧E)

3 (|Q1,..., Qn] ∧ size ≥ β1 ∧ ¬size ≥ β′1) ∗ (|Q] ∧ size ≥ β2+1)⇒

(|Q1,..., Qn] ∧ size ≥ β1) ∗ (|Q] ∧ size ≥ β2+1) ∗-introduction rule, 2

4 (|Q1,..., Qn] ∧ size ≥ β1 ∧ ¬size ≥ β′1) ∗ (|Q] ∧ size ≥ β2+1)⇒ γn (⇒T), 1, 3

(⇐=): As done for the right-to-left direction of the previous case, by propositional reasoning we
can distribute the conjunction over the disjunctions and treat separately each disjunct. We then
show that the following formulae are derivable in Hc(∗).
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• |Q1 ∧Q,..., Qn] ∧ size ≥ β1+β2+1⇒ (|Q1,..., Qn] ∧ size ≥ β1 ∧¬size ≥ β′1) ∗ (|Q] ∧ size ≥ β2+1)

• |Q1 ∧Q,..., Qn〉 ∧ size ≥ β1+β2+1⇒ (|Q1,..., Qn] ∧ size ≥ β1 ∧¬size ≥ β′1) ∗ (|Q] ∧ size ≥ β2+1)

• For all i ∈ [1, n], |Q1 ∧Q,..., Qi,..., Qn ∧ size ≥ β1+β2+1

⇒ (|Q1,..., Qn] ∧ size ≥ β1 ∧ ¬size ≥ β′1) ∗ (|Q] ∧ size ≥ β2+1)

As in the previous case, the second and third types of formulae can be treated analogously. Let us
start with the first formula:

1 |Q1 ∧Q,..., Qn] ∧ size ≥ β1+β2+1⇒ (|Q1 ∧Q,..., Qn] ∧ size = β1) ∗ size ≥ β2+1 previously derived

2 ¬size ≥ β1+1⇒ ¬size ≥ β′1 repeated (Sc2) and (GHyp)

3 |Q1 ∧Q,..., Qn] ∧ size = β1 ⇒ |Q1 ∧Q,..., Qn] ∧ size ≥ β1 ∧ ¬size ≥ β′1 (∧I), 2

4 (|Q1 ∧Q,..., Qn] ∧ size = β1) ∗ size ≥ β2+1⇒

(|Q1 ∧Q,..., Qn] ∧ size ≥ β1 ∧ ¬size ≥ β′1) ∗ size ≥ β2+1 ∗-introduction rule, 3

5 (|Q1 ∧Q,..., Qn] ∧ size ≥ β1 ∧ ¬size ≥ β′1) ∗ size ≥ β2+1⇒

(|Q1,..., Qn] ∧ size ≥ β1 ∧ ¬size ≥ β′1) ∗ (|Q] ∧ size ≥ β2+1) (G∗26)

6 (|Q1 ∧Q,..., Qn] ∧ size = β1) ∗ size ≥ β2+1⇒

(|Q1,..., Qn] ∧ size ≥ β1 ∧ ¬size ≥ β′1) ∗ (|Q] ∧ size ≥ β2+1) (⇒T), 4, 5

7 |Q1 ∧Q,..., Qn] ∧ size ≥ β1+β2+1⇒

(|Q1,..., Qn] ∧ size ≥ β1 ∧ ¬size ≥ β′1) ∗ (|Q] ∧ size ≥ β2+1) (⇒T), 1, 6

We now focus on the two remaining types of formulae. Let |Q1 ∧ Q,..., Qn 〉 be either |Q1 ∧
Q,..., Qn〉 or |Q1 ∧Q,..., Qi,..., Qn , for some i ∈ [1, n]. Then:

1 |Q1 ∧Q,..., Qn 〉 ∧ size ≥ β1+β2+1⇒

(|Q1 ∧Q,..., Qn] ∧ size ≥ β1+β2) ∗ size = 1 (G∗28)/(G∗29)

2 |Q1 ∧Q,..., Qn] ∧ size ≥ β1+β2 ⇒

(|Q1 ∧Q,..., Qn] ∧ size = β1) ∗ size ≥ β2 previously derived, ](|Q1,..., Qn]) ≤ β1

3 (|Q1 ∧Q,..., Qn] ∧ size ≥ β1+β2) ∗ size = 1⇒

((|Q1 ∧Q,..., Qn] ∧ size = β1) ∗ size ≥ β2) ∗ size = 1 ∗-introduction rule, 2

4 |Q1 ∧Q,..., Qn 〉 ∧ size ≥ β1+β2+1⇒

((|Q1 ∧Q,..., Qn] ∧ size = β1) ∗ size ≥ β2) ∗ size = 1 (⇒T), 1, 3

5 ((|Q1 ∧Q,..., Qn] ∧ size = β1) ∗ size ≥ β2) ∗ size = 1⇒

(|Q1 ∧Q,..., Qn] ∧ size = β1) ∗ (size ≥ β2 ∗ size = 1) (ASSOC)

6 |Q1 ∧Q,..., Qn 〉 ∧ size ≥ β1+β2+1⇒

(|Q1 ∧Q,..., Qn] ∧ size = β1) ∗ (size ≥ β2 ∗ size = 1) (⇒T), 4, 5

7 size = 1⇒ size ≥ 1 (∧E)

8 size ≥ β2 ∗ size = 1⇒ size ≥ β2+1 ∗-introduction rule, (COM) and L1, 7

9 (|Q1 ∧Q,..., Qn] ∧ size = β1) ∗ (size ≥ β2 ∗ size = 1)⇒

(|Q1 ∧Q,..., Qn] ∧ size = β1) ∗ size ≥ β2+1 ∗-introduction rule and (COM), 8

10 |Q1 ∧Q,..., Qn 〉 ∧ size ≥ β1+β2+1⇒

(|Q1 ∧Q,..., Qn] ∧ size = β1) ∗ size ≥ β2+1 (⇒T), 6, 9

11 |Q1 ∧Q,..., Qn] ∧ size = β1) ∗ size ≥ β2+1⇒

(|Q1,..., Qn] ∧ size ≥ β1 ∧ ¬size ≥ β′1) ∗ (|Q] ∧ size ≥ β2+1) previously derived

12 |Q1 ∧Q,..., Qn 〉 ∧ size ≥ β1+β2+1⇒

(|Q1,..., Qn] ∧ size ≥ β1 ∧ ¬size ≥ β′1) ∗ (|Q] ∧ size ≥ β2+1) (⇒T), 10, 11
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(|Q1,..., Qn] ∧ size ≥ β1) ∗ (|Q] ∧ size ≥ β2+1 ∧ ¬size ≥ β′2)⇔ γn

(=⇒):

1 |Q1,..., Qn] ∧ size ≥ β1) ∗ (|Q] ∧ size ≥ β2+1)⇒ γn previously derived

2 |Q] ∧ size ≥ β2+1 ∧ ¬size ≥ β′2 ⇒ |Q] ∧ size ≥ β2+1 (∧E)

3 (|Q1,..., Qn] ∧ size ≥ β1) ∗ (|Q] ∧ size ≥ β2+1 ∧ ¬size ≥ β′2)⇒

(|Q1,..., Qn] ∧ size ≥ β1) ∗ (|Q] ∧ size ≥ β2+1) ∗-introduction rule and (COM), 2

4 (|Q1,..., Qn] ∧ size ≥ β1) ∗ (|Q] ∧ size ≥ β2+1 ∧ ¬size ≥ β′2)⇒ γn (⇒T), 1, 3

(⇐=): Again, by propositional reasoning we can distribute the conjunction over the disjunctions
and treat separately each disjunct. We then show that the formulae below are derivable in Hc(∗):
• |Q1 ∧Q,..., Qn] ∧ size ≥ β1+β2+1⇒ (|Q1,..., Qn] ∧ size ≥ β1) ∗ (|Q] ∧ size ≥ β2+1∧¬size ≥ β′2)

• |Q1 ∧Q,..., Qn〉 ∧ size ≥ β1+β2+1⇒ (|Q1,..., Qn] ∧ size ≥ β1) ∗ (|Q] ∧ size ≥ β2+1∧¬size ≥ β′2)

• For all i ∈ [1, n], |Q1 ∧Q,..., Qi,..., Qn ∧ size ≥ β1+β2+1

⇒ (|Q1,..., Qn] ∧ size ≥ β1) ∗ (|Q] ∧ size ≥ β2+1 ∧ ¬size ≥ β′2)

Let us start with the first one:

1 |Q1 ∧Q,..., Qn] ∧ size ≥ β1+β2+1⇒

(|Q1 ∧Q,..., Qn] ∧ size = β1) ∗ size ≥ β2+1 previously derived

2 size ≥ β2+1⇒ size = β2+1 ∗ size ≥ 0 (ASSOC)

3 size ≥ 0⇒ size ≥ 1 ∨ ¬size ≥ 1 (>S)

4 size = β2+1 ∗ size ≥ 0⇒ (size ≥ 1 ∨ ¬size ≥ 1) ∗ size = β2+1 ∗-introduction rule and (COM), 3

5 size ≥ β2+1⇒ (size ≥ 1 ∨ ¬size ≥ 1) ∗ size = β2+1 (⇒T), 2, 4

6 (|Q1 ∧Q,..., Qn] ∧ size = β1) ∗ size ≥ β2+1⇒

(|Q1 ∧Q,..., Qn] ∧ size = β1) ∗ ((size ≥ 1 ∨ ¬size ≥ 1) ∗ size = β2+1) ∗-introduction rule and (COM), 5

7 (|Q1 ∧Q,..., Qn] ∧ size = β1) ∗ ((size ≥ 1 ∨ ¬size ≥ 1) ∗ size = β2+1)⇒

(((|Q1 ∧Q,..., Qn] ∧ size = β1) ∗ size ≥ 1) ∗ size = β2+1)∨

(((|Q1 ∧Q,..., Qn] ∧ size = β1) ∗ ¬size ≥ 1) ∗ size = β2+1) (ASSOC), (COM) and (∗DISTR)

8 |Q1 ∧Q,..., Qn] ∧ size ≥ β1+β2+1⇒

(((|Q1 ∧Q,..., Qn] ∧ size = β1) ∗ size ≥ 1) ∗ size = β2+1)∨

(((|Q1 ∧Q,..., Qn] ∧ size = β1) ∗ ¬size ≥ 1) ∗ size = β2+1) (⇒T), 1, 6, 7

We split the proof (cases (1) and (2) below), deriving the following two tautologies:

1. ((|Q1 ∧Q,..., Qn] ∧ size = β1) ∗ ¬size ≥ 1) ∗ size = β2+1

⇒ (|Q1,..., Qn] ∧ size ≥ β1) ∗ (|Q] ∧ size ≥ β2+1 ∧ ¬size ≥ β′2)

2. |Q1 ∧Q,..., Qn] ∧ (((|Q1 ∧Q,..., Qn] ∧ size = β1) ∗ size ≥ 1) ∗ size = β2+1)

⇒ (|Q1,..., Qn] ∧ size ≥ β1) ∗ (|Q] ∧ size ≥ β2+1 ∧ ¬size ≥ β′2)

Trivially, these two formulae allow us to conclude that

|Q1 ∧Q,..., Qn] ∧ size ≥ β1+β2+1⇒ (|Q1,..., Qn] ∧ size ≥ β1) ∗ (|Q] ∧ size ≥ β2+1 ∧ ¬size ≥ β′2)

is derivable in Hc(∗) directly from the last formula derived above, by propositional reasoning.
1.

1 (|Q1 ∧Q,..., Qn] ∧ size = β1) ∗ ¬size ≥ 1⇒ |Q1 ∧Q,..., Qn] ∧ size = β1 previously derived

2 |Q1 ∧Q,..., Qn] ∧ size = β1 ⇒ |Q1 ∧Q,..., Qn] ∧ size ≥ β1 (∧E)

3 (|Q1 ∧Q,..., Qn] ∧ size = β1) ∗ ¬size ≥ 1⇒ |Q1 ∧Q,..., Qn] ∧ size ≥ β1 (⇒T), 1, 2

4 ¬size ≥ β2+2⇒ ¬size ≥ β′2 (Sc2), β2 + 2 ≤ β′2
5 size = β2+1⇒ size ≥ β2+1 ∧ ¬size ≥ β′2 (∧I), 4
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6 ((|Q1 ∧Q,..., Qn] ∧ size = β1 ∗ ¬size ≥ 1) ∗ size = β2+1)⇒

(|Q1 ∧Q,..., Qn] ∧ size ≥ β1) ∗ (size ≥ β2+1 ∧ ¬size ≥ β′2) ∗-introduction rule and (COM), 3, 5

7 (|Q1 ∧Q,..., Qn] ∧ size ≥ β1) ∗ (size ≥ β2+1 ∧ ¬size ≥ β′2)⇒

(|Q1,..., Qn] ∧ size ≥ β1) ∗ (|Q] ∧ size ≥ β2+1 ∧ ¬size ≥ β′2) (G∗26)

8 ((|Q1 ∧Q,..., Qn] ∧ size = β1 ∗ ¬size ≥ 1) ∗ size = β2+1)⇒

(|Q1,..., Qn] ∧ size ≥ β1) ∗ (|Q] ∧ size ≥ β2+1 ∧ ¬size ≥ β′2) (⇒T), 6, 7

2.

1 (|Q1 ∧Q,..., Qn] ∧ size = β1) ∗ size ≥ 1⇒

(|Q1,..., Qn] ∨ |Q1,..., Qn〉 ∨
∨
i∈[1,n] |Q1,..., Qi,..., Qn ) ∧ size ≥ β1+1 previously derived

2 ((|Q1 ∧Q,..., Qn] ∧ size = β1) ∗ size ≥ 1) ∗ size = β2+1⇒

((|Q1 ∧Q,..., Qn] ∨ |Q1 ∧Q,..., Qn〉 ∨
∨
i∈[1,n] |Q1 ∧Q,..., Qi,..., Qn ) ∧ size ≥ β1+1)

∗ size = β2+1 ∗-introduction rule, 1

3 ((|Q1 ∧Q,..., Qn] ∨ |Q1 ∧Q,..., Qn〉 ∨
∨
i∈[1,n] |Q1 ∧Q,..., Qi,..., Qn ) ∧ size ≥ β1+1)

∗ size = β2+1⇒
(

((|Q1 ∧Q,..., Qn] ∧ size ≥ β1+1) ∗ size = β2+1)

∨((|Q1 ∧Q,..., Qn〉 ∧ size ≥ β1+1) ∗ size = β2+1)

∨
∨
i∈[1,n]((|Q1 ∧Q,..., Qi,..., Qn ∧ size ≥ β1+1) ∗ size = β2+1)

)
(∧C) and (∗DISTR)

4 ((|Q1 ∧Q,..., Qn] ∧ size = β1) ∗ size ≥ 1) ∗ size = β2+1⇒

((|Q1 ∧Q,..., Qn] ∧ size ≥ β1+1) ∗ size = β2+1)

∨((|Q1 ∧Q,..., Qn〉 ∧ size ≥ β1+1) ∗ size = β2+1)

∨
∨
i∈[1,n]((|Q1 ∧Q,..., Qi,..., Qn ∧ size ≥ β1+1) ∗ size = β2+1) (⇒T), 2, 3

5 |Q1 ∧Q,..., Qn] ∧ (((|Q1 ∧Q,..., Qn] ∧ size = β1) ∗ size ≥ 1) ∗ size = β2+1)⇒

(|Q1 ∧Q,..., Qn] ∧ ((|Q1 ∧Q,..., Qn] ∧ size ≥ β1+1) ∗ size = β2+1))

∨(|Q1 ∧Q,..., Qn] ∧ ((|Q1 ∧Q,..., Qn〉 ∧ size ≥ β1+1) ∗ size = β2+1))

∨
∨
i∈[1,n](|Q1 ∧Q,..., Qn] ∧ ((|Q1 ∧Q,..., Qi,..., Qn ∧ size ≥ β1+1) ∗ size = β2+1)) (∧I) and (∧∨), 4

6 (|Q1 ∧Q,..., Qn〉∧size ≥ β1+1)∗size = β2+1⇒ |Q1 ∧Q,..., Qn〉∧size ≥ β1+β2+2 previously derived

7 |Q1 ∧Q,..., Qn] ∧ ((|Q1 ∧Q,..., Qn〉 ∧ size ≥ β1+1) ∗ size = β2+1)⇒

|Q1 ∧Q,..., Qn] ∧ |Q1 ∧Q,..., Qn〉 ∧ size ≥ β1+β2+2 (∧I), 6

8 |Q1 ∧Q,..., Qn] ∧ |Q1 ∧Q,..., Qn〉 ∧ size ≥ β1+β2+2⇒⊥ (Gc
3) and (∧E)

9 |Q1 ∧Q,..., Qn] ∧ ((|Q1 ∧Q,..., Qn〉 ∧ size ≥ β1+1) ∗ size = β2+1)⇔⊥ (⇒T) and (⊥I), 7, 8

10 (|Q1 ∧Q,..., Qi,..., Qn ∧ size ≥ β1+1) ∗ size = β2+1⇒

|Q1 ∧Q,..., Qi,..., Qn ∧ size ≥ β1+β2+2 previously derived

11 |Q1 ∧Q,..., Qn] ∧ ((|Q1 ∧Q,..., Qi,..., Qn ∧ size ≥ β1+1) ∗ size = β2+1)⇒

|Q1 ∧Q,..., Qn] ∧ |Q1 ∧Q,..., Qi,..., Qn ∧ size ≥ β1+β2+2 (∧I), 10

12 |Q1 ∧Q,..., Qn] ∧ |Q1 ∧Q,..., Qi,..., Qn ∧ size ≥ β1+β2+2⇒⊥ (Gc
3) and (∧E)

13 |Q1 ∧Q,..., Qn] ∧ ((|Q1 ∧Q,..., Qi,..., Qn ∧ size ≥ β1+1) ∗ size = β2+1)⇔⊥ (⇒T) and (⊥I), 11, 12

14 (|Q1 ∧Q,..., Qn] ∧ ((|Q1 ∧Q,..., Qn] ∧ size ≥ β1+1) ∗ size = β2+1))

∨(|Q1 ∧Q,..., Qn] ∧ ((|Q1 ∧Q,..., Qn〉 ∧ size ≥ β1+1) ∗ size = β2+1))

∨
∨
i∈[1,n](|Q1 ∧Q,..., Qn] ∧ ((|Q1 ∧Q,..., Qi,..., Qn ∧ size ≥ β1+1) ∗ size = β2+1))⇒

(|Q1 ∧Q,..., Qn] ∧ ((|Q1 ∧Q,..., Qn] ∧ size ≥ β1+1) ∗ size = β2+1))∨ ⊥ ∨
∨
i∈[1,n] ⊥ R0, 9, 13

15 |Q1 ∧Q,..., Qn] ∧ (((|Q1 ∧Q,..., Qn] ∧ size = β1) ∗ size ≥ 1) ∗ size = β2+1)⇒

|Q1 ∧Q,..., Qn] ∧ ((|Q1 ∧Q,..., Qn] ∧ size ≥ β1+1) ∗ size = β2+1) (⇒T) and (>I), 5, 14
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16 |Q1 ∧Q,..., Qn] ∧ ((|Q1 ∧Q,..., Qn] ∧ size ≥ β1+1) ∗ size = β2+1)⇒

(|Q1 ∧Q,..., Qn] ∧ size ≥ β1+1) ∗ size = β2+1 (∧E) and (∧C)

17 size = β2+1⇒ size ≥ β2+1 ∧ ¬size ≥ β′2 previously derived

18 (|Q1 ∧Q,..., Qn] ∧ size ≥ β1+1) ∗ size = β2+1⇒

(|Q1 ∧Q,..., Qn] ∧ size ≥ β1+1) ∗ (size ≥ β2+1 ∧ ¬size ≥ β′2) ∗-introduction rule and (COM), 17

19 (|Q1 ∧Q,..., Qn] ∧ size ≥ β1+1) ∗ (size ≥ β2+1 ∧ ¬size ≥ β′2)⇒

(|Q1,..., Qn] ∧ size ≥ β1+1) ∗ (|Q] ∧ size ≥ β2+1 ∧ ¬size ≥ β′2) (G∗26)

20 |Q1 ∧Q,..., Qn] ∧ ((|Q1 ∧Q,..., Qn] ∧ size ≥ β1+1) ∗ size = β2+1)⇒

(|Q1,..., Qn] ∧ size ≥ β1+1) ∗ (|Q] ∧ size ≥ β2+1 ∧ ¬size ≥ β′2) repeated (⇒T), 16, 18, 19

We now focus on the two remaining types of formulae. Let |Q1∧Q,..., Qn 〉 be either |Q1∧Q,..., Qn〉
or |Q1 ∧Q,..., Qi,..., Qn , for some i ∈ [1, n]. Then:

1 |Q1 ∧Q,..., Qn 〉 ∧ size ≥ β1+β2+1⇒

(|Q1 ∧Q,..., Qn 〉 ∧ size = β1+1) ∗ size ≥ β2 previously derived, ](|Q1,..., Qn]) ≤ β1+1

2 size ≥ β2 ⇒ size = β2 ∗ size ≥ 0 (S∗5)

3 (|Q1 ∧Q,..., Qn 〉 ∧ size = β1+1) ∗ size ≥ β2 ⇒

(|Q1 ∧Q,..., Qn 〉 ∧ size = β1+1) ∗ (size = β2 ∗ size ≥ 0) ∗-introduction rule and (COM), 2

4 |Q1 ∧Q,..., Qn 〉 ∧ size ≥ β1+β2+1⇒

(|Q1 ∧Q,..., Qn 〉 ∧ size = β1+1) ∗ (size = β2 ∗ size ≥ 0) (⇒T), 1, 3

5 (|Q1 ∧Q,..., Qn 〉 ∧ size = β1+1) ∗ (size = β2 ∗ size ≥ 0)⇒

((|Q1 ∧Q,..., Qn 〉 ∧ size = β1+1) ∗ size ≥ 0) ∗ size = β2 (COM) and (ASSOC)

6 |Q1 ∧Q,..., Qn 〉 ∧ size ≥ β1+β2+1⇒

((|Q1 ∧Q,..., Qn 〉 ∧ size = β1+1) ∗ size ≥ 0) ∗ size = β2 (⇒T), 4, 5

7 (|Q1 ∧Q,..., Qn 〉 ∧ size = β1+1) ∗ size ≥ 0⇒

|Q1 ∧Q,..., Qn 〉 ∧ size ≥ β1+1 previously derived

8 |Q1 ∧Q,..., Qn 〉 ∧ size ≥ β1+1⇒

(|Q1 ∧Q,..., Qn] ∧ size ≥ β1) ∗ size = 1 (G∗28)/(G∗29)

9 (|Q1 ∧Q,..., Qn 〉 ∧ size = β1+1) ∗ size ≥ 0⇒

(|Q1 ∧Q,..., Qn] ∧ size ≥ β1) ∗ size = 1 (⇒T), 7, 8

10 ((|Q1 ∧Q,..., Qn 〉 ∧ size = β1+1) ∗ size ≥ 0) ∗ size = β2 ⇒

((|Q1 ∧Q,..., Qn] ∧ size ≥ β1) ∗ size = 1) ∗ size = β2 ∗-introduction rule, 9

11 |Q1 ∧Q,..., Qn 〉 ∧ size ≥ β1+β2+1⇒

((|Q1 ∧Q,..., Qn] ∧ size ≥ β1) ∗ size = 1) ∗ size = β2 (⇒T), 6, 10

12 ((|Q1 ∧Q,..., Qn] ∧ size ≥ β1) ∗ size = 1) ∗ size = β2 ⇒

(|Q1 ∧Q,..., Qn] ∧ size ≥ β1) ∗ (size = 1 ∗ size = β2) (COM)

13 |Q1 ∧Q,..., Qn 〉 ∧ size ≥ β1+β2+1⇒

(|Q1 ∧Q,..., Qn] ∧ size ≥ β1) ∗ (size = 1 ∗ size = β2) (⇒T), 11, 12

14 size = 1 ∗ size = β2 ⇒ size = β2+1 L4

15 ¬size ≥ β2+1⇒ ¬size ≥ β′2 repeated (Sc2), (GHyp)

16 size = β2+1⇒ size ≥ β2+1 ∧ ¬size ≥ β′2 (∧I), 15

17 size = 1 ∗ size = β2 ⇒ size ≥ β2+1 ∧ ¬size ≥ β′2 (⇒T), 14, 16
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18 (|Q1 ∧Q,..., Qn] ∧ size ≥ β1) ∗ (size = 1 ∗ size = β2)⇒

(|Q1 ∧Q,..., Qn] ∧ size ≥ β1) ∗ (size ≥ β2+1 ∧ ¬size ≥ β′2) ∗-introduction rule and (COM), 17

19 |Q1 ∧Q,..., Qn 〉 ∧ size ≥ β1+β2+1⇒

(|Q1 ∧Q,..., Qn] ∧ size ≥ β1) ∗ (size ≥ β2+1 ∧ ¬size ≥ β′2) (⇒T), 13, 18

20 (|Q1 ∧Q,..., Qn] ∧ size ≥ β1) ∗ (size ≥ β2+1 ∧ ¬size ≥ β′2)⇒

(|Q1,..., Qn] ∧ size ≥ β1) ∗ (|Q] ∧ size ≥ β2+1 ∧ ¬size ≥ β′2) (G∗26)

21 |Q1 ∧Q,..., Qn 〉 ∧ size ≥ β1+β2+1⇒

(|Q1,..., Qn] ∧ size ≥ β1) ∗ (|Q] ∧ size ≥ β2+1 ∧ ¬size ≥ β′2) (⇒T), 19, 20

(|Q1,..., Qn] ∧ size ≥ β1 ∧ ¬size ≥ β′1) ∗ (|Q] ∧ size ≥ β2+1 ∧ ¬size ≥ β′2)⇔
γn ∧ ¬size ≥ β′1+β′2

.−1

(=⇒):

1 |Q1,..., Qn] ∧ size ≥ β1) ∗ (|Q] ∧ size ≥ β2+1)⇒ γn previously derived

2 (|Q1,..., Qn] ∧ size ≥ β1 ∧ ¬size ≥ β′1) ∗ (|Q] ∧ size ≥ β2+1 ∧ ¬size ≥ β′2)⇒

(|Q1,..., Qn] ∧ size ≥ β1) ∗ (|Q] ∧ size ≥ β2+1) L0

3 (|Q1,..., Qn] ∧ size ≥ β1 ∧ ¬size ≥ β′1) ∗ (|Q] ∧ size ≥ β2+1 ∧ ¬size ≥ β′2)⇒ γn) (⇒T), 1, 2

4 (|Q1,..., Qn] ∧ size ≥ β1 ∧ ¬size ≥ β′1) ∗ (|Q] ∧ size ≥ β2+1 ∧ ¬size ≥ β′2)⇒

¬size ≥ β′1 ∗ ¬size ≥ β′2 L0

5 ¬size ≥ β′1 ∗ ¬size ≥ β′2 ⇒ ¬size ≥ (β′1+β′2) .−1 (S∗6)

6 (|Q1,..., Qn] ∧ size ≥ β1 ∧ ¬size ≥ β′1) ∗ (|Q] ∧ size ≥ β2+1 ∧ ¬size ≥ β′2)⇒

¬size ≥ (β′1+β′2) .−1 (⇒T), 4, 5

7 (|Q1,..., Qn] ∧ size ≥ β1 ∧ ¬size ≥ β′1) ∗ (|Q] ∧ size ≥ β2+1 ∧ ¬size ≥ β′2)⇒

γn ∧ ¬size ≥ (β′1+β′2) .−1 (∧R), 3, 6

(⇐=): Again, by propositional reasoning we can distribute the conjunction over the disjunctions
and treat separately each disjunct. We then show that the formulae below are derivable in Hc(∗):
• |Q1 ∧Q,..., Qn] ∧ size ≥ β1+β2+1 ∧ ¬size ≥ β′1+β′2

.−1

⇒ (|Q1,..., Qn] ∧ size ≥ β1 ∧ ¬size ≥ β′1) ∗ (|Q] ∧ size ≥ β2+1 ∧ ¬size ≥ β′2)

• |Q1 ∧Q,..., Qn〉 ∧ size ≥ β1+β2+1 ∧ ¬size ≥ β′1+β′2
.−1

⇒ (|Q1,..., Qn] ∧ size ≥ β1 ∧ ¬size ≥ β′1) ∗ (|Q] ∧ size ≥ β2+1 ∧ ¬size ≥ β′2)

• For all i ∈ [1, n], |Q1 ∧Q,..., Qi,..., Qn ∧ size ≥ β1+β2+1 ∧ ¬size ≥ β′1+β′2
.−1

⇒ (|Q1,..., Qn] ∧ size ≥ β1 ∧ ¬size ≥ β′1) ∗ (|Q] ∧ size ≥ β2+1 ∧ ¬size ≥ β′2)

Let us start with the first one:

1 |Q1 ∧Q,..., Qn] ∧ size ≥ β1+β2+1⇒

(|Q1 ∧Q,..., Qn] ∧ size = β1) ∗ size ≥ β2+1 previously derived

2 ((|Q1 ∧Q,..., Qn] ∧ size = β1) ∗ size ≥ β2+1) ∧ ¬size ≥ β′1+β′2
.−1⇒

(|Q1 ∧Q,..., Qn] ∧ size = β1) ∗ (size ≥ β2+1 ∧ ¬size ≥ (β′1−β1)+β′2
.−1) L2, β1 < β′1

3 |Q1 ∧Q,..., Qn] ∧ size ≥ β1+β2+1 ∧ ¬size ≥ β′1+β′2
.−1⇒

(|Q1 ∧Q,..., Qn] ∧ size = β1) ∗ (size ≥ β2+1 ∧ ¬size ≥ (β′1−β1)+β′2
.−1) (∧D) and (∧I), 2

4 size ≥ β2+1 ∧ ¬size ≥ (β′1−β1)+β′2
.−1⇒

(size ≥ 0 ∧ ¬size ≥ β′1−β1) ∗ (size ≥ β2+1 ∧ ¬size ≥ β′2) L4
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5 (|Q1 ∧Q,..., Qn] ∧ size = β1) ∗ (size ≥ β2+1 ∧ ¬size ≥ (β′1−β1)+β′2
.−1)⇒

(|Q1 ∧Q,..., Qn] ∧ size = β1)∗

((size ≥ 0 ∧ ¬size ≥ β′1−β1) ∗ (size ≥ β2+1 ∧ ¬size ≥ β′2)) ∗-intro. rule and (COM), 4

6 (|Q1 ∧Q,..., Qn] ∧ size = β1)∗

((size ≥ 0 ∧ ¬size ≥ β′1−β1) ∗ (size ≥ β2+1 ∧ ¬size ≥ β′2))⇒

((|Q1 ∧Q,..., Qn] ∧ size = β1) ∗ (size ≥ 0 ∧ ¬size ≥ β′1−β1))

∗(size ≥ β2+1 ∧ ¬size ≥ β′2) (ASSOC)

7 |Q1 ∧Q,..., Qn] ∧ size ≥ β1+β2+1 ∧ ¬size ≥ β′1+β′2
.−1⇒

((|Q1 ∧Q,..., Qn] ∧ size = β1) ∗ (size ≥ 0 ∧ ¬size ≥ β′1−β1))

∗(size ≥ β2+1 ∧ ¬size ≥ β′2) repeated (⇒T), 3, 5, 6

8 (|Q1 ∧Q,..., Qn] ∧ size = β1) ∗ (size ≥ 0 ∧ ¬size ≥ β′1−β1)⇒

(|Q1 ∧Q,..., Qn] ∨ |Q1 ∧Q,..., Qn〉 ∨
∨
i∈[1,n] |Q1 ∧Q,..., Qi,..., Qn )

∧ size ≥ β1 ∧ ¬size ≥ β′1 previously derived

9 ((|Q1 ∧Q,..., Qn] ∧ size = β1) ∗ (size ≥ 0 ∧ ¬size ≥ β′1−β1))

∗(size ≥ β2+1 ∧ ¬size ≥ β′2)⇒(
(|Q1 ∧Q,..., Qn] ∨ |Q1 ∧Q,..., Qn〉 ∨

∨
i∈[1,n] |Q1 ∧Q,..., Qi,..., Qn )

∧ size ≥ β1 ∧ ¬size ≥ β′1
)
∗ (size ≥ β2+1 ∧ ¬size ≥ β′2) ∗-introduction rule, 8

10
(

(|Q1 ∧Q,..., Qn] ∨ |Q1 ∧Q,..., Qn〉 ∨
∨
i∈[1,n] |Q1 ∧Q,..., Qi,..., Qn )

∧ size ≥ β1 ∧ ¬size ≥ β′1
)
∗ (size ≥ β2+1 ∧ ¬size ≥ β′2)⇒

((|Q1 ∧Q,..., Qn] ∧ size ≥ β1 ∧ ¬size ≥ β′1) ∗ (size ≥ β2+1 ∧ ¬size ≥ β′2))

∨((|Q1 ∧Q,..., Qn〉 ∧ size ≥ β1 ∧ ¬size ≥ β′1) ∗ (size ≥ β2+1 ∧ ¬size ≥ β′2))

∨
∨
i∈[1,n]

(
(|Q1 ∧Q,..., Qi,..., Qn ∧ size ≥ β1 ∧ ¬size ≥ β′1)

∗(size ≥ β2+1 ∧ ¬size ≥ β′2)
)

(∧C) and (∗DISTR)

11 |Q1 ∧Q,..., Qn] ∧ size ≥ β1+β2+1 ∧ ¬size ≥ β′1+β′2
.−1⇒

((|Q1 ∧Q,..., Qn] ∧ size ≥ β1 ∧ ¬size ≥ β′1) ∗ (size ≥ β2+1 ∧ ¬size ≥ β′2))

∨((|Q1 ∧Q,..., Qn〉 ∧ size ≥ β1 ∧ ¬size ≥ β′1) ∗ (size ≥ β2+1 ∧ ¬size ≥ β′2))

∨
∨
i∈[1,n]

(
(|Q1 ∧Q,..., Qi,..., Qn ∧ size ≥ β1 ∧ ¬size ≥ β′1)

∗(size ≥ β2+1 ∧ ¬size ≥ β′2)
)

repeated (⇒T), 7, 9, 10

Similarly to what is proved in the right-to-left direction of the previous case of this lemma, the two
following formulae can be derived in Hc(∗), essentially by relying on the axioms (Gc

3) and (Gc
4):

• |Q1 ∧Q,..., Qn] ∧ ((|Q1 ∧Q,..., Qn〉 ∧ size ≥ β1 ∧ ¬size ≥ β′1) ∗ (size ≥ β2+1 ∧ ¬size ≥ β′2))⇒⊥

• |Q1∧Q,..., Qn]∧((|Q1∧Q,..., Qi,..., Qn ∧ size ≥ β1∧¬size ≥ β′1)∗(size ≥ β2+1∧¬size ≥ β′2))⇒⊥

Hence, by propositional reasoning it is possible to show a derivation in Hc(∗) of

12
(

((|Q1 ∧Q,..., Qn] ∧ size ≥ β1 ∧ ¬size ≥ β′1) ∗ (size ≥ β2+1 ∧ ¬size ≥ β′2))

∨((|Q1 ∧Q,..., Qn〉 ∧ size ≥ β1 ∧ ¬size ≥ β′1) ∗ (size ≥ β2+1 ∧ ¬size ≥ β′2))

∨
∨
i∈[1,n]

(
(|Q1 ∧Q,..., Qi,..., Qn ∧ size ≥ β1 ∧ ¬size ≥ β′1)

∗(size ≥ β2+1 ∧ ¬size ≥ β′2)
))
∧ |Q1 ∧Q,..., Qn] ⇒

(|Q1 ∧Q,..., Qn] ∧ size ≥ β1 ∧ ¬size ≥ β′1) ∗ (size ≥ β2+1 ∧ ¬size ≥ β′2)

which then allows us to conclude.
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13 |Q1 ∧Q,..., Qn] ∧ size ≥ β1+β2+1 ∧ ¬size ≥ β′1+β′2
.−1⇒(

((|Q1 ∧Q,..., Qn] ∧ size ≥ β1 ∧ ¬size ≥ β′1) ∗ (size ≥ β2+1 ∧ ¬size ≥ β′2))

∨((|Q1 ∧Q,..., Qn〉 ∧ size ≥ β1 ∧ ¬size ≥ β′1) ∗ (size ≥ β2+1 ∧ ¬size ≥ β′2))

∨
∨
i∈[1,n]

(
(|Q1 ∧Q,..., Qi,..., Qn ∧ size ≥ β1 ∧ ¬size ≥ β′1) (∧D) and (∧I), 11

14 (|Q1 ∧Q,..., Qn] ∧ size ≥ β1 ∧ ¬size ≥ β′1) ∗ (size ≥ β2+1 ∧ ¬size ≥ β′2)⇒

(|Q1,..., Qn] ∧ size ≥ β1 ∧ ¬size ≥ β′1) ∗ (|Q] ∧ size ≥ β2+1 ∧ ¬size ≥ β′2) (G∗26)

15 |Q1 ∧Q,..., Qn] ∧ size ≥ β1+β2+1 ∧ ¬size ≥ β′1+β′2
.−1⇒

(|Q1,..., Qn] ∧ size ≥ β1 ∧ ¬size ≥ β′1) ∗ (|Q] ∧ size ≥ β2+1 ∧ ¬size ≥ β′2) repeated (⇒T), 12, 13, 14

We now focus on the two remaining types of formulae. Let |Q1 ∧ Q,..., Qn 〉 be either |Q1 ∧
Q,..., Qn〉 or |Q1 ∧Q,..., Qi,..., Qn , for some i ∈ [1, n]. Then:

1 |Q1 ∧Q,..., Qn 〉 ∧ size ≥ β1+β2+1⇒

(|Q1 ∧Q,..., Qn 〉 ∧ size = β1+1) ∗ size ≥ β2 previously derived

2 |Q1 ∧Q,..., Qn 〉 ∧ size ≥ β1+β2+1 ∧ ¬size ≥ β′1+β′2
.−1⇒

((|Q1 ∧Q,..., Qn 〉 ∧ size = β1+1) ∗ size ≥ β2) ∧ ¬size ≥ β′1+β′2
.−1 (∧I) and (∧C), 1

3 ((|Q1 ∧Q,..., Qn 〉 ∧ size = β1+1) ∗ size ≥ β2) ∧ ¬size ≥ β′1+β′2
.−1⇒

(|Q1 ∧Q,..., Qn 〉 ∧ size = β1+1) ∗ (size ≥ β2 ∧ ¬size ≥ (β′1−β1)+β′2
.−2) L2, β1 < β′1

4 size ≥ β2 ∧ ¬size ≥ (β′1−β1)+β′2
.−2⇒

(size ≥ 0 ∧ ¬size ≥ β′1−β1) ∗ (size ≥ β2 ∧ ¬size ≥ β′2 − 1) L4, β′2 ≥ 2

5 (|Q1 ∧Q,..., Qn 〉 ∧ size = β1+1) ∗ (size ≥ β2 ∧ ¬size ≥ (β′1−β1)+β′2
.−2)⇒

(|Q1 ∧Q,..., Qn 〉 ∧ size = β1+1)∗

((size ≥ 0 ∧ ¬size ≥ β′1−β1) ∗ (size ≥ β2 ∧ ¬size ≥ β′2 − 1)) ∗-introduction rule and (COM), 4

6 (|Q1 ∧Q,..., Qn 〉 ∧ size = β1+1)∗

((size ≥ 0 ∧ ¬size ≥ β′1−β1) ∗ (size ≥ β2 ∧ ¬size ≥ β′2 − 1))⇒

((|Q1 ∧Q,..., Qn 〉 ∧ size = β1+1) ∗ (size ≥ 0 ∧ ¬size ≥ β′1−β1))∗

(size ≥ β2 ∧ ¬size ≥ β′2 − 1) (ASSOC)

7 |Q1 ∧Q,..., Qn 〉 ∧ size ≥ β1+β2+1 ∧ ¬size ≥ β′1+β′2
.−1⇒

((|Q1 ∧Q,..., Qn 〉 ∧ size = β1+1) ∗ (size ≥ 0 ∧ ¬size ≥ β′1−β1))∗

(size ≥ β2 ∧ ¬size ≥ β′2 − 1) repeated (⇒T), 2, 3, 5, 6

8 (|Q1 ∧Q,..., Qn 〉 ∧ size = β1+1) ∗ (size ≥ 0 ∧ ¬size ≥ β′1−β1)⇒

|Q1 ∧Q,..., Qn 〉 ∧ size ≥ β1+1 ∧ ¬size ≥ β′1+1 previously derived

9 |Q1 ∧Q,..., Qn 〉 ∧ size ≥ β1+1⇒ (|Q1 ∧Q,..., Qn] ∧ size ≥ β1) ∗ size = 1 (G∗28)/(G∗29)

10 |Q1 ∧Q,..., Qn 〉 ∧ size ≥ β1+1 ∧ ¬size ≥ β′1+1⇒

((|Q1 ∧Q,..., Qn] ∧ size ≥ β1) ∗ size = 1) ∧ ¬size ≥ β′1+1 (∧I) and (∧C), 9

11 ((|Q1 ∧Q,..., Qn] ∧ size ≥ β1) ∗ size = 1) ∧ ¬size ≥ β′1+1⇒

(|Q1 ∧Q,..., Qn] ∧ size ≥ β1 ∧ ¬size ≥ β′1) ∗ size = 1 L2 and (COM)

12 (|Q1 ∧Q,..., Qn 〉 ∧ size = β1+1) ∗ (size ≥ 0 ∧ ¬size ≥ β′1−β1)⇒

(|Q1 ∧Q,..., Qn] ∧ size ≥ β1 ∧ ¬size ≥ β′1) ∗ size = 1 repeated (⇒T), 8, 10, 11

13 ((|Q1 ∧Q,..., Qn 〉 ∧ size = β1+1) ∗ (size ≥ 0 ∧ ¬size ≥ β′1−β1))∗

(size ≥ β2 ∧ ¬size ≥ β′2 − 1)⇒

((|Q1 ∧Q,..., Qn] ∧ size ≥ β1 ∧ ¬size ≥ β′1) ∗ size = 1)∗

(size ≥ β2 ∧ ¬size ≥ β′2 − 1) ∗-introduction rule, 12
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14 ((|Q1 ∧Q,..., Qn] ∧ size ≥ β1 ∧ ¬size ≥ β′1) ∗ size = 1)∗

(size ≥ β2 ∧ ¬size ≥ β′2 − 1)⇒

(|Q1 ∧Q,..., Qn] ∧ size ≥ β1 ∧ ¬size ≥ β′1)∗

(size = 1 ∗ (size ≥ β2 ∧ ¬size ≥ β′2 − 1)) (ASSOC)

15 size = 1 ∗ (size ≥ β2 ∧ ¬size ≥ β′2 − 1)⇒ size ≥ β2+1 ∧ ¬size ≥ β′2 L4

16 (|Q1 ∧Q,..., Qn] ∧ size ≥ β1 ∧ ¬size ≥ β′1)∗

(size = 1 ∗ (size ≥ β2 ∧ ¬size ≥ β′2 − 1))⇒

(|Q1 ∧Q,..., Qn] ∧ size ≥ β1 ∧ ¬size ≥ β′1) ∗ (size ≥ β2+1 ∧ ¬size ≥ β′2) ∗-introduction rule and (COM), 15

17 (|Q1 ∧Q,..., Qn] ∧ size ≥ β1 ∧ ¬size ≥ β′1) ∗ (size ≥ β2+1 ∧ ¬size ≥ β′2)⇒

(|Q1,..., Qn] ∧ size ≥ β1 ∧ ¬size ≥ β′1) ∗ (|Q] ∧ size ≥ β2+1 ∧ ¬size ≥ β′2) (G∗26)

18 |Q1 ∧Q,..., Qn 〉 ∧ size ≥ β1+β2+1 ∧ ¬size ≥ β′1+β′2
.−1⇒

(|Q1,..., Qn] ∧ size ≥ β1 ∧ ¬size ≥ β′1) ∗ (|Q] ∧ size ≥ β2+1 ∧ ¬size ≥ β′2) repeated (⇒T), 7, 13, 14, 16, 17

This completes the proof.
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