Ibrahim Dellal

Stéphane Jean

Allel Hadjali

Brice Chardin

Mickaël Baron

Query Answering over Uncertain RDF Knowledge Bases: Explain and Obviate Unsuccessful Query Results

Keywords: Uncertain Knowledge Bases, RDF Quad, SPARQL queries, Empty answers, Named graph, Reification, Quad-store

Several large uncertain Knowledge Bases (KBs) are available on the Web where facts are associated with a certainty degree. When querying these uncertain KBs, users seek high quality results i.e., results that have a certainty degree greater than a given threshold α. However, as they usually have only a partial knowledge of the KB contents, their queries may be failing i.e., they return no result for the desired certainty level. To prevent this frustrating situation, instead of returning an empty set of answers, our approach explains the reasons of the failure with a set of αMinimal Failing Subqueries (αMFSs), and computes alternative relaxed queries, called αMaXimal Succeeding Subqueries (αXSSs), that are as close as possible to the initial failing query. Moreover, as the user may not always be able to provide an appropriate threshold α, we propose three algorithms to compute the αMFSs and αXSSs for other thresholds, which also constitutes a relevant feedback for the user. Multiple experiments with the WatDiv benchmark show the relevance of our algorithms compared to a baseline method.

Introduction

A Knowledge Base (KB) is a collection of entities and facts about them. Recent advances in information extraction techniques have led to the construction of large KBs from Web sources. Well-known examples of academic KBs include SigmaKB [START_REF] Rodríguez | Sigmakb: multiple probabilistic knowledge base fusion[END_REF], YAGO [START_REF] Hoffart | YAGO2: A Spatially and Temporally Enhanced Knowledge Base from Wikipedia[END_REF], and NELL [START_REF] Carlson | Toward an architecture for never-ending language learning[END_REF]. Commercial KBs have also been built, such as Google's Knowledge Vault [START_REF] Dong | Knowledge Vault: A Web-scale Approach to Probabilistic Knowledge Fusion[END_REF] and Microsoft's Probase [START_REF] Wu | Probase: A probabilistic taxonomy for text understanding[END_REF]. These KBs contain billions of facts captured as RDF triples (subject, predicate, object) and are queried with the SPARQL [START_REF] Harris | Sparql 1.1 query language (march 2013)[END_REF] language. As these KBs have been constructed by mining the Web for information, their facts may be inconsistent, ambiguous or uncertain. Therefore, efforts have been made to define extensions of RDF and SPARQL that support trust weighted data [START_REF] Hartig | Querying Trust in RDF Data with tSPARQL[END_REF][START_REF] Tomaszuk | Trust in RDF graphs[END_REF]. In this context, an explicit degree of certainty is assigned to KB facts and query results. KBs in which each fact is associated with a degree of certainty are called uncertain KBs. The academic and commercial KBs previously mentioned are examples of real uncertain KBs.

When querying uncertain KBs, users expect to obtain high quality results i.e., results that have a certainty degree greater than a given threshold α. However, as they rarely know the underlying structure and content of a KB, they may be faced with an empty answer problem i.e., they obtain no result or results with a degree of certainty lower than α. This is not an uncommon problem when querying Web-accessible KBs. Indeed, the study conducted by Saleem et al. [START_REF] Saleem | LSQ: The Linked SPARQL Queries Dataset[END_REF] on SPARQL endpoints shows that ten percent of queries submitted to DBpedia between May and July 2010 returned empty results. Instead of solely returning an empty set as the answer of a query, the system might help the user understand the reasons of this failure by providing him/her with a set of Minimal Failing Subqueries (MFSs). MFSs are the minimal parts of the query that failed. Enumerating them identifies all the failure causes of the query. In addition to MFSs-based information, alternative queries, called MaXimal Succeeding Subqueries (XSSs), might be suggested to the user by the system as well. XSSs are successful (i.e, non-failing) queries that have a maximal number of triple patterns from the initial query. Users can execute these XSSs to find alternative answers to their failing queries. In [START_REF] Mottin | A probabilistic optimization framework for the empty-answer problem[END_REF], the usefulness of XSSs as a feedback for the empty-answer problem has been evaluated by end-users, with an average satisfaction of 76%.

The problem of enumerating MFSs and XSSs of SPARQL queries expressed on traditional KBs is NP-hard [START_REF] Godfrey | Minimization in Cooperative Response to Failing Database Queries[END_REF], and has already been addressed by Fokou et al. [START_REF] Fokou | Handling Failing RDF Queries: From Diagnosis to Relaxation[END_REF]. In this paper, we consider a generalization of MFSs and XSSs in the context of uncertain KBs. We call αMFSs and αXSSs the failure causes and maximal succeeding subqueries of an uncertain query, i.e. a query that ignores results whose certainty degrees are below the provided threshold α. In this article, we first define the conditions under which the computation of MFSs and XSSs for traditional KBs can be directly adapted to αMFSs and αXSSs in an uncertain context. In this setting, the user has to provide the query threshold α. However, as she/he may not have an idea of the uncertainty level present in to the target KB, we also investigate the idea of suggesting relaxed queries with lower α thresholds. This kind of relaxation requires the computation of αMFSs and αXSSs for various other thresholds. To save computation time, some properties between αMFSs and αXSSs of different thresholds are established and exploited. Thus, and depending on which order the α values are considered, three approaches, called Top-Down, Bottom-Up and Hybrid, are discussed. We run several experiments on the WatDiv benchmark with Jena TDB 1 and Virtuoso [START_REF] Erling | Rdf support in the virtuoso dbms[END_REF], used as quadstores, to show the impact of our approaches compared to a baseline method.

This paper is an extension of our earlier conference work [START_REF] Dellal | On addressing the empty answer problem in uncertain knowledge bases[END_REF]. We have substantially developed, revised and improved our proposal. In particular, this article contains the following original contributions: [START_REF] Rodríguez | Sigmakb: multiple probabilistic knowledge base fusion[END_REF] the proposition of a third approach (named Hybrid) to compute αMFS and αXSS, (2) the complete definitions and proofs of the properties on which our approaches are based, (3) a detailed analysis of existing work on the empty answer problem in the context of SPARQL and relational queries, (4) an evaluation of the complexity of our three approaches and (5) new experiments to evaluate their impact in different settings.

The paper is structured as follows. Section 2 provides some basic notions and formalizes the considered problem, along with a motivating and illustrative example. Section 3 defines the condition under which a previous work algorithm can be directly adapted to find the αMFSs and αXSSs of a failing RDF query for a given unique threshold α. Section 4 describes the three proposed approaches (Top-Down, Bottom-Up and Hybrid) to compute αMFSs and αXSSs for a set of thresholds. Section 5 provides a complexity analysis of these algorithms. Section 6 discusses the implementation and the experimental evaluation performed using the WatDiv benchmark. Section 7 details related work. Finally, we conclude and introduce some future work in Section 8.

Preliminaries and Problem Statement

In this section we define the notions required for the remainder of the paper. We use the notations on RDF and SPARQL given by Pérez et al. [START_REF] Pérez | Semantics and Complexity of SPARQL[END_REF] and the trust model proposed by Hartig [START_REF] Hartig | Querying Trust in RDF Data with tSPARQL[END_REF].

Data model An RDF triple is a triple (subject, predicate, object) ∈ (U ∪ B) × U × (U ∪ B ∪ L) where U is a set of U RIs, B is a set of blank nodes and L is a set of literals. We denote by T the union U ∪ B ∪ L. An RDF database (or triplestore) stores a set of RDF triples (denoted by T RDF) in a triples table or one of its variants. Each RDF triple has a trust score (or certainty score) representing the trustworthiness of the triple. This score is assigned with the function tv : T RDF → [0, 1].

Example 1. Table 1 depicts an uncertain KB. This sample KB will be used throughout the paper.

RDF queries An RDF triple pattern t is a triple (subject, predicate, object)

∈ (U ∪ V) × (U ∪ V) × (U ∪ V ∪ L)
, where V is a set of variables disjoint from the sets U , B and L. We denote by var(t) ⊆ V the set of variables occurring in t. We consider RDF queries defined as a conjunction of triple patterns:

Q = t 1 ∧• • •∧t n .
The number of triple patterns of a query Q is denoted by |Q| and its variables var(Q) = var(t i). Query evaluation A mapping µ from V to T is a partial function µ : V → T . For a triple pattern t, we denote by µ(t) the triple obtained by replacing in t its variables var(t) by their mapping µ(var(t)). The domain of µ, dom(µ), is the subset of V where µ is defined. Two mappings µ 1 and µ 2 are compatible when for all x ∈ dom(µ 1) ∩ dom(µ 2), it is the case that µ 1 (x) = µ 2 (x) i.e., when µ 1 ∪ µ 2 is also a mapping. Let Ω 1 and Ω 2 be sets of mappings, we define the join of Ω 1 and Ω 2 as:

Ω 1 Ω 2 = {µ 1 ∪ µ 2 | µ 1 ∈ Ω 1 , µ 2 ∈ Ω 2 are compatible mappings}.
Let D be an RDF database and t be a triple pattern; the evaluation of the triple pattern t over D, denoted by

[[t]] D , is defined by: [[t]] D = {µ | dom(µ) = var(t) ∧ µ(t) ∈ D}. Let Q be a query, the evaluation of Q over D is defined by: [[Q]] D = [[t 1]] D • • • [[t n]] D .
This evaluation can be done under different entailment regimes as defined in the SP ARQL specification (e.g. simple or RDF entailment regime). The examples and experiments presented in this article are based on the simple entailment regime. Let µ be a solution of the query Q = t 1 ∧ • • • ∧ t n and aggreg be an aggregation function (e.g, the minimum), the trust value of µ is defined by tv(µ, Q) = aggreg(tv(µ(t 1)), • • • , tv(µ(t n))). In the context of uncertain KBs, the evaluation of Q over D returns trust weighted results filtered using a user-provided threshold α. This threshold is the minimum acceptable certainty value of the mapping, in the range [0, 1]. The evaluation of an uncertain query is therefore defined as:

[[Q]] α D = {µ ∈ [[Q]] D | tv(µ) ≥ α}.
Example 3. Let us consider the evaluation of Q 1 for a degree α = 0.4. Figure 1 illustrates the evaluation of each triple pattern Notion of αMFSs and αXSSs Given a query

[[t 1]] D and [[t 2]] D , as well as their junction [[Q 1]] D = [[t 1]] D [[t n]] D .
Q = t 1 ∧ • • • ∧ t n , a query Q = t i ∧ • • • ∧ t j is a subquery of Q, Q ⊆ Q, iff {i, • • • , j} ⊆ {1, • • • , n}. If {i, • • • , j} ⊂ {1, • • • , n}, we say that Q is a proper subquery of Q (Q ⊂ Q).
Definition 1. A minimal failing subquery (MFS) of a query Q is one of its failing subqueries that contains a minimal subset of its predicates. The set of all MFSs of a query Q, denoted by mfs (Q), is therefore defined as:

mfs (Q) = {Q * | Q * ⊆ Q ∧ [[Q *]] D = ∅ ∧ Q ⊂ Q * such that [[Q]] D = ∅}.
By extension, the set of all αMFSs of a query Q is defined as:

mfs α (Q) = {Q * | Q * ⊆ Q ∧ [[Q *]] α D = ∅ ∧ Q ⊂ Q * such that [[Q]] α D = ∅}. Example 4. Let us now consider the evaluation of [[Q 1]] 0.6 D .
The result of this query is empty as it does not include any mapping, either because their associated aggregate trust value is below 0.6 or because the mappings are not included in the evaluation of the non-uncertain query

[[Q 1]] D . Since [[t 1]] 0.6 D = ∅ and [[t 2]] 0.6 D = ∅, mf s 0.6 (Q 1) = {t 2 }
, which means that any query that includes the predicate t 2 and this KB will fail for a threshold of 0.6. Definition 2. A maximal succeeding subquery (XSS) of a query Q is one of its successful subqueries that contains a maximal subset of its predicates. The set of all XSSs of a query Q, denoted by xss (Q), is therefore defined as:

xss (Q) = {Q * | Q * ⊆ Q ∧ [[Q *]] D = ∅ ∧ Q such that Q * ⊂ Q ∧[[Q]] D = ∅}.
By extension, the set of all αXSSs of a query Q is defined as:

xss α (Q) = {Q * | Q * ⊆ Q ∧ [[Q *]] α D = ∅ ∧ Q such that Q * ⊂ Q ∧[[Q]] α D = ∅}.
Example 5. Following the previous example, xss 0.6 (Q 1) = {t 1 }, which means that there are no successful subqueries of Q 1 whose predicates are a strict superset of {t 1 } for a threshold of 0.6. The query Q * = t 1 is therefore a candidate relaxed query.

Comprehensive example Let us consider the following query Q 2 that searches for Books edited by Springer and authored by Abraham Lincoln with their number of pages. We denote this query by Figure 2 depicts the αMFSs and αXSSs of the query Q 2 for different thresholds on the lattice of subqueries of Q 2 . Note that the enumeration of all αMFSs and αXSSs is sufficient to determine the status (successful or failing) of every subquery of Q 2 .

Q = t 1 ∧ t 2 ∧ t 3 ∧ t 4 (
We first consider that the user wants results with a certainty degree of at least 0.8. In our example, this query will fail; but, thanks to the 0.8 αMFSs (mf s 0.8 (Q 2) = {t 1 , t 2 }) and αXSSs (xss 0.8 (Q 2) = {t 3 t 4 }), we may provide the following explanations: for a certainty degree of 0.8, there is no item authored by Abraham Lincoln (t 1) and no item edited by Springer (t 2), meaning that any query that includes these predicates will fail for this threshold but there are some Books with their number of pages (t 3 t 4), which is the only candidate relaxed query.

If we compute the αMFSs and αXSSs for lower degrees (e.g., 0.2, 0.4 and 0.6), we may find significant alternative queries and explanations for the user. For example the αXSSs may be used to provide the following explanations: This feedback may help the user have a better understanding of the uncertain KB content, reformulate her/his query or adjust her/his expectation. To provide this feedback, an efficient approach that computes αMFSs and αXSSs for a set of thresholds is needed. We first consider the problem of computing αMFSs and αXSSs for a single threshold α.

Problem statement We are concerned with computing mf s αi (Q) and xss αi (Q) of a failing RDF query Q over uncertain KBs efficiently for a set of thresholds

α i ∈ {α 1 , • • • , α n }.
3 αMFSs and αXSSs Computation for a Single Threshold α

In Fokou et al. [START_REF] Fokou | Handling Failing RDF Queries: From Diagnosis to Relaxation[END_REF], a Lattice-Based Approach (LBA) to compute MFSs and XSSs of a SPARQL query is proposed. As we show in Section 3.1, this approach can be directly adapted to compute the αMFSs and αXSSs of a query for a given α. This approach, called αLBA, has the same algorithmic complexity as LBA (see [START_REF] Fokou | Handling Failing RDF Queries: From Diagnosis to Relaxation[END_REF]). However the αLBA approach relies on an assumption that does not always hold in the context of uncertain KBs. Thus, we define, in Section 3.2, the condition under which αLBA can be used to compute the αMFSs and αXSSs of a query for a given α.

αLBA Approach

We present in this section the main principles and algorithms of αLBA as a direct adaptation of LBA in the uncertain KBs setting. αLBA explores the lattice of subqueries of a query Q by following a three-step procedure.

Step 1: Find an αMFS Q * of Q Following Algorithm 1, αLBA removes iteratively each triple pattern t i from Q, resulting in the proper subquery Q . If Q fails for α, then Q contains an αMFS. Conversely, if Q succeeds, then each αMFS of Q contains t i . The proof of this property relies on the fact that a successful query cannot contain a failing query [START_REF] Fokou | Handling Failing RDF Queries: From Diagnosis to Relaxation[END_REF].

Algorithm 1: Find an αMFS of a failing RDF query Q

FindAnαMFS(Q, D, α) inputs : A failing query Q = t1 ∧ ... ∧ tn; an RDF database D; a threshold α output: An αMFS of Q denoted by Q * 1 Q * ← ∅; Q ← Q; 2 foreach triple pattern ti ∈ Q do 3 Q ← Q -ti; 4 if [[Q ∧ Q *]] α D = ∅ then 5 Q * ← Q * ∧ ti; 6 return Q * ;
Example 6. To illustrate this algorithm, we consider our running example with α = 0.2 (see Figure 2(a)). The algorithm removes the triple pattern t 1 from the initial query resulting in the subquery t 2 t 3 t 4 . As this query succeeds, t 1 is contained in the searched αMFS Q * . The algorithm removes t 2 and executes the query t 1 t 3 t 4 . This query fails and thus, the algorithm searches Q * in t 1 t 3 t 4 . t 3 is removed leading to the subquery t 1 t 4 which succeeds, meaning that t 3 is included in the αMFS. Finally, t 4 is removed and the subquery t 1 t 3 succeeds. Thus, t 4 is also an element of Q * . The algorithm stops and returns the result

Q * = t 1 t 3 t 4 .
Step 2: Compute Potential αXSSs i.e., the maximal queries that do not include the αMFS previously found. The set of potential αXSSs is denoted by pxss(Q, Q *) and can be computed as follows:

pxss(Q, Q *) = ∅, if |Q| = 1. {Q -t i | t i ∈ Q * }, otherwise. Example 7. Following our running example, pxss(Q, Q *) = {t 2 t 3 t 4 , t 1 t 2 t 4 , t 1 t 2 t 3 }.
This second step is based on the fact that all superqueries of Q * (i.e., queries that include the αMFS Q * found in the previous step) return an empty set of answers and thus, can be pruned from the search space. In the context of uncertain KBs, this property is true only if a successful query cannot contain a failing query for the given α, which will be discussed in Section 3.2.

Step 3: Execute the Potential αXSSs If a subquery is found during step 2 succeeds, it is then an αXSS. Otherwise, we apply the two previous steps on this subquery to find a new αMFS and update the potential αXSSs. This is illustrated by Algorithm 2. It is worth noting that this algorithm avoids finding the same αMFSs several times (lines 11-13).

Example 8. In our running example, the two potential αXSSs t 2 t 3 t 4 and t 1 t 2 t 3 succeed and thus, they are the αXSSs of Q. The potential αXSSs t 1 t 2 t 4 fails and therefore contains an αMFS, that FindAnαMFS determines to be the query itself. During this step, t 1 t 4 is added to the set of potential αXSSs (line 13 of algorithm 2) since pxss(t 1 t 2 t 4 , t 1 t 2 t 4) = {t 1 t 2 , t 1 t 4 , t 2 t 4 }, and both t 1 t 2 and t 2 t 4 are subqueries of previously identified αXSSs. the last potential αXSS t 1 t 4 succeeds and is therefore an αXSS.

Q * ←FindAnαMFS(Q, D, α); 2 pxss ← pxss(Q, Q *); 3 mf s α (Q) ← {Q * }; xss α (Q) ← ∅; 4 while pxss = ∅ do 5 Q ← pxss.element(); // choose an element of pxss 6 if [[Q]] α D = ∅ then // Q is an αXSS 7 xss α (Q) ← xss α (Q) ∪ {Q }; pxss ← pxss -{Q }; 8 else // Q contains an αMFS 9 Q * * ←FindAnαMFS(Q , D, α); 10 mf s α (Q) ← mf s α (Q) ∪ {Q * * }; 11 foreach Q ∈ pxss such that Q * * ⊆ Q do 12 pxss ← pxss -{Q }; 13 pxss ← pxss ∪ {Qj ∈ pxss(Q , Q * *) | Q k ∈ pxss ∪ xss α (Q) such that Qj ⊆ Q k }; 14 return {mf s α (Q), xss α (Q)};

Aggregate Function Condition

As we have seen in the previous section, the αLBA approach relies on the fact that a successful query cannot contain a failing query. In the context of uncertain KBs, depending on the aggregate function (aggreg 3) chosen, this property does not always hold. Following the example query Q 1 whose evaluation is illustrated in Figure 1, Figure 3 provides the results of this query and one of its subqueries Q 1 on the uncertain RDF database given in Table 1, for α = 0.6.

For the max and avg aggregate functions, the query Q 1 is successful since max(0.9, 0.5) = 0.9 ≥ 0.6 and avg(0.9, 0.5) = 0.7 ≥ 0.6 while its subquery Q 1 fails in both cases: max(0.5) = 0.5 < 0.6 and avg(0.5) = 0.5 < 0.6, which contradicts our hypothesis. Thus, the αLBA algorithm cannot be used with these aggregate functions. As proven below, this algorithm can be applied only if the aggregate function aggreg, is monotonically decreasing with respect to the subset partial order.

Q1: SELECT ? b ? a WHERE { ? b type Book . ? b author ? a } Q 1 : SELECT ? b ? a WHERE { ? b author ? a } aggreg [[Q]] 0.6 D [[Q]] 0.6 D min ∅ ∅ max ∅ {b1} ∅ ∅ avg ∅ {b1}
∈ [0, 1] n , A ⊆ B ⇒ aggreg(A) ≥ aggreg(B).
As examples of monotonically decreasing aggregate functions, we can cite the minimum or the product on values in [0, 1]. Proposition 1. Let aggreg be monotonically decreasing. If a proper subquery Q of Q fails for a given α (using the aggreg function) then Q also fails for α.

Proof. We consider a query

Q = t 1 ∧ • • • ∧ t n and its proper subquery Q = t i ∧ • • • ∧ t j ({i, • • • , j} ⊂ {1, • • • , n}). Assume that [[Q]] α D = ∅ and [[Q]] α D = ∅. Thus, ∃µ ∈ [[Q]] α D . Since [[Q]] α D ⊆ [[Q]] D and [[Q]] D ⊂ [[Q]] D , we have µ |var(Q) ∈ [[Q]] D where µ |var(Q) is the restriction of the function µ to the variables of Q . By definition, tv(µ, Q) = aggreg(tv(µ(t 1)), • • • , tv(µ(t n))) ≥ α and tv(µ |var(Q) , Q) = aggreg(tv(µ(t i)), • • • , tv(µ(t j))) (indeed, tv(µ, Q) = t- v(µ |var(Q) , Q)). Since aggreg is monotonically decreasing, aggreg(tv(µ(t i)),- • • • , tv(µ(t j))) ≥ aggreg(tv(µ(t 1)), • • • , tv(µ(t n))) ≥ α. As a consequence, t- v(µ |var(Q) , Q) ≥ α and since µ |var(Q) ∈ [[Q]] D we deduce that µ |var(Q) ∈ [[Q]] α D .
This contradicts the assumption that Q fails.

In this section, we have shown that if the aggregate function aggreg, used for assigning trust values to query results, is monotonically decreasing with respect to the subset partial order, then the αLBA approach can be applied to find the αMFSs and αXSSs for the given threshold. In the next section, we consider the problem of finding the αMFSs and αXSSs for a set of thresholds. As highlighted in Section 2, these additional results could be useful to help users reformulate their queries and/or adjust their expectations.

αMFSs and αXSSs Computation for Different Thresholds α

To find αMFSs and αXSSs for a set of α i ∈ {α 1 , • • • α n }, one can execute the αLBA algorithm for each α i . This baseline method is named NLBA. In this section, we discuss different improvements of this approach. The idea is that the αMFSs and αXSSs discovered for a given threshold provide a set of hints to deduce some αMFSs and αXSSs for a higher (or lower) threshold. We start by investigating a bottom-up approach, from a lower to a higher threshold.

Bottom-Up Approach

In this section, we consider two thresholds α i and α j such that α i < α j . If Q * is an α i MFSs of the query Q, then Q * also fails for α j . However, this subquery is not necessarily minimal for α j and therefore might not be an α j MFS. The following proposition provides a condition under which an α i MFS is also an α j MFS.

Proposition 2. Let α i and α j be two thresholds such that α i < α j and Q * be an

α i MFS of Q on an RDF database D. If |Q * | = 1, then Q * is also an α j MFS of Q. Proof. If Q * is an α i MFS of Q on a dataset D, then [[Q *]] αi D = ∅. Since α i < α j , we also have [[Q *]] αj D = ∅. Q * is minimal (|Q * | = 1) and failing for α j , thus Q * is an α j MFS of Q. Thus, an α i MFS Q * of Q such that |Q * | = 1 is an α j MFS of Q.
We now consider the general case where |Q * | > 1. As pointed out previously, for a subquery Q * to be an α j MFS of a query Q, all its proper subqueries have to succeed. As stated in proposition 2, this property is always true if the query contains a single triple pattern. Checking if a query has a single triple pattern does not require any database access. Thus, we check this case first and put all discovered α j MFS of Q in a set of discovered αMFSs denoted by dmf s αj (Q). Otherwise, proving that Q * is an α j MFS requires checking that all its subqueries succeed, by executing those |Q * | queries. In the worst case where Q * is not an α j MFS, |Q * | queries are executed without finding any α j MFS. Conversely, the algorithm FindAnαMFS of αLBA (Algorithm 1) also requires |Q * | queries but guarantees that an αMFS will be found. Thus, our approach favors the algorithm FindAnαMFS over executing the subqueries of the α i MFS to discover new α j MFSs. This approach avoids starting over from the initial query to find new α j MFSs and therefore executes less subqueries compared with the baseline method NLBA.

We have seen the properties that can be leveraged to deduce some α j MFSs of Q from its α i MFSs. We now consider the case of the αXSSs. An α i XSS of Q may fail for α j . The following proposition shows that if it succeeds, it is then an α j XSS of Q. Proposition 3. Let α i and α j be two thresholds such that α i < α j and Q * be an

α i XSS of Q on an RDF database D. If [[Q *]] αj D = ∅, then Q * is an α j XSS of Q. Proof. If Q * is an α i XSS of Q on an RDF database D,
then all its superqueries are failing for α i (otherwise, it is not maximal). As α i < α j , these superqueries also fail for

α j . If [[Q *]] αj D = ∅, Q * is successful and maximal for α j . Thus, Q * is an α j XSS of Q.
Thus, discovering if an α i XSS is also an α j XSS only requires the execution of a single query (the α i XSS with the new threshold α j). This enables us to find a set of discovered α j XSSs, denoted by dxss αj (Q). If the α i XSS fails for α j , we can still use it to find an α j MFS thanks to the algorithm FindAnαMFS. Thus, the execution of the α i XSS for the new threshold α j is always worthwhile: if it succeeds, it is an α j XSS; if it fails, we use it to find an α j MFS.

Algorithm 3 presents our complete approach to find some α j MFSs and α j XSSs from the set of α i MFSs and α i XSSs. All α i MFSs that have one triple pattern (oneAtom) are inserted in dmf s αj (Q) (line 1). Then, the algorithm iterates over the α i MFSs with at least two triple patterns (the set F Q). It searches an α j MFS Q * in a query Q of F Q with the FindAnαMFS algorithm (line 6). Then, it removes all the failing queries of F Q that contain Q * since they cannot be minimal. This process stops when all the queries in F Q have been processed (they have been either used to find an α j MFS or removed as they contain a found α j MFS).

We then consider all the α i XSSs that do not contain a discovered α j MFS (the set P XXS). If a query Q of this set succeeds, this is an α j XSS (property 3. Otherwise we use it to find to find an α j MFS with the FindAnαMFS algorithm (lines [START_REF] Mannila | Levelwise search and borders of theories in knowledge discovery[END_REF][START_REF] Aluç | Diversified Stress Testing of RDF Data Management Systems[END_REF] and remove the queries of the set P XSS that contain this discovered α j MFS (lines [START_REF] Gallego | An Empirical Study of Real-World SPARQL Queries[END_REF][START_REF] Carothers | Rdf 1.1 n-quads[END_REF].

Once some α j MFSs and α j XSSs have been discovered, an optimized version of αLBA is executed that takes these discovered α j MFSs and α j XSSs as inputs (see Algorithm 4). This algorithm computes the potential αXSSs (pxss) that do not contain any of the discovered αMFSs (lines 2-6). It removes from this set the discovered αXSSs (line 7). Then, it iterates over the set pxss as done with the original version of αLBA (see Algorithm 2).

Example 9. To illustrate the Bottom-Up approach, we consider our running example (see Figure 2). First, we execute the αLBA algorithm for the 0.6 threshold in order to find the 0.6 αMFSs and αXSSs (Figure 2.c). Then, the Bottom-Up algorithm discovers the 0.8 αMFSs and αXSSs. As t 1 is a 0.6 αMFS and has a single triple pattern, this is a 0.8 αMFS (proposition 2). The other 0.6 αMFS is t 2 t 3 . As this query is necessarily failing for 0.8, we use the F indAnαM F S algorithm to identify that t 2 is a 0.8 αMFSs. Considering the 0.6 αXSSs, only Algorithm 3: Find some α j MFSs and α j XSSs for Bottom-Up

DiscoverαMFSXSS(mf s α i (Q), xss α i (Q) D, αj)
inputs : The αiMFSs mf s α i (Q) of a query Q for a threshold αi; the αiXSSs xss α i (Q) of a query Q for a threshold αi; an RDF database D; a threshold αj > αi outputs: A set of αjMFSs of Q denoted by dmf s α j (Q);

A set of αjXSSs of Q denoted by dxss α j (Q);

1 oneAtom ← {Qa ∈ mf s α i (Q) | |Qa| = 1}; 2 dmf s α j (Q) ← oneAtom; 3 F Q ← mf s α i (Q) -oneAtom; 4 while F Q = ∅ do 5 Q ← f Q.dequeue(); 6 Q * ← F indAnαM F S(Q , D, αj); 7 dmf s α j (Q) ← dmf s α j (Q) ∪ {Q * }; 8 foreach Q ∈ F Q such that Q * ⊆ Q do 9 F Q ← F Q -{Q }; P XXS ← {Qa ∈ xss α i (Q) | Q * ∈ dmf s α j (Q) such that Q * ⊂ Qa}; while P XXS = ∅ do Q ← P XXS.dequeue(); if [[Q]] α j D = ∅ then // Q is an αjXSS dxss α j (Q) ← dxss α j (Q) ∪ {Q }; else // Q contains an αjMFS Q * ← F indAnαM F S(Q , D, αj); dmf s α j (Q) ← dmf s α j (Q) ∪ {Q * }; foreach Q ∈ P XSS such that Q * ⊆ Q do 19 P XSS ← P XSS -{Q }; return {dmf s α j (Q), dxss α j (Q)}; Algorithm 4: Optimized version of αLBA Optimized-αLBA(Q, D, α, dmf s α (Q), dxss α (Q))
inputs : A failing query Q; an RDF database D; a threshold α a set of αMFSs of Q denoted by dmf s α (Q); a set of αXSSs of Q denoted by dxss α (Q); outputs: The αMFSs and αXSSs of Q

mf s α (Q) ← dmf s α (Q); xss α (Q) ← dxss α (Q); Q * ← dmf s α (Q).dequeue(); pxss ← pxss(Q, Q *); foreach Q * ∈ dmf s α (Q) do foreach Q ∈ pxss such that Q * ⊆ Q do pxss ← pxss -{Q }; pxss ← pxss ∪ {Qi ∈ pxss(Q , Q *) | Qj ∈ pxss ∪ xss α (Q) : Qi ⊆ Qj}; pxss ← pxss -dxss α (Q);
while pxss = ∅ do // same as the lines 5-13 of αLBA

return {mf s α (Q), xss α (Q)};
t 3 t 4 is executed as t 2 t 4 contains a previously found 0.8 αMFS (t 2). As t 3 t 4 is successful for 0.8, this is a 0.8 αXSSs (proposition 3). The discovered αMFSs and αXSSs given as inputs to the Algorithm 4 are respectively: dmf s α (Q) = {t 1 , t 2 } and dxss α (Q) = {t 3 t 4 }. From these sets of discovered αMFSs and αXSSs, the Algorithm 4 will finally find that there are no potential αXSSs left (lines 1-7 of this algorithm) and thus, that all the 0.8 αMFSs and αXSSs have been found. Figure 4 gives an overview of this sequence of algorithms.

The Bottom-Up approach discovers some αMFSs and αXSSs (and thus, improves over executing αLBA for each threshold α), if some αXSSs remain the same for increasing threshold values or if the αMFSs have a single triple pattern. Otherwise, it will nonetheless use previously discovered αMFSs as starting points instead of starting over from the original query.

Cache Management

In its original version, the LBA approach maintains a cache of queries identified as successful (resp., failing) [START_REF] Fokou | Handling Failing RDF Queries: From Diagnosis to Relaxation[END_REF]. So, before executing a subquery, this algorithm first checks whether it is a subquery (resp., superquery) of one of the queries contained in this cache. If this is the case, the subquery succeeds (resp., fails). Our approach extends this idea as follows. The successful (resp., failing) queries are associated with a threshold corresponding to the maximum (resp., minimum) threshold for which the query succeeds (resp., fails). Before executing a subquery for a given α, we first check if this is a subquery (resp., superquery) of one of the queries contained in the cache and if the associated threshold is greater than (resp., less than) or equal to α. If this is the case, the query succeeds (resp., fails). As our approach also discovers some αXSS

0.6-LBA Discover-0.8MFSXSS Optimized-0.8LBA End 0.6-MFSs(Q) = {t1, t2 ∧ t3} 0.6-XSSs(Q) = {t2 ∧ t4, t3 ∧ t4} results : dmf s 0.8 (Q) = {t1, t2} dxss 0.8 (Q) ={t3 ∧ t4} results : 0.8 -M F S(Q) = {t1, t2} 0.8 -XSS(Q) = {t3 ∧ t4} results :
Fig. 4: Illustration of the Bottom-Up approach for two thresholds (0.6 and 0.8) (resp., αMFSs) for a given α, we add to the cache all the direct/parent superqueries (resp., subqueries) of these αXSSs (resp., αMFSs) as they are necessary failing (resp., succeeding) for α.

Top-Down Approach

We now consider a Top-Down approach that computes the αMFSs and αXSSs with threshold values in a decreasing order. Thanks to the duality relation that holds between αMFS and αXSS, the properties used in this approach are dual to the ones used in the bottom-up approach. Thus, we only introduce them informally. Let α i and α j be two thresholds such that α i > α j , the following properties hold:

the α i MFSs that fail for α j are α j MFSs; the α i XSSs of size |Q| -1 are α j XSSs; the α i XSSs of size < |Q| -1 also succeed for α j and thus contain an α j XSS. This α j XSS is found using Algorithm 5 F indAnαXSS which is the dual of the Algorithm 1 F indAnαM F S.

Once a set of α j MFSs and α j XSS have been found based on the aforementioned properties, the Optimized-αLBA algorithm (Algorithm 4) is executed to find the complete set of α j MFSs and α j XSS. This approach will improve over executing αLBA for each threshold α if some αMFSs remain the same for decreasing threshold values or if the αXSSs have a size of |Q| -1. Otherwise, it will nonetheless use previously discovered αXSSs as starting points instead of starting over from the original query.

Example 10. We illustrate the Top-Down approach by showing how it computes the 0.6 αMFSs and αXSSs of our running example (see Figure 2.c), knowing Algorithm 5: Find an αXSS of Q from a successful subquery

FindAnαXSS(Q, Q * , D, α) inputs : The initial query Q = t1 ∧ ... ∧ tn; a successful subquery Q * of Q; an RDF database D; a threshold α; output: An αXSS of Q denoted by Q 1 Q ← Q * ; 2 foreach triple pattern ti ∈ (Q -Q *) do 3 Q ← Q ∧ ti; 4 if [[Q]] α D = ∅ then 5 Q ← Q -ti; 6 return Q ;
the ones for 0.8 (Figure 2.d). Firstly we execute the αLBA algorithm for the 0.8 threshold in order to find the 0.8 αMFSs and αXSSs. Secondly the Top-Down algorithm discovers the 0.6 αMFSs and αXSSs. The 0.8 αMFS t 1 is failing for 0.6. Thus, it is a 0.6 αMFS. The 0.8 αXSS t 3 t 4 is necessarily successful for 0.6. We use it as parameter of the FindAnαXSS algorithm to find that t 3 t 4 is also a 0.6 αXSS. Thus, thanks to the properties used by Top-Down, the discovered 0.6 αMFSs and αXSSs are respectively dmf s α (Q) = {t 1 } and dxss α (Q) = {t 3 t 4 }. Finally, they are used as parameters of the optimized version of αLBA (Algorithm 4) that will find the other 0.6 αMFS (t 2 t 3) and αXSS (t 2 t 4). Figure 5 gives an overview of this sequence of algorithms.

0.8-LBA Discover-0.6MFSXSS Optimized-0.6LBA End 0.8 -M F Ss(Q) = {t1, t2} 0.8 -XSSs(Q) = {t3 ∧ t4} results : dmf s 0.6 (Q) = {t1} dxss 0.6 (Q) = {t3 ∧ t4} results : 0.6 -M F S(Q) = {t1, t2 ∧ t3} 0.6 -XSS(Q) = {t2 ∧ t4, t3 ∧ t4} results :
Fig. 5: Illustration of the Top-Down approach for two thresholds (0.8 and 0.6) Thus, the Top-Down approach can be seen as the dual of the Bottom-Up approach. We now propose an approach that leverages the properties of both of these two approaches.

Hybrid Approach

The idea of the Hybrid approach is to combine the properties used in Bottom-Up and Top-Down to discover the greatest possible number of αMFSs and αXSSs. For an ordered sequence of thresholds {α 1 , • • • α n }, the Hybrid algorithm first considers the lowest threshold α 1 , followed by the greatest threshold α n . Next, it iterates over the sequence {α 1 , • • • α n } by considering the middle threshold α i where i = n+1 2 . The algorithm then recursively considers thresholds on (1) the subset of thresholds lower than α i : {α 1 , • • • α i } with its threshold in the middle position, and (2) the subset of thresholds greater than α i : {α i , • • • α n } with its threshold in the middle position, until the αMFSs and αXSSs are computed for every threshold. In our running example with the thresholds {0.2, 0.4, 0.6, 0.8}, Hybrid considers these thresholds in the following order: {0.2, 0.8, 0.4, 0.6}. Thanks to this order, when searching the αMFSs and αXSSs for the thresholds 0.4 and 0.6, Hybrid has access to the αMFSs and αXSSs of both a lower and greater degree. Thus, it can benefit from the properties used in Bottom-Up and Top-Down to discover some αMFSs and αXSSs. Moreover, we use the following specific properties to find some additional αMFSs and αXSSs. Proposition 4. Let α i , α j and α k be three thresholds such that α i < α j < α k . If a query Q * is both an α i MFS and

α k MFS of Q, then Q * is an α j MFS of Q. Similarly, if a query Q * is both an α i XSS and α k XSS of Q, then Q * is an α j XSS of Q. Proof. If Q * is an α i MFS of Q, then Q * necessarily
fails for α j . Moreover, if Q * is also an α k MFS of Q, then all its subqueries succeed for α k and thus, also for α j . We have proved that Q * is both failing and minimal for α j and thus, that Q * is an α j MFS. The corresponding property on αXSSs is proved in a similar way. Thus, the Hybrid approach allows discovering a set of αMFSs and αXSS by using the properties of Bottom-Up and Top-Down as well as the property 4. As in previous approaches, the Optimized-αLBA algorithm (Algorithm 4) is executed using the discovered αMFSs and αXSS to find the complete set of αMFSs and αXSS for the considered threshold.

Example 11. We illustrate the Hybrid approach on our running example by showing how it computes the 0.6 αMFSs and αXSSs (see Figure 2.c), knowing the ones for 0.4 (Figure 2.b) and 0.8 (Figure 2.d). First, we execute the αLBA algorithm for the 0.4 and 0.8 threshold in order to find the 0.4/0.8 αMFSs and αXSSs. Then, the Top-Down algorithm discovers the 0.6 αMFSs and αXSSs. Hybrid finds that t 3 t 4 is an αXSS for 0.4 and 0.8, thus it is an 0.6 αXSS (proposition 4). Then, it searches for 0.4 αMFSs with a single triple pattern and 0.8 αXSSs that have 3 triple patterns (|Q| -1). As there are none in our example, it continues by searching for the 0.8 αMFSs that fail for 0.6 (property of the Top-Down approach). This is the case for t 1 , which is a 0.6 αMFS. Similarly, it searches for the 0.4 αXSSs that succeed for 0.6 (property of the Bottom-Up approach) and finds the 0.6 αXSS t 2 t 4 . Next, it uses the algorithm FindAnαMFS with the 0.4 αMFSs. In our example, this algorithm is only applied to t 2 t 3 as the other ones contain t 1 (a 0.6 αMFS). It finds that t 2 t 3 is a 0.6 αMFS. Conversely, it uses the algorithm FindAnαXSS with the 0.8 αXSSs. In our example, all the 0.8 αXSSs have already been used. Finally, thanks to the properties of Bottom-Up and Top-Down as well as the proposition 4, the Algorithm 4 will find that all the 0.6 αMFSs and αXSSs had been discovered. Figure 6 gives an overview of this sequence of algorithms.

.4 -M F Ss(Q) = {t1 ∧ t2, t1 ∧ t3, t1 ∧ t4, t2 ∧ t3} 0.4 -XSSs(Q) = {t1, t2 ∧ t4, t3 ∧ t4} 0.8 -M F Ss(Q) = {t1, t2} 0.8 -XSSs(Q) = {t3 ∧ t4} results : dmf s 0.6 (Q) = {t1, t2 ∧ t3} dxss 0.6 (Q) = {t2 ∧ t4, t3 ∧ t4} results : 0.6 -M F S(Q) = {t1, t2 ∧ t3} 0.6 -XSS(Q) = {t2 ∧ t4, t3 ∧ t4} results :
Fig. 6: Illustration of the Hybrid approach for three thresholds (0.4, 0.8 and 0.6)

Complexity of finding all αMFSs and αXSSs

In this section, we consider the time complexity of our algorithms as the number of executed queries, which is the time-consuming part. This analysis does not take into consideration individual response times of each queries (we assume that each execution of a query costs a time unit). Since the complexity of finding all αMFSs and αXSSs is exponential with respect to the number of predicates of the initial failing query [START_REF] Godfrey | Minimization in Cooperative Response to Failing Database Queries[END_REF], we evaluate this complexity with respect to the size of the output. It has been shown that any algorithm computing αMFSs and αXSSs must use at least |mf s α (Q)| + |xss α (Q)| queries [START_REF] Mannila | Levelwise search and borders of theories in knowledge discovery[END_REF].

NLBA We first analyse the complexity of the baseline method. Bottom-Up In the Optimized-αLBA algorithm, query execution is performed only during instructions copied from αLBA (lines 5-13). Therefore, its complexity can be deduced directly from Theorem 1.

Corollary 2. Optimized-αLBA (algorithm 4) executes at most

|xss α (Q) -dxss α (Q)| + |Q| * |mf s α (Q) -dmf s α (Q)| queries.
To show the impact of the Bottom-Up approach, we first show that, in the worst case, this algorithm does not perform worse than NLBA.

Lemma 1. DiscoverαMFSXSS (algorithm 3) executes at most |dxss

αi (Q)| + |Q| * |dmf s αi (Q)| queries.
Proof. Atomic α i MFS discovery (lines 1-3) requires no database access. After that, α i MFS discovery is split into two parts: (i) based on previous α i-1 MFSs (lines 4-9) and (ii) based on failing α i-1 XSSs (lines [START_REF] Pérez | Semantics and Complexity of SPARQL[END_REF][START_REF] Mannila | Levelwise search and borders of theories in knowledge discovery[END_REF][START_REF] Aluç | Diversified Stress Testing of RDF Data Management Systems[END_REF][START_REF] Gallego | An Empirical Study of Real-World SPARQL Queries[END_REF][START_REF] Carothers | Rdf 1.1 n-quads[END_REF]. For the first part, |α i-1 M F S| queries are executed by FindAnαMFS (line 6). For the second part, |α i-1 XSS| + 1 queries are executed to discover that the α i-1 XSS is failing (line 13) and then by FindAnαMFS (line 16). Note that |α i-1 M F S| < |Q| and |α i-1 XSS| + 1 ≤ |Q|. Each α i XSS discovery (lines 13-14) requires a single query. In total, DiscoverαMFSXSS therefore executes at most

|dxss αi (Q)|+|Q| * |dmf s αi (Q)| queries.
Bottom-Up relies on the algorithm DiscoverαMFSXSS followed by Optimized-αLBA. Summing the results of Lemma 1 and Corollary 2 directly gives the following theorem.

Theorem 2. For n thresholds α i , Bottom-Up executes at most

n i=1 |xss αi (Q)|+ |Q| * |mf s αi (Q)| queries.
NLBA and Bottom-Up have the same worst case complexity. Using Bottom-Up becomes beneficial when some αMFSs and αXSSs can be inferred between successive thresholds α i . In the best case, αMFSs and αXSSs remain the same for each threshold.

Lemma 2. In the best case, where αMFSs and αXSSs remain the same for each threshold, for each threshold α i after the first, Bottom-Up executes at most

  Q * ∈ mfs α i (Q)∧|Q * |>1 |Q * |   + |xss αi (Q)| queries.
Proof. The discovery of all the α i XSSs requires the execution of each one of them (|xss αi (Q)| queries). For the discovery of α i MFSs that have a single triple pattern, no database access is required. For other α i MFSs Q * , FindAnαMFS is called with the execution of |Q * | queries, where |Q * | is the size of the considered α i-1 MFS, which is also in this best case an α i MFS.

For n thresholds, the complexity of Bottom-Up is directly deduced from the previous lemma. Proposition 5. In the best case, for n thresholds α i where ∀ i ∈ {2, 3, ..., n}, mf s αi (Q) = mf s α1 (Q), Bottom-Up executes at most the following number of queries:

n * |xss α1 (Q)| + |Q| * |mf s α1 (Q)| + (n -1)   Q * ∈ mfs α 1 (Q)∧|Q * |>1 |Q * |   (1)
Therefore, Bottom-Up becomes more efficient when αMFSs have a small number of predicates -to minimize the cost associated with the rightmost term of equation 1. Intuitively, since an α i-1 MFS is a superquery of an α i MFS to be discovered, the search space becomes smaller when the α i-1 MFS has a small number of predicates.

Top-Down

We now consider the complexity of the Top-Down approach. The two following lemmas are directly adapted from results taken from the Bottom-Up approach. Top-Down relies on the dual algorithm of DiscoverαMFSXSS followed by Optimized-αLBA. Summing the results of Lemma 4 and Corollary 2 directly gives the following theorem. Theorem 3. For each threshold α i , Top-Down executes at most

(|Q| -1) (|dxss αi (Q)| -|dmf s αi (Q)|) + |xss αi (Q)| + |Q| * |mf s αi (Q)| queries.
Note that increasing the amount of αMFSs discovered during Top-Down (|dmf s α (Q)|) reduces this complexity. In particular, if all αMFSs and αXSSs are discovered (dmf s α (Q) = mf s α (Q) and dxss α (Q) = xss α (Q)), the total complexity becomes |Q| * |xss α (Q)| + |mf s α (Q)|, which is the dual of Bottom-Up. On the opposite, if no αMFSs and αXSSs are discovered (dmf s α (Q) = ∅ and dxss α (Q) = ∅), the total complexity becomes |xss α (Q)| + |Q| * |mf s α (Q)|, i.e., the same as αLBA.

Lemma 5. In the best case, where αMFSs and αXSSs remain the same for each threshold, for each threshold α i after the first, Top-Down executes at most

    Q * ∈ xss α 1 (Q) ∧|Q * |<|Q|-1 |Q| -|Q * |     + |mf s αi (Q)| queries.
Proof. The proof is the dual of lemma 2 for Bottom-Up.

For n thresholds, the complexity of Top-Down is directly deduced from the previous lemma. Proposition 6. In the best case, for n thresholds α i where ∀ i ∈ {2, 3, ..., n}, xss αi (Q) = xss α1 (Q), Top-Down executes at most the following number of queries:

|xss α1 (Q)| + (|Q| + n -1) * |mf s α1 (Q)| + (n -1)     Q * ∈ xss α 1 (Q) ∧|Q * |<|Q|-1 |Q| -|Q * |     (2)
Therefore, Top-Down becomes more efficient when αXSSs have a large number of predicates -to minimize the cost associated with the rightmost term of equation 2. Intuitively, since an α i-1 XSS is a subquery of an α i XSS to be discovered, the search space becomes smaller when the α i-1 XSS has a large number of predicates.

Hybrid We now consider the complexity of the Hybrid approach. Since MFSs and XSSs can be discovered from both lower and higher thresholds with distinctive number of executed queries, the following lemma identifies dmf s α B (Q) as MFSs discovered from a lower threshold in a manner similar to Bottom-Up. dxss α B (Q), dmf s α T (Q), dxss α T (Q) are defined similarly according to their type (MFSs, XSSs) and their origin (lower threshold: B, higher threshold: T). The following lemma is the sum of the results of Lemma 1 and Lemma 4.

(Q)| + |dxss αi B (Q)| + |dmf s αi T (Q)| + |Q| * |dxss αi T (Q)|. Note that dmf s αi B (Q) ∩ dmf s αi T (Q) = ∅ and dxss αi B (Q) ∩ dxss αi T (Q) = ∅.
Summing the results of Lemma 6 and Corollary 2 directly gives the following theorem.

Theorem 4. For each threshold α i , Hybrid executes at most

(|Q| -1) (|dxss αi T (Q)| -|dmf s αi T (Q)|) + |xss αi (Q)| + |Q| * |mf s αi (Q)|
queries. This worst-case complexity is the same as Top-Down (Theorem 3). Intuitively, the Bottom-Up part is covered by Optimized-LBA, as highlighted in theorem 2. As for Top-Down, this complexity becomes the same as αLBA when no MFSs or XSSs are discovered.

As for the best case, the complexity of Hybrid is the same as Bottom-Up (theorem 5) for its first two thresholds (the lowest threshold is followed by the highest during this evaluation). Once these mf s α1 , xss α1 , mf s αn and xss αn are discovered, the algorithm executes no further queries to determine the αMFSs and αXSSs of every other threshold (proposition 4).

Corollary 3. In the best case, for n thresholds α i where ∀ i ∈ {2, 3, ..., n}, mf s αi (Q) = mf s α1 (Q), Hybrid executes at most the following number of queries:

2 * |xss α1 (Q)| + |Q| * |mf s α1 (Q)| +   Q * ∈ mfs α 1 (Q)∧|Q * |>1 |Q * |  
In the best case, Hybrid is the only approach whose complexity is independent from the number of thresholds, which can be especially useful if many have to be evaluated.

Experimental Evaluation

In this section, we investigate the scalability of our proposed approaches and compare them with the baseline method NLBA (executing αLBA for each of the N thresholds).

Algorithms We have implemented the Top-Down, Bottom-Up and Hybrid algorithms as well as the baseline method NLBA in Oracle Java 1.8 64 bits. These algorithms take as inputs a failing query and a set of thresholds. They return the sets of αMFSs and αXSSs of this query for each threshold. In our current implementation, these algorithms can be run on top of Jena TDB and Virtuoso. Our implementation is available at https://forge.lias-lab.fr/projects/qars4ukb with a tutorial to reproduce our experiments.

Experimental Setup Our experiments were conducted on a Ubuntu Server 16.04 LTS system with Intel XEON CPU E5-2630 v3 @2.4Ghz CPU and 16GB RAM. For our experiments, we use arbitrarily the min aggregate function. Presented results are the average of five consecutive runs of the algorithms. To prevent a cold start effect, a preliminary run is performed but not included in the results.

Dataset and Queries

We used six datasets of 20K, 100K, 20M, 40M, 60M and 80M triples generated with the Waterloo SPARQL Diversity Test Suite (WatDiv) [START_REF] Aluç | Diversified Stress Testing of RDF Data Management Systems[END_REF] (the 20K dataset is a subset of the 100K dataset, and so on). The certainty degrees of the RDF triples were generated randomly. As future work, we plan to perform an evaluation with less synthetic or different datasets.

We consider 7 queries of the WatDiv benchmark that we have modified to get failing queries (see Table 2). These queries range between 1 and 15 triple patterns and cover the main query patterns: star (characterized by subject-subject joins between triple patterns), chain (composed of object-subject joins) and composite (made of other join patterns). These characteristics have been chosen according to the results obtained in the study of Arias Gallego et al. [START_REF] Gallego | An Empirical Study of Real-World SPARQL Queries[END_REF] on real-world SPARQL queries executed on the DBPedia and SWDF datasets. Indeed, they have shown that these queries are based on the star, chain and composite query patterns and range from 1 to 15 triple patterns.

Quadstore implementation

The storage and retrieval of RDF triples are usually done with a triplestore such as Jena TDB or Virtuoso. We have considered different implementations on top of these triplestores to manage uncertain RDF triples and threshold queries:

quad filter implementation. This implementation is specific to Jena TDB. We use the named graph technique [START_REF] Carothers | Rdf 1.1 n-quads[END_REF] (also called N-quads technique) to represent triples with theirs degrees of certainty (quads), and the specific Jena TDB low level quad filter hook5 to retrieve results satisfying the provided threshold; named graph implementation. As in the previous implementation, we use the named graph technique to manage uncertain RDF triples but we retrieve results satisfying the provided threshold by querying the set of the named graphs (more details are given in Section 6.4); reification implementation. Instead of using the named graph technique, the other standard way to represent quads is to use reification of RDF triples. This technique enables the definition of an RDF triple in which the subject is another RDF triple. Thus, it can be used to define the degrees of certainty of each RDF triple. Threshold queries then have to be rewritten to accommodate for the reification (more details are given in Section 6.5).

While the quad filter implementation is specific to Jena TDB, the named graph and reification implementations can be set on any triplestore. However, we have observed that query execution times are significantly longer on the named graph and reification implementations in comparison with the quad filter implementation. Thus our experiments on large datasets (Sections 6.1, 6.2 and 6.3) are run on top of Jena TDB with the quad filter implementation. In Sections 6.4 and 6.5, we will see, on smaller datasets, that our approaches still outperform the baseline method with the named graph and reification implementations.

Algorithm Performance Comparison

Experiment description In this experiment, we have evaluated the performance of our algorithms Bottom-Up, Top-Down and Hybrid in comparison with the baseline method NLBA. This experiment has been run with the thresholds arbitrarily set to {0.2, 0.4, 0.6, 0.8} on Jena TDB (quad filter implementation) with the 20M triples dataset. Results and discussion Figure 7 shows the execution time of each algorithm for each workload query. Figure 8 gives the number of executed queries by each algorithm. This experiment shows the improvement of our algorithms w.r.t the NLBA baseline method. In comparison with NLBA, our algorithms execute fewer queries to find the αMFSs and αXSSs of each workload query. Overall, Bottom-Up, Top-Down and Hybrid execute respectively 39%, 40% and 39% fewer queries than NLBA. As a consequence, these algorithms have shorter execution times (a decrease of respectively 30%, 42% and 33% execution times for Bottom-Up, Top-Down and Hybrid). For some queries, this improvement is important. For example, NLBA needs 7 seconds to find the αMFSs and αXSSs of Q2, whereas our algorithms need around 1 second. The difference of execution time depends heavily on the queries that our algorithms avoid executing. For example, our algorithms execute between 30 and 40 queries for Q4 whereas NLBA needs 120 queries. For Top-Down and Hybrid, this results in an important performance gain. This is not the case for Bottom-Up that has nearly the same execution time as NLBA. By analyzing the executed queries, we find that Bottom-Up only avoids executing queries that have short execution times and, then, still executes the most expensive queries. Thus, the overall execution time remains mostly unchanged.

This experiment also shows that no algorithm is better than the others for all queries. Bottom-Up and Hybrid have the best execution times for Q1, Q2 and Q5 whereas Top-Down is the best for Q3, Q4 and Q6. Despite executing the least number of queries, Bottom-Up has the worst execution time for this workload. Conversely, Top-Down executes the greatest number of queries but has the best execution time. This is due to the fact that our algorithms execute different queries that have distinct execution times. In particular, Top-Down starts by searching the αMFSs and αXSSs for the highest thresholds. The executed queries tend to be selective as the threshold is high and thus, have short execution times. Once the αMFSs and αXSSs for the highest thresholds are found, they avoid the execution of queries with a lower threshold that are likely to be more expensive. As Bottom-Up follows the dual approach, it tends to execute non-selective queries and has the overall worst performance. In this experiment, Hybrid never performs better than both Top-Down and Bottom-Up. Since the certainty degrees were randomly generated and the four considered thresholds are separated by a significant margin, queries share few αMFSs and αXSSs between the different thresholds. Thus, the specific property used by Hybrid (see Section 4.3) is rarely exploited.

Algorithm Performance w.r.t the Dataset Size

Experiment description The second experiment consists in evaluating the scalability of the algorithms when the size of the dataset increases. This experiment has been run with the same settings as the previous one (thresholds set to {0.2, 0.4, 0.6, 0.8} on Jena TDB quad filter implementation) but with the 20M, 40M, 60M and 80M datasets.

Results and discussion Figure 9 and Table 3 present the execution time of the algorithms for Q2 with the 20M, 40M, 60M and 80M datasets. The execution times of our algorithms do not increase significantly between the 40M and 80M datasets. On these datasets, we have observed that the αMFSs and αXSSs of Q2 remain the same and thus the same queries are executed (around 25 queries for our algorithms and 46 for NLBA). As a consequence, in this case, the scalability of the algorithms depends only on the execution times of these queries.

For the 20M dataset, Q2 has an additional αMFS for all the thresholds. The number of αXSS are the same but they are shorter. As a consequence, the algorithms execute different queries. This has a direct impact on the performance of the algorithms. In particular, the execution time of Top-Down is around 1 second on the 20M dataset (5 seconds on other datasets) despite the fact that it executes more queries (28 queries on 20M and 24 queries on other datasets). Thus, when the αMFSs and αXSSs change, the scalability of the algorithms also depends on the executed queries and their respective response times. Experiment description In this experiment, we evaluate the scalability of the algorithms when the number of thresholds increases. This experiment was conducted with Q6 on the Jena TDB quad filter implementation and the 20M dataset. We have executed the algorithms for one threshold {0.1}, two thresholds {0.1, 0.2}, three thresholds {0.1, 0.2, 0.3}, and so on up to nine thresholds. Results and discussion The result of this experiment is depicted in Figure 10.

As shown by this experiment, our algorithms always outperform NLBA once two or more thresholds are considered. This is due to the fact that, for each new threshold, NLBA executes the original version of the αLBA algorithm while our algorithms execute an optimized version of αLBA thanks to the already discovered αMFSs and αXSSs. As a consequence, NLBA scales nearly linearly with the number of thresholds. In comparison, the scalability of our algorithms depends on the number of discovered αMFSs and αXSSs. If the αMFSs and αXSSs are rather the same between different thresholds, our algorithms only require milliseconds to find the αMFSs and αXSSs for a new threshold in this interval. This is the case in our experiments for the thresholds between 0.1 and 0.5. On the contrary, if the αMFSs and αXSSs change between different thresholds (this is the case between 0.5 and 1), our algorithms scale almost like NLBA as the optimized version αLBA leverages few discovered αMFSs and αXSSs.

We can also observe in this experiment that the Top-Down algorithm has a better execution time with 5 thresholds than with only one threshold, which may be surprising. This behavior is explained as follows. The αLBA algorithm has a short execution time for 0.5 (as shown by the results of NLBA on Figure 10). Once the αMFSs and αXSSs are found for 0.5, as they are rather the same between 0.1 and 0.5, Top-Down only needs a few milliseconds for the other thresholds. In comparison, the execution of αLBA for 0.1 takes a longer time (as the executed queries are less selective than with 0.5).

Algorithm Performance on the Named Graph Implementation

The previous experiments were all run on the quad filter implementation only available in Jena TDB. As other triplestores, such as Virtuoso, may be used for storing and querying uncertain KBs, we have considered other implementations of quads. Our objective was twofold: on the one hand, to show that our approaches can be used on several triplestores and, on the other hand, to check whether our approaches still outperform the baseline method on these generic implementations. In this section, we consider the named graph implementation.

Experiment description In the named graph implementation, each RDF statement is represented as a quad (subject, predicate, object, graphname). The named graph is used to represent the degree of certainty for each RDF triple. Then, threshold queries are rewritten to take into consideration the named graphs. For example, in a simplified way, the query Q 2 introduced in Section 2 is rewritten as Q 2 (for α = 0.8):

Q 2 : SELECT ? b ? p WHERE { GRAPH ? g { ? b author " Abraham Lincoln ". ? b editor " Springer " . ? b type Book . ? b nbPages ? p } FILTER (? g > 0.8) } This experiment consists in evaluating the performance of our algorithms Bottom-Up, Top-Down and Hybrid in comparison with the baseline method NLBA on the named graph implementation done on both Jena TDB and Virtuoso. As stated previously, this implementation is largely slower than the quad filter implementation. Thus, we use a smaller dataset of of 100K quads, to account for the reduced performance. As in the previous experiments, we used arbitrarily the thresholds {0.2, 0.4, 0.6, 0.8}. Figures 11 and 12 show the execution time of each algorithm for each query on, respectively, Jena TDB and Virtuoso. Figure 13 gives the number of executed queries by each algorithm. Note that the number of executed queries depends only on the algorithm, the dataset and the query. The chosen implementation -the underlying triple store and the representation of the trust value (named graph, reification) -has no impact on this result.

Results and discussion

This experiment shows that our approaches still outperform the NLBA baseline method on the named graph implementation. In comparison with NLBA, our algorithms execute fewer queries for finding the αMFSs and αXSSs of each workload query. Overall, Bottom-Up, Top-Down and Hybrid execute respectively 32%, 25% and 28% fewer queries than NLBA. As a consequence, these algorithms have shorter execution times on both Jena TDB (a decrease of respectively 32%, 53% and 27% execution times for Bottom-Up, Top-Down and Hybrid) and Virtuoso (a decrease of respectively 20%, 54% and 23% execution times for Bottom-Up, Top-Down and Hybrid).

Algorithm Performance on the Reification Implementation

Another standard way to represent quads in a triplestore consists in using reification. The advantage of this technique is that it is a standard of W3C6 and it can be used on any triplestore [START_REF] Schreiber | Rdf 1.1 primer[END_REF]. This technique is used in several projects [START_REF] Hoffart | YAGO2: A Spatially and Temporally Enhanced Knowledge Base from Wikipedia[END_REF][START_REF] Sahoo | A unified framework for managing provenance information in translational research[END_REF][START_REF] Schueler | Querying for meta knowledge[END_REF][START_REF] Straccia | A general framework for representing and reasoning with annotated semantic web data[END_REF] to represent and query added properties for RDF triples such as provenance, trust, certainty, time, and location.

Experiment description

We first briefly describe the principle of the reification implementation. Let us consider the triple t = (b1, type, book). To associate a certainty degree 0.4 to this RDF triple, we describe this statement (reification) with the following triples: Compared with the named graph implementation, the reification method multiplies the size of the dataset by five (each triple is replaced by its reification and a triple to define the certainty degree), and the number of triple patterns in the query by four. As a consequence, we consider a dataset of 20K triples for this experiment to keep execution times reasonable. This experiment consists in evaluating the performance of our algorithms in comparison with the baseline method using the reification implementation on both Jena TDB and Virtuoso. As in previous experiments, we used the thresholds {0.2, 0.4, 0.6, 0.8}.

Results and discussion

Figures 15 and16 show the execution time of each algorithm for each query on, respectively, Jena TDB and Virtuoso. Figure 14 gives the number of executed queries by each algorithm. As for the named graph implementation, our algorithms outperform the NLBA baseline method. They execute fewer queries for finding the αMFSs and αXSSs of each workload query. Overall, Bottom-Up, Top-Down and Hybrid execute respectively 37%, 31% and 33% fewer queries than NLBA. As a consequence, these algorithms have shorter execution times on both Jena TDB (a decrease of respectively 11%, 37% and 8% execution times for Bottom-Up, Top-Down and Hybrid) and Virtuoso (a decrease of respectively 42%, 34% and 45% execution times for Bottom-Up, Top-Down and Hybrid). By design, our three algorithms always execute less queries than the baseline method to compute αMFSs and αXSSs. Our experiments have shown that, regardless of the selected implementation, this always result in a significant performance improvement, with total execution times reduced by 8% to 54%.

Related Work

In this section, we provide a comprehensive review of the existing approaches to address the empty-answer problem in the context of KBs. First, a comparison between the main approaches is made. Then, a critical analysis of the closest approaches to our proposal is presented.

A Comparative Study

In the context of KBs, the empty-answer problem has been tackled by several approaches such as completing the KB using logical rules [START_REF] Galárraga | Fast Rule Mining in Ontological Knowledge Bases with AMIE+[END_REF], checking the data during query formulation to avoid empty answers [START_REF] Campinas | Live SPARQL Auto-Completion[END_REF], deriving an emergent relational schema from the KB data to help users formulating queries [START_REF] Pham | Deriving an Emergent Relational Schema from RDF Data[END_REF] or relaxing the query to return alternative answers [START_REF] Hurtado | Ranking Approximate Answers to Semantic Web Queries[END_REF][START_REF] Huang | Approximating query answering on RDF databases[END_REF][START_REF] Fokou | Endowing Semantic Query Languages with Advanced Relaxation Capabilities[END_REF][START_REF] Calí | Flexible Querying for SPARQL[END_REF][START_REF] Hogan | Towards Fuzzy Queryrelaxation for RDF[END_REF][START_REF] Elbassuoni | Query Relaxation for Entity-Relationship Search[END_REF][START_REF] Dolog | Relaxing RDF queries based on user and domain preferences[END_REF].

These approaches are compared in Table 4 on the basis of the following criteria:

target: some approaches focus on improving the KB (completing it or extracting a relational schema from it) to avoid the empty answer problem, while other approaches focus on the user queries that raised this problem; before/after query formulation: this criteria specifies whether the considered approach anticipates the empty answer problem, i.e. try to solve it before query formulation or acts once this problem appears (during or after query formulation); user involvement: the approaches can ask more or less inputs from the user; help to understand the KB: the approaches may or may not help the user to better understand the content and/or the structure of the KB.

As we can see, two main categories of approaches appear.

-Completing the KB and deriving an emergent relational schema from it consider that the empty anwswer problem comes from the KB because it is incomplete and its structure is hidden to the user. Thus, these approaches anticipate the empty-answer problem by modifying the KB. -Checking the data during query formulation and query relaxation focus on the user-provided query. The first approach helps the user formulate her/his query to prevent the empty answer problem. Its downside is that it requires many inputs from the user. Conversely, query relaxation takes the failing query as a starting point and provides the user with alternative answers. This process can be completely automatic [START_REF] Fokou | RDF Query Relaxation Strategies Based on Failure Causes[END_REF] or guided by the user [START_REF] Dolog | Relaxing RDF queries based on user and domain preferences[END_REF].

All these approaches can be complementary to tackle the empty answer problem. In the next section, we detail the closest approaches to our work.

Relaxation-Driven Approaches

As our work is in the field of query relaxation for KBs, we summarise, in this section, the main contributions made in this domain. Several approaches proposed relaxation operators in the RDF context. These operators are mainly based on RDFS semantics (e.g., generalizing triple patterns using class and property hierarchies) [START_REF] Hurtado | Ranking Approximate Answers to Semantic Web Queries[END_REF][START_REF] Huang | Approximating query answering on RDF databases[END_REF][START_REF] Fokou | Endowing Semantic Query Languages with Advanced Relaxation Capabilities[END_REF][START_REF] Calí | Flexible Querying for SPARQL[END_REF], similarity measures [START_REF] Hogan | Towards Fuzzy Queryrelaxation for RDF[END_REF][START_REF] Elbassuoni | Query Relaxation for Entity-Relationship Search[END_REF] and user preferences [START_REF] Dolog | Relaxing RDF queries based on user and domain preferences[END_REF]. These operators generate a set of relaxed queries, ordered by similarity with the original query and executed in this order [START_REF] Hurtado | Ranking Approximate Answers to Semantic Web Queries[END_REF][START_REF] Huang | Approximating query answering on RDF databases[END_REF][START_REF] Reddy | Efficient Trust-Based Approximate SPARQL Querying of the Web of Linked Data[END_REF]. Relaxation operators can be directly used by the user in her/his query [START_REF] Fokou | Endowing Semantic Query Languages with Advanced Relaxation Capabilities[END_REF][START_REF] Calí | Flexible Querying for SPARQL[END_REF] or used in conjunction with query rewriting rules to perform relaxation [START_REF] Dolog | Relaxing RDF queries based on user and domain preferences[END_REF]. In these approaches, the failure causes of the query are unknown, which may lead to executing unnecessary relaxed queries. Fokou et al. [START_REF] Fokou | Handling Failing RDF Queries: From Diagnosis to Relaxation[END_REF][START_REF] Fokou | RDF Query Relaxation Strategies Based on Failure Causes[END_REF] tackled this problem by firstly defining the LBA and MBA approaches to compute the MFSs and XSSs of the query [START_REF] Fokou | Handling Failing RDF Queries: From Diagnosis to Relaxation[END_REF] and secondly by proposing relaxation strategies based on MFSs that identify relaxed queries that necessarily fail [START_REF] Fokou | RDF Query Relaxation Strategies Based on Failure Causes[END_REF]. Our approach is based on the LBA algorithm proposed in this work. We have extended this work by identifying the condition under which this algorithm can be used in the context of uncertain KBs where the query is associated with a threshold α and by defining several algorithms to compute αMFSs and αXSSs for several thresholds. Our work is among the pioneering works aiming at exploring the query relaxation issue in uncertain KBs. To the best of our knowledge, the only other work in this context is [START_REF] Reddy | Efficient Trust-Based Approximate SPARQL Querying of the Web of Linked Data[END_REF]. However, this work only uses the trust value to order results by their trustworthiness. They do not consider, as we do in this paper, queries that return no result satisfying the provided degree of trustworthiness.

The issue of computing MFSs and XSSs has also been tackled in the context of relational database [START_REF] Godfrey | Minimization in Cooperative Response to Failing Database Queries[END_REF], recommender systems [START_REF] Jannach | Fast Computation of Query Relaxations for Knowledge-based Recommenders[END_REF] and fuzzy querying [START_REF] Pivert | How to Efficiently Diagnose and Repair Fuzzy Database Queries that Fail[END_REF]. The closer work to ours is the one of Pivert and Smits [START_REF] Pivert | How to Efficiently Diagnose and Repair Fuzzy Database Queries that Fail[END_REF] in the context of fuzzy querying. They have proposed an approach to compute gradual MFSs, i.e., MFSs that are only poorly satisfied as they do not return any answer with at least a satisfaction degree equal to a user-defined threshold as well as gradual XSSs. This approach is based on a summary of the relevant part of the database. It computes the gradual MFSs and XSSs for different thresholds as in our approach. However, while this work proposes an approach to compute MFSs and XSSs in the context of fuzzy querying on certain databases, our work targets classical queries on uncertain KBs. In this new context, a summary of the relevant part of the KBs cannot be efficiently computed [START_REF] Fokou | Handling Failing RDF Queries: From Diagnosis to Relaxation[END_REF].

Conclusion

In this paper, we have considered the empty answer problem in uncertain KBs. In this context, a query fails if it returns no result or results that do not satisfy an expected degree of certainty α. To provide the user with a relevant feedback, we have proposed to compute the αMFSs and αXSSs of the failing query as they give a clear overview of the query failure causes and a set of relaxed queries that she/he can execute to find some useful alternative answers. We have first defined the condition under which a previous work algorithm called αLBA can be directly adapted to the context of uncertain KBs. In this case, the user has to define her/his expected degree of certainty. However, the user may want to know what happens if she/he relaxes the expected certainty. Thus, we have studied the problem of computing the αMFSs and αXSSs for multiple thresholds. The baseline method called NLBA consists in executing αLBA for each threshold. However, we have observed and proved that the αMFSs and αXSSs for a given threshold can be used to find others with lower or greater threshold. Thus, we have defined three alternative approaches to NLBA called Bottom-Up, Top-Down and Hybrid that consider α thresholds in different orders. We have done a complete implementation of these algorithms and shown experimentally on different datasets of the WatDiv benchmark that our approaches outperform the baseline method.

In our experiments, we have observed that none of our algorithms provide the best performance for all queries. As future work, we plan to study the conditions under which an algorithm may provide the best results. Our idea is to use the KB statistics and the cost model of the quadstore to find, on a case by case basis, the algorithm that is the most likely to have the best performance. A thorough analysis of the algorithms execution shows that many queries share some triple patterns. Thus, another perspective is to use multiple-query optimization and indexing techniques to further improve their execution times.

Fig. 1 :

 1 Fig. 1: Evaluation process of Q1

Fig. 2 :

 2 Fig. 2: Lattice of subqueries with failing and succeeding queries for different α

Algorithm 2 :

 2 Find the αMFSs and αXSSs of a query Q αLBA(Q, D, α) inputs : A failing query Q = t1 ∧ ... ∧ tn; an RDF database D; a threshold α outputs: The αMFSs and αXSSs of Q

1

 1

Fig. 3 :Definition 3 .

 33 Fig. 3: Results of subqueries evaluation for different aggregate functions

Theorem 1 .Corollary 1 .

 11 αLBA (algorithm 2) executes at most |xss α (Q)| + |Q| * |mf s α (Q)| queries. Proof. FindAnαMFS (algorithm 1) discovers a new αMFS during each execution. FindAnαMFS executes exactly |Q| queries (lines 2 to 4). For each iteration (line 4) of αLBA (algorithm 2), this algorithm finds either (i) a new αXSS Q (line 7) or (ii) a new αMFS Q * * (line 9). In the first case, a single query is executed (line 6), whereas in the second case, FindAnαMFS is called with query Q as a starting point. Therefore |Q | + 1 queries are executed to find an αMFS, with [Q | < |Q|. In total, αLBA executes at most |xss α (Q)| + |Q| * |mf s α (Q)| queries. For n thresholds α i , NLBA executes at most n i=1 |xss αi (Q)| + |Q| * |mf s αi (Q)| queries.

Lemma 3 .Lemma 4 .

 34 FindAnαXSS (algorithm 5) executes exactly |Q| -|Q * | queries. During the Top-Down approach, the dual algorithm of Discover-αMFSXSS executes at most |dmf s αi (Q)| + |Q| * |dxss αi (Q)| queries.

Lemma 6 .

 6 The discovery process of MFSs and XSSs during the Hybrid approach executes at most |Q| * |dmf s αi B

Fig. 8 :

 8 Fig. 8: # Executed queries (20M triples, Jena TDB quad filter implementation)

Fig. 9 :Fig. 10 :

 910 Fig. 9: Execution time vs Dataset size (thresholds {0.2, 0.4, 0.6, 0.8}, Jena TDB quad filter implementation)

Fig. 11 :Fig. 12 :

 1112 Fig. 11: Execution time (100K triples, Jena TDB named graph implementation) Fig. 12: Execution time (100K triples, Virtuoso named graph implementation)

Fig. 13 :Fig. 14 :

 1314 Fig. 13: # Executed queries (100K triples, Jena TDB and Virtuoso, named graph implementation) Fig. 14: # Executed queries (20K triples, Jena TDB and Virtuoso, reification implementation)

Fig. 15 :Fig. 16 :

 1516 Fig. 15: Execution time (20K triples, Jena TDB triple store, reification) Fig. 16: Execution time (20K triples, Virtuoso triple store, reification)

Table 1 :

 1 An uncertain RDF database DExample 2. The following RDF query Q 1 , expressed in SPARQL 2 , has two variables var(t) = {?b, ?p} and is composed of two triple patterns t 1 and t 2 .

		Uncertain KB	
	subject	predicate	object	trust
				value
	b1	author	Victor Hugo	0.5
	b1	editor	ACM	0.3
	b1	type	Book	0.9
	b1	nbPages	90	0.9
	b2	editor	Springer	0.7
	b2	type	Book	0.3
	b2	nbPages	90	0.7
	b3	type	Book	0.7
	b3	nbPages	88	0.7
	b4	author	Victor Hugo	0.5
	b4	type	Book	0.1
	b5	author	Abraham Lincoln	0.5
	b5	nbPages	90	0.3
	b6	author	Abraham Lincoln	0.3
	b6	editor	Springer	0.3
	b6	type	Book	0.3
	Q 1 : SELECT ? b ? a WHERE {		
	? b type Book . (t1)		
	? b author ? a } (t2)		

 1. since xss 0.6 (Q 2) = {t 2 t 4 , t 3 t 4 }, the user may find in the KB some items edited by Springer with their number of pages (t 2 t 4) if he agrees to lower his certainty threshold, the previously identified αXSS (t 3 t 4) is also still a viable alternative query for 0.6; 2. since xss 0.4 (Q 2) = {t 1 , t 2 t 4 , t 3 t 4 }, they user may find items authored by Abraham Lincoln (t 1) with a degree of 0.4; 3. xss 0.2 (Q 2) = {t 1 t 2 t 3 , t 1 t 4 , t 2 t 3 t 4 }, which means that there are some books edited by Springer and authored by Abraham Lincoln (t 1 t 2 t 3), items authored by Abraham Lincoln with their number of pages (t 1 t 4) and some books edited by Springer with their number of pages (t 2 t 3 t 4) for that certainty threshold.As for αMFSs, mf s 0.6 (Q 2) = {t 1 , t 2 t 3 }, which means that, for this threshold, there are still no items authored by Abraham Lincoln and, while there are items edited by Springer (t 2 is not an αMFSs), there are no Books edited by Springer (t 2 t 3).

Table 3 :

 3 Execution time vs Dataset size 6.3 Algorithm Scalability w.r.t the Number of Thresholds

		NLBA	Bottom-Up Top-Down	Hybrid
	20M	7.04	0.24	1.26	0.24
	40M	6.86	1.59	4.62	1.57
	60M	8.2	1.66	4.94	1.64
	80M	9.58	1.72	5.29	1.71

Table 4 :

 4 Comparison of different approaches to solve the empty answer problem

	Approach	Target	Before/after	User	Help to
			query	involvement	understand
			formulation		the KB
	Completing the KB	KB	Before	None	No
	Interactive query	User query	During	Strong	Yes
	formulation				
	Emergent relational	KB	Before	None	Yes
	schema				
	Query relaxation	User query	After	More or less	Yes

http://jena.apache.org/documentation/tdb/

To improve readability, we use names instead of URIs to identify query elements.

http://jena.apache.org/documentation/tdb/quadfilter.html

https://www.w3.org/wiki/PropertyReificationVocabulary