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Abstract. Several large uncertain Knowledge Bases (KBs) are available
on the Web where facts are associated with a certainty degree. When
querying these uncertain KBs, users seek high quality results i.e., results
that have a certainty degree greater than a given threshold α. However,
as they usually have only a partial knowledge of the KB contents, their
queries may be failing i.e., they return no result for the desired certainty
level. To prevent this frustrating situation, instead of returning an empty
set of answers, our approach explains the reasons of the failure with a set
of αMinimal Failing Subqueries (αMFSs), and computes alternative re-
laxed queries, called αMaXimal Succeeding Subqueries (αXSSs), that are
as close as possible to the initial failing query. Moreover, as the user may
not always be able to provide an appropriate threshold α, we propose
three algorithms to compute the αMFSs and αXSSs for other thresholds,
which also constitutes a relevant feedback for the user. Multiple experi-
ments with the WatDiv benchmark show the relevance of our algorithms
compared to a baseline method.

Keywords: Uncertain Knowledge Bases, RDF Quad, SPARQL queries, Empty
answers, Named graph, Reification, Quad-store.

1 Introduction

A Knowledge Base (KB) is a collection of entities and facts about them. Recent
advances in information extraction techniques have led to the construction of
large KBs from Web sources. Well-known examples of academic KBs include
SigmaKB [1], YAGO [2], and NELL [3]. Commercial KBs have also been built,
such as Google’s Knowledge Vault [4] and Microsoft’s Probase [5]. These KBs
contain billions of facts captured as RDF triples (subject, predicate, object) and
are queried with the SPARQL [6] language. As these KBs have been constructed
by mining the Web for information, their facts may be inconsistent, ambiguous



or uncertain. Therefore, efforts have been made to define extensions of RDF and
SPARQL that support trust weighted data [7, 8]. In this context, an explicit de-
gree of certainty is assigned to KB facts and query results. KBs in which each fact
is associated with a degree of certainty are called uncertain KBs. The academic
and commercial KBs previously mentioned are examples of real uncertain KBs.

When querying uncertain KBs, users expect to obtain high quality results
i.e., results that have a certainty degree greater than a given threshold α. How-
ever, as they rarely know the underlying structure and content of a KB, they
may be faced with an empty answer problem i.e., they obtain no result or re-
sults with a degree of certainty lower than α. This is not an uncommon problem
when querying Web-accessible KBs. Indeed, the study conducted by Saleem et
al. [9] on SPARQL endpoints shows that ten percent of queries submitted to
DBpedia between May and July 2010 returned empty results. Instead of solely
returning an empty set as the answer of a query, the system might help the user
understand the reasons of this failure by providing him/her with a set of Mini-
mal Failing Subqueries (MFSs). MFSs are the minimal parts of the query that
failed. Enumerating them identifies all the failure causes of the query. In addi-
tion to MFSs-based information, alternative queries, called MaXimal Succeeding
Subqueries (XSSs), might be suggested to the user by the system as well. XSSs
are successful (i.e, non-failing) queries that have a maximal number of triple
patterns from the initial query. Users can execute these XSSs to find alternative
answers to their failing queries. In [10], the usefulness of XSSs as a feedback
for the empty-answer problem has been evaluated by end-users, with an average
satisfaction of 76%.

The problem of enumerating MFSs and XSSs of SPARQL queries expressed
on traditional KBs is NP-hard [11], and has already been addressed by Fokou
et al. [12]. In this paper, we consider a generalization of MFSs and XSSs in
the context of uncertain KBs. We call αMFSs and αXSSs the failure causes
and maximal succeeding subqueries of an uncertain query, i.e. a query that
ignores results whose certainty degrees are below the provided threshold α. In
this article, we first define the conditions under which the computation of MFSs
and XSSs for traditional KBs can be directly adapted to αMFSs and αXSSs in
an uncertain context. In this setting, the user has to provide the query threshold
α. However, as she/he may not have an idea of the uncertainty level present
in to the target KB, we also investigate the idea of suggesting relaxed queries
with lower α thresholds. This kind of relaxation requires the computation of
αMFSs and αXSSs for various other thresholds. To save computation time, some
properties between αMFSs and αXSSs of different thresholds are established and
exploited. Thus, and depending on which order the α values are considered, three
approaches, called Top-Down, Bottom-Up and Hybrid, are discussed. We run
several experiments on the WatDiv benchmark with Jena TDB1 and Virtuoso
[13], used as quadstores, to show the impact of our approaches compared to a
baseline method.

1 http://jena.apache.org/documentation/tdb/



This paper is an extension of our earlier conference work [14]. We have sub-
stantially developed, revised and improved our proposal. In particular, this ar-
ticle contains the following original contributions: (1) the proposition of a third
approach (named Hybrid) to compute αMFS and αXSS, (2) the complete def-
initions and proofs of the properties on which our approaches are based, (3) a
detailed analysis of existing work on the empty answer problem in the context
of SPARQL and relational queries, (4) an evaluation of the complexity of our
three approaches and (5) new experiments to evaluate their impact in different
settings.

The paper is structured as follows. Section 2 provides some basic notions
and formalizes the considered problem, along with a motivating and illustrative
example. Section 3 defines the condition under which a previous work algorithm
can be directly adapted to find the αMFSs and αXSSs of a failing RDF query for
a given unique threshold α. Section 4 describes the three proposed approaches
(Top-Down, Bottom-Up and Hybrid) to compute αMFSs and αXSSs for a set
of thresholds. Section 5 provides a complexity analysis of these algorithms. Sec-
tion 6 discusses the implementation and the experimental evaluation performed
using the WatDiv benchmark. Section 7 details related work. Finally, we con-
clude and introduce some future work in Section 8.

2 Preliminaries and Problem Statement

In this section we define the notions required for the remainder of the paper. We
use the notations on RDF and SPARQL given by Pérez et al. [15] and the trust
model proposed by Hartig [7].

Data model An RDF triple is a triple (subject, predicate, object) ∈ (U ∪B)×
U × (U ∪ B ∪ L) where U is a set of URIs, B is a set of blank nodes and L is
a set of literals. We denote by T the union U ∪ B ∪ L. An RDF database (or
triplestore) stores a set of RDF triples (denoted by TRDF ) in a triples table
or one of its variants. Each RDF triple has a trust score (or certainty score)
representing the trustworthiness of the triple. This score is assigned with the
function tv : TRDF → [0, 1].

Example 1. Table 1 depicts an uncertain KB. This sample KB will be used
throughout the paper.

RDF queries An RDF triple pattern t is a triple (subject, predicate, object)
∈ (U ∪V )× (U ∪V )× (U ∪V ∪L), where V is a set of variables disjoint from the
sets U , B and L. We denote by var(t) ⊆ V the set of variables occurring in t. We
consider RDF queries defined as a conjunction of triple patterns: Q = t1∧· · ·∧tn.
The number of triple patterns of a query Q is denoted by |Q| and its variables
var(Q) =

⋃
var(ti).



Uncertain KB

subject predicate object trust
value

b1 author Victor Hugo 0.5

b1 editor ACM 0.3

b1 type Book 0.9

b1 nbPages 90 0.9

b2 editor Springer 0.7

b2 type Book 0.3

b2 nbPages 90 0.7

b3 type Book 0.7

b3 nbPages 88 0.7

b4 author Victor Hugo 0.5

b4 type Book 0.1

b5 author Abraham Lincoln 0.5

b5 nbPages 90 0.3

b6 author Abraham Lincoln 0.3

b6 editor Springer 0.3

b6 type Book 0.3

Table 1: An uncertain RDF database D

Example 2. The following RDF query Q1, expressed in SPARQL2, has two vari-
ables var(t) = {?b, ?p} and is composed of two triple patterns t1 and t2.
Q1: SELECT ?b ?a WHERE {

?b type Book . (t1)
?b author ?a } (t2)

Query evaluation A mapping µ from V to T is a partial function µ : V → T .
For a triple pattern t, we denote by µ(t) the triple obtained by replacing in t its
variables var(t) by their mapping µ(var(t)). The domain of µ, dom(µ), is the
subset of V where µ is defined. Two mappings µ1 and µ2 are compatible when for
all x ∈ dom(µ1) ∩ dom(µ2), it is the case that µ1(x) = µ2(x) i.e., when µ1 ∪µ2

is also a mapping. Let Ω1 and Ω2 be sets of mappings, we define the join of Ω1

and Ω2 as: Ω1 ./ Ω2 = {µ1 ∪ µ2 | µ1 ∈ Ω1, µ2 ∈ Ω2 are compatible mappings}.
Let D be an RDF database and t be a triple pattern; the evaluation of the
triple pattern t over D, denoted by [[t]]D, is defined by: [[t]]D = {µ | dom(µ) =
var(t) ∧ µ(t) ∈ D}. Let Q be a query, the evaluation of Q over D is defined
by: [[Q]]D = [[t1]]D ./ · · · ./ [[tn]]D. This evaluation can be done under different
entailment regimes as defined in the SPARQL specification (e.g. simple or RDF
entailment regime). The examples and experiments presented in this article are
based on the simple entailment regime. Let µ be a solution of the query Q =
t1 ∧ · · · ∧ tn and aggreg be an aggregation function (e.g, the minimum), the
trust value of µ is defined by tv(µ,Q) = aggreg(tv(µ(t1)), · · · , tv(µ(tn))). In

2 To improve readability, we use names instead of URIs to identify query elements.



the context of uncertain KBs, the evaluation of Q over D returns trust weighted
results filtered using a user-provided threshold α. This threshold is the minimum
acceptable certainty value of the mapping, in the range [0, 1]. The evaluation of
an uncertain query is therefore defined as: [[Q]]αD = {µ ∈ [[Q]]D | tv(µ) ≥ α}.

Example 3. Let us consider the evaluation of Q1 for a degree α = 0.4. Figure
1 illustrates the evaluation of each triple pattern [[t1]]D and [[t2]]D, as well as
their junction [[Q1]]D = [[t1]]D ./ [[tn]]D. The aggregation of trust values is then
performed on the result of [[Q1]]D, based on the trust value associated with
each mapping of single triple patterns. In this example, the chosen aggregation
function is the minimum.

The evaluation of the uncertain query [[Q1]]0.4D would not include the last
two mappings (that involve b4 and b6) since their aggregate trust values of re-
spectively 0.1 and 0.3 are below 0.4.

?b trust

b1 0.9

b2 0.3

b3 0.7

b4 0.1

b6 0.3

[[t1]]D

?b ?a trust

b1 Victor
Hugo

0.5

b4 Victor
Hugo

0.5

b5 Abraham
lincoln

0.5

b6 Abraham
lincoln

0.3

./

[[t2]]D

?b ?a trust

b1 Victor
Hugo

min(0.9,0.5)=0.5

b4 Victor
Hugo

min(0.1,0.3)=0.1

b6 Abraham
lincoln

min(0.3,0.3)=0.3

=

[[t1]]D ./ [[t2]]D

Fig. 1: Evaluation process of Q1

Notion of αMFSs and αXSSs Given a query Q = t1 ∧ · · · ∧ tn, a query
Q′ = ti ∧ · · · ∧ tj is a subquery of Q, Q′ ⊆ Q, iff {i, · · · , j} ⊆ {1, · · · , n}. If
{i, · · · , j} ⊂ {1, · · · , n}, we say that Q′ is a proper subquery of Q (Q′ ⊂ Q).

Definition 1. A minimal failing subquery (MFS) of a query Q is one of its
failing subqueries that contains a minimal subset of its predicates. The set of all
MFSs of a query Q, denoted by mfs (Q), is therefore defined as:

mfs (Q) = {Q∗ | Q∗ ⊆ Q ∧ [[Q∗]]D = ∅ ∧ @ Q′ ⊂ Q∗ such that [[Q′]]D = ∅}.

By extension, the set of all αMFSs of a query Q is defined as:

mfsα (Q) = {Q∗ | Q∗ ⊆ Q ∧ [[Q∗]]αD = ∅ ∧ @ Q′ ⊂ Q∗ such that [[Q′]]αD = ∅}.



Example 4. Let us now consider the evaluation of [[Q1]]0.6D . The result of this
query is empty as it does not include any mapping, either because their as-
sociated aggregate trust value is below 0.6 or because the mappings are not
included in the evaluation of the non-uncertain query [[Q1]]D. Since [[t1]]0.6D 6= ∅
and [[t2]]0.6D = ∅, mfs0.6(Q1) = {t2}, which means that any query that includes
the predicate t2 and this KB will fail for a threshold of 0.6.

Definition 2. A maximal succeeding subquery (XSS) of a query Q is one of its
successful subqueries that contains a maximal subset of its predicates. The set of
all XSSs of a query Q, denoted by xss (Q), is therefore defined as:

xss (Q) = {Q∗ | Q∗ ⊆ Q ∧ [[Q∗]]D 6= ∅ ∧ @ Q′ such that Q∗ ⊂ Q′∧[[Q′]]D 6= ∅}.

By extension, the set of all αXSSs of a query Q is defined as:

xss α(Q) = {Q∗ | Q∗ ⊆ Q ∧ [[Q∗]]αD 6= ∅ ∧ @ Q′ such that Q∗ ⊂ Q′∧[[Q′]]αD 6= ∅}.

Example 5. Following the previous example, xss0.6(Q1) = {t1}, which means
that there are no successful subqueries of Q1 whose predicates are a strict su-
perset of {t1} for a threshold of 0.6. The query Q∗ = t1 is therefore a candidate
relaxed query.

Comprehensive example Let us consider the following query Q2 that searches
for Books edited by Springer and authored by Abraham Lincoln with their
number of pages. We denote this query by Q = t1 ∧ t2 ∧ t3 ∧ t4 (or t1t2t3t4 in
short).
Q2: SELECT ?b ?p WHERE {

?b author "Abraham Lincoln ". (t1)
?b editor "Springer" . (t2)
?b type Book . (t3)
?b nbPages ?p } (t4)

Figure 2 depicts the αMFSs and αXSSs of the query Q2 for different thresh-
olds on the lattice of subqueries of Q2. Note that the enumeration of all αMFSs
and αXSSs is sufficient to determine the status (successful or failing) of every
subquery of Q2.

We first consider that the user wants results with a certainty degree of at
least 0.8. In our example, this query will fail; but, thanks to the 0.8 αMFSs
(mfs0.8(Q2) = {t1, t2}) and αXSSs (xss0.8(Q2) = {t3t4}), we may provide the
following explanations: for a certainty degree of 0.8, there is no item authored
by Abraham Lincoln (t1) and no item edited by Springer (t2), meaning that
any query that includes these predicates will fail for this threshold but there
are some Books with their number of pages (t3t4), which is the only candidate
relaxed query.

If we compute the αMFSs and αXSSs for lower degrees (e.g., 0.2, 0.4 and
0.6), we may find significant alternative queries and explanations for the user.
For example the αXSSs may be used to provide the following explanations:



∅

t1 t2 t3 t4

t1t2 t1t3 t1t4 t2t3 t2t4 t3t4

t1t2t3 t1t2t4 t1t3t4 t2t3t4

t1t2t3t4

(a) α = 0.2

∅

t1 t2 t3 t4

t1t2 t1t3 t1t4 t2t3 t2t4 t3t4

t1t2t3 t1t2t4 t1t3t4 t2t3t4

t1t2t3t4

(b) α = 0.4

∅

t1 t2 t3 t4

t1t2 t1t3 t1t4 t2t3 t2t4 t3t4

t1t2t3 t1t2t4 t1t3t4 t2t3t4

t1t2t3t4

(c) α = 0.6

∅

t1 t2 t3 t4

t1t2 t1t3 t1t4 t2t3 t2t4 t3t4

t1t2t3 t1t2t4 t1t3t4 t2t3t4

t1t2t3t4

(d) α = 0.8

legend: Q : failing query Q : successful query Q : αMFS Q : αXSS

Fig. 2: Lattice of subqueries with failing and succeeding queries for different α



1. since xss0.6(Q2) = {t2t4, t3t4}, the user may find in the KB some items
edited by Springer with their number of pages (t2t4) if he agrees to lower
his certainty threshold, the previously identified αXSS (t3t4) is also still a
viable alternative query for 0.6;

2. since xss0.4(Q2) = {t1, t2t4, t3t4}, they user may find items authored by
Abraham Lincoln (t1) with a degree of 0.4;

3. xss0.2(Q2) = {t1t2t3, t1t4, t2t3t4}, which means that there are some books
edited by Springer and authored by Abraham Lincoln (t1t2t3), items au-
thored by Abraham Lincoln with their number of pages (t1t4) and some
books edited by Springer with their number of pages (t2t3t4) for that cer-
tainty threshold.

As for αMFSs, mfs0.6(Q2) = {t1, t2t3}, which means that, for this threshold,
there are still no items authored by Abraham Lincoln and, while there are items
edited by Springer (t2 is not an αMFSs), there are no Books edited by Springer

(t2t3).

This feedback may help the user have a better understanding of the uncertain
KB content, reformulate her/his query or adjust her/his expectation. To provide
this feedback, an efficient approach that computes αMFSs and αXSSs for a set
of thresholds is needed. We first consider the problem of computing αMFSs and
αXSSs for a single threshold α.

Problem statement We are concerned with computingmfsαi(Q) and xssαi(Q)
of a failing RDF query Q over uncertain KBs efficiently for a set of thresholds
αi ∈ {α1, · · · , αn}.

3 αMFSs and αXSSs Computation for a Single
Threshold α

In Fokou et al. [12], a Lattice-Based Approach (LBA) to compute MFSs and
XSSs of a SPARQL query is proposed. As we show in Section 3.1, this approach
can be directly adapted to compute the αMFSs and αXSSs of a query for a given
α. This approach, called αLBA, has the same algorithmic complexity as LBA
(see [12]). However the αLBA approach relies on an assumption that does not
always hold in the context of uncertain KBs. Thus, we define, in Section 3.2, the
condition under which αLBA can be used to compute the αMFSs and αXSSs of
a query for a given α.

3.1 αLBA Approach

We present in this section the main principles and algorithms of αLBA as a direct
adaptation of LBA in the uncertain KBs setting. αLBA explores the lattice of
subqueries of a query Q by following a three-step procedure.



Step 1: Find an αMFS Q∗ of Q Following Algorithm 1, αLBA removes
iteratively each triple pattern ti from Q, resulting in the proper subquery Q′.
If Q′ fails for α, then Q′ contains an αMFS. Conversely, if Q′ succeeds, then
each αMFS of Q contains ti. The proof of this property relies on the fact that a
successful query cannot contain a failing query [12].

Algorithm 1: Find an αMFS of a failing RDF query Q

FindAnαMFS(Q, D, α)
inputs : A failing query Q = t1 ∧ ... ∧ tn; an RDF database D;

a threshold α
output: An αMFS of Q denoted by Q∗

1 Q∗ ← ∅; Q′ ← Q;
2 foreach triple pattern ti ∈ Q do
3 Q′ ← Q′ − ti;
4 if [[Q′ ∧Q∗]]αD 6= ∅ then
5 Q∗ ← Q∗ ∧ ti;

6 return Q∗;

Example 6. To illustrate this algorithm, we consider our running example with
α = 0.2 (see Figure 2(a)). The algorithm removes the triple pattern t1 from
the initial query resulting in the subquery t2t3t4. As this query succeeds, t1 is
contained in the searched αMFS Q∗. The algorithm removes t2 and executes
the query t1t3t4. This query fails and thus, the algorithm searches Q∗ in t1t3t4.
t3 is removed leading to the subquery t1t4 which succeeds, meaning that t3 is
included in the αMFS. Finally, t4 is removed and the subquery t1t3 succeeds.
Thus, t4 is also an element of Q∗. The algorithm stops and returns the result
Q∗ = t1t3t4.

Step 2: Compute Potential αXSSs i.e., the maximal queries that do not
include the αMFS previously found. The set of potential αXSSs is denoted by
pxss(Q,Q∗) and can be computed as follows:

pxss(Q,Q∗) =

{
∅, if |Q| = 1.

{Q− ti | ti ∈ Q∗}, otherwise.

Example 7. Following our running example, pxss(Q,Q∗) = {t2t3t4, t1t2t4, t1t2t3}.

This second step is based on the fact that all superqueries of Q∗ (i.e., queries
that include the αMFS Q∗ found in the previous step) return an empty set
of answers and thus, can be pruned from the search space. In the context of
uncertain KBs, this property is true only if a successful query cannot contain a
failing query for the given α, which will be discussed in Section 3.2.



Step 3: Execute the Potential αXSSs If a subquery is found during step
2 succeeds, it is then an αXSS. Otherwise, we apply the two previous steps on
this subquery to find a new αMFS and update the potential αXSSs. This is
illustrated by Algorithm 2. It is worth noting that this algorithm avoids finding
the same αMFSs several times (lines 11-13).

Example 8. In our running example, the two potential αXSSs t2t3t4 and t1t2t3
succeed and thus, they are the αXSSs of Q. The potential αXSSs t1t2t4 fails
and therefore contains an αMFS, that FindAnαMFS determines to be the query
itself. During this step, t1t4 is added to the set of potential αXSSs (line 13
of algorithm 2) since pxss(t1t2t4, t1t2t4) = {t1t2, t1t4, t2t4}, and both t1t2 and
t2t4 are subqueries of previously identified αXSSs. the last potential αXSS t1t4
succeeds and is therefore an αXSS.

Algorithm 2: Find the αMFSs and αXSSs of a query Q

αLBA(Q, D, α)
inputs : A failing query Q = t1 ∧ ... ∧ tn; an RDF database D;

a threshold α
outputs: The αMFSs and αXSSs of Q

1 Q∗ ←FindAnαMFS(Q,D,α);
2 pxss← pxss(Q,Q∗);
3 mfsα(Q)← {Q∗}; xssα(Q)← ∅;
4 while pxss 6= ∅ do
5 Q′ ← pxss.element(); // choose an element of pxss
6 if [[Q′]]αD 6= ∅ then // Q′ is an αXSS
7 xssα(Q)← xssα(Q) ∪ {Q′}; pxss← pxss− {Q′};
8 else // Q′ contains an αMFS
9 Q∗∗ ←FindAnαMFS(Q′, D, α);

10 mfsα(Q)← mfsα(Q) ∪ {Q∗∗};
11 foreach Q′′ ∈ pxss such that Q∗∗ ⊆ Q′′ do
12 pxss← pxss− {Q′′};
13 pxss← pxss ∪ {Qj ∈ pxss(Q′′, Q∗∗) | @Qk ∈

pxss ∪ xssα(Q) such that Qj ⊆ Qk};

14 return {mfsα(Q), xssα(Q)};

3.2 Aggregate Function Condition

As we have seen in the previous section, the αLBA approach relies on the fact
that a successful query cannot contain a failing query. In the context of uncer-
tain KBs, depending on the aggregate function (aggreg3) chosen, this property

3 Aggreg is the function used for assigning trust values to query results.



does not always hold. Following the example query Q1 whose evaluation is il-
lustrated in Figure 1, Figure 3 provides the results of this query and one of its
subqueries Q′1 on the uncertain RDF database given in Table 1, for α = 0.6.
For the max and avg aggregate functions, the query Q1 is successful since
max(0.9, 0.5) = 0.9 ≥ 0.6 and avg(0.9, 0.5) = 0.7 ≥ 0.6 while its subquery
Q′1 fails in both cases: max(0.5) = 0.5 < 0.6 and avg(0.5) = 0.5 < 0.6, which
contradicts our hypothesis. Thus, the αLBA algorithm cannot be used with
these aggregate functions. As proven below, this algorithm can be applied only
if the aggregate function aggreg, is monotonically decreasing with respect to the
subset partial order.

Q1: SELECT ?b ?a WHERE {

?b type Book .

?b author ?a }

Q′1: SELECT ?b ?a WHERE {

?b author ?a }

aggreg [[Q′]]0.6D [[Q]]0.6D
min ∅ ∅
max ∅ {b1}∏

∅ ∅
avg ∅ {b1}

Fig. 3: Results of subqueries evaluation for different aggregate functions

Definition 3. Let aggreg : [0, 1]n → [0, 1] be an aggregate function, aggreg is
monotonically decreasing with respect to set4 inclusion if for all sets A and B
∈ [0, 1]n, A ⊆ B ⇒ aggreg(A) ≥ aggreg(B).

As examples of monotonically decreasing aggregate functions, we can cite the
minimum or the product on values in [0, 1].

Proposition 1. Let aggreg be monotonically decreasing. If a proper subquery
Q′ of Q fails for a given α (using the aggreg function) then Q also fails for α.

Proof. We consider a query Q = t1 ∧ · · · ∧ tn and its proper subquery Q′ =
ti ∧ · · · ∧ tj ({i, · · · , j} ⊂ {1, · · · , n}). Assume that [[Q′]]αD = ∅ and [[Q]]αD 6=
∅. Thus, ∃µ ∈ [[Q]]αD. Since [[Q]]αD ⊆ [[Q]]D and [[Q]]D ⊂ [[Q′]]D, we have
µ|var(Q′) ∈ [[Q′]]D where µ|var(Q′) is the restriction of the function µ to the
variables of Q′. By definition, tv(µ,Q) = aggreg(tv(µ(t1)), · · · , tv(µ(tn))) ≥ α
and tv(µ|var(Q′), Q

′) = aggreg(tv(µ(ti)), · · · , tv(µ(tj))) (indeed, tv(µ,Q′) = t-
v(µ|var(Q′), Q

′)). Since aggreg is monotonically decreasing, aggreg(tv(µ(ti)),-
· · · , tv(µ(tj))) ≥ aggreg(tv(µ(t1)), · · · , tv(µ(tn))) ≥ α. As a consequence, t-
v(µ|var(Q′), Q

′) ≥ α and since µ|var(Q′) ∈ [[Q′]]D we deduce that µ|var(Q′) ∈
[[Q′]]αD. This contradicts the assumption that Q′ fails.

In this section, we have shown that if the aggregate function aggreg, used for
assigning trust values to query results, is monotonically decreasing with respect
to the subset partial order, then the αLBA approach can be applied to find the

4 For simplicity, this definition is restricted to sets but could be extended to multisets.



αMFSs and αXSSs for the given threshold. In the next section, we consider the
problem of finding the αMFSs and αXSSs for a set of thresholds. As highlighted
in Section 2, these additional results could be useful to help users reformulate
their queries and/or adjust their expectations.

4 αMFSs and αXSSs Computation for Different
Thresholds α

To find αMFSs and αXSSs for a set of αi ∈ {α1, · · ·αn}, one can execute the
αLBA algorithm for each αi. This baseline method is named NLBA. In this
section, we discuss different improvements of this approach. The idea is that the
αMFSs and αXSSs discovered for a given threshold provide a set of hints to
deduce some αMFSs and αXSSs for a higher (or lower) threshold. We start by
investigating a bottom-up approach, from a lower to a higher threshold.

4.1 Bottom-Up Approach

In this section, we consider two thresholds αi and αj such that αi < αj . If Q∗ is
an αiMFSs of the queryQ, thenQ∗ also fails for αj . However, this subquery is not
necessarily minimal for αj and therefore might not be an αjMFS. The following
proposition provides a condition under which an αiMFS is also an αjMFS.

Proposition 2. Let αi and αj be two thresholds such that αi < αj and Q∗ be
an αiMFS of Q on an RDF database D. If |Q∗| = 1, then Q∗ is also an αjMFS
of Q.

Proof. If Q∗ is an αiMFS of Q on a dataset D, then [[Q∗]]αiD = ∅. Since αi < αj ,
we also have [[Q∗]]

αj
D = ∅. Q∗ is minimal (|Q∗| = 1) and failing for αj , thus Q∗

is an αjMFS of Q.

Thus, an αiMFS Q∗ of Q such that |Q∗| = 1 is an αjMFS of Q. We now con-
sider the general case where |Q∗| > 1. As pointed out previously, for a subquery
Q∗ to be an αjMFS of a query Q, all its proper subqueries have to succeed. As
stated in proposition 2, this property is always true if the query contains a single
triple pattern. Checking if a query has a single triple pattern does not require any
database access. Thus, we check this case first and put all discovered αjMFS of
Q in a set of discovered αMFSs denoted by dmfsαj (Q). Otherwise, proving that
Q∗ is an αjMFS requires checking that all its subqueries succeed, by executing
those |Q∗| queries. In the worst case where Q∗ is not an αjMFS, |Q∗| queries are
executed without finding any αjMFS. Conversely, the algorithm FindAnαMFS
of αLBA (Algorithm 1) also requires |Q∗| queries but guarantees that an αMFS
will be found. Thus, our approach favors the algorithm FindAnαMFS over ex-
ecuting the subqueries of the αiMFS to discover new αjMFSs. This approach
avoids starting over from the initial query to find new αjMFSs and therefore
executes less subqueries compared with the baseline method NLBA.



We have seen the properties that can be leveraged to deduce some αjMFSs
of Q from its αiMFSs. We now consider the case of the αXSSs. An αiXSS of Q
may fail for αj . The following proposition shows that if it succeeds, it is then an
αjXSS of Q.

Proposition 3. Let αi and αj be two thresholds such that αi < αj and Q∗ be
an αiXSS of Q on an RDF database D. If [[Q∗]]

αj
D 6= ∅, then Q∗ is an αjXSS

of Q.

Proof. If Q∗ is an αiXSS of Q on an RDF database D, then all its superqueries
are failing for αi (otherwise, it is not maximal). As αi < αj , these superqueries
also fail for αj . If [[Q∗]]

αj
D 6= ∅, Q∗ is successful and maximal for αj . Thus, Q∗ is

an αjXSS of Q.

Thus, discovering if an αiXSS is also an αjXSS only requires the execution
of a single query (the αiXSS with the new threshold αj). This enables us to find
a set of discovered αjXSSs, denoted by dxssαj (Q). If the αiXSS fails for αj , we
can still use it to find an αjMFS thanks to the algorithm FindAnαMFS. Thus,
the execution of the αiXSS for the new threshold αj is always worthwhile: if it
succeeds, it is an αjXSS; if it fails, we use it to find an αjMFS.

Algorithm 3 presents our complete approach to find some αjMFSs and αjXSSs
from the set of αiMFSs and αiXSSs. All αiMFSs that have one triple pattern
(oneAtom) are inserted in dmfsαj (Q) (line 1). Then, the algorithm iterates over
the αiMFSs with at least two triple patterns (the set FQ). It searches an αjMFS
Q∗ in a query Q′ of FQ with the FindAnαMFS algorithm (line 6). Then, it re-
moves all the failing queries of FQ that contain Q∗ since they cannot be minimal.
This process stops when all the queries in FQ have been processed (they have
been either used to find an αjMFS or removed as they contain a found αjMFS).

We then consider all the αiXSSs that do not contain a discovered αjMFS
(the set PXXS). If a query Q′ of this set succeeds, this is an αjXSS (property 3.
Otherwise we use it to find to find an αjMFS with the FindAnαMFS algorithm
(lines 16-17) and remove the queries of the set PXSS that contain this discovered
αjMFS (lines 18-19).

Once some αjMFSs and αjXSSs have been discovered, an optimized version
of αLBA is executed that takes these discovered αjMFSs and αjXSSs as inputs
(see Algorithm 4). This algorithm computes the potential αXSSs (pxss) that do
not contain any of the discovered αMFSs (lines 2-6). It removes from this set
the discovered αXSSs (line 7). Then, it iterates over the set pxss as done with
the original version of αLBA (see Algorithm 2).

Example 9. To illustrate the Bottom-Up approach, we consider our running ex-
ample (see Figure 2). First, we execute the αLBA algorithm for the 0.6 threshold
in order to find the 0.6 αMFSs and αXSSs (Figure 2.c). Then, the Bottom-Up
algorithm discovers the 0.8 αMFSs and αXSSs. As t1 is a 0.6 αMFS and has a
single triple pattern, this is a 0.8 αMFS (proposition 2). The other 0.6 αMFS
is t2t3. As this query is necessarily failing for 0.8, we use the FindAnαMFS
algorithm to identify that t2 is a 0.8 αMFSs. Considering the 0.6 αXSSs, only



Algorithm 3: Find some αjMFSs and αjXSSs for Bottom-Up

DiscoverαMFSXSS(mfsαi(Q), xssαi(Q) D, αj)
inputs : The αiMFSs mfsαi(Q) of a query Q for a threshold αi;

the αiXSSs xssαi(Q) of a query Q for a threshold αi;
an RDF database D; a threshold αj > αi

outputs: A set of αjMFSs of Q denoted by dmfsαj (Q);
A set of αjXSSs of Q denoted by dxssαj (Q);

1 oneAtom← {Qa ∈ mfsαi(Q) | |Qa| = 1};
2 dmfsαj (Q)← oneAtom;
3 FQ← mfsαi(Q)− oneAtom;
4 while FQ 6= ∅ do
5 Q′ ← fQ.dequeue();
6 Q∗ ← FindAnαMFS(Q′, D, αj);
7 dmfsαj (Q)← dmfsαj (Q) ∪ {Q∗};
8 foreach Q′′ ∈ FQ such that Q∗ ⊆ Q′′ do
9 FQ← FQ− {Q′′};

10 PXXS ← {Qa ∈ xssαi(Q) | @Q∗ ∈ dmfsαj (Q) such that Q∗ ⊂ Qa};
11 while PXXS 6= ∅ do
12 Q′ ← PXXS.dequeue();

13 if [[Q′]]
αj
D 6= ∅ then // Q′ is an αjXSS

14 dxssαj (Q)← dxssαj (Q) ∪ {Q′};
15 else // Q′ contains an αjMFS
16 Q∗ ← FindAnαMFS(Q′, D, αj);
17 dmfsαj (Q)← dmfsαj (Q) ∪ {Q∗};
18 foreach Q′′ ∈ PXSS such that Q∗ ⊆ Q′′ do
19 PXSS ← PXSS − {Q′′};

20 return {dmfsαj (Q), dxssαj (Q)};



Algorithm 4: Optimized version of αLBA

Optimized-αLBA(Q, D, α, dmfsα(Q), dxssα(Q))
inputs : A failing query Q; an RDF database D; a threshold α

a set of αMFSs of Q denoted by dmfsα(Q);
a set of αXSSs of Q denoted by dxssα(Q);

outputs: The αMFSs and αXSSs of Q
1 mfsα(Q)← dmfsα(Q); xssα(Q)← dxssα(Q);
2 Q∗ ← dmfsα(Q).dequeue(); pxss← pxss(Q,Q∗);
3 foreach Q∗ ∈ dmfsα(Q) do
4 foreach Q′ ∈ pxss such that Q∗ ⊆ Q′ do
5 pxss← pxss− {Q′};
6 pxss← pxss ∪ {Qi ∈ pxss(Q′, Q∗) | @Qj ∈ pxss ∪ xssα(Q) : Qi ⊆

Qj};

7 pxss← pxss− dxssα(Q);
8 while pxss 6= ∅ do

// same as the lines 5-13 of αLBA

9 return {mfsα(Q), xssα(Q)};

t3t4 is executed as t2t4 contains a previously found 0.8 αMFS (t2). As t3t4 is
successful for 0.8, this is a 0.8 αXSSs (proposition 3).

The discovered αMFSs and αXSSs given as inputs to the Algorithm 4 are
respectively: dmfsα(Q) = {t1, t2} and dxssα(Q) = {t3t4}. From these sets of
discovered αMFSs and αXSSs, the Algorithm 4 will finally find that there are
no potential αXSSs left (lines 1-7 of this algorithm) and thus, that all the 0.8
αMFSs and αXSSs have been found. Figure 4 gives an overview of this sequence
of algorithms.

The Bottom-Up approach discovers some αMFSs and αXSSs (and thus, im-
proves over executing αLBA for each threshold α), if some αXSSs remain the
same for increasing threshold values or if the αMFSs have a single triple pat-
tern. Otherwise, it will nonetheless use previously discovered αMFSs as starting
points instead of starting over from the original query.

Cache Management In its original version, the LBA approach maintains a
cache of queries identified as successful (resp., failing) [12]. So, before executing a
subquery, this algorithm first checks whether it is a subquery (resp., superquery)
of one of the queries contained in this cache. If this is the case, the subquery
succeeds (resp., fails). Our approach extends this idea as follows. The success-
ful (resp., failing) queries are associated with a threshold corresponding to the
maximum (resp., minimum) threshold for which the query succeeds (resp., fails).
Before executing a subquery for a given α, we first check if this is a subquery
(resp., superquery) of one of the queries contained in the cache and if the as-
sociated threshold is greater than (resp., less than) or equal to α. If this is the
case, the query succeeds (resp., fails). As our approach also discovers some αXSS



0.6-LBA

Discover-0.8MFSXSS

Optimized-0.8LBA

End

0.6-MFSs(Q) = {t1, t2 ∧ t3}
0.6-XSSs(Q) = {t2 ∧ t4, t3 ∧ t4}

results :

dmfs0.8(Q) = {t1, t2}
dxss0.8(Q) ={t3 ∧ t4}

results :

0.8−MFS(Q) = {t1, t2}
0.8−XSS(Q) = {t3 ∧ t4}

results :

Fig. 4: Illustration of the Bottom-Up approach for two thresholds (0.6 and 0.8)

(resp., αMFSs) for a given α, we add to the cache all the direct/parent super-
queries (resp., subqueries) of these αXSSs (resp., αMFSs) as they are necessary
failing (resp., succeeding) for α.

4.2 Top-Down Approach

We now consider a Top-Down approach that computes the αMFSs and αXSSs
with threshold values in a decreasing order. Thanks to the duality relation that
holds between αMFS and αXSS, the properties used in this approach are dual
to the ones used in the bottom-up approach. Thus, we only introduce them
informally. Let αi and αj be two thresholds such that αi > αj , the following
properties hold:

– the αiMFSs that fail for αj are αjMFSs;
– the αiXSSs of size |Q| − 1 are αjXSSs;
– the αiXSSs of size < |Q|− 1 also succeed for αj and thus contain an αjXSS.

This αjXSS is found using Algorithm 5 FindAnαXSS which is the dual of
the Algorithm 1 FindAnαMFS.

Once a set of αjMFSs and αjXSS have been found based on the aforemen-
tioned properties, the Optimized-αLBA algorithm (Algorithm 4) is executed to
find the complete set of αjMFSs and αjXSS. This approach will improve over
executing αLBA for each threshold α if some αMFSs remain the same for de-
creasing threshold values or if the αXSSs have a size of |Q| − 1. Otherwise, it
will nonetheless use previously discovered αXSSs as starting points instead of
starting over from the original query.

Example 10. We illustrate the Top-Down approach by showing how it computes
the 0.6 αMFSs and αXSSs of our running example (see Figure 2.c), knowing



Algorithm 5: Find an αXSS of Q from a successful subquery

FindAnαXSS(Q, Q∗, D, α)
inputs : The initial query Q = t1 ∧ ... ∧ tn;

a successful subquery Q∗ of Q;
an RDF database D;
a threshold α;

output: An αXSS of Q denoted by Q′

1 Q′ ← Q∗;
2 foreach triple pattern ti ∈ (Q−Q∗) do
3 Q′ ← Q′ ∧ ti;
4 if [[Q′]]αD = ∅ then
5 Q′ ← Q′ − ti;

6 return Q′;

the ones for 0.8 (Figure 2.d). Firstly we execute the αLBA algorithm for the 0.8
threshold in order to find the 0.8 αMFSs and αXSSs. Secondly the Top-Down
algorithm discovers the 0.6 αMFSs and αXSSs. The 0.8 αMFS t1 is failing for 0.6.
Thus, it is a 0.6 αMFS. The 0.8 αXSS t3t4 is necessarily successful for 0.6. We use
it as parameter of the FindAnαXSS algorithm to find that t3t4 is also a 0.6 αXSS.
Thus, thanks to the properties used by Top-Down, the discovered 0.6 αMFSs
and αXSSs are respectively dmfsα(Q) = {t1} and dxssα(Q) = {t3t4}. Finally,
they are used as parameters of the optimized version of αLBA (Algorithm 4)
that will find the other 0.6 αMFS (t2t3) and αXSS (t2t4). Figure 5 gives an
overview of this sequence of algorithms.

0.8-LBA

Discover-0.6MFSXSS

Optimized-0.6LBA

End

0.8−MFSs(Q) = {t1, t2}
0.8−XSSs(Q) = {t3 ∧ t4}

results :

dmfs0.6(Q) = {t1}
dxss0.6(Q) = {t3 ∧ t4}

results :

0.6−MFS(Q) = {t1, t2 ∧ t3}
0.6−XSS(Q) = {t2 ∧ t4, t3 ∧ t4}

results :

Fig. 5: Illustration of the Top-Down approach for two thresholds (0.8 and 0.6)



Thus, the Top-Down approach can be seen as the dual of the Bottom-Up
approach. We now propose an approach that leverages the properties of both of
these two approaches.

4.3 Hybrid Approach

The idea of the Hybrid approach is to combine the properties used in Bottom-
Up and Top-Down to discover the greatest possible number of αMFSs and
αXSSs. For an ordered sequence of thresholds {α1, · · ·αn}, the Hybrid algo-
rithm first considers the lowest threshold α1, followed by the greatest threshold
αn. Next, it iterates over the sequence {α1, · · ·αn} by considering the middle
threshold αi where i = bn+1

2 c. The algorithm then recursively considers thresh-
olds on (1) the subset of thresholds lower than αi: {α1, · · ·αi} with its thresh-
old in the middle position, and (2) the subset of thresholds greater than αi:
{αi, · · ·αn} with its threshold in the middle position, until the αMFSs and
αXSSs are computed for every threshold. In our running example with the
thresholds {0.2, 0.4, 0.6, 0.8}, Hybrid considers these thresholds in the follow-
ing order: {0.2, 0.8, 0.4, 0.6}. Thanks to this order, when searching the αMFSs
and αXSSs for the thresholds 0.4 and 0.6, Hybrid has access to the αMFSs and
αXSSs of both a lower and greater degree. Thus, it can benefit from the prop-
erties used in Bottom-Up and Top-Down to discover some αMFSs and αXSSs.
Moreover, we use the following specific properties to find some additional αMFSs
and αXSSs.

Proposition 4. Let αi, αj and αk be three thresholds such that αi < αj < αk.
If a query Q∗ is both an αiMFS and αkMFS of Q, then Q∗ is an αjMFS of
Q. Similarly, if a query Q∗ is both an αiXSS and αkXSS of Q, then Q∗ is an
αjXSS of Q.

Proof. If Q∗ is an αiMFS of Q, then Q∗ necessarily fails for αj . Moreover, if Q∗

is also an αkMFS of Q, then all its subqueries succeed for αk and thus, also for
αj . We have proved that Q∗ is both failing and minimal for αj and thus, that Q∗

is an αjMFS. The corresponding property on αXSSs is proved in a similar way.

Thus, the Hybrid approach allows discovering a set of αMFSs and αXSS by
using the properties of Bottom-Up and Top-Down as well as the property 4. As in
previous approaches, the Optimized-αLBA algorithm (Algorithm 4) is executed
using the discovered αMFSs and αXSS to find the complete set of αMFSs and
αXSS for the considered threshold.

Example 11. We illustrate the Hybrid approach on our running example by
showing how it computes the 0.6 αMFSs and αXSSs (see Figure 2.c), knowing
the ones for 0.4 (Figure 2.b) and 0.8 (Figure 2.d). First, we execute the αLBA
algorithm for the 0.4 and 0.8 threshold in order to find the 0.4/0.8 αMFSs and
αXSSs. Then, the Top-Down algorithm discovers the 0.6 αMFSs and αXSSs.
Hybrid finds that t3t4 is an αXSS for 0.4 and 0.8, thus it is an 0.6 αXSS (propo-
sition 4). Then, it searches for 0.4 αMFSs with a single triple pattern and 0.8



αXSSs that have 3 triple patterns (|Q| − 1). As there are none in our example,
it continues by searching for the 0.8 αMFSs that fail for 0.6 (property of the
Top-Down approach). This is the case for t1, which is a 0.6 αMFS. Similarly,
it searches for the 0.4 αXSSs that succeed for 0.6 (property of the Bottom-Up
approach) and finds the 0.6 αXSS t2t4. Next, it uses the algorithm FindAnαMFS
with the 0.4 αMFSs. In our example, this algorithm is only applied to t2t3 as
the other ones contain t1 (a 0.6 αMFS). It finds that t2t3 is a 0.6 αMFS. Con-
versely, it uses the algorithm FindAnαXSS with the 0.8 αXSSs. In our example,
all the 0.8 αXSSs have already been used. Finally, thanks to the properties of
Bottom-Up and Top-Down as well as the proposition 4, the Algorithm 4 will
find that all the 0.6 αMFSs and αXSSs had been discovered. Figure 6 gives an
overview of this sequence of algorithms.

0.4-LBA and 0.8-LBA

Discover-0.6MFSXSS

Optimized-0.6LBA

End

0.4−MFSs(Q) = {t1 ∧ t2, t1 ∧ t3, t1 ∧ t4, t2 ∧ t3}
0.4−XSSs(Q) = {t1, t2 ∧ t4, t3 ∧ t4}
0.8−MFSs(Q) = {t1, t2}
0.8−XSSs(Q) = {t3 ∧ t4}

results :

dmfs0.6(Q) = {t1, t2 ∧ t3}
dxss0.6(Q) = {t2 ∧ t4, t3 ∧ t4}

results :

0.6−MFS(Q) = {t1, t2 ∧ t3}
0.6−XSS(Q) = {t2 ∧ t4, t3 ∧ t4}

results :

Fig. 6: Illustration of the Hybrid approach for three thresholds (0.4, 0.8 and 0.6)

5 Complexity of finding all αMFSs and αXSSs

In this section, we consider the time complexity of our algorithms as the number
of executed queries, which is the time-consuming part. This analysis does not
take into consideration individual response times of each queries (we assume that
each execution of a query costs a time unit). Since the complexity of finding all
αMFSs and αXSSs is exponential with respect to the number of predicates of
the initial failing query [11], we evaluate this complexity with respect to the size



of the output. It has been shown that any algorithm computing αMFSs and
αXSSs must use at least |mfsα(Q)|+ |xssα(Q)| queries [16].

NLBA We first analyse the complexity of the baseline method.

Theorem 1. αLBA (algorithm 2) executes at most |xssα(Q)|+ |Q| ∗ |mfsα(Q)|
queries.

Proof. FindAnαMFS (algorithm 1) discovers a new αMFS during each execu-
tion. FindAnαMFS executes exactly |Q| queries (lines 2 to 4). For each iteration
(line 4) of αLBA (algorithm 2), this algorithm finds either (i) a new αXSS Q′

(line 7) or (ii) a new αMFS Q∗∗ (line 9). In the first case, a single query is
executed (line 6), whereas in the second case, FindAnαMFS is called with query
Q′ as a starting point. Therefore |Q′|+ 1 queries are executed to find an αMFS,
with [Q′| < |Q|. In total, αLBA executes at most |xssα(Q)| + |Q| ∗ |mfsα(Q)|
queries.

Corollary 1. For n thresholds αi, NLBA executes at most
∑n
i=1 |xssαi(Q)| +

|Q| ∗ |mfsαi(Q)| queries.

Bottom-Up In the Optimized-αLBA algorithm, query execution is performed
only during instructions copied from αLBA (lines 5-13). Therefore, its complexity
can be deduced directly from Theorem 1.

Corollary 2. Optimized-αLBA (algorithm 4) executes at most
|xssα(Q)− dxssα(Q)|+ |Q| ∗ |mfsα(Q)− dmfsα(Q)| queries.

To show the impact of the Bottom-Up approach, we first show that, in the
worst case, this algorithm does not perform worse than NLBA.

Lemma 1. DiscoverαMFSXSS (algorithm 3) executes at most |dxssαi(Q)| +
|Q| ∗ |dmfsαi(Q)| queries.

Proof. Atomic αiMFS discovery (lines 1-3) requires no database access. After
that, αiMFS discovery is split into two parts: (i) based on previous αi−1MFSs
(lines 4-9) and (ii) based on failing αi−1XSSs (lines 15-19). For the first part,
|αi−1MFS| queries are executed by FindAnαMFS (line 6). For the second part,
|αi−1XSS| + 1 queries are executed to discover that the αi−1XSS is failing
(line 13) and then by FindAnαMFS (line 16). Note that |αi−1MFS| < |Q|
and |αi−1XSS|+ 1 ≤ |Q|. Each αiXSS discovery (lines 13-14) requires a single
query. In total, DiscoverαMFSXSS therefore executes at most |dxssαi(Q)|+|Q|∗
|dmfsαi(Q)| queries.

Bottom-Up relies on the algorithm DiscoverαMFSXSS followed by Opti-
mized-αLBA. Summing the results of Lemma 1 and Corollary 2 directly gives
the following theorem.



Theorem 2. For n thresholds αi, Bottom-Up executes at most
∑n
i=1 |xssαi(Q)|+

|Q| ∗ |mfsαi(Q)| queries.

NLBA and Bottom-Up have the same worst case complexity. Using Bottom-
Up becomes beneficial when some αMFSs and αXSSs can be inferred between
successive thresholds αi. In the best case, αMFSs and αXSSs remain the same
for each threshold.

Lemma 2. In the best case, where αMFSs and αXSSs remain the same for each
threshold, for each threshold αi after the first, Bottom-Up executes at most ∑
Q∗∈mfsαi (Q)∧|Q∗|>1

|Q∗|

 + |xssαi(Q)| queries.

Proof. The discovery of all the αiXSSs requires the execution of each one of
them (|xssαi(Q)| queries). For the discovery of αiMFSs that have a single triple
pattern, no database access is required. For other αiMFSs Q∗, FindAnαMFS is
called with the execution of |Q∗| queries, where |Q∗| is the size of the considered
αi−1MFS, which is also in this best case an αiMFS.

For n thresholds, the complexity of Bottom-Up is directly deduced from the
previous lemma.

Proposition 5. In the best case, for n thresholds αi where ∀ i ∈ {2, 3, ..., n},
mfsαi(Q) = mfsα1(Q), Bottom-Up executes at most the following number of
queries:

n ∗ |xssα1(Q)|+ |Q| ∗ |mfsα1(Q)|+ (n− 1)

 ∑
Q∗∈mfsα1 (Q)∧|Q∗|>1

|Q∗|

 (1)

Therefore, Bottom-Up becomes more efficient when αMFSs have a small
number of predicates – to minimize the cost associated with the rightmost term
of equation 1. Intuitively, since an αi−1MFS is a superquery of an αiMFS to
be discovered, the search space becomes smaller when the αi−1MFS has a small
number of predicates.

Top-Down We now consider the complexity of the Top-Down approach. The
two following lemmas are directly adapted from results taken from the Bottom-
Up approach.

Lemma 3. FindAnαXSS (algorithm 5) executes exactly |Q| − |Q∗| queries.

Lemma 4. During the Top-Down approach, the dual algorithm of Discover-
αMFSXSS executes at most |dmfsαi(Q)|+ |Q| ∗ |dxssαi(Q)| queries.

Top-Down relies on the dual algorithm of DiscoverαMFSXSS followed by
Optimized-αLBA. Summing the results of Lemma 4 and Corollary 2 directly
gives the following theorem.



Theorem 3. For each threshold αi, Top-Down executes at most
(|Q| − 1) (|dxssαi(Q)| − |dmfsαi(Q)|) + |xssαi(Q)|+ |Q| ∗ |mfsαi(Q)| queries.

Note that increasing the amount of αMFSs discovered during Top-Down
(|dmfsα(Q)|) reduces this complexity. In particular, if all αMFSs and αXSSs
are discovered (dmfsα(Q) = mfsα(Q) and dxssα(Q) = xssα(Q)), the total
complexity becomes |Q| ∗ |xssα(Q)|+ |mfsα(Q)|, which is the dual of Bottom-
Up. On the opposite, if no αMFSs and αXSSs are discovered (dmfsα(Q) = ∅
and dxssα(Q) = ∅), the total complexity becomes |xssα(Q)|+ |Q| ∗ |mfsα(Q)|,
i.e., the same as αLBA.

Lemma 5. In the best case, where αMFSs and αXSSs remain the same for each
threshold, for each threshold αi after the first, Top-Down executes at most ∑
Q∗∈xssα1 (Q)
∧|Q∗|<|Q|−1

|Q| − |Q∗|

 + |mfsαi(Q)| queries.

Proof. The proof is the dual of lemma 2 for Bottom-Up.

For n thresholds, the complexity of Top-Down is directly deduced from the
previous lemma.

Proposition 6. In the best case, for n thresholds αi where ∀ i ∈ {2, 3, ..., n},
xssαi(Q) = xssα1(Q), Top-Down executes at most the following number of
queries:

|xssα1(Q)|+(|Q|+n−1)∗|mfsα1(Q)|+(n−1)

 ∑
Q∗∈xssα1 (Q)
∧|Q∗|<|Q|−1

|Q| − |Q∗|

 (2)

Therefore, Top-Down becomes more efficient when αXSSs have a large num-
ber of predicates – to minimize the cost associated with the rightmost term of
equation 2. Intuitively, since an αi−1XSS is a subquery of an αiXSS to be discov-
ered, the search space becomes smaller when the αi−1XSS has a large number
of predicates.

Hybrid We now consider the complexity of the Hybrid approach. Since MFSs
and XSSs can be discovered from both lower and higher thresholds with dis-
tinctive number of executed queries, the following lemma identifies dmfsαB(Q)
as MFSs discovered from a lower threshold in a manner similar to Bottom-Up.
dxssαB(Q), dmfsαT (Q), dxssαT (Q) are defined similarly according to their type
(MFSs, XSSs) and their origin (lower threshold: B, higher threshold: T). The
following lemma is the sum of the results of Lemma 1 and Lemma 4.

Lemma 6. The discovery process of MFSs and XSSs during the Hybrid ap-
proach executes at most |Q| ∗ |dmfsαiB (Q)|+ |dxssαiB (Q)|+ |dmfsαiT (Q)|+ |Q| ∗
|dxssαiT (Q)|.



Note that dmfsαiB (Q) ∩ dmfsαiT (Q) = ∅ and dxssαiB (Q) ∩ dxssαiT (Q) = ∅.
Summing the results of Lemma 6 and Corollary 2 directly gives the following

theorem.

Theorem 4. For each threshold αi, Hybrid executes at most
(|Q| − 1) (|dxssαiT (Q)| − |dmfsαiT (Q)|) + |xssαi(Q)|+ |Q| ∗ |mfsαi(Q)| queries.

This worst-case complexity is the same as Top-Down (Theorem 3). Intu-
itively, the Bottom-Up part is covered by Optimized-LBA, as highlighted in
theorem 2. As for Top-Down, this complexity becomes the same as αLBA when
no MFSs or XSSs are discovered.

As for the best case, the complexity of Hybrid is the same as Bottom-Up
(theorem 5) for its first two thresholds (the lowest threshold is followed by the
highest during this evaluation). Once these mfsα1 , xssα1 , mfsαn and xssαn are
discovered, the algorithm executes no further queries to determine the αMFSs
and αXSSs of every other threshold (proposition 4).

Corollary 3. In the best case, for n thresholds αi where ∀ i ∈ {2, 3, ..., n},
mfsαi(Q) = mfsα1(Q), Hybrid executes at most the following number of queries:

2 ∗ |xssα1(Q)|+ |Q| ∗ |mfsα1(Q)|+

 ∑
Q∗∈mfsα1 (Q)∧|Q∗|>1

|Q∗|


In the best case, Hybrid is the only approach whose complexity is independent

from the number of thresholds, which can be especially useful if many have to
be evaluated.

6 Experimental Evaluation

In this section, we investigate the scalability of our proposed approaches and
compare them with the baseline method NLBA (executing αLBA for each of the
N thresholds).

Algorithms We have implemented the Top-Down, Bottom-Up and Hybrid al-
gorithms as well as the baseline method NLBA in Oracle Java 1.8 64 bits. These
algorithms take as inputs a failing query and a set of thresholds. They return the
sets of αMFSs and αXSSs of this query for each threshold. In our current imple-
mentation, these algorithms can be run on top of Jena TDB and Virtuoso. Our
implementation is available at https://forge.lias-lab.fr/projects/qars4ukb with a
tutorial to reproduce our experiments.

Experimental Setup Our experiments were conducted on a Ubuntu Server
16.04 LTS system with Intel XEON CPU E5-2630 v3 @2.4Ghz CPU and 16GB
RAM. For our experiments, we use arbitrarily the min aggregate function. Pre-
sented results are the average of five consecutive runs of the algorithms. To
prevent a cold start effect, a preliminary run is performed but not included in
the results.



Dataset and Queries We used six datasets of 20K, 100K, 20M, 40M, 60M
and 80M triples generated with the Waterloo SPARQL Diversity Test Suite
(WatDiv) [17] (the 20K dataset is a subset of the 100K dataset, and so on). The
certainty degrees of the RDF triples were generated randomly. As future work,
we plan to perform an evaluation with less synthetic or different datasets.

We consider 7 queries of the WatDiv benchmark that we have modified to get
failing queries (see Table 2). These queries range between 1 and 15 triple patterns
and cover the main query patterns: star (characterized by subject-subject joins
between triple patterns), chain (composed of object-subject joins) and composite
(made of other join patterns). These characteristics have been chosen according
to the results obtained in the study of Arias Gallego et al. [18] on real-world
SPARQL queries executed on the DBPedia and SWDF datasets. Indeed, they
have shown that these queries are based on the star, chain and composite query
patterns and range from 1 to 15 triple patterns.

Quadstore implementation The storage and retrieval of RDF triples are usu-
ally done with a triplestore such as Jena TDB or Virtuoso. We have considered
different implementations on top of these triplestores to manage uncertain RDF
triples and threshold queries:

– quad filter implementation. This implementation is specific to Jena TDB. We
use the named graph technique [19] (also called N-quads technique) to rep-
resent triples with theirs degrees of certainty (quads), and the specific Jena
TDB low level quad filter hook5 to retrieve results satisfying the provided
threshold;

– named graph implementation. As in the previous implementation, we use the
named graph technique to manage uncertain RDF triples but we retrieve
results satisfying the provided threshold by querying the set of the named
graphs (more details are given in Section 6.4);

– reification implementation. Instead of using the named graph technique, the
other standard way to represent quads is to use reification of RDF triples.
This technique enables the definition of an RDF triple in which the subject
is another RDF triple. Thus, it can be used to define the degrees of cer-
tainty of each RDF triple. Threshold queries then have to be rewritten to
accommodate for the reification (more details are given in Section 6.5).

While the quad filter implementation is specific to Jena TDB, the named
graph and reification implementations can be set on any triplestore. However, we
have observed that query execution times are significantly longer on the named
graph and reification implementations in comparison with the quad filter imple-
mentation. Thus our experiments on large datasets (Sections 6.1, 6.2 and 6.3)
are run on top of Jena TDB with the quad filter implementation. In Sections 6.4
and 6.5, we will see, on smaller datasets, that our approaches still outperform
the baseline method with the named graph and reification implementations.

5 http://jena.apache.org/documentation/tdb/quadfilter.html



Q1 (3TP) SELECT * WHERE { ?p friendOf ?f . ?f likes ?p . ?p type

ProductCategory }
Q2 (6TP) SELECT * WHERE { User666524 likes ?v0 . ?v0 hasGenre ?v1

. ?v1 tag Topic129 . ?v0 friendOf ?v2 . ?v2 Location ?v3

. ?v3 parentCountry Country17 }
Q3 (7TP) SELECT * WHERE { ?v0 follows ?v1 . ?v1 follows ?v0

. ?v1 subscribes ?v2 . ?v0 subscribes ?v2 . ?v1

likes Product16770 . ?v0 nationality Country20 . ?v0

makesPurchase ?v3 }
Q4 (8TP) SELECT * WHERE { ?v0 type User . ?v0 familyName ’Smith’

. ?v0 subscribes Website36909 . ?v0 follows ?v1 . ?v0

friendOf ?v2 . ?v0 likes ?v3 . ?v0 userId ?v4 . ?v0

makesPurchase ?v5 . ?v0 Location ?v6 . ?v0 nationality

?v7 . ?v0 userId ?v8 }
Q5 (10TP) SELECT * WHERE { ?p likes ?x . ?x likes ?p . ?p hasGenre

SubGenre92 . ?x subscribe ?w1 . ?w1 language Language21

. Website121 hits ?h . ?x homepage Website120 . ?x

familyName ’Smith’ . ?x friendOf ?x2 . ?x2 email

’xxx@xxx.com’ }
Q6 (12TP) SELECT * WHERE { ?v0 eligibleRegion Country05 . ?v0

includes ?v1 . Retailer1257 offers ?v0 . ?v0 price

’90’ . ?v0 serialNumber ?v4 . ?v0 validFrom ?v5 .

?v0 validThrough ?v6 . ?v0 eligibleQuantity ?v8 . ?v0

priceValidUntil ?v11 . ?v1 tag ?v7 . ?v1 keywords ?v10 .

?v12 purchaseFor ?v1 }
Q7 (15TP) SELECT * WHERE { ?v0 type ProductCategory7 . ?v0 tag

Topic245 . ?v0 hasReview ?v4 . ?v0 contentSize ?v9 . ?v0

description ?v10 . ?v0 keywords ?v11 . ?v12 purchaseFor

?v0 . ?v2 tag ?v1 . ?v4 rating ?v5 . ?v4 reviewer ?v6 .

?v4 text ?v7 . ?v4 title ?v8 . ?v6 familyName ?v13 . ?v6

birthDate ?v14 . ?v0 gender ?v15 }
Table 2: Failing queries considered for the experimentation (TP = Triple Patterns)



6.1 Algorithm Performance Comparison

Experiment description In this experiment, we have evaluated the perfor-
mance of our algorithms Bottom-Up, Top-Down and Hybrid in comparison with
the baseline method NLBA. This experiment has been run with the thresholds
arbitrarily set to {0.2, 0.4, 0.6, 0.8} on Jena TDB (quad filter implementation)
with the 20M triples dataset.

Q1 Q2 Q3 Q4 Q5 Q6 Q7

NLBA 1,36 7,07 13,08 6,17 2,22 5,27 16,63

Bottom Up 0,5 0,24 11,08 6,12 0,8 4,46 13,11

Top Down 1,35 1,27 8,78 0,35 2,16 2,59 13,79

Hybrid 0,5 0,24 11,76 2,5 0,8 3,75 14,98
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Fig. 7: Execution time (20M triples, Jena
TDB quad filter implementation)

Q1 Q2 Q3 Q4 Q5 Q6 Q7

NLBA 20 51 93 120 148 641 1475

Bottom Up 11 26 78 33 62 510 1286

Top Down 11 28 43 39 65 576 1470

Hybrid 7 17 49 31 51 541 1431
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Fig. 8: # Executed queries (20M triples,
Jena TDB quad filter implementation)

Results and discussion Figure 7 shows the execution time of each algorithm
for each workload query. Figure 8 gives the number of executed queries by each
algorithm. This experiment shows the improvement of our algorithms w.r.t the
NLBA baseline method. In comparison with NLBA, our algorithms execute fewer
queries to find the αMFSs and αXSSs of each workload query. Overall, Bottom-
Up, Top-Down and Hybrid execute respectively 39%, 40% and 39% fewer queries
than NLBA. As a consequence, these algorithms have shorter execution times
(a decrease of respectively 30%, 42% and 33% execution times for Bottom-Up,
Top-Down and Hybrid). For some queries, this improvement is important. For
example, NLBA needs 7 seconds to find the αMFSs and αXSSs of Q2, whereas
our algorithms need around 1 second. The difference of execution time depends
heavily on the queries that our algorithms avoid executing. For example, our
algorithms execute between 30 and 40 queries for Q4 whereas NLBA needs 120
queries. For Top-Down and Hybrid, this results in an important performance
gain. This is not the case for Bottom-Up that has nearly the same execution
time as NLBA. By analyzing the executed queries, we find that Bottom-Up
only avoids executing queries that have short execution times and, then, still
executes the most expensive queries. Thus, the overall execution time remains
mostly unchanged.



This experiment also shows that no algorithm is better than the others for
all queries. Bottom-Up and Hybrid have the best execution times for Q1, Q2
and Q5 whereas Top-Down is the best for Q3, Q4 and Q6. Despite executing the
least number of queries, Bottom-Up has the worst execution time for this work-
load. Conversely, Top-Down executes the greatest number of queries but has the
best execution time. This is due to the fact that our algorithms execute differ-
ent queries that have distinct execution times. In particular, Top-Down starts
by searching the αMFSs and αXSSs for the highest thresholds. The executed
queries tend to be selective as the threshold is high and thus, have short exe-
cution times. Once the αMFSs and αXSSs for the highest thresholds are found,
they avoid the execution of queries with a lower threshold that are likely to be
more expensive. As Bottom-Up follows the dual approach, it tends to execute
non-selective queries and has the overall worst performance. In this experiment,
Hybrid never performs better than both Top-Down and Bottom-Up. Since the
certainty degrees were randomly generated and the four considered thresholds
are separated by a significant margin, queries share few αMFSs and αXSSs be-
tween the different thresholds. Thus, the specific property used by Hybrid (see
Section 4.3) is rarely exploited.

6.2 Algorithm Performance w.r.t the Dataset Size

Experiment description The second experiment consists in evaluating the
scalability of the algorithms when the size of the dataset increases. This experi-
ment has been run with the same settings as the previous one (thresholds set to
{0.2, 0.4, 0.6, 0.8} on Jena TDB quad filter implementation) but with the 20M,
40M, 60M and 80M datasets.

Results and discussion Figure 9 and Table 3 present the execution time of
the algorithms for Q2 with the 20M, 40M, 60M and 80M datasets. The execution
times of our algorithms do not increase significantly between the 40M and 80M
datasets. On these datasets, we have observed that the αMFSs and αXSSs of Q2
remain the same and thus the same queries are executed (around 25 queries for
our algorithms and 46 for NLBA). As a consequence, in this case, the scalability
of the algorithms depends only on the execution times of these queries.

For the 20M dataset, Q2 has an additional αMFS for all the thresholds.
The number of αXSS are the same but they are shorter. As a consequence, the
algorithms execute different queries. This has a direct impact on the performance
of the algorithms. In particular, the execution time of Top-Down is around 1
second on the 20M dataset (5 seconds on other datasets) despite the fact that
it executes more queries (28 queries on 20M and 24 queries on other datasets).
Thus, when the αMFSs and αXSSs change, the scalability of the algorithms also
depends on the executed queries and their respective response times.



NLBA Bottom-Up Top-Down Hybrid

20M 7.04 0.24 1.26 0.24

40M 6.86 1.59 4.62 1.57

60M 8.2 1.66 4.94 1.64

80M 9.58 1.72 5.29 1.71

Table 3: Execution time vs Dataset size

6.3 Algorithm Scalability w.r.t the Number of Thresholds

Experiment description In this experiment, we evaluate the scalability of
the algorithms when the number of thresholds increases. This experiment was
conducted with Q6 on the Jena TDB quad filter implementation and the 20M
dataset. We have executed the algorithms for one threshold {0.1}, two thresholds
{0.1, 0.2}, three thresholds {0.1, 0.2, 0.3}, and so on up to nine thresholds.

Fig. 9: Execution time vs Dataset size
(thresholds {0.2, 0.4, 0.6, 0.8}, Jena TDB
quad filter implementation)
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Fig. 10: Execution time vs Number of α
(20M triples, Jena TDB quad filter imple-
mentation)

Results and discussion The result of this experiment is depicted in Figure 10.
As shown by this experiment, our algorithms always outperform NLBA once
two or more thresholds are considered. This is due to the fact that, for each new
threshold, NLBA executes the original version of the αLBA algorithm while
our algorithms execute an optimized version of αLBA thanks to the already
discovered αMFSs and αXSSs. As a consequence, NLBA scales nearly linearly
with the number of thresholds. In comparison, the scalability of our algorithms
depends on the number of discovered αMFSs and αXSSs. If the αMFSs and
αXSSs are rather the same between different thresholds, our algorithms only
require milliseconds to find the αMFSs and αXSSs for a new threshold in this
interval. This is the case in our experiments for the thresholds between 0.1
and 0.5. On the contrary, if the αMFSs and αXSSs change between different



thresholds (this is the case between 0.5 and 1), our algorithms scale almost
like NLBA as the optimized version αLBA leverages few discovered αMFSs and
αXSSs.

We can also observe in this experiment that the Top-Down algorithm has a
better execution time with 5 thresholds than with only one threshold, which may
be surprising. This behavior is explained as follows. The αLBA algorithm has a
short execution time for 0.5 (as shown by the results of NLBA on Figure 10).
Once the αMFSs and αXSSs are found for 0.5, as they are rather the same
between 0.1 and 0.5, Top-Down only needs a few milliseconds for the other
thresholds. In comparison, the execution of αLBA for 0.1 takes a longer time (as
the executed queries are less selective than with 0.5).

6.4 Algorithm Performance on the Named Graph Implementation

The previous experiments were all run on the quad filter implementation only
available in Jena TDB. As other triplestores, such as Virtuoso, may be used
for storing and querying uncertain KBs, we have considered other implementa-
tions of quads. Our objective was twofold: on the one hand, to show that our
approaches can be used on several triplestores and, on the other hand, to check
whether our approaches still outperform the baseline method on these generic
implementations. In this section, we consider the named graph implementation.

Experiment description In the named graph implementation, each RDF
statement is represented as a quad (subject, predicate, object, graphname). The
named graph is used to represent the degree of certainty for each RDF triple.
Then, threshold queries are rewritten to take into consideration the named
graphs. For example, in a simplified way, the query Q2 introduced in Section 2
is rewritten as Q′2 (for α = 0.8):

Q′2: SELECT ?b ?p WHERE {

GRAPH ?g {

?b author "Abraham Lincoln ".

?b editor "Springer" .

?b type Book .

?b nbPages ?p }

FILTER (?g > 0.8) }

This experiment consists in evaluating the performance of our algorithms
Bottom-Up, Top-Down and Hybrid in comparison with the baseline method
NLBA on the named graph implementation done on both Jena TDB and Vir-
tuoso. As stated previously, this implementation is largely slower than the quad
filter implementation. Thus, we use a smaller dataset of of 100K quads, to ac-
count for the reduced performance. As in the previous experiments, we used
arbitrarily the thresholds {0.2, 0.4, 0.6, 0.8}.

Results and discussion Figures 11 and 12 show the execution time of each
algorithm for each query on, respectively, Jena TDB and Virtuoso. Figure 13



gives the number of executed queries by each algorithm. Note that the number
of executed queries depends only on the algorithm, the dataset and the query.
The chosen implementation – the underlying triple store and the representation
of the trust value (named graph, reification) – has no impact on this result.

This experiment shows that our approaches still outperform the NLBA base-
line method on the named graph implementation. In comparison with NLBA,
our algorithms execute fewer queries for finding the αMFSs and αXSSs of each
workload query. Overall, Bottom-Up, Top-Down and Hybrid execute respec-
tively 32%, 25% and 28% fewer queries than NLBA. As a consequence, these
algorithms have shorter execution times on both Jena TDB (a decrease of re-
spectively 32%, 53% and 27% execution times for Bottom-Up, Top-Down and
Hybrid) and Virtuoso (a decrease of respectively 20%, 54% and 23% execution
times for Bottom-Up, Top-Down and Hybrid).

Fig. 11: Execution time (100K triples, Jena
TDB named graph implementation)

Fig. 12: Execution time (100K triples, Vir-
tuoso named graph implementation)

6.5 Algorithm Performance on the Reification Implementation

Another standard way to represent quads in a triplestore consists in using reifica-
tion. The advantage of this technique is that it is a standard of W3C6 and it can
be used on any triplestore [20]. This technique is used in several projects [2, 21–
23] to represent and query added properties for RDF triples such as provenance,
trust, certainty, time, and location.

Experiment description We first briefly describe the principle of the reifica-
tion implementation. Let us consider the triple t = (b1, type, book). To associate

6 https://www.w3.org/wiki/PropertyReificationVocabulary
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Fig. 13: # Executed queries (100K triples,
Jena TDB and Virtuoso, named graph im-
plementation)

Fig. 14: # Executed queries (20K triples,
Jena TDB and Virtuoso, reification imple-
mentation)

a certainty degree 0.4 to this RDF triple, we describe this statement (reification)
with the following triples:

t rdf:type rdf:statement .

t rdf:subject b1 .

t rdf:predicate type .

t rdf:object book .

t trust "0.4"^^ xsd:float

When querying the reifed dataset to find results with their trust degree,
threshold queries are rewritten as follows:

SELECT ?book WHERE {

?book type book }

α=0.4
⇒

SELECT ?book WHERE {

?t rdf:subject ?book .

?t rdf:predicate type .

?t rdf:object book .

?t rdf:trust ?trust

FILTER (?trust > 0.4) }

Compared with the named graph implementation, the reification method
multiplies the size of the dataset by five (each triple is replaced by its reification
and a triple to define the certainty degree), and the number of triple patterns
in the query by four. As a consequence, we consider a dataset of 20K triples for
this experiment to keep execution times reasonable. This experiment consists in
evaluating the performance of our algorithms in comparison with the baseline
method using the reification implementation on both Jena TDB and Virtuoso.
As in previous experiments, we used the thresholds {0.2, 0.4, 0.6, 0.8}.

Results and discussion Figures 15 and 16 show the execution time of each
algorithm for each query on, respectively, Jena TDB and Virtuoso. Figure 14
gives the number of executed queries by each algorithm.



Fig. 15: Execution time (20K triples, Jena
TDB triple store, reification)

Fig. 16: Execution time (20K triples, Vir-
tuoso triple store, reification)

As for the named graph implementation, our algorithms outperform the
NLBA baseline method. They execute fewer queries for finding the αMFSs and
αXSSs of each workload query. Overall, Bottom-Up, Top-Down and Hybrid exe-
cute respectively 37%, 31% and 33% fewer queries than NLBA. As a consequence,
these algorithms have shorter execution times on both Jena TDB (a decrease of
respectively 11%, 37% and 8% execution times for Bottom-Up, Top-Down and
Hybrid) and Virtuoso (a decrease of respectively 42%, 34% and 45% execution
times for Bottom-Up, Top-Down and Hybrid).

By design, our three algorithms always execute less queries than the base-
line method to compute αMFSs and αXSSs. Our experiments have shown that,
regardless of the selected implementation, this always result in a significant per-
formance improvement, with total execution times reduced by 8% to 54%.

7 Related Work

In this section, we provide a comprehensive review of the existing approaches to
address the empty-answer problem in the context of KBs. First, a comparison
between the main approaches is made. Then, a critical analysis of the closest
approaches to our proposal is presented.

7.1 A Comparative Study

In the context of KBs, the empty-answer problem has been tackled by several
approaches such as completing the KB using logical rules [24], checking the data
during query formulation to avoid empty answers [25], deriving an emergent
relational schema from the KB data to help users formulating queries [26] or
relaxing the query to return alternative answers [27–33].



These approaches are compared in Table 4 on the basis of the following
criteria:

– target: some approaches focus on improving the KB (completing it or ex-
tracting a relational schema from it) to avoid the empty answer problem,
while other approaches focus on the user queries that raised this problem;

– before/after query formulation: this criteria specifies whether the considered
approach anticipates the empty answer problem, i.e. try to solve it before
query formulation or acts once this problem appears (during or after query
formulation);

– user involvement: the approaches can ask more or less inputs from the user;
– help to understand the KB: the approaches may or may not help the user to

better understand the content and/or the structure of the KB.

As we can see, two main categories of approaches appear.

– Completing the KB and deriving an emergent relational schema from it
consider that the empty anwswer problem comes from the KB because it is
incomplete and its structure is hidden to the user. Thus, these approaches
anticipate the empty-answer problem by modifying the KB.

– Checking the data during query formulation and query relaxation focus on
the user-provided query. The first approach helps the user formulate her/his
query to prevent the empty answer problem. Its downside is that it requires
many inputs from the user. Conversely, query relaxation takes the failing
query as a starting point and provides the user with alternative answers.
This process can be completely automatic [34] or guided by the user [33].

All these approaches can be complementary to tackle the empty answer prob-
lem. In the next section, we detail the closest approaches to our work.

Approach Target Before/after
query

formulation

User
involvement

Help to
understand
the KB

Completing the KB KB Before None No

Interactive query
formulation

User query During Strong Yes

Emergent relational
schema

KB Before None Yes

Query relaxation User query After More or less Yes

Table 4: Comparison of different approaches to solve the empty answer problem

7.2 Relaxation-Driven Approaches

As our work is in the field of query relaxation for KBs, we summarise, in this sec-
tion, the main contributions made in this domain. Several approaches proposed



relaxation operators in the RDF context. These operators are mainly based on
RDFS semantics (e.g., generalizing triple patterns using class and property hi-
erarchies) [27–30], similarity measures [31, 32] and user preferences [33]. These
operators generate a set of relaxed queries, ordered by similarity with the orig-
inal query and executed in this order [27, 28, 35]. Relaxation operators can be
directly used by the user in her/his query [29, 30] or used in conjunction with
query rewriting rules to perform relaxation [33]. In these approaches, the fail-
ure causes of the query are unknown, which may lead to executing unnecessary
relaxed queries. Fokou et al. [12, 34] tackled this problem by firstly defining the
LBA and MBA approaches to compute the MFSs and XSSs of the query [12] and
secondly by proposing relaxation strategies based on MFSs that identify relaxed
queries that necessarily fail [34]. Our approach is based on the LBA algorithm
proposed in this work. We have extended this work by identifying the condition
under which this algorithm can be used in the context of uncertain KBs where
the query is associated with a threshold α and by defining several algorithms
to compute αMFSs and αXSSs for several thresholds. Our work is among the
pioneering works aiming at exploring the query relaxation issue in uncertain
KBs. To the best of our knowledge, the only other work in this context is [35].
However, this work only uses the trust value to order results by their trustwor-
thiness. They do not consider, as we do in this paper, queries that return no
result satisfying the provided degree of trustworthiness.

The issue of computing MFSs and XSSs has also been tackled in the context
of relational database [11], recommender systems [36] and fuzzy querying [37].
The closer work to ours is the one of Pivert and Smits [37] in the context of fuzzy
querying. They have proposed an approach to compute gradual MFSs, i.e., MFSs
that are only poorly satisfied as they do not return any answer with at least a
satisfaction degree equal to a user-defined threshold as well as gradual XSSs.
This approach is based on a summary of the relevant part of the database. It
computes the gradual MFSs and XSSs for different thresholds as in our approach.
However, while this work proposes an approach to compute MFSs and XSSs in
the context of fuzzy querying on certain databases, our work targets classical
queries on uncertain KBs. In this new context, a summary of the relevant part
of the KBs cannot be efficiently computed [12].

8 Conclusion

In this paper, we have considered the empty answer problem in uncertain KBs.
In this context, a query fails if it returns no result or results that do not satisfy
an expected degree of certainty α. To provide the user with a relevant feedback,
we have proposed to compute the αMFSs and αXSSs of the failing query as
they give a clear overview of the query failure causes and a set of relaxed queries
that she/he can execute to find some useful alternative answers. We have first
defined the condition under which a previous work algorithm called αLBA can
be directly adapted to the context of uncertain KBs. In this case, the user has to
define her/his expected degree of certainty. However, the user may want to know



what happens if she/he relaxes the expected certainty. Thus, we have studied
the problem of computing the αMFSs and αXSSs for multiple thresholds. The
baseline method called NLBA consists in executing αLBA for each threshold.
However, we have observed and proved that the αMFSs and αXSSs for a given
threshold can be used to find others with lower or greater threshold. Thus, we
have defined three alternative approaches to NLBA called Bottom-Up, Top-
Down and Hybrid that consider α thresholds in different orders. We have done
a complete implementation of these algorithms and shown experimentally on
different datasets of the WatDiv benchmark that our approaches outperform
the baseline method.

In our experiments, we have observed that none of our algorithms provide the
best performance for all queries. As future work, we plan to study the conditions
under which an algorithm may provide the best results. Our idea is to use the
KB statistics and the cost model of the quadstore to find, on a case by case basis,
the algorithm that is the most likely to have the best performance. A thorough
analysis of the algorithms execution shows that many queries share some triple
patterns. Thus, another perspective is to use multiple-query optimization and
indexing techniques to further improve their execution times.
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