
HAL Id: hal-03185251
https://hal.science/hal-03185251v1

Submitted on 30 Mar 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Phase-TA: Periodicity Detection and Characterization
for HPC Applications

Mathieu Stoffel, François Broquedis, Frédéric Desprez, Abdelhafid Mazouz

To cite this version:
Mathieu Stoffel, François Broquedis, Frédéric Desprez, Abdelhafid Mazouz. Phase-TA: Periodicity
Detection and Characterization for HPC Applications. HPCS 2020 - 18th IEEE International Confer-
ence on High Performance Computing and Simulation, Mar 2021, Barcelone / Virtual, Spain. pp.1-12.
�hal-03185251�

https://hal.science/hal-03185251v1
https://hal.archives-ouvertes.fr


Phase-TA: Periodicity Detection and
Characterization for HPC Applications

Mathieu Stoffel
Univ. Grenoble Alpes, Inria, CNRS, Grenoble INP, LIG

Atos
Grenoble, France

mathieu.stoffel@inria.fr — mathieu.stoffel@atos.net

François Broquedis
Univ. Grenoble Alpes, Inria, CNRS, Grenoble INP, LIG

Grenoble, France
francois.broquedis@grenoble-inp.fr

Frédéric Desprez
Univ. Grenoble Alpes, Inria, CNRS, Grenoble INP, LIG

Grenoble, France
frederic.desprez@inria.fr

Abdelhafid Mazouz
Atos

Paris, France
abdelhafid.mazouz@atos.net

Abstract—The world of High-Performance Computing (HPC)
currently stands on the edge of the ExaScale. The supercomput-
ers are growing ever more powerful, requiring power-efficient
components and ever smarter tool-suites to operate them. One
of the key features of those frameworks will be their ability
to monitor and predict the behavior of executed applications
to optimize resources utilization, and abide by the operating
constraints, notably on power consumption.
In this context, this article presents Phase-TA, an offline tool
which detects and characterizes the inherent periodicities of
iterative HPC applications, with no prior knowledge of the latter.
To do so, it analyzes the evolution of several performance counters
at the scale of the compute node, and infers patterns representing
the identified periodicities. As a result, Phase-TA offers a non-
intrusive mean to gain insights on the processor use associated
with an application, and paves the way to predicting its behavior.
Phase-TA was tested on a panel of 3 applications and
benchmarks from the supercomputing field: HPCG, NEMO, and
OpenFoam. For all of them, periodicities, accountable for on
average 78% of their execution time, were detected and repre-
sented by accurate patterns. Furthermore, it was demonstrated
that there is no need to analyze the whole profile of an application
to precisely characterize its periodic behaviors. Indeed, an extract
of the aforementioned profile is enough for Phase-TA to infer
representative patterns on-the-fly, opening the way to energy-
efficiency optimization through Dynamic Voltage-Frequency Scal-
ing (DVFS).

Index Terms—High-Performance Computing, Iterative Appli-
cations, Characterization, Periodicity, Software Monitoring and
Measurement, Representative Patterns

I. INTRODUCTION

Understanding the behavior of applications running on
supercomputers is a key issue that should be handled to further
optimize their executions. The profile of an application can
be obtained through code analysis and evaluation, but the
actual execution of the target application under real condi-
tions is mandatory to get accurate information. Though an
application profile can be obtained through static code analysis

techniques, actual execution of the target application under real
conditions is necessary to get valuable information. And this
profile provides the programmer, and/or the parallel execution
runtime with important insights. For instance, the fact that an
application exhibits different periodicities is extremely useful
for further optimizations like the ones related to energy man-
agement. In this context, energy minimization can be achieved,
for instance by enforcing Dynamic Voltage Frequency Scaling
(DVFS) or by controlling the number of active OpenMP
threads for each periodic pattern. Such periodic behaviors are
illustrated by Fig. 1.
This paper presents Phase-TA, a tool able to detect the peri-
odicities associated with the execution of an application, and to
build patterns representing them, while being completely ag-
nostic of the aforementioned application, and of its execution
environment. The usefulness of this approach is demonstrated
on three HPC applications stemming from different application
fields, and with different characteristics. The contribution of
this paper is twofold: (1) it outlines the methodology imple-
mented by Phase-TA to detect periodicities, and infer proxy
representations; (2) it presents experimental results, notably
showing that a panel of HPC applications exhibit periodicities
dominating most of their execution time.

The remainder of the paper is organized as follows. Sec-
tion II presents the overall methodology of Phase-TA, to-
gether with some preliminary definitions. The next section (III)
provides information about the behavior of Phase-TA: how
periodic instances are detected, extracted, and clustered, and
how representative patterns are inferred. Section IV presents
the use of Phase-TA on various applications with different
behaviors, and section V gives both a theoretical study of its
complexity, and an empirical evaluation of its performance.
Then, the section VI presents some use cases for Phase-TA,
along with what motivated its development, and the paths
to be explored in future work. Finally, after a section (VII)



Fig. 1: Schematic description of the three main steps of the methodology underlying Phase-TA: (A) detection of periodic
instances (B) clustering of periodic instances (C) inference of representative patterns from clustered periodic instances.

presenting existing related works from the literature, the last
section (VIII) draws some essential conclusions.

II. METHODOLOGY OF PHASE-TA

Firstly, this section defines some terms and concepts which
are essential to understand the remainder of this article.
Secondly, it offers a coarse-grain overview of how the ap-
plication profiles are obtained, and, then, of the methodology
implemented by Phase-TA.

A. Preliminary Definitions

To begin with, an application profile represents the tempo-
ral evolution, induced by the execution of an application, of a
measurable and/or estimable quantity, at the scale of a compute
node. For instance, let’s suppose that the number of bytes sent
by a node through its network interface is monitored during
the execution of an application. Then, the number of bytes
sent through the network as a function of the time spent since
the execution of the application has started is an application
profile. In other words, an application profile is a time series,
which points are also called samples.
An application profile may feature periodicities, that is to
say minimal patterns which regularly occurs. Consecutive
occurrences, at least two, of a periodicity constitute a periodic
region. Within a periodic region, each occurrence of the
periodicity is called a periodic instance. By way of example,
let’s consider a sequence on the set S = {A,B,C,D}, and, for
the sake of clarity, let’s only consider periodicities of length at
least 2. As it can be seen below, the aforementioned sequence
features two periodicities, namely AAB and CBA, which re-
spectively induce 2 and 1 periodic regions, delimited by square
brackets. Those periodic regions contain respectively 4 and
3 periodic instances, identified by curly braces, respectively
below and above the sequence:

[AAB︸ ︷︷ ︸AAB︸ ︷︷ ︸]BD[
︷ ︸︸ ︷
CBA

︷ ︸︸ ︷
CBA

︷ ︸︸ ︷
CBA] AAB DC[AAB︸ ︷︷ ︸AAB︸ ︷︷ ︸]

It should be noticed that the orange sub-sequence of
characters is not a periodic instance, since it does not belong
to a periodic region. This aspect of the definition of a peri-
odic instance might seem counter-intuitive. It stems from the
way periodic instances are detected by Phase-Ta, which is
detailed in the section III-A.
For discrete-valued application profiles, periodic instances are

exact copies of the periodicities from which they stem. How-
ever, for real-valued application profiles, in some cases, two
periodic instances associated with the same periodicity may
slightly differ (for example, consider the slight local heteroge-
nous noise variations affecting the measurement time series of
a sensor). As a result, it is impossible to exactly identify the
periodicity inducing the observed periodic instances. One very
standard approach consists in averaging the aforementioned
periodic instances to build a proxy representation of the
periodicity. In the remainder of this article, such a proxy is
called a representative pattern.
Finally, let’s define the “flavor” of the Within-Group Sum of
Squares (WGSS for short) function being used by Phase-TA
to analyze real-valued application profiles. Let I = {in}n∈N
be a set of periodic instances, and p be a representative
pattern associated with I. Then, the WGSS associated with
p, relatively to I is defined by:

wgss(p, I) =
∑
i∈I

DTW2(p, i) (1)

Note that in (1), DTW (and DTW2, which is its squared
version) refers to Dynamic Time Warping [1], a similarity
measure particularly well-suited for real-valued time series
featuring temporal variations. Some more details about DTW:
• DTW is computed between two time series. It creates

pairs of points/samples: each sample of one of the two
input profiles is matched with at least one sample of the
other profile.

• Two paired points are said to be aligned, and the DTW
measurement is equal to the sum of the pointwise dis-
tances between each pair of aligned samples.

To finish, DTW2 is defined in the same way as DTW , the
only difference being the fact that the pointwise euclidean
distance between paired points is squared. In other words,
DTW2 6= DTW 2, since the computation of DTW involves
a sum, and this is not the sum which is squared, but each of
the summed terms individually.

B. Obtaining applications’ profiles and overview of
Phase-TA Methodology

To begin with, let’s focus on the application profiles an-
alyzed by Phase-TA. Those profiles are generated by a
lightweight daemon, later called profiler. This profiler is part



of BDPO [2], an HPC tool aiming at improving the energy-
efficiency associated with the execution of HPC applications
by leveraging fine-grain monitoring. It uses libpfm [3] to
periodically sample several performance counters, which are
sampled and aggregated every 5 ms, at the scale of the whole
node, for all processes. As a result, one instance of the profiler
is executed on each node involved in the execution of the
considered application. This instance produces the application
profile associated with the node on which it is executed. Also,
it was verified that the impact on the application profile of the
execution in the background of the profiler was negligible [2].
Now, let’s focus on Phase-TA with Fig. 1, which presents the
three main steps of the analysis methodology it implements.
The first step consists in a pass over the whole application
profile to detect and extract the periodic instances. Then, since
those periodic instances might be related to different periodic-
ities, it is necessary to cluster them. Finally, the periodicities
are averaged, per cluster, so as to build a representative pattern
per periodicity. The section III gives the specifics of those three
outlined steps.

III. ARCHITECTURE OF PHASE-TA

This section details the implementation of the three main
parts of Phase-TA methodology, as presented by sec-
tion II-B.

A. Detecting and Extracting the Periodic Instances

An application profile can be represented as a 1D horizontal
vector, which elements corresponds to the samples belonging
to the aforesaid profile. Let’s suppose that, chronologically,
the first sample of the profile, of ID 0, is at the left end of
the considered vector. Thus, sample IDs increase toward the
right end of the vector.
The profile is analyzed piecewise, using a sliding window
(SW) divided in two parts of same length L (i.e. L-sample
long), respectively named left (LSW) and right (RSW) sliding
windows. SW slides towards the right in the course of the
analysis, taking T ∈ N∗ positions. For all t ∈ J0;T K, SWt

denotes the t-th position of SW, and LSWt and RSWt

respectively denote its left and right parts.
From now on, let’s consider a fixed t ∈ J0;T J.
To extract the potential periodic instances from the
considered SWt, an algorithm derived from the Dynamic
Periodicity Detector, presented by Freitag et al.
in [4], was implemented.
As illustrated by Fig. 2, for all k ∈ A = J1;L − 1K,
SWt

k = SWt >> k is computed, where >> refers to the
right-shift operator. Note that SWt is not slided, its content
is shifted. In other words, SWt can be considered as a 1D
horizontal vector which content is fixed, and SWt

k as a copy
of SWt which content is modified by applying a right-shift.
k is, hereafter, also referred to as the sliding factor. Then,
the euclidean distance between RSWt and RSWt

k, termed as
d2(RSWt,RSWt

k), is evaluated for all k ∈ A. The underlying
rationale is that if d2(RSWt,RSWt

k) is close to 0, then RSWt

can be considered as k-periodic [4].

Thus, by looking for the global minimum of
d2(RSWt,RSWt

k) = f(k), it is possible to determine
whether or not RSWt exhibits a periodicity. Or, more
precisely, as shown by Fig. 2, a family of periodicities.
Indeed, if d2(RSWt,RSWt

k) is minimal and close to zero
for k∗ ∈ A, then RSWt is k∗-periodic. But it might also
be p-periodic, for p ∈ A such that p is a multiple of k∗, or
k∗ is a multiple of p. By considering the other values of k
for which d2(RSWt,RSWt

k) is close to 0, it is possible to
determine the base periodicity, named kbp, that is to say the
lowest periodicity of the detected family of periodicities.
Finally, bL/kbpc periodic instances are extracted from RSWt,
and SWt+1 is obtained by sliding SWt to the right by
kbp · bL/kbpc samples.

Fig. 2: Example conceptually illustrating the periodicity de-
tection algorithm implemented by Phase-TA. At the top, an
example of sliding window, and its version right-shifted by 4.
At the bottom, the graph related to f(k) = d2(RSWt,RSWt

k),
featuring the detected family of periodicities (circled), and the
associated base periodicity (in orange ).

As it can be intuited, the length of SW has an impact
on the periodicity detection. For instance, with a length of
2L, it is possible to detect periodicities of length at most L.
Moreover, the optimal value of L is, a priori, dependent on
the application, and finding a proper value for L seems not to
be a trivial task.
That is why Phase-TA auto-tunes the value of L. A rather
wide initial search interval for L is roamed in a dichotomic-
alike manner, detecting and extracting the periodic instances
for each visited value of L. The objective function to maximize
is the percentage of the whole profile for which the extracted
periodic instances are accountable. In the context of this



article, the search interval is J0; 10000K samples.

B. Clustering the Periodic Instances

First, the detected periodic instances are grouped according
to their lengths, so as to speed up their clustering (which
complexity is a function of the number of clustered elements).
This pre-processing step relies on the fact that in order for
two periodic instances to be related to the same periodicity,
they must have similar lengths, both in the neighborhood of
the length of the aforesaid periodicity. In order to filter out the
outlier and marginal periodic instances, the groups which does
not represent more than α percents of the whole application
profile are dropped (in the context of this article, α = 5%).
Then, since an application profile might exhibit several dis-
tinct periodicities which lengths are similar, or even equal, a
clustering algorithm is applied to each group. As a result, the
periodic instances belonging to a cluster should be related to
the same periodicity.
In the context of Phase-TA, several clustering algorithms
were evaluated:
• OPTICS [5], using DTW as similarity measurement be-

tween two periodic instances. Several heuristics to set its
parameters (ε and MinPts) were tried;

• K-means after applying feature extraction based on statis-
tics to the periodic instances;

• Aggregative hierarchical clustering, using DTW as simi-
larity measurement between two periodic instances. The
single and complete linkage criteria were evaluated.

In order to assess the efficiency of those clustering al-
gorithms, the periodic instances detected by Phase-TA for
profiles associated with the three applications (namely HPCG,
NEMO, and OpenFOAM) of the experimental panel presented
by section IV-B were clustered and labeled by hand (one
profile per application). Thus, it was possible to compute the
F1-score associated with each clustering algorithm.
On average, aggregative hierarchical clustering with single
linkage criterion achieved the top F1-score, and was there-
fore chosen as the clustering algorithm implemented by
Phase-TA.

C. Building the Representative Patterns

To build the representative pattern associated with a period-
icity, Phase-TA averages the periodic instances belonging to
the related cluster. To this end, it uses Dynamic time warping
Barycentric Averaging (DBA), an algorithm detailed by Petit-
jean et al. in [6]. To sum it up, it consists in a refinement
process based on the DTW similarity measurement. DBA
notably leverages the fact that DTW creates pairs of aligned
points (see the brief definition of DTW in section II-A).
Starting from an arbitrary initial average, each iteration of the
algorithm modifies the pattern so that its WGSS relatively to
the periodic instances being averaged should decrease. In fact,
it is guaranteed, and demonstrated in [6], [7], that the WGSS
can only decrease when a refinement step is performed. In
the same way, it is proven that the time series minimizing
the WGSS relatively to the periodic instance is unique, and

that the refined pattern asymptotically approximates the former
when the number of iteration of DBA increases.
Let’s detail the sub-step performed by each iteration of the
DBA algorithm:

1) Computing the DTW measurements between the average
and each periodic instance;

2) For each point P of the average, building the set S of all
the points of the periodic instances with which P was
paired, according to the DTW;

3) Computing the barycenter of S, which is the refined (i.e.
new) value of P at the end of the considered refinement
step.

Just as for any refinement process, the initialization and
termination criteria are of uttermost importance, notably im-
pacting the convergence speed.
Concerning the termination criterion, the refinement process
implemented by Phase-TA terminates if either one of the
two below conditions is met:
• Niter refinement iterations were performed (in the context

of this article, Niter = 31);
• ncons consecutive refinement iterations induced a relative

decrease of the WGSS associated with the representative
pattern lesser than tterm (in the context of this article,
ncons = 5 and tterm = 2.5%).

The parameters related to the termination criterion were set
to values arbitrarily, based on empirical observations.
Concerning the initialization criterion, in [6], Petitjean et
al. offer some guideline concerning the initialization of the
pattern: DBA tends to converge faster when initialized with
one of the averaged time series. Since the DTW measure-
ments between each pair of periodic instances belonging
to the considered cluster were computed at the clustering
step (see section III-B), Phase-TA initializes the DBA al-
gorithm with the periodic instance minimizing the within-
group sum of DTW measurements. To make sure computing
the aforementioned sum was worth, this initialization scheme
was empirically compared to selecting randomly one of the
periodic instance. For the panel of applications considered in
this article (see section IV-B), it was observed that, on average,
the initialization scheme of Phase-TA:
• Lead to faster convergence of the refinement process

(i.e. the termination criteria of the DBA algorithm im-
plemented by Phase-TA was met after a lesser number
of iterations);

• Resulted in representative patterns which associated
WGSS were lesser that their counterparts obtained with
random initializations.

IV. EXPERIMENTAL VALIDATION

To begin with, the experimental setup and methodology will
be detailed. Then, several experiments will be presented, and
their results discussed.

A. Experimental Setup

All the experiments presented in this article were performed
on 16 compute nodes of the dahu cluster of the Grenoble



facility of Grid’5000 [8], an experimental testbed supporting
computer science research in France. The main characteristics
of one of the compute nodes of dahu are listed in Table I.

TABLE I: Characteristics of one compute node of the dahu
cluster

Processors Intel Xeon Gold 6130
Number of sockets 2
Number of cores 32 (2× 16)
Memory DDR4@2.67 GHz
Memory size 192 GB(6× 32 GB)
Network Intel® Omni-Path 100 Gb/s
OS RedHat RHEL 7.4

Hereafter in this article, the featured application profiles
represent the number of Instructions retired Per reference
Cycle (IPC) (ratio INSTRUCTION_RETIRED / RDTSC), and
were generated by the profiler introduced by the section II-B
However, other profiles were studied (e.g. the evolution of the
number of L3 cache misses per reference cycle), and yielded
similar results.
Finally, all the experiments presented in this paper were
reproduced at least 3 times, using the default configuration of
Phase-TA, and produced similar profiles for each execution,
on all of the involved nodes.

B. Displaying the Periodicities of HPC Applications

This set of experiments aims at demonstrating that iterative
HPC applications exhibit periodicities, accountable for a sig-
nificant part of their execution time. To do so, 3 well-known
applications and benchmarks from the supercomputing field
were executed: the GYRE component of NEMO [9], an ocean
modeling framework; the HPCG [10] performance benchmark
built upon the conjugate gradient computing recipe; and the
icoFOAM solver, of the OpenFOAM CFD toolbox [11],
applied to the cavity test case. As it can be noticed, the
selected panel contains applications from the most common
fields of scientific computing, exhibiting various behaviors
from compute to memory boundness. Those applications were
executed on sixteen compute nodes, for a total of 512 cores.
On the one hand, NEMO and OpenFOAM were run with
512 MPI ranks, each one pinned to a specific core. On the
other hand, HPCG was run with 1 MPI rank per socket,
and 16 OpenMP threads per MPI rank, for a total of 512
OpenMP threads. Similarly, both the MPI ranks and the
OpenMP threads were pinned to specific cores. Finally, let’s
precise that the associated configurations were tuned, and the
workloads seized so that the performance achieved on the
partition of 16 compute nodes should be “locally optimal”
(i.e. optimal in a reduced search space, narrowed based on
empirical observations).
The produced per-node IPC profiles were analyzed by
Phase-TA, and the results are summarized in Table II, where:
(1) T_exe is the execution time of the application in seconds;
(2) the #rp(#i)[#pa] column contains: (a) the number
of representative patterns Phase-TA inferred, (b) between
brackets, the total number of periodic instances associated with

those patterns, and (c), between square brackets, the average
number of consecutive related periodic instances within a
periodic area; and, finally, (3) %period is the proportion of
the whole profile covered by the periodic instances from which
the representative patterns were inferred. By way of example,
the representative pattern inferred by Phase-TA for a profile
of an execution of NEMO is displayed by Fig. 3.

TABLE II: Analysis of the IPC profiles of several HPC
applications

Applications T_exe #rp(#i)[#pa] %period

HPCG 1129.52 3(521)[14] 89.20%
NEMO 659.696 1(451)[21] 76.73%

OpenFOAM 659.391 1(169)[4] 67.48%

To begin with, it can be observed that all the applications
exhibited periodicities for which Phase-TA inferred
representative patterns, accountable for on average 77.80%
of the whole application profiles, and even up to almost 90%
for HPCG.
Let’s analyze the results further, starting with NEMO. The
whole execution time of NEMO is almost dedicated to
computation: a computational kernel is applied to a 101 levels
2D-grid, for a given number of timesteps to be simulated. As
a result, the computation phase induced a single periodicity,
accountable for more than 75% of the execution time.
Concerning HPCG, it exhibits three patterns: the first two are
associated with the initialization of data, accounting for about
31.8% of the profile, and the third one with the computation,
accounting for about 57.4% of the profile. Indeed, HPCG
programmatically generates its dataset during its initialization
step, which coarsely accounts for 40% of the total execution
time of HPCG. Consequently, patterns are inferred for the
aforementioned data initialization, which is partially iterative.

On the contrary, icoFOAM got its input dataset from files,
and the process appears to be aperiodic. On top of that, the
execution of icoFOAM contains checkpoints after each bunch
of computation steps (to be precise, each run of icoFOAM
contained five checkpoints). Those checkpoints seem to be
aperiodic I/O phases, and account for approximately 25.0%
of the total execution time of the application. Consequently,
Phase-TA infers two representative patterns. The remaining
of the execution time is dedicated to computation, for which
Phase-TA inferred one representative pattern accountable
for more than 67% of the execution time, which corresponds
to roughly 89% of the execution time associated with
computation.
For the three aforementioned applications, one additional
important observation should be made. The portions of the
profiles which are not accounted for by the above explanations
are most probably periodic instances which Phase-TA failed
to detect. Indeed, even if the workflow it implements allow
for some perturbations, both spatial (i.e. fluctuations of the
sampled values) and temporal (i.e. insertions and/or deletions
of samples), some periodic instances are too noised to



Fig. 3: Representative pattern (in purple ) associated with NEMO, overlaid on a random selection of ten of the periodic
instances (in orange ) it was inferred from. Gray areas indicate regions of interest which will be referred to in section VI.

be detected by Phase-TA with its default configuration.
Note that, by tuning the configuration of Phase-TA per
application, it is possible to detect the aforementioned missed
periodic instances. However, it requires an expertise the
standard HPC user is not likely to have. That is why the
default configuration was designed to be as much application-
agnostic as possible, and prefers missing a few periodic
instances rather than detecting several false positives.
Let’s focus on the representative patterns inferred by
Phase-TA, such as the one displayed by Fig. 3. To begin
with, as previously mentioned, a representative pattern is
inferred relatively to a particular profile. In the context of
this article, a profile is specific to one compute nodes. As a
result, for an execution of application on 16 compute nodes,
there are 16 different profiles, for which potentially different
representative patterns can be inferred by Phase-TA.
However, as it is shown by Fig. 4, it appears that, and it is true
for all of the three applications, the inferred representative
patterns are almost identical for the groups of 16 related
profiles. It is confirmed numerically: for each pair of related
inferred patterns (e.g. the patterns inferred for the profiles
associated with dahu-1 and dahu-2, for one execution
of NEMO), 1

assoc DTW · DTW ≤ 0.01 · mean(patterns).
It coarsely means that the average distance, according to
the DTW, between two related points of two representative
patterns is lesser than 1% of the average value of the points
belonging to the related representative patterns.

Those experiments showed that the portion of the appli-
cations’ profiles associated with periodicities depends on the
specificities of the considered applications. Nonetheless, for

those experiments, at least two thirds, and on average more
than 75%, of the execution time of the considered applications
were attributable to periodicities, which is significant. Finally,
those experiments showed that the inferred representative
patterns are relevant relatively to the analyzed profiles, and
that they can be used as proxy for a large part of the latter.

C. Influence of the Number of Detected Periodic Instances on
the Relevance of the Inferred Representative Pattern

Phase-TA analyzes the profiles associated with the execu-
tion of HPC applications. However, the aforementioned execu-
tions generally take at least several hours, often several days,
to complete. Keeping in mind that the sampling frequency of
the profiler is 200Hz, it appears that a whole profile can easily
contain billions of samples. Thus, the following questions can
be raised: would considering only a sub-profile, extracted
from the whole profile, be a conceivable tradeoff to infer
relevant representative patterns, while reducing the workload
associated with the analysis? What should be the minimum
duration of a profile so that the inferred pattern may be
relevant?
In order to answer those questions, an experimental protocol
was designed and implemented for the applications of the
experimental panel. To begin with, a long run (around one hour
long) of each application was executed. To do so, the same
workloads as for the experiments presented by the section IV-B
was used, but the number of iterations was increased.
Then, the long run profiles were analyzed by Phase-TA. The
inferred representative patterns are called reference patterns in
the remainder of this paragraph.
Next, sub-profiles were extracted from the long run profiles,
and analyzed:



Fig. 4: Representative patterns inferred from the profiles related to the 16 compute nodes, for the same execution of NEMO

• Several durations were considered (in minutes): 1, 3, 5,
10, 15, 30, and 45; Hereafter, it is important to keep in
mind that the profiles result from monitoring performance
counters with a sampling period of 5ms;

• For each duration, 11 different sub-profiles were ex-
tracted, with different randomly selected offsets, relative
to the beginning of the associated whole profile;

• It was enforced, and verified, that the randomly selected
offsets were long enough so that the sub-profiles should
not overlap with the initialization steps of the concerned
applications.

The representative patterns inferred for the sub-profiles are,
hereafter, called sub-profile patterns.
In the remainder of this paragraph, only the representative
patterns with the highest coverage score (i.e. the proportion of
the whole profile represented by the periodic instances related
to the pattern) are considered, for both the sub-profiles and
the long runs profiles. It was verified that, per application, the
sub-profiles patterns represented the same periodicity as the
related reference patterns.
Let P be a long run profile, r be the reference pattern inferred
for P , and I be the set of periodic instances associated
with r. Next, for any sub-profile S, let s be the associated
sub-profile pattern. Now, let the sub-profile Within-Group
Sum of Squares (WGSS) be defined as wgss(s, I), and the
reference WGSS be defined as wgss(r, I). In other words, the
sub-profile WGSS is associated with the sub-profile pattern,
relatively to all the periodic instances from which the related
reference pattern was inferred. Then, by comparing a sub-
profile WGSS to the related reference WGSS, the relevance
of the associated sub-profile can be assessed. Therefore, it is
possible to evaluate the relevance of sub-profile patterns as
a function of the duration of the related sub-profiles.

Fig. 5 presents sub-profile WGSS as a function of the du-
ration of the associated sub-profile. Each cross represents the
WGSS associated with a sub-profile, while diamonds and error
bars respectively represent per-duration average and standard
deviation associated with sub-profile WGSS. Next to each
diamond is indicated the average number of periodic instances
for a given duration. Finally, horizontal blue lines represent the
reference WGSS for the considered applications.

First, let’s notice that even for the shortest sub-profiles, the
relative difference between sub-profile WGSS and reference
WGSS is acceptable: for the 3 applications, the former is
on average 37.0% greater than the latter (up to 67.3% for
OpenFOAM).
Moreover, it should be observed that the number of detected
periodic instances greatly varies, depending on the application:
for a 10-minute sub-profile, it ranges from 145 for Open-
FOAM, up to 404 for NEMO. Thus, when it comes to the
relevance of the inferred sub-profile patterns, it seems that the
number of periodic instances detected for the concerned sub-
profile is more significant than the latter’s duration.
Let’s try to define a threshold on the number of periodic
instances, above which an inferred representative pattern can
be regarded as relevant. From Fig. 5, 100 seems to be a sound
candidate. Indeed, on the one hand, when considering the sub-
profile durations for which the numbers of detected periodic
instances is the closest to 100 (while being greater or equal to
100), the sub-profile WGSS is on average only 12.1% greater
than the reference WGSS (up to 24.4% for NEMO). On the
other hand, this number of periodic instances is reachable
with a rather short profile. Indeed, when considering the three
applications of the panel, the average profile duration required
to reach 100 periodic instances is 6 minutes, and at most 10
minutes, which is a short duration when compared to HPC



Fig. 5: WGSS associated with sub-profiles as a function of their durations, for HPCG, NEMO, and OpenFOAM.

jobs lasting for several hours, nay days. As a result, it can
be retained, as a rule of thumb, that representative patterns
inferred from a 10-minute-long sub-profiles are very likely to
be relevant for the whole profile.
To be thorough, it should also be observed that: (1) some sub-
profiles lead to sub-profile WGSS lesser than the related ref-
erence WGSS, and (2) sub-profile WGSS does not necessary
decrease and/or tend to reference WGSS when sub-profile du-
ration increases, once the aforedefined threshold is crossed.
The underlying explanations to those two observations lie
with the definition of the DBA algorithm. As said in the
section III-C, their is no guarantee concerning the convergence
speed associated with the refinement process of the average.

As a result, depending on the initialization criterion, and the
cluster of periodic instances, the decrease of the WGSS in-
duced by a refinement step may vary erratically. Furthermore,
the termination criterion of the refinement process is sensitive
to the convergence speed. This can lead to different numbers
of refinement steps for different sub-profiles, even if they have
the same duration. Put together, those elements explains the
two aforementioned observations.
To summarize the results of this experiment, two conclusions
should be drawn: (1) it is a conceivable tradeoff to consider
only an extract of a profile to infer the associated repre-
sentative patterns, and (2) as a rule of thumb, representative
patterns can be regarded as relevant when they are inferred



from at least 100 periodic instances, which is usually met
for a profile duration of at least 10 minutes (for application
profiles generated with a 5ms sampling period).

V. COMPLEXITY STUDY AND PERFORMANCE EVALUATION

This section regroups a theoretical complexity study, and
an empirical performance evaluation, of the analysis workflow
implemented by Phase-TA.

A. Complexity Study
First of all, let’s suppose that a profile of length L (i.e.

containing L samples) is analyzed by Phase-TA, which
detects Npi periodic instances of average length Lpi. On
top of that, let’s suppose that the configured length of the
sliding windows, and maximum number of iterations for DBA
are respectively LSW and IDBA. Then, let’s note Carith

the complexity of a generalized arithmetic operation (e.g. an
addition, an absolute value, a multiplication, ...), and Cclust

the complexity of a generalized clustering operation (typically
constituted of a fixed set of generalized arithmetic operations
and data structure management operations). Finally, let’s note
Cx

DTW the complexity of computing the DTW between two
periodic instances of length x, and Cx

N1
the complexity of

computing the distance of Manhattan between two periodic
instances of length x.
As a result, the complexity of the workflow implemented by
Phase-TA, noted Cphase, is:

Cphase = O
([(

L · 1

LSW

)
·
(
CLSW

N1
· LSW

)])
+ O

([
Npi · (Npi − 1)

2
· CLpi

DTW +N2
pi · Cclust

])
+ O

([
IDBA ·

(
Npi · C

Lpi

DTW + Lpi · Carith

)])
The first term between square brackets is associated with the

complexity of the periodicity detection step (see section III-A).
Its left sub-term represents the fact that the profile is analyzed
one sliding window at a time, and its right sub-term represents
the complexity of computing the Manhattan distance between
the sliding window and each of its right-shifted counterparts.
The second term between square brackets is associated with
the complexity of the clustering step (see section III-B). Its
left sub-term is associated with the complexity of computing
the DTW-based distance matrix for the periodic instances to
be clustered. Its right sub-term represents the complexity of
the clustering algorithm itself, and is demonstrated in [12].
The third term between square brackets is associated with the
complexity of the DBA step (see section III-C), and the its
expression is demonstrated in [6].
Knowing that CLSW

N1
= O (LSW · Carith) (trivially, from its

definition [13]), and that CLpi

DTW = O
(
L2
pi · Carith

)
(demon-

strated in [1]), the complexity of the analysis workflow of
Phase-TA can be rewritten as:

Cphase = O([L · LSW +N2
pi · L2

pi + IDBA ·Npi · L2
pi+

IDBA · Lpi] · Carith +N2
pi · Cclust)

(2)

From (2), it appears that Cphase depends on two configu-
ration parameters, namely LSW and IDBA, and three linked
characteristics of the analyzed profile, namely L, Npi, and Lpi.
On top of that, the complexity is globally coarsely quadratic
relatively to the length of the profile, since L is an upper
bound for Npi ·Lpi, and that, in the ideal case, the latter tends
toward the former. Since Npi and Lpi are linked, since when
one increases the other one decreases proportionally, and vice
versa, the following performance evaluation should notably
make it possible to determine if one those two parameters is
the dominating factor regarding the complexity.

B. Performance Evaluation

In order to empirically evaluate the performance of
Phase-TA, measurements of its execution time were per-
formed. Both the number of detected periodic instances, and
their lengths, have an impact on the algorithmic complexity
associated with Phase-TA. The three applications of the
experimental panel exhibit periodic instances with lengths
varying from around 220 samples for NEMO, to more than
520 samples for OpenFOAM; and varied numbers of periodic
instances, as shown by Table II. Thus, this empirical evaluation
should make it possible to assess the impact of those two
factors on the performance of Phase-TA.
The implemented protocol is described by the points below:
• For each of the selected applications, each of the sub-

profiles extracted for the experiments presented by the
section IV-C was analyzed 5 times;

• The complete set of measurements was performed on
two different nodes of the dahu cluster (presented in
section IV-A), and yielded almost identical results (the
relative difference is lesser than 1%).

Table III presents the results associated with the evaluation
of the performance of Phase-TA. Each row is associated with
one of the selected applications, and each column is associated
with a sub-profile duration, in minutes. Each cell contains the
average execution time of Phase-TA for a given sub-profile
duration. To be precise, first, the average execution time of the
5 analysis performed for each sub-profile is computed. Then,
those per sub-profile average execution times are averaged per
duration, giving the values reported by Table III.

TABLE III: Execution times (in seconds) of Phase-TA, rel-
atively to the duration of the analyzed sub-profile (in minutes)

1 3 5 10 15 30 45

HPCG 0.44 1.18 2.67 9.33 19.60 76.00 168.84
NEMO 0.45 1.16 2.67 8.73 18.38 71.13 162.76

OpenFOAM 0.84 1.40 2.62 6.95 13.36 46.98 73.69

As it can be observed, the execution time of Phase-TA in-
creases polynomially relatively to the duration of the analyzed
profile (more precisely, relatively to the number of detected
periodic instances, which tends to be proportional to the
duration, as shown in Fig. 5). Additionally, it should be noticed
that for shorter sub-profiles, when the number of periodic
instances is small, their lengths is the dominating factor when



it comes to the performance of Phase-TA (OpenFOAM
exhibits less but longer periodic instances when compared to
NEMO and HPCG). On the opposite, when the number of
periodic instances increases, it clearly is the dominating factor
when it comes to the performance of Phase-TA, with up to
a factor 2 between the execution times of the analysis for 45-
minute sub-profiles. Thus, the number of detected periodic
instances seems to be the dominating factor regarding the
performance of Phase-TA.
From a more down-to-earth perspective, the execution time
of Phase-TA seems rather acceptable considering that the
analysis of a 45-minute long profile is achieved in about 3
minutes at most (knowing that, given the 5ms sampling period,
such a profile contains 540000 samples).
Let’s now focus on 10-minute long profiles. Indeed, sec-
tion IV-C showed that, as a rule of thumb, it can be considered
that the representative patterns inferred by Phase-TA are
relevant for profiles lasting at least 10 minutes. Table III shows
that the associated analysis time is lesser than 10 seconds.
Last remark before concluding this section: the performance
of Phase-TA regarding the analysis of the profiles associated
with the execution of an application scales linearly with
the number of nodes running the application. Indeed, once
again, each profile is specific to a node. Hence, the algorithmic
complexity associated with its analysis is totally independent
of the number of nodes.
As a result, it seems that Phase-TA can be used on-the-fly
to analyze sub-profiles associated with the ongoing execution
of an iterative HPC application.

VI. USE CASES, MOTIVATIONS, AND FUTURE WORK

When it comes to exploiting the representative patterns
inferred by Phase-TA, there are three main use cases.
The first one consists in performing dimensionality reduction
on time series exhibiting periodicities. Indeed, the inferred
patterns could, for instance, be used to sum up a (part of a)
profile.
Secondly, the patterns constitute an alternative representation
of the time series they are inferred from. And those represen-
tations could be more suited than the whole time series for
several families of machine learning algorithms, ranging from
clustering to time series generation, passing by time series
forecasting.
Finally, forecasting the future behavior of an application tends
to be a cornerstone of tools resorting to on-the-fly reconfig-
uration to optimize an objective function. Well, Phase-TA
makes it possible to characterize an HPC application being
executed, and, from that characterization, to account for its
future behavior by leveraging the associated periodicities.
Indeed, as it is shown by sections IV-B and V-B, the inferred
representative patterns account for a large portion of the
execution time of the application, and can be inferred on-the-
fly. Hence, it is possible for a reconfiguration tool to build,
at runtime, application-specific reconfiguration rules, from the
analysis of the inferred representative patterns. These rules can
then be applied to a significant portion of the execution time

of the application. Additionally, it is important to note that
the aforementioned reconfiguration rules are predictive, rather
than reactive, as it is the case for most of the reconfiguration
tools based on online analysis. Indeed, thanks to the fact that
representative patterns are associated with periodicities, the
reconfiguration rules inferred from them are built with the
knowledge of the whole pattern (including future samples,
hence the term predictive), not only of the past samples (the
reconfiguration is then a reaction to past samples).
The latter use case is precisely what motivated us to work on
Phase-TA. Indeed, when working on BDPO [2], the need for
a representative characterization of the profile of an application
arose. In a few words, BDPO resorts to fine-grain monitoring
of the IPC profile of an application to optimize the energy
efficiency associated with the execution of the latter, while
being completely agnostic of both the application, and the
execution environment (e.g. programmation paradigm, MPI
libraries, ...). To improve energy efficiency, it implements
Dynamic Voltage-Frequency Scaling (DVFS) which consists
in adapting the Voltage-Frequency functioning point of the
cores of the processors to the workload being executed. The
idea behind a DVFS controller like BDPO is to downscale
the CPU frequency in compute-less (memory and/or IO)
phases to minimize energy consumption, and upscale back
the CPU frequency in compute-bound phases, while trying to
keep performance degradation under control. The experimental
methodology presented in [2] is designed to infer an node-
specific configuration for BDPO, which enables satisfactory
ratios between energy savings and performance degradations,
for multiple applications. However, it was empirically verified
that even better ratios are achievable with application-specific
configurations for BDPO. But crafting those configurations
notably requires an expertise the standard HPC user is not
likely to have. Hence the need for an analysis tool capable of
characterizing the whole profile of an application on-the-fly.
That is why our future work will focus on leveraging the
representative patterns inferred by Phase-TA to infer DVFS
reconfiguration rules specific to the target application. The
first task at hand will consist in designing a rule engine
to specify the DVFS opportunities, such as the regions of
interest displayed by Fig. 3, so that they may be uniquely
detected at the runtime of the executed application. Several
paths are to be explored. For instance, extracting and using
an excerpt of the representative pattern as a signature of a
reconfiguration opportunity, and identify it thanks to DTW
measurements between the signature extract and the live
profile of the application. Another envisaged solution consists
in using generative grammar and constraint programming [14]
to define constraints on the live profile of the application,
which, when satisfied, trigger a DVFS reconfiguration.
Then, the subject of automating the detection of the DVFS
opportunities, given the inferred representative patterns, should
be tackled. We envision to develop a tool resorting to the
combination of the experimental methodology associated with
BDPO [2], and architecture-specific performance models, such
as the ones presented by [15], so as to detect node-specific



DFVS opportunities from the analysis of the inferred repre-
sentative patterns.

VII. RELATED WORK

Despite an extensive bibliographic search, the authors could
not find existing work dealing specifically with inferring real-
valued patterns representing the periodicities of piecewise-
periodic time series.
Conversely, a lot of successful research efforts tackled the
issue of detecting periodicities in time series, especially in
the field of data mining [16]–[20]. For instance, [18] present
two convolution-base algorithms to detect both symbol and
segment periodicities from time series. To do so, an approach
similar to the one implemented by Phase-TA is used: it
is based on the comparison between the original time series
and shifted versions of the latter. However, their methodology
requires to discretize the time series, making almost impossible
the inference of an accurate real-valued representative pattern.
With a very similar goal, AUTOPERIOD, presented in [20],
leverages Fourier analysis by combining circular autocorrela-
tion and periodogram to identify the most significative and
relevant harmonics of a time series. Used as feature extraction
technique, it leads to very accurate clustering of timeseries.
Nevertheless, AUTOPERIOD does not infer patterns represent-
ing the periodicities.
When it comes to leveraging applications’ being composed
of several types of phases, and DVFS, in order to optimize
the energy consumption associated with the execution of an
application, several research works can be cited [21]–[24].
Let’s lay emphasis on MREEF [22], a reconfiguration tool
which uses Execution Vectors (EV) to determine which type
of phase is associated with the execution of an application
at a given time, and based on the said type of phase, en-
forces appropriate DVFS actions. One EV is generated per
second: it consists in a collection of per-cycle rates, over
the past second, of several performance counters. Using a set
of benchmarks specially designed to exhibit certain types of
phases, the authors built a taxonomy of application phases.
Then, for each type of phase, they computed a representative
EV, called a reference EV. As a consequence, it is possible
to determine what kind of application phase is currently
executed, by comparing an EV to all the reference EVs.
Contrary to Phase-TA, neither does MREEF detect nor does
it characterize the periodicities of the executed application.
Furthermore, the reconfigurations it performs are reactive, and
rely on the assumption that the next EV should be similar to
the currently considered EV (otherwise, the reconfiguration
could even be detrimental).
Additionally, it is worth noting that previous research ef-
forts [25]–[28] have demonstrated that significant energy sav-
ings can be achieved through approaches based on offline
analysis. The workflows of these approaches consist in mul-
tiple steps, notably: (1) the profiling of an initial execution
of the application, (2) the definition of regions of interest
in the source code of the application through annotations,
and (3) the analysis and exploitation of the annotations and

the generated profile to enforce reconfiguration. While each
individual step is performed using automatic tools, the whole
process is stil manual and performed by hand. Moreover, the
need to annotate the source code to delimit the regions of
interest can jeopardize the applicability of such techniques
when the access to the source code is impossible.
Finally, let’s focus on EAR [15]: a richly-featured energy
management solution for supercomputers which notably im-
plements DynAIS. The latter is an evolution of [4] applied
to the detection of symbol periodicity. In a few words,
by dynamically overloading the PMPI wrapper through the
LDPRELOAD environment variable, EAR traces the sequences
of MPI calls performed by an HPC application. Then, by
identifying recurrent patterns of MPI calls, DynAIS detects
the iterative structure of the application, i.e. its the main loop
nest. Thanks to performance models and the monitoring of
the identified loop nest through performance counters, EAR
determines whether or not energy-related optimizations are
possible, notably by leveraging DVFS. However, the period-
icity detection seems not to be combined with the monitoring
information to build representative patterns associated with the
identified main loops. Moreover, the approach of Phase-TA
is agnostic of both the HPC application and the parallel
programming environment, whereas EAR can only be used
with MPI applications (to be precise, it even requires that
at least one MPI call belongs to the main loop nest), and
overloads the used MPI library, which is not always feasible.

VIII. CONCLUSION

To sum up this article, it should be highlighted that
Phase-TA is a black-box analysis tool which detects and
characterizes the periodicities associated with the execution
of iterative HPC applications. Additionally, it was empirically
demonstrated, on a panel of HPC applications, that the
detected periodicities are accountable for a very significant
part of their execution times.
Furthermore, the representative patterns generated by
Phase-TA appear to be relevant and accurate proxies for
the detected periodicities. On top of that, analysing an extract
of an application profile produces relevant representative
patterns at the scale of the whole profile, making it possible
to infer the aforementioned patterns on-the-fly.
Consequently, the latter can be exploited in several ways,
from dimensionality reduction for piecewise-periodic time
series, to DVFS opportunities detection.
Our future work will precisely focus on leveraging the patterns
inferred by Phase-TA to optimize the power-efficiency
associated with the execution of iterative HPC applications
through predictive, rather than reactive, CPU frequency
scaling.

ACKNOWLEDGMENT

Experiments presented in this paper were carried out us-
ing the Grid’5000 testbed, supported by a scientific inter-
est group hosted by Inria and including CNRS, RENATER
and several Universities as well as other organizations (see



https://www.grid5000.fr).
A sincere thank you to Imma Presseguer, and the Atos Power
Efficiency team, especially Philippe Rols and Julien Forot.

REFERENCES

[1] H. Sakoe and S. Chiba, “A dynamic programming approach to contin-
uous speech recognition,” in Proceedings of the Seventh International
Congress on Acoustics, Budapest, vol. 3, 1971, pp. 65–69.

[2] M. Stoffel and A. Mazouz, “Improving power efficiency through fine-
grain performance monitoring in hpc clusters,” in 2018 IEEE Inter-
national Conference on Cluster Computing (CLUSTER) - HPCMASPA
Workshop, 2018, pp. 552–561.

[3] “Home page of perfmon2,” http://perfmon2.sourceforge.net, last ac-
cessed in August 2020.

[4] F. Freitag, J. Corbalan, and J. Labarta, “A dynamic periodicity detector:
application to speedup computation,” in Proceedings 15th International
Parallel and Distributed Processing Symposium. IPDPS 2001, 2001.

[5] M. Ankerst, M. M. Breunig, H. peter Kriegel, and J. Sander, “Optics:
Ordering points to identify the clustering structure.” ACM Press, 1999,
pp. 49–60.

[6] F. Petitjean, A. Ketterlin, and P. Gançarski, “A global averaging method
for dynamic time warping, with applications to clustering,” Pattern
Recognition, vol. 44, no. 3, pp. 678–693, 2011.

[7] F. Petitjean, G. Forestier, G. I. Webb, A. E. Nicholson, Y. Chen, and
E. Keogh, “Dynamic time warping averaging of time series allows
faster and more accurate classification,” in 2014 IEEE International
Conference on Data Mining, 2014, pp. 470–479.

[8] “Home page of the Grenoble site of Grid’5000,”
https://www.grid5000.fr/w/Grenoble:Home, last accessed in August
2020.

[9] “Home page of NEMO,” https://www.nemo-ocean.eu/, last accessed in
August 2020.

[10] “Home page of HPCG,” https://www.hpcg-benchmark.org/, last accessed
in August 2020.

[11] “Home page of the OpenFOAM CFD toolbox,”
https://www.openfoam.com/, last accessed in August 2020.

[12] R. Sibson, “Slink: An optimally efficient algorithm for the single-link
cluster method,” The Computer Journal, vol. 16, no. 1, pp. 30–34, 01
1973.

[13] “Definition of the manhattan distance,”
https://en.wikipedia.org/wiki/Taxicab geometry, last accessed in
August 2020.

[14] G. Madi Wamba, Y. Li, A.-C. Orgerie, N. Beldiceanu, and J.-M.
Menaud, “Cloud workload prediction and generation models,” in SBAC-
PAD: International Symposium on Computer Architecture and High
Performance Computing, Campinas, Brazil, Oct. 2017, pp. 89–96.

[15] J. Corbalan and L. Brochard, “Ear: Energy man-
agement framework for supercomputers,” Available at
https://www.bsc.es/sites/default/files/public/bscw2/content/software-
app/technical-documentation/ear.pdf, Barcelona Supercomputing Center
(BSC), Tech. Rep., 2019, last accessed in April 2020.

[16] E. Keogh, S. Lonardi, and B.-c. Chiu, “Finding surprising patterns in
a time series database in linear time and space,” in Proceedings of the
eighth ACM SIGKDD international conference on Knowledge discovery
and data mining, 2002, pp. 550–556.

[17] P. Indyk, N. Koudas, and S. Muthukrishnan, “Identifying representative
trends in massive time series data sets using sketches,” in VLDB, 2000,
pp. 363–372.

[18] M. G. Elfeky, W. G. Aref, and A. K. Elmagarmid, “Periodicity detection
in time series databases,” IEEE Transactions on Knowledge and Data
Engineering, vol. 17, no. 7, pp. 875–887, 2005.

[19] F. Rasheed and R. Alhajj, “STNR: A suffix tree based noise resilient
algorithm for periodicity detection in time series databases,” Applied
Intelligence, vol. 32, no. 3, pp. 267–278, 2010.

[20] M. Vlachos, P. Yu, and V. Castelli, “On periodicity detection and struc-
tural periodic similarity,” in Proceedings of the 2005 SIAM International
Conference on Data Mining, pp. 449–460.

[21] J. P. Halimi, B. Pradelle, A. Guermouche, and W. Jalby, “Forest-mn:
Runtime dvfs beyond communication slack,” in International Green
Computing Conference, Nov 2014, pp. 1–6.

[22] G. L. Tsafack, L. Lefevre, J.-M. Pierson, P. Stolf, and G. Da Costa,
“Application-agnostic framework for improving the energy efficiency of
multiple hpc subsystems,” pp. 62–69, 03 2015.

[23] D. Cesarini, A. Bartolini, P. Bonf, C. Cavazzoni, and L. Benini,
“Countdown - three, two, one, low power! a run-time library for energy
saving in mpi communication primitives,” 06 2018.

[24] C. Isci, G. Contreras, and M. Martonosi, “Live, runtime phase monitor-
ing and prediction on real systems with application to dynamic power
management,” in 2006 39th Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO’06), 2006, pp. 359–370.

[25] M. Kumaraswamy, A. Chowdhury, M. Gerndt, Z. Bendifallah, O. Bouizi,
U. Locans, L. Řı́ha, O. Vysockỳ, M. Beseda, and J. Zapletal, “Domain
knowledge specification for energy tuning,” Concurrency and Compu-
tation: Practice and Experience, vol. 31, no. 6, 2019.

[26] E. Calore, A. Gabbana, S. F. Schifano, and R. Tripiccione, “Evaluation
of DVFS techniques on modern HPC processors and accelerators for
energy-aware applications,” Concurr. Comput. Pract. Exp., vol. 29,
no. 12, 2017.

[27] O. Vysocky, M. Beseda, L. Řı́ha, J. Zapletal, M. Lysaght, and V. Kannan,
“Meric and radar generator: Tools for energy evaluation and runtime
tuning of hpc applications,” in High Performance Computing in Science
and Engineering. Springer International Publishing, 2018, pp. 144–159.

[28] C. Silvano, G. Agosta, A. Bartolini, A. R. Beccari, L. Benini, L. Besnard,
J. Bispo, R. Cmar, J. M. Cardoso, C. Cavazzoni et al., “Supporting the
scale-up of high performance application to pre-exascale systems: The
antarex approach,” in 2019 27th Euromicro International Conference on
Parallel, Distributed and Network-Based Processing (PDP), 2019, pp.
116–123.


