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ABSTRACT

During tumor resection surgery, intraoperative ultrasound images of the brain show anatomical structures like
the sulci, falr cerebri and tentorium cerebelli, as well as the tumor. After resection started, the resection cavity
is also visible. These elements help with the localization and tumor resection, and can be used to register the
preoperative MRI to intraoperative images, to compensate for the tissue deformation occurring during surgery.
In this work, we compare single- and multi-class segmentation models for the sulci, falr cerebri, tumor, resection
cavity and ventricle. We present strategies to overcome the severe class imbalance in the training data, and train
a model with limited data. We show that a multi-class model may leverage inter-class spatial relationships and
produce more accurate results than single-class models.
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1 INTRODUCTION

Intraoperative ultrasound (iUS) images provide valuable information, such as the location of structures of interest.
Segmentation of these structures are useful in a number of applications, such as diagnosis' and registration.?3
During brain tumor surgery in particular, such segmentations can be used to register preoperative MRI (pMR)
with intraoperative images, to compensate for the brain tissue deformation occurring in the operating room.*3

Recent pMR-iUS registration methods include image-based,®® model-based? and structure-based® tech-
niques. Image-based algorithms use image intensity to establish correspondences, with similarity metrics or
feature descriptors. Model-based methods use a biomechanical model of the brain with constraints, and solve
the registration problem with the finite elements method. Structure-based methods first delineate structures
in both images and then register them by matching the structures in both images. Existing structure-based
registration methods? 3 used segmentations of sulci, falz cerebri and tentorium cerebelli. Nitsch et al.? proposed
a pMR-iUS registration method, in which the structures in the iUS are segmented using a random forest classi-
fier, and the registration is performed on the structures only (by masking the volumes) by minimizing the local
cross correlation. Canalini et al.2 used a U-Net!-like neural network to segment sulci and falz cerebri in iUS
volumes at different stages of tissue resection, and then registered the segmentation masks by minimizing the
sum of squared differences. Multi-class segmentations may improve the accuracy of registration. In particular,
the tumor and resection cavity are the areas where the tissue deformation and the intensity change are the most
important. This motivated the training of a multi-class segmentation model in this work, in which the sulci, falz
cerebri, tumor, resection cavity and ventricle are segmented at the same time.

Segmenting structures in medical images has been widely studied, for which deep learning is the current
state-of-the-art.!? This has been applied to ultrasound images of the brain, to segment the midbrain,'? sulci
and falz cerebri,!3 1'% tumor,'® resection cavity.'® However, multi-class segmentation models have been shown
to obtain better results in other applications,'” '8 leveraging inter-class dependencies. Herein, we hypothesize
multi-class models could provide an advantage over single-class models for segmenting ultrasound images of the
brain. To test this hypothesis, we trained both single- and multi-class segmentation models for brain iUS images.



Table 1. Number of GT volumes and mean voxel distribution for each class

class before resection  during resection  after resection  total  voxels per volume
falx 4 4 4 12 0.43%
resection 0 18 21 39 0.78%
sulci 12 10 9 31 0.73%
tumor 23 11 (generated) 0 34 4.3%
ventricle 2 1 1 4 1.3%

Because the available data is limited and has strong class imbalance, we implemented several strategies
to overcome these limitations. Traditional methods to compensate for data imbalance include adapting data
sampling and/or the image processing algorithm. In the deep learning case, the latter usually means weighting
classes or voxels in the loss function. In this work, we use a combination of data sampling and loss function
weighting strategies to overcome class imbalance.

Our contribution is as follows: (a) we show that a deep learning model can be trained for brain ultrasound
segmentation even with limited data; (b) we discuss several strategies to overcome the class imbalance; (c) we
show that a multi-class model can produce more meaningful segmentations than independent single-class models.

2 METHODS
2.1 Data

We used the RESECT 23 patients database,'? with preoperative T1w and FLAIR volumes and three intraoper-
ative ultrasound volumes (before, during and after resection). To train and validate the model, we used ground
truth (GT) segmentations of the structures. The resection cavity segmentations were created for a single class
segmentation model.'® The tumor segmentations were created for a study on tumor volume?® and were also
used in a single class segmentation model.'> Sulci, falr cerebri and ventricles were segmented for this study.

The classes are highly imbalanced, both in the number of volumes (table 1) and in the number of voxels in
the volumes (table 1). While sulci are visible in all volumes, the resection cavity is only present in during and
after resection volume and the tumor, only in before and during resection volumes. The falr and ventricle are
only visible in a few cases, in which the tumor was close to these structures.

While there is still tumor remaining in volumes during resection, no GT segmentations were available. Thus,
we generated tumor segmentations for these volumes by mapping the pre-resection segmentation into the during
resection volume space, and then masking out the resection cavity (using the manual GT segmentation) and
the out-of-field region. The mapping from pre-resection to during resection space was established using the
landmarks provided in the RESECT dataset, using thin plate splines.

Data augmentation has been shown to increase model robustness and prevent overfitting. Due to memory
constraints, and to speed up training, a fixed number of augmented cases were generated before training. For
each volume, three additional volumes were created using random deformations, as described in.'® For each
epoch, one of the four set of volumes were selected cyclically.

2.2 Segmentation process

The complete segmentation process is as follows:

Pre-processing First, the volumes are normalized by subtracting the mean intensity and dividing by the
standard deviation.



Data sampling Then, the volumes are sampled using either 2-D or 3-D patches of size 2562 or 643, respectively.
The patches are extracted every 64 voxels (in the 2-D case) or 32 voxels (3-D), using a sliding window. Patches
that only contained background voxels (no foreground for any class) are discarded. Each patch is assigned a
weight w, for each class ¢, as follows:

o if the patch contained at least one voxel of the class, the weight was wy, = 1.

e if the patch did not contain any voxel of the class, but the class was present in other patches of the volume
(ie. GT was available), the weight was wpy. Two values for wy, were tested: 0 and 0.01, the latter being
the order of magnitude of the foreground voxel ratio (see table 1).

e if GT was not available, the weight was 0.

Segmentation network A 2-D or 3-D U-Net,'® as described in,'® is the run on all patches, outputting a
probability map for each class. The patch predictions are aggregated per volume, using the mean value for each
voxel. The loss function is a weighted mean Dice score, as in equation 1. Additionally, we add an optional
Hausdorff distance term HDcy implemented with convolutions as described in.2! Unless specified otherwise,
wgp = 0. We compare five models, trained on the same cases: (a) a single-class model trained separately for
each class, referred to as single; (b) a multi-class model trained with wy, = 0, referred to as multi; (c) a multi-
class model trained with wyy = 0.01, referred to as multi_ 0.01; (d) a model similar to multi, with the additional
Hausdorff term (wpp = 1), referred to as multi hd; (e) a model similar to multi  0.01, with wyp = 1, referred
to as multi_hd_0.01;

lOSS(ytrue; ypred) = Z
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Post-processing All probability maps are thresholded at 0.5. Then, all connected components are labeled.
For the resection cavity and tumor, the largest connected component is selected. For the sulci, the components
for which the mean voxel Euclidian distance to the resection cavity is less than 10 are discarded, to remove
potential misclassification of hyper-echoic regions (artifact, hemostasis) on the border of the cavity. Finally, the
class for each voxel was chosen as follows:

If the voxel was foreground in the sulci binary mask, the voxel was labelled as sulci.

e If the voxel was foreground in both the resection cavity and the tumor masks, it was labelled as background.

If the voxel was foreground in either the resection cavity and the tumor masks, it was labelled as such.

Otherwise, the voxel was labelled as background.

3 RESULTS AND DISCUSSION

Dice scores were computed for each test volume, for the resection cavity and tumor. Figure 1 shows the Dice
score distribution as boxplots, comparing the three models. The multi model yields better results than the
multi_ 0.01 model for both the resection cavity and tumor, thus wyy = 0 is better. For the resection cavity, the
multi model performs better than the single model, the improvement being in the during resection cases. There
is no improvement in the volumes after resection, which is not surprising because the model cannot benefit from
the relation between tumor and resection cavity, given that there is no tumor. In contrast, higher Dice scores are
obtained with the single model for the tumor segmentations. This is due to the multi model under segmenting
the tumor in some cases (see figure 3). However, these cases often look better on a visual inspection, because
there is less surrounding noise (false positives). The true positive rate (TPR) and false positive rate (FPR)
confirm this analysis, the TPR being higher for single and the FPR being lower for multi (see figure 2). In our
registration application, having fewer false positives is more desirable as false positives are more likely to lead
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Figure 1. Dice scores for the resection cavity and tumor segmentations.
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to registration errors. Models trained with the Hausdorff term performed slightly better than models trained
without it.

We currently do not have GT for the sulci, falz and ventricle for the test cases, so we can only evaluate the
results qualitatively for these classes. Qualitatively, the sulci are correctly segmented in all cases, with no major
errors. The minor errors are small sulci missing in some cases. The component filtering in the post-processing
step successfully removed hyper-echoic regions around the resection cavity, that are sometimes mislabeled as
sulci. The network seems to segment the falr correctly when clearly visible, but most resulting segmentations
selected one or more sulci or hyper-echoic region instead. This is expected, since the signal for the sulci and falz
are similar in the iUS. The network was not able to learn how to segment the ventricles. This is likely due to a
very small amount of training data for these two classes.

Qualitatively, the multi model produced segmentations that are more meaningful, with respect to the rela-
tionship between classes. In volumes during resection, the resection cavity do not overlap with the tumor in the
resulting segmentations (see figure 4a). In some cases, the tumor location helped to localize the resection cavity.
Additionally, segmenting the sulci and tumor together improved the tumor segmentation where a sulci crosses
the tumor (see figure 4b).

4 CONCLUSIONS

We implemented a multi-class segmentation model for iUS brain images. The resulting segmentations can be
more accurate than for a single-class model, representing the spatial relationship between classes better. The



b)
Figure 4. Example segmentations, with single model (left) and multi model (right). Green: tumor. Blue: resection cavity.
Yellow: sulci.

model was trained with limited GT data with class imbalance. We show that discarding patches in which no
class is present, as well as weighting the classes in the loss function to only train on the available classes, allows a
successful training despite the class imbalance. In future work, we will create GT for the sulci, falr and ventricles
for quantitative analysis of these results.
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