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Optimal Control of Urban Human Mobility for Epidemic Mitigation

Muhammad Umar B. Niazi Carlos Canudas-de-Wit Alain Kibangou Pierre-Alexandre Bliman

Abstract— Controlling human mobility during an epidemic
is a fundamental issue faced by policymakers. Such control
can only be done optimally if human mobility is adequately
modeled at the scale of a city or metropolis. This paper,
first, develops a model of human mobility that captures the
daily patterns of mobility in an urban environment through
time-dependent gating functions, which are controlled by the
destination schedules and mobility windows. The process of
epidemic spread is incorporated at each location that depends
on the number of susceptible and infected people present at
that location. Then, two optimal control policies are proposed
to maximize the economic activity at the destinations while
mitigating the epidemic. Precisely, operating capacities and
time schedules of destinations are controlled to maximize the
economic activity under the constraint that the number of active
infected cases remains bounded.

I. INTRODUCTION

Although human mobility plays a vital role in a country’s
economy, it facilitates the spread of disease in the event
of an epidemic by allowing contact between infected and
susceptible populations. If human mobility is not controlled
during an epidemic, it can result in a huge number of infected
cases, which could overwhelm the hospitals and cause the
loss of lives. On the other hand, strict restrictions on human
mobility can also halt the economy and result in the loss of
livelihoods. Therefore, the models of human mobility that
incorporate the process of disease spread play a vital role in
the analysis, understanding, and mitigation of epidemics.

Considering a SIR epidemic model for disease spread,
human mobility between different geographic regions has
been investigated and modeled in [1]–[4]. In these models,
the individuals associated with one region or city can go
to and return from other regions. However, these models
capture averaged mobility patterns between different cities
with large timescales and cannot capture the daily patterns
of mobility within an urban environment. To tackle this
problem, [5]–[8] study agent-based models of urban human
mobility with epidemic spread. These models are powerful
tools for computational purposes, however, they rely on the
digital footprints of individuals and can lead to privacy
violations. Another line of research in [9] relates to the
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Inria, CNRS, Laboratoire Jacques-Louis Lions, équipe Mamba, 75005 Paris,
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control of human mobility. It aims to find control policies that
restrict mobility to and from regions that are estimated to be
of high risk by employing reinforcement learning framework
and relying on aggregated demand for mobility and regional
epidemic statistics.

In this paper, we develop an urban human mobility model
that captures the daily mobility patterns and incorporates the
process of epidemic spread at each location. Every day a
certain number of people go from their residential areas,
which are called origins, to locations visited daily for work,
education, shopping, etc., which are called destinations,
and return on the same day. The daily mobility patterns
are captured by the time-dependent supply and demand
gating functions. The supply gating function (SGF) of each
destination is controlled by its daily destination schedule,
which is its opening and closing hours. The demand gating
function (DGF), on the other hand, is defined on each edge of
the mobility network and corresponds to the daily mobility
window, which is the time interval during which people
utilize that edge to move between origins and destinations.
The supply function of each destination controlled by the
SGF determines the inflow allowed to that destination and
depends on its operating capacity controlled by the capacity
control input. The demand function controlled by the DGF
determines the outflow from one location to another. The
process of urban human mobility is modeled on the network
edges that connect different locations through flows and
the process of epidemic spread is modeled locally at each
location that depends on the number of susceptible and
infected people at that location.

We formulate two optimal control problems for epidemic
mitigation while maximizing the economic activity: (i) op-
timal capacity control policy and (ii) optimal schedule con-
trol policy. These problems aim to find an optimal capac-
ity control input and schedule control input, respectively,
that maximizes the economic activity while mitigating the
epidemic by keeping the number of active infected cases
bounded. The capacity control policy restrict the number of
people in destinations of each category by specifying the
operating capacities in relation to their nominal capacities.
The schedule control inputs, on the other hand, specifies the
closing hour of destinations of each category by altering the
destination schedules and mobility windows.

The paper is organized as follows: Section II introduces
the urban human mobility model that incorporates the pro-
cess of epidemic spread at each location. Section III presents
optimal capacity control and optimal schedule control poli-
cies, and illustrates their efficacy through a numerical exam-
ple. Finally, Section IV presents the concluding remarks.
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II. MODEL OF URBAN HUMAN MOBILITY WITH
EPIDEMIC SPREAD

Consider human mobility in an urban environment be-
tween locations of two types: origins and destinations. The
origins correspond to locations where people reside—for
example, residential areas, neighborhoods, and towns. The
destinations, on the other hand, correspond to locations that
people visit daily for work, education, shopping, or leisure—
for example, industrial zones, business parks, schools, mar-
kets, cinemas, etc. Every day a certain number of people
go from each origin to the destinations during specified time
intervals and then return later the same day. At each location,
there is an epidemic spread process that will be described
here by a SIR model, [10], where the population is divided
into Susceptible, Infected, and Recovered classes, and the
disease is transmitted according to the local infection rates
when the susceptible and infected populations mix in the
same location. Notice that any similar epidemiological model
could be used instead.

A. Network Representation and Main Assumptions

Let Vo = {1, . . . ,m} be the index set of m origins and
Vd = {m+1, . . . ,m+n} be the index set of n destinations.
The network of urban human mobility is represented by a
bi-directed, bipartite graph G = (Vo,Vd, E), where E is the
set of bi-directed edges—i.e., for every i ∈ Vo and j ∈ Vd,
if (i, j) ∈ E then (j, i) ∈ E . Figure 1 illustrates a mobility
network, which is the running example of this paper.

We adopt the following assumptions in the model:
(A1) The total population of the city remains constant.
(A2) The mobility occurs only between pairs of origins and

destinations, and not among a pair of different origins
or a pair of different destinations.

(A3) The number of people who visit destination j from
origin i during a day is equal to the number of people
who return to i from j on the same day.

(A4) The mobility pattern between each pair of origins and
destinations is periodic and repeats every day, i.e., the
period Tperiod = 24 hours. In particular, we ignore
mobility patterns of the weekends or holidays that may
be different than the normal days.

(A5) The restrictions imposed on the urban human mobility
by the government affects all the people, whether
susceptible, infected, or recovered, equally.

Note that (A4) is a simplifying assumption, which can be
relaxed without loss of generality by considering Tperiod to
be a week, a month, etc.

Denote Pi to be the total population of origin i ∈ Vo,
which is the number of people who reside in i, and Cj to
be the nominal capacity of destination j ∈ Vd, which is the
maximum number of people who can visit j at one time
when there is no epidemic. Note that the total population of
the city P =

∑
i∈Vo Pi.

B. Destination Categories

Suppose the destinations are divided into p ≤ n categories,
which correspond to workplace, school, market, etc. The
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Fig. 1: An example of an urban human mobility network
with two origins and three destinations.

categories of destinations are represented by a partition

D = {D1, . . . ,Dp}

where the destinations of category k are grouped in a set
Dk, for k = 1, . . . , p, and each destination belongs to only
one category, i.e., for every k, l ∈ {1, . . . , p} and l 6= k,

p⋃
k=1

Dk = Vd and Dk ∩ Dl = ∅.

In the example illustrated in Figure 1, we have p = n,
i.e., three categories and three destinations, because each
destination is of a different category. However, it is possible
that a mobility network may have multiple destinations of
the same category. For instance, a slight modification of the
example of Figure 1, say with two working places and three
schools, could illustrate this immediately.

C. Operating Capacities of Destinations

Let uk(t) ∈ [0, 1] be the capacity control input for desti-
nations of category k, for k = 1, . . . , p, which determines the
allowed operating capacity of Dk in terms of the proportion
of nominal capacity at time t in the event of an epidemic. In
other words, it can be considered as the government’s policy
at time t that limits the operating capacities in destinations
of category k in order to mitigate the epidemic spread, where

Operating capacity = Cjuk(t), for j ∈ Dk.

We consider uk(t) to be piece-wise constant—i.e.,

uk(t) =


µ1
k if t ∈ [0, Tu)

µ2
k if t ∈ [Tu, 2Tu)

...
...

µqk if t ∈ [(q − 1)Tu, qTu)

(1)



with µhk ∈ [0, 1] constant for every h ∈ {1, . . . , q} and T =
qTu the total time horizon considered by a policymaker. The
policy horizon Tu is a multiple of Tperiod and corresponds
to the time after which the policy on operating capacities is
announced periodically. It can be chosen by the policymaker
from at least a week to several months because changing the
policy on shorter time intervals may not be practical in terms
of implementation.

D. Destination Schedule and Mobility Window
The destination schedule of j ∈ Vd

Sj = [aj , bj), 0 ≤ aj < bj ≤ 24

is the daily time interval during which j is open, where
aj and bj are the nominal opening and closing hours of
j, respectively. The origins, on the other hand, are open
throughout the day, i.e., for every i ∈ Vo, Si = [0, 24).
Then, the supply gating function (SGF) for j ∈ Vo ∪ Vd

σj(t) =

{
1 if t mod 24 ∈ Sj
0 otherwise (2)

which is periodic with respect to 24 hours.
The mobility window of (i, j) ∈ E

Dij = [tij , tij + τij), 0 ≤ tij < tij + τij ≤ 24

is the daily time interval during which there is mobility from
i to j, where τij > 0 is the duration of mobility window in
hours. Then, the demand gating function (DGF) of (i, j) ∈ E

δij(t) =

{
1 if t mod 24 ∈ Dij
0 otherwise (3)

which is also periodic with respect to 24 hours.

E. Model of Urban Human Mobility
Let Ni(t) ≥ 0 be the number of people in i ∈ Vo ∪ Vd at

time t (hour). Then, according to the urban human mobility
model, the rate of change of the number of people at any
location at time t is equal to the sum of inflows to that
location minus the sum of outflows from that location.

In other words, for any i ∈ Vo ∪ Dk and k ∈ {1, . . . , p},
the urban human mobility model is given by

Ṅi =
∑
j∈Ni

(φji − φij) (4)

where Ni is the set of neighbors of i in the mobility network
G and φij(t,Ni(t), Nj(t), uk(t)) is the flow from i ∈ Vo to
j ∈ Dk given as

φij = min(∆ij ,Σj)

with ∆ij(t,Ni(t), uk(t)) and Σj(t,Nj(t), uk(t)) the de-
mand and supply functions, respectively. Notice that the
flow φji(t,Nj(t), Ni(t), uk(t)) is defined similarly with the
subscript ji instead of ij.

The supply function Σj(t,Nj(t), uk(t)) of each location j
corresponds to the allowed inflow to j from other locations
and is given by

Σj =

{
σj min(Fj , v[Cjuk −Nj ]) if j ∈ Dk
σj min(Fj , v[Pj −Nj ]) if j ∈ Vo

i j
φij(t) = min(∆ij ,Ψj)

Σj = σj min(Fj , v[Cjuk −Nj ])︸ ︷︷ ︸
Ψj

∆ij = δij min(vNi, fij)︸ ︷︷ ︸
∆ij

Pi

fij

Ni(t)

∆
ij

Slope v

Cj

Fj

Nj(t)

Ψ
j

Slope −v

Fig. 2: An example illustrating the flow φij(t) from origin i
to destination j in terms of supply of j and demand of i
with respect to j. Here, the arrows on each curve indicate
the time evolution.

where σj(t) is the SGF given by (2), v > 0 is a regularization
parameter taken to be very large (see Remark 1), Cjuk(t) is
the operating capacity of j ∈ Dk with uk(t) defined in (1),
and

Fj(t) =
∑
i∈Nj

fij(t)

is the maximum inflow to j with

fij(t) =
Mijuk(t)

τij
(5)

the maximum outflow from i ∈ Vo to j ∈ Dk. Here, Mij

denotes the nominal number of visitors to j from i and
Mijuk(t) is the number of visitors when the capacity control
input uk(t) is implemented. Notice that, since all visitors
return, we have Mji = Mij .

The demand function ∆ij(t,Ni(t), uk(t)) of each edge
(i, j) ∈ E corresponds to the outflow from i towards j and
is given by

∆ij = δij min (vNi, fij)

where δij(t) is the DGF given by (3), v > 0 is the same
regularization parameter introduced in the supply function
Σj(t,Nj(t), uk(t)), and fij(t) is the maximum outflow from
i to j given by (5).

Suppose i ∈ Vo and j ∈ Dk, then Figure 2 illustrates the
flow from i to j in terms of demand and supply functions.
In the figure, notice that the demand of i moves from right
to left with respect to time t, i.e., from being full to being
empty, and the supply of j moves from left to right with
respect to time t, i.e., from being empty to being full, which
is indicated by arrows in the figure.



Remark 1. To ensure that the daily number of people going
from i to j equals Mijuk(t), we assume that the demand
function ∆ij(t,Ni(t), uk(t)) = δij(t)fij(t)1Ni(t)>0, where
1Ni(t)>0 = 1 if Ni(t) > 0, and 0 otherwise, is the
indicator function. Similarly, we assume that the supply
function Ψj(t,Nj(t), uk(t)) = σj(t)Fj(t)1Nj(t)<Cjuk(t).
However, to avoid the discontinuity posed by the indicator
functions, we approximate the demand and supply functions
by considering steep slope with a very large regularization
parameter v as illustrated in Figure 2. �

Populations P1 = 3000, P2 = 2000

Capacities C3 = 2000, C4 = 1500, C5 = 200

No. of Visitors M13 = 1200, M14 = 900, M15 = 900

M23 = 800, M24 = 600, M25 = 600

Mobility
windows Di3 = [8, 9.5), Di4 = [9, 10), Di5 = [8.5, 20)

D3i = [17, 18.5), D4i = [16, 17), D5i = [10, 21)

for i = 1, 2

Destination
schedules S3 = [8, 18), S4 = [9, 17), S5 = [8.5, 20)

Capacity control
policy u1(t) = 0.5, u2(t) = 0.5, u3(t) = 1

for t ∈ [0, 48)

Regularization
parameter v = 30

TABLE I: Parameters related to urban human mobility for
the example of Figure 1.

Example 1. Consider the example of mobility network shown
in Figure 1 with two origins and three destinations. For
the mobility model (4), we consider the parameters given
in Table I. The mobility profile of two days is plotted in
Figure 3, where N1(t), N2(t) denote the number of people in
Town 1 and 2 at time t, respectively, and N3(t), N4(t), N5(t)
denote the number of people in the industries, schools, and
markets, respectively. As shown in the figure, people go from
the origins (1 and 2) to the destinations (3, 4, and 5) and
return on the same day according to the destination schedules
and mobility windows. Notice that the mobility profiles are
the same for both days because, by assumption (A4), the
destination schedules and mobility windows are the same
for every day. Moreover, the nominal capacities of industries
and schools are C3 = 2000 and C4 = 1500, however,
the capacity control policy u1(t) = u2(t) = 0.5 reduce
the operating capacities to 50% of the nominal capacities.
Therefore, the maximum number of people present in these
destinations during a day is around C3/2 = 1000 and
C4/2 = 750, respectively. y

F. Incorporating the Epidemic Spread Process
We consider a susceptible, infected, recovered (SIR) model

of epidemic spread, which divides the number of people
Ni(t) at each location i ∈ Vo∪Vd into three classes: number
of susceptible Si(t), infected Ii(t), and recovered Ri(t),
where, at every time t,

Ni(t) = Si(t) + Ii(t) +Ri(t).

0 6 12 18 24 30 36 42 48

0

1000

2000

3000

4000

Fig. 3: The mobility profile of two days for the example in
Figure 1.

The disease transmission at each location i occurs according
to the local mass action law

βi(t)Si(t)
Ii(t)

Ni(t)

where

βi(t) =

{
βi

Ni(t)
Pi

if i ∈ Vo

βi
Ni(t)
Ci

if i ∈ Vd

is the infection rate of i at time t with βj the nominal
infection rate of i. The nominal infection rate is defined as
the average number of contacts of a person in location i
per hour when the number of people in i is maximum. The
infection rate βi(t) reduces when the number of people Ni(t)
at location i is small and increases when Ni(t) is large. The
infected people Ii(t) recover with a recovery rate γ ∈ (0, 1],
which is a constant that depends on the disease biology and,
if available, the treatment methods. The recovery rate γ is
defined as the inverse of the average recovery period (in
hours) of the infected cases.

Recall the assumption (A5), which implies that all people
irrespective of whether they are susceptible, infected, or
recovered can go from one location to another with equal
probability. That is, the flow from i to j in terms of
the number of susceptible, infected, and recovered can be
respectively given by

φij(t,Ni(t), Nj(t), uk(t)) Si(t)
Ni(t)

φij(t,Ni(t), Nj(t), uk(t)) Ii(t)Ni(t)

φij(t,Ni(t), Nj(t), uk(t))Ri(t)
Ni(t)

.

Let xi(t) = [ Si(t) Ii(t) Ri(t) ]T ∈ R3
≥0

be the state
vector of location i ∈ Vo ∪ Vd and

ξi(xi(t)) =

 −βi(t)Si(t) Ii(t)Ni(t)

βi(t)Si(t)
Ii(t)
Ni(t)

− γIi(t)
γIi(t)

 ∈ R3 (6)
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Fig. 4: The process of urban human mobility happens along
the edges whereas the process of epidemic spread happens
inside the locations.

be the vector describing the process of epidemic spread in
location i. Then, for i ∈ Vo and j ∈ Dk, the model of urban
human mobility with epidemic spread is given by

ẋi = ξi(xi) +

p∑
k=1

∑
j∈Dk

[
φji(uk)

xj
Nj
− φij(uk)

xi
Ni

]

ẋj = ξj(xj) +
∑
i∈Vo

[
φij(uk)

xi
Ni
− φji(uk)

xj
Nj

]
.

(7)

As illustrated in Figure 4, there are two aspects of the model.
First, inside the locations i and j, there is a process of
epidemic spread that transmits the disease from the infected
to the susceptible with a local infection rate, and the recovery
process that heals the infected with a constant recovery rate.
Second, on the edges (i, j) and (j, i), there is a process
of human mobility that transfers people from one location
to another through the flows φij(t,Ni(t), Nj(t), uk(t)) and
φji(t,Nj(t), Ni(t), uk(t)), respectively.

III. OPTIMAL MOBILITY CONTROL FOR EPIDEMIC
MITIGATION

A. Compact Representation of the Model

The urban human mobility model with epidemic spread
given in (7) describes the dynamics of the number of
susceptible Si(t), infected Ii(t), and recovered Ri(t) people
in location i ∈ Vo∪Vd. These dynamics are controlled by the
piece-wise constant capacity control inputs u1(t), . . . , up(t),
defined in (1), of the p destination categories in D. Define

u(t) =
[
u1(t) . . . up(t)

]T
.

Then, to represent the model in a compact form, let

x =

[
xo
xd

]
, where

{
xo = [ xT

1 · · · xT
m ]T

xd = [ xT
m+1 · · · xT

m+n ]T

with xo(t) ∈ R3m
≥0

the state vector of origins Vo and xd(t) ∈
R3n
≥0

the state vector of destinations Vd. Similarly, let

ξ =

[
ξo
ξd

]
, where

{
ξo = [ ξT1 · · · ξTm ]T

ξd = [ ξTm+1 · · · ξTm+n ]T

with ξo(xo(t)) ∈ R3m the vector describing the epidemic
process in the origins Vo and ξd(xd(t)) ∈ R3n the vector

describing the epidemic process in the destinations Vd.
Notice that the vector ξi(xi(t)) describing the epidemic
process in each location i is given in (6).

The model (7) can be represented as

ẋ = ξ(x) + Φ(x,u)x (8)

where the dependence on t is omitted for brevity. The matrix
of flows Φ(t,x(t),u(t)) describes the mobility process in the
network G and is given as

Φ(x,u) =

[
Φoo(x,u) Φdo(x,u)
Φod(x,u) Φdd(x,u)

]
⊗ I3

where ⊗ denotes the Kronecker product and

Φoo = diag

[
−
∑
j∈Vd

φ1j

N1
. . . −

∑
j∈Vd

φmj
Nm

]

Φdd = diag

[
−
∑
i∈Vo

φm+1,i

Nm+1
. . . −

∑
i∈Vo

φm+n,i

Nm+n

]

Φod =


φ1,m+1

N1
· · · φm,m+1

Nm
...

. . .
...

φ1,m+n

N1
· · · φm,m+n

Nm



Φdo =


φm+1,1

Nm+1
· · · φm+n,1

Nm+n
...

. . .
...

φm+1,m

Nm+1
· · · φm+n,m

Nm+n

 .
B. Economic Activity and Active Infected Cases

The economic activity E(t) ∈ R≥0 in the mobility network
G at time t is defined as

E(t) =

p∑
k=1

∑
j∈Dk

χj
Nj(t)

Cj
(9)

where Nj(t) is the number of people in destination j ∈ Dk at
time t, Cj is the nominal capacity of j, and χj ∈ [0, 1] is the
weight assigned to j according to its economic importance
such that

∑
j∈Vd χj = 1. Since Ni(t) = 1T3xi(t), we can

write (9) as
E(t) = eTx(t) (10)

where x(t) is the state of (8) at time t and

e =
[
0Tm

χm+1

Cm+1
· · · χm+n

Cm+n

]T
⊗ [ 1 1 1 ]T.

The number of active infected cases I(t) ∈ R≥0 in the
mobility network G at time t is the sum of the number of
infected people in all the locations. It is given by

I(t) =
∑

i∈Vo∪Vd

Ii(t) (11)

where Ii(t) is the number of infected people at location i at
time t. Since Ii(t) = [ 0 1 0 ]xi(t), we can write (11)
as

I(t) = gTx(t)



Recovery rate γ = 1/14 per 24 hours

Nominal infection rates β1 = 0.11 per 24 hours

β2 = 0.11 per 24 hours

β3 = 0.71 per 24 hours

β4 = 1.07 per 24 hours

β5 = 0.57 per 24 hours

TABLE II: Parameters related to local epidemic spread for
the example of Figure 1.
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Fig. 5: Reduction of the number of infected cases I(t) by
reducing operating capacities via capacity control policy.

where
g =

[
1Tm 1Tn

]T ⊗ [ 0 1 0 ]T.

Finally, the infection peak is defined as

Ipeak = sup
t∈[0,T ]

I(t) = sup
t∈[0,T ]

gTx(t) (12)

where [0, T ] is a given finite time horizon.
Example 2. Consider the example of mobility network in
Figure 1 with the mobility parameters given in Table I and
the epidemic parameters given in Table II. Note that the
nominal infection rates outside the residences (the “des-
tinations”) are assumed higher than the nominal infection
rates at the residences (the “origins”). For T = 1680 hours
(or 10 weeks), we plot the active infected cases I(t) in
Figure 5 under two circumstances: (i) when there are no
restrictions on the operating capacities of all destinations,
i.e., u(t) = [ 1 1 1 ]T for all t ∈ [0, T ], and (ii) when
the operating capacities of all destinations are reduced to
50% throughout [0, T ], i.e., u(t) = [ 0.5 0.5 0.5 ]T for
all t ∈ [0, T ]. In Figure 5, notice the effect on the number
of active infected cases when the operating capacities are
reduced. When there are no restrictions on the operating
capacities, the infection peak Ipeak is about 1810 people,
whereas, with the restrictions, the peak is about 605 people.
In other words, given the mobility and epidemic parameters
for the example of Figure 1, one can reduce the infection
peak by 66.5% through 50% reduction of the operating
capacities. y

Time horizon T = 1680 hours (10 weeks)

Policy horizon Tu = 336 hours (2 weeks)
Upper bound
on infection peak I = 1000

Weights of
economic importance χ3 = 0.4, χ4 = 0.3, χ5 = 0.3

TABLE III: Parameters related to the optimal control prob-
lem (13) for the example of Figure 1.

C. Optimal Capacity Control Policy

The number of hospitalized cases and deaths due to an
epidemic are related to the number of infected cases I(t).
A large value of I(t) implies a large number of hospi-
talizations and loss of lives in the near future. Moreover,
if the measures to mitigate the epidemic and limit the
number of infected cases are not taken, then the number
of hospitalizations may reach a point that could challenge
the available medical facilities of the city. As shown in
Example 2, the number of infected cases can be reduced by
reducing the operating capacities of the destinations through
the capacity control policies u1(t), . . . , up(t). However, on
the other hand, choosing the values of u1(t), . . . , up(t) too
small can result in a significant reduction of the economic
activity E(t), which may result in bankruptcy of businesses
and loss of livelihoods. Therefore, our goal in this section
is to find optimal capacity control policy that maximize the
economic activity under a constraint that the infection peak
Ipeak remains bounded from above.

Suppose a finite time horizon T , a policy horizon Tu =
T/q for q ∈ N, an upper bound I > 0 on the infection
peak, and all the parameters of the model (8) be given.
Let u ∈ U , where U is the set of admissible capacity
control policies u : [0, T ] → [0, 1]p such that, for every
t ∈ [(h − 1)Tu, hTu) and h ∈ {1, . . . , q}, u(t) = µh for
some µh = [ µh1 · · · µhp ]T ∈ [0, 1]p. Then, the optimal
capacity control policy is obtained by solving the following
problem:

maximize
u∈U

L(u) :=
1

T

∫ T

0

eTx(t;x0,u)dt

subject to

{
ẋ = ξ(x) + Φ(x,u)x; x(0) = x0

Ipeak(u) ≤ I

(13)

where Ipeak(u) = supt∈[0,T ] g
Tx(t;x0,u) is given in (12)

and the economic activity E(t) = eTx(t) is given in (10).
Example 3. Again, consider the example of Figure 1 with
the mobility and epidemic parameters given in Table I and
II, respectively. Also, consider the parameters in Table III
required by the optimal control problem (13). The optimal
control problem is solved numerically for a time horizon
T = 1680 hours (i.e., 10 weeks) using a nonlinear pro-
gramming solver fmincon in MATLAB with interior point
algorithm. The solver returns a local minimum uopt(t) plotted
in Figure 6 that satisfies the constraints (??) and is piece-
wise constant, where the policy horizon Tu = 336 hours
(i.e., 2 weeks). In particular, the constraint on the infection
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Fig. 6: Optimal capacity control policy uopt.
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Fig. 7: Reduction of the number of infected cases I(t)
by controlling the operating capacities via optimal capacity
control policy uopt.

peak is satisfied and Ipeak ≈ 922 is less than I = 1000
as shown in Figure 7. Notice that in the beginning the
optimal capacity control allows the operating capacities to
be around 70-90% of the nominal capacities of destinations.
However, as the number of infected cases increase, the value
of the optimal capacity control decreases for the next four
steps until 8Tu = 1344 hours (i.e., 8 weeks) to mitigate
the infection spread. Then, in the last interval [8Tu, T ], the
optimal capacity control increases to allow more people
visiting the destinations because the infected cases have
started to decrease. In Figure 8, we plot the economic
activity for three cases: (i) when no capacity control policy
is implemented, (ii) when the capacity control policy limits
the operating capacities to 50% of the nominal capacities
of destinations, and (iii) when the optimal capacity control
policy uopt(t) shown in Figure 6 is applied. Notice that
the optimal capacity control uopt(t) increases the economic
activity as compared to the cases when u(t) = 0.513 while
keeping the Ipeak under the bound I . y
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Fig. 8: Economic activity (i) without capacity control policy,
i.e., u = 13, (ii) with 50% capacity control policy u = 0.513,
and (iii) with optimal capacity control policy uopt.

D. Optimal Schedule Control Policy

We formulate an epidemic mitigation policy that alters
the destination schedules and mobility windows. That is, for
every j ∈ Dk, the destination schedule is altered as

Sj = [aj ,min(sk, bj))

where sk ∈ [s, 24) is the schedule control that enforces
that all destinations of category k, for k = 1, . . . , p, must
be closed after sk hour, respectively, and s ≥ 0 is the
lower bound on sk. Such a policy limits the spread of
infection by reducing the daily amount of time people spend
at destinations. It also alters the mobility windows

Dij = [tij ,min(tij + τij , sk))
Dji = [min(tji, sk),min(tji, sk) + τji).

for i ∈ Vo and j ∈ Dk. That is, people cannot go from i to j
after sk hour and people at j must return to i after sk hour.

Let s = [ s1 · · · sp ]T be the schedule control policy
of all destination categories. Then, the problem is to find
an optimal s such that the economic activity is maximized
while keeping the infection peak bounded by I . The sched-
ule control policy complements the capacity control policy
obtained by solving (13) when there are lower bounds on
the capacity control policy. These lower bounds correspond
to minimum operating capacities of certain destinations that
are required for functioning of the society. This is because
some destinations, like hospitals and markets, are essential
and their operating capacities cannot be reduced beyond a
minimum bound. In other words, for all k ∈ {1, . . . , p}
and h ∈ {1, . . . , q}, we assume constant capacity control
policy u(t) = µ, for all t ∈ [0, T ], where µ ∈ [0, 1]p

states the minimum allowed capacity control policy of p
destination categories. In the presence of these lower bounds,
the problem (13) may become infeasible and the infection
peak may no longer be bounded. Thus, implementation of
optimal schedule control policy s may help in containing
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Fig. 9: Reduction of the number of active infected cases I(t)
by controlling destination schedules and mobility windows
via optimal schedule control policy sopt.

the infections while also allowing economic activity at des-
tinations.

Suppose a finite time horizon T , an upper bound I > 0 on
the infection peak, a constant capacity control policy u(t) =
µ ∈ [0, 1]p, ∀t ∈ [0, T ], and the parameters of the model
(8) are given. Then, the optimal schedule control policy is
obtained by solving the following problem:

maximize
s∈[ s,24)p

L(s) :=
1

T

∫ T

0

eTx(t;x0, s)dt

subject to

{
ẋ = ξ(x) + Φ(x, s)x; x(0) = x0

Ipeak(s) ≤ I

(14)

where Ipeak(s) = supt∈[0,T ] g
Tx(t;x0, s) is given in (12) and

the economic activity E(t) = eTx(t) given in (10).

Example 4. Consider again the example of Figure 1 and
the parameters given in Table I, II, and III, where we
change the policy horizon Tu = T since the schedule
control policy s is constant throughout [0, T ]. Let the ca-
pacity control policy u(t) = [ 0.75 0.75 0.75 ]T, ∀t ∈
[0, T ], i.e., the operating capacities of destinations should
be 75% of their nominal capacities. Then, solving (14)
numerically by using fmincon solver in MATLAB with
interior point algorithm, we obtain a local minimum sopt =
[ 14.54 13.75 16.10 ]T, which means that the industries
must be closed after 14.54 hour (02:32 pm), the schools must
be closed after 13.75 hour (01:45 pm), and the markets must
be closed after 16.10 hour (04:06 pm). Figure 9 shows that
the constraint on the infection peak is satisfied. y

IV. CONCLUSION

We developed an urban human mobility model on network
of origins and destinations that incorporates the process of
epidemic spread at each location. The model is described by
the flows that transfer people from origins to destinations
and back to origins every day. The flows capture the daily

patterns of mobility in an urban environment through the
gating functions that depend on the destination schedules
and mobility windows. At each location, the disease spreads
through the interaction of susceptible and infected people,
where the infection rate depends on the number of people
in that location. We study two optimal control policies,
capacity control and schedule control, that mitigate the
epidemic spread while maximizing the economic activity
at each destination. The optimal capacity control policy
maximizes the economic activity by allowing maximum
allowable number of people at each destination under the
constraint that the infection peak remains bounded. The
optimal schedule control policy maximizes the economic
activity by allowing maximum allowable time that people
spend daily at destinations under the constraint that the
infection peak remains bounded.

The future investigations include the model predictive
control formulation of optimal control problems. A work in
progress is the validation of model with the urban mobility
data and regional epidemic statistics and the development of
web interface to illustrate our proof of concept.
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