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Abstract

Over the last decades, simulations by discrete elements methods (DEM) have proven to be a reliable analysis tool in

various domains of science and engineering. By providing access to the local physical mechanisms, DEM allows the

exploration of microscopic based phenomena related to particles properties and interactions in various conditions and

to revisit constitutive equations consequently. The growing computer power and memory now allow us to handle large

collections of grains of various shapes and sizes by DEM simulations and in particular, it offers new perspectives in

the exploration of the behavior of asteroids seen as self-gravitating and cohesive granular aggregates. In this paper we

describe the Contact Dynamics (CD) method, a class of DEM based on non-smooth mechanics, and its implementation

in the open-source software LMGC90. In contrast to more classical approach, Hard- and Soft-Sphere DEM, the CD

method is based on an implicit time integration of the equations of motion and on a non-regularized formulation of

mutual exclusion between particles. This numerical strategy is particularly relevant to the study of dense granular

assemblies (even of large size) because it does not introduce numerical artefacts due to contact stiffness. So that it can

be used for Small Body research, we implement a parallelised kd-tree and monitor the performance of the code as it

simulates a number of granular systems. We provide examples of the simulation of the accretion of self-gravitating

aggregates as well as their rotational disruption. We use the routines at our disposal in the code to monitor their

behaviour through the entire evolution and find agreement with previous research.
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1. Introduction

During the last two decades, research about asteroids in general and small asteroids in particular has increased

dramatically. The first near-Earth asteroid (NEA), (433) Eros was discovered 1898, but it would be a long time before

its first pictures were taken by the NEAR Shoemaker mission almost 20 years ago. In the mean time, asteroids passed

from being cursed as “the vermin of the sky” [1] by astronomers trying to observe distant stars and galaxies, to be the5

target of a number of space missions. The most recent finished one is the JAXA Hayabusa mission to asteroid (25143)

Itokawa [2] and the two that are taking place at the time of this writing are the JAXA Hayabusa2 mission to asteroid

(162173) Ryugu [3] and the NASA OSIRIS-REx mission to asteroid (101955) Bennu [4]. One common objective in

all these missions is the return of a sample of the particles on their surfaces for analysis. For the last two, the use of

numerical methods to simulate the interaction of the spacecrafts with the asteroid surfaces has been a very important10

part of the research efforts [5, 6, 7].

The pictures obtained of asteroid Itokawa revealed a small body covered in dust, pebbles, rocks and boulders

going from micrometers to tens of meters in size [8, 9]. The sample that was returned to Earth in 2010 revealed its

chemical composition as well as the varied shapes of the few dust grains that were trapped in the sample canister

after the failure of the sampling mechanism [10, 8]. These and previous findings confirmed the idea that asteroids15

had a granular structure and that their bodies were held together by gravitational attraction. This being so, the use

of the numerical tools and theoretical approaches to study granular matter became a necessity, especially codes that

implemented different Discrete Element Methods (DEM).

By definition, DEM aim to model the behaviour of a collection of distinct interacting particles. As any numerical

method, it constitutes a significant support to experimentation in the sense that they give us access to information that20

is difficult to obtain experimentally (i.e., packing disorder, contacts orientation, force distributions). DEM make it

possible to multiply numerical experiments in order to study the influence of particles characteristics (particle size,

morphology), interactions (friction, cohesion) and loading, on the local and collective behaviour of the system. The

common denominator of DEM is to consider the degrees of freedom associated with the elements (grains), considered

as rigid objects, and to integrate the equations of motion for these degrees of freedom. DEM can be classified into25

two main families of approaches: Smooth and Non Smooth.

In Smooth approaches [11, 12], interaction forces between particles can be written as a function linking contact

forces to contact kinematics. Typically, the normal reaction is taken as proportional to particle penetration (Hertzian

contact model [13]). The particle motion is smooth (at least as twice differentiable) and, therefore, the equations of

dynamics are written as ordinary differential equations that can be integrated by conventional methods such as the30

Gear method for Molecular Dynamics (MD) [12], the Newmark [11], or Verlet scheme [14].

In Non Smooth approaches [15, 16, 17, 18, 19], there is no explicit relation between contact forces and contact

kinematics. Contact conditions are described by complementarity relations between the contact forces and displace-

1Corresponding Author: diego.sanchez-lana@colorado.edu
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ments or velocities (as the well know Signorini condition [16]). No regularization is required. The equations of

motion are rewritten as non-differentiable relations involving velocity jumps and impulse [16]. Equations of motion35

can be driven using time stepping or Event Driven (ED) [20] and discretized by the θ-method [17] or Leap Frog (LF)

method [21]. The ED method, associated with irregular time discretization, is well suited for collections of rigid

bodies in which the time to cover the mean free path is much greater than the contact time of a collision between two

bodies. The method then assumes that the collision time is effectively zero and so, by construction, only binary, and

not multi-body, collisions can be simulated.40

At the end fo the 90s, a first ED (Hard-Sphere DEM) model is proposed to the study of self-gravitating particles

of meters in size [21, 22]. The authors developed a code named PKDgrav [21], originally used to study star clus-

ters, which has been used also to study planetary rings, planetesimal formation, binary asteroid formation, rotational

evolution of asteroids and asteroid collisions to name a few topics [23, 24, 25, 26, 27, 28].

More recently (2008), an MD (Soft-Sphere DEM) has been introduced to model self-gravitating granular systems45

[29, 30]. Based on a Smooth DEM formalism, the code developed by the authors has been used to study the rotational

evolution of asteroids, internal structure and strength of small asteroids, binary asteroid and asteroid pair formation,

and penetrometry in the asteroid environment [31, 32, 33, 34, 35, 36, 37]. This last point was largely applied to the

simulation of the Touch-and-Go Sample Acquisition Mechanism (TAGSAM) for the OSIRIS-REx mission [6]. Note

that a SSDEM version has been available in the PKDgrav code mentioned previously since 2012 [38].50

Later on, in 2014, a first use of a Non Smooth approach was proposed to study regolith processes [39]. More re-

cently, in 2018, the Contact Dynamics (CD) method, was applied to analyze the strength properties of self-gravitating

aggregates of spheres [40]. A year later, Ferrrari, et al [41, 42] used the same method to study asteroid aggregation

problems with angular particles.

The implicit formulation of the method and the introduction of nonsmooth laws in iterative or direct algorithms55

makes the CD method less accessible for computer implementation than other DEM methods based on explicit for-

mulation. Thus, the aim of this paper is to present the spirit of the CD method, some details of its implementation in

the LMGC90 open-source platform ([43]2) together with a direct application of self-gravity. In this paper, to underline

the numerical efficiency of the CD method for modelling granular asteroids, the CD method is applied to model the

accretion of spherical and polyhedral particles. Then, some specificities for the modelling of granular asteroid are in-60

troduced, including cohesion, particle shape and self-gravity. The main results of accretion simulations are discussed

and some perspectives are given regarding forthcoming research avenues.

2https://git-xen.lmgc.univ-montp2.fr/lmgc90/lmgc90 user
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2. The Contact Dynamics Method

2.1. The Non-Smooth Philosophy

The objective here is to represent an asteroid as a collection of rigid solids subject to conditions of mutual non-65

interpenetrability and friction in case of contact. This situation can be described as non-smooth for at least three

reasons: The geometrical conditions of non-interpenetration of the different objects (non-smoothness in space), the

contact forces governed by non-regularized laws (non-smoothness in law) and velocity jumps due to collisions be-

tween bodies (non-smoothness in time).

One way to get rid of this non-smoothness is the use of regularization technics: This is what the smooth-DEM70

methods do when the non-interpenetrability of bodies is replaced by sufficiently stiff repulsion laws that apply when

two of them approach each other. We are thus reduced to differential equations that can use classical numerical

techniques. But, in each case, a compromise must be accepted between the requirement of precision and the stiffness

of the approximate equations. This stiffness imposes very small discretization steps and often artificial inertias or

viscosities are introduced to ensure numerical stability [14, 44].75

To overcome this kind of process, Moreau relies on the framework of convex analysis [45] to develop what he will

call the Contact Dynamics (CD) approach [16]. It is based on two main ingredients: non-smoothed contact and non

smooth dynamics. It implies:

1. An implicit time integration scheme to describe the dynamic evolution of the particles and to manage in the

same time contacts and shocks;80

2. A contact resolution algorithm ensuring the respect of constraints related to the choice of non-smooth interaction

laws.

To use CD within a DEM philosophy, both previous ingredients are combined in a contact detection algorithm to deal

with potential interactions between particles.

2.2. Dynamical Equations85

2.2.1. In the body frame

The motion of a set of Np rigid particles is governed by the Newton-Euler’s equations: Mq̈ = Fext + R,

Jω̇ + ω × Jω = Mext + M,
(1)

involving the second time derivative of the configuration parameter q, the spin ω expressed in a frame attached to the

body, the external force and moment resultants (for example gravitational forces), denoted Fext and Mext respectively,

and the contact reaction forces (exerted by neighboring particles) called R. M and J represent respectively the mass90

and the inertia matrices.
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Let us note that, in practice, the Euler equation is written in the main inertia frame of each body which allows to

have a diagonal representation of J. In the specific case of spheres, ω becomes collinear to Jω thus allowing to remove

the non-linear terms related to the cross product. On the other hand, for complex shapes, the Euler equation remains

non-linear and depends implicitly on the orientation of the objects. We discuss in Sec 2.5.1 in more details the special95

treatment used to integrate the rotations when particles are non-spherical.

Thus, the velocity of a particle is the combination of a translation velocity of its center of gravity and an angular

velocity vector expressed in the principal inertial frame attached to the particle. By excessive notation, the system (1)

will be reduced to its first equation and the different variables used will contain the kinematics and forces related to

translations and rotations:100

Mq̈ = Fext + R, (2)

To deal with the non-smoothness tryptic mentioned previously, Equation (2) is reformulated in terms of equality of

measure (in the mathematical sense) as follows:

Mdq̇ = Fextdt + dR, (3)

where dq̇ is the differential measure of velocity, dt is the Lebesgue measure on the real space R, and dR is a measure

of the impulse. In the following, for a sake of simplicity, R denotes the resultant of an impulse.

To compute the evolution of a system of particles, one should proceed to the time discretization. The multi-contact105

problem is solved over the interval ]ti, ti+1] of length h in the terms previously defined. Then successive approximations

of both Equation (3) and first time derivative of the configuration parameter lead to the following system: q̇i+1 = q̇ f ree
i +M−1Ri+1

qi+1 = qi + hθq̇i+1 + h(1 − θ)q̇i

(4)

with

q̇ f ree
i = q̇i +M−1h(θFext

i+1 + (1 − θ)Fext
i ) (5)

where q̇ f ree denotes the free velocity (velocity computed without contact forces). Quantities indexed by i (resp. i + 1)

refer to time ti (resp. ti+1). The system is updated according to the second Equation of system (4). Note that, the update110

of the orientation of each particle when dealing with non-spherical particle will be discussed in details in Sec.2.5.1.

In order to be unconditionally stable, θ ranges from 0.5 to 1. When θ = 0, the contact detection is performed

using the configuration parameter at time ti. On the contrary, when θ , 1, the contact detection is performed using a

prediction of the configuration parameter (at time ti + h(1 − θ)).

2.2.2. In the contact frame115

Let us consider two touching particles, i and j, at the contact point α (cf. Fig. 1). The velocity of the point α

attached to each particle is simply given by uα,i = q̇i +ωi×Oiα, where Oiα is the vector joining the center of particle i

to contact point α (same notation fo particle j). The relative velocity at the contact point α is given by vα = uα,i −uα, j.
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Figure 1: Contact frame (nα, tα, sα) defined at contact point α between two particles i and j.

At the contact point α, it is possible to define a local frame (nα, tα, sα) attached to the contact α where nα is

oriented from particle j to particle i and where tα and sα define the orthogonal plane to nα; The triplet (nα, tα, sα) is an120

orthonormal basis (cf. Fig. 1).

Using such a frame, it is possible to build a linear operator H (and its transpose HT ) to connect the set of local

variables, the relative contact velocity v and the contact impulse r, to the set of global variables, R and q̇, by the

couple of relations:  R = Hr

v = HT q̇.
(6)

A more detailed description of the construction of these matrices can be found in [20]. These two equations can be125

injected in the first equation of system (4), leading to the formulation of the equation of dynamics in the contact frames

as:

Wri+1 − vi+1 = −v f ree. (7)

In Equation (7),W (= HTM−1H) is called the Delassus operator while the right-hand-side represents the free relative

velocity only accounting for the external forces given by Equation (5).

Equation (7) presents two unknowns: the local contact impulse r and the contact relative velocity v (the time130

index is omitted to make pleasant reading). To find a solution to the contact problem, a relation between these two

unknowns should be added through the definition of a contact law, detailed in the next section. Assuming such a law

defined, Equation (7) can be solved contact by contact using the so-called Block Non Smooth Gauss-Seidel algorithm

(NSGS) a splitting method exposed in [46]. Using the global splitting scheme on Equation (7), one obtains:

Wααrk+1
α − vk+1

α = −vα, f ree −

nc∑
β<α

Wαβrk+1
β −

nc∑
β>α

Wαβrk
β (8)

where the index k refers to the splitting method iterations and nc the number of contacts. The time index is omitted to135

make pleasant reading. This solver has proved to be very robust and efficient on a large collection of heterogeneous

problems [47, 48, 49] and benefits of a parallel version [50] to ensure reduced simulation time.
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It should be noted that the problem of frictional contact between rigid bodies can have a multiplicity of solutions

(inherent to the rigid formulation). Each solution will depend on the reading direction of the contact list. Nevertheless,

whatever the solution obtained, it respects all the constraints imposed and all the solutions always present the same140

physical properties [50, 51].

2.3. Contact laws

When considering a system composed of rigid bodies, the physical behaviour of the system depends entirely on

the laws of interaction between particles. Therefore, depending on the physics one wishes to represent, the contact

law may be more or less complex, from a simple unilateral contact law [52] to cohesive zone models [53]. The case145

of a unilateral frictional contact law with Coulomb friction is presented therefore.

The contact unilaterality is described by the well-known Signorini Condition [54] relating the normal component

of the contact relative velocity vn and the normal component of the contact impulse rn. As long as vn remains positive,

no force is acting and rn is equal to 0. When vn = 0, rn becomes positive. Such conditions are summarized by the

following set of inequalities:150

rn ≥ 0 vn ≥ 0 rn.vn = 0. (9)

Note that the Signorini condition corresponds to a pure inelastic shock. According to the set of inequalities (9), when

a collision occurs between two bodies, the relative velocity vanishes. In order to allow bounces in the simulation, one

can introduce, for example, a restitution coefficient, linking the velocity before and after shock (vi+1
n = −envi

n). In the

formalism presented above, the contact problem with restitution becomes:

rn ≥ 0 (1 + en)v̄n ≥ 0 rn.(1 + en)v̄n = 0. (10)

where v̄ = vi+1
n + envi

n. When en = 1 the shock is fully elastic, while when en = 0 the shock is plastic and equivalent155

to the Equation (9).

The Amontons-Coulomb friction law is one of the simplest way to consider a resistance in the tangential direction.

When the norm of the sliding velocity vt is equal to 0, the norm of the tangential impulse rt belongs to the interval

[−µrn, µrn] where µ is called friction coefficient. When the norm of vt is no longer equal to 0, the direction of rt

is opposed to the sliding motion and equal to the friction threshold. This friction law can be summarized by the160

following set of inequalities:  ‖vt‖ = 0 ⇒ −µrn 6 ‖rt‖ 6 µrn

‖vt‖ , 0 ⇒ ‖rt‖ = −µrn ∗ vt/||vt ||
. (11)

2.4. Resolution of the local frictional contact problem

Before trying to solve the frictional contact problem, it is necessary to rewrite Equation 8 differently. If we make

the difference of two successive iterations appear to the left hand side, then the equation can be written as follows:

Wαα(rk+1
α − rk

α) = vk+1
α − vα, f ree −

nc∑
β<α

Wαβrk+1
β −

nc∑
β≥α

Wαβrk
β (12)
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The convergence of the Gauss-Seidel algorithm makes the right-hand side member tend towards zero. It is therefore165

possible to replace the Delassus operator W by any matrix with better properties, such as a diagonal matrix. In

practice, the matrix W is replaced by its diagonal W̄ [20]. Thus, the modified Equation (8) can be explicitly written

as:

W̄ααrα,k+1 − vα,k+1 = −b̄α (13)

where b̄α = bα + (W̄αα −Wαα)rα,k and bα is the right hand side of Equation (8). As a result, the three components of

the local impulse are thus decoupled and can be explicitly expressed through a case study, illustrated by Fig. 2.170

Figure 2: (a) Coulomb cone of the different possible scenarios for the solution of the 3D frictional contact problem. The circle Ct is defined from

the intersection between the tangent plane Pt and the Coulomb cone. (b) the solution r∗ (at the iteration k+1) is inside the friction cone. (c) The

solution r∗ is outside the Coulomb cone and should be projected on its boundary.

If bn is positive then r vanishes (no contact). On the contrary, due to Equation (13), r∗ = −W−1
nn bn. This value

allows us to determine the circle Ct, intersection between the tangent plane Pt and the Coulomb cone (cf. Fig. 2a). If

the norm of the vector bt is less than µWttr∗, i.e. that the solution is within the friction cone, then rt = −W−1
tt bt (cf.

Fig. 2b). Otherwise, the solution is outside the friction cone and should be projected on its boundary (cf. Fig. 2c).

This discussion is summarized in the Table 1.175

This resolution method is independent of the particle geometry and, in the case of collections of rigid bodies, the

approximation performed on the W matrix does not disturb the convergence of the Gauss-Seidel algorithm [20]. It

can be noted that there are methods that do not approximate the matrixW [55, 56], but they are slower and can be put

in default when using high coefficients of friction.
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if b̄n > 0 then r = 0 (status = no contact)

else

rn = −W̄−1
nn b̄n

if ‖b̄t‖ ≤ µW̄ttrn then rt = −W̄−1
tt b̄t (status = sticking contact)

else β = µW̄tt
rn
‖b̄t‖

and rt = −βW̄−1
tt b̄t (status = sliding contact)

Table 1: Pseudo-code of the resolution of the 3D frictional contact problem.

2.5. Extensions of interest to model granular asteroids180

The CD method could be directly used to model the granular behaviour of asteroids by considering the previous

ingredients. However, to take full advantage of the potential of the method, different ingredients can be introduced,

both in terms of geometry, interaction law and boundary conditions.

Indeed, granular asteroids are gravitational aggregates made of regolith, i.e. a competent rocks of various sizes

(from microns to meters) and irregular shapes, with low, though non-negligible, internal cohesive strength. The shapes185

of the regolith can be angular or more rounded, usually elongated and generally convex following the detailed studies

carried out on the Itokawa dust particles [2] brought by the Hayabusa mission.

This size dispersion induces interactions between particles that cannot be reduced to simple laws of frictional con-

tact. More representative laws need to be introduced in order to take into account this complexity, without neglecting

the presence of the gravitational forces. The next subsections will detailed these specific features in the framework of190

Contact Dynamics.

2.5.1. Modelling regolith as polyhedral particles

Grain angularity modeling is of major importance to model realistic granular asteroids in order to better predict

their behavior. This importance is underlined by the pionneering work of Korycansky and Asphaug, who have studied

the low-speed impact of rubble piles modeled by polyhedra [57]. Recent reports show that particle shape strongly195

affects the strength and dilatancy properties of the granular media. A basic result is that angularity increases the

shear strength [58], but it is only very recently that systematic studies have been reported on the effect of particle

shape angularity. In this case, a nonlinear dependence of the shear strength and packing fraction has been evidenced

numerically [59].

The introduction of polyhedral particles requires the use of specific detection algorithms and a method to integrate200

the rotations.

First, concerning the contact detection. While the coarse detection (sorting method) can be the same as for spheres,

the fine detection cannot be based only on a distance test between the particle centres. Coarse detection, also called

proximity search, is a sorting method allowing to build a neighborhood list from the bounding spheres of the different

objects constituting the study system. For polyhedral particles, fine detection consists of two parts. The first, called205
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rough, allows the elimination of useless contacts by a technique of axis separator (shadow overlap) [47]. The second,

called accurate, can use a method of intersection of triangular faces [47] or a method of plane separator [44]. Here,

the choice is made on the second method which consists in determining the distance between each pair of polyhedra

by computing the separating plane. This is an iterative method based on the perturbation of the orientation of the

normal vector where the process is initialized by the vector joining the polyhedron centers. The main advantage of210

this method is its speed when optimized as proposed in [20].

(a) (b) (c) (d)

Figure 3: Different configurations of contacts between two polyhedra leading to a different number of contact points: (a) vertex to face; (b) edge to

face; (c) face to face; (d) edge to edge; See [20, 59]

Finally, as shown in Fig. 3, different situations may arise between two touching polyhedral particles: contact point,

contact line or contact surface. Point contacts include face-vertex, edge-edge, vertex-vertex or vertex-edge contacts.

Note that vertex-vertex and vertex-edge contacts are very rare. But when they occur, the common plane method is

able to give us the normal direction. Without any modification of the contact law, a face-edge contact (i.e. contact215

line) can be represented by two points whereas a face-face (i.e. contact surface) can be replaced by three points since

they involve an equivalent number of geometrical unilateral constraints.

The two or three points used and the calculated forces are only intermediate objects. The only physically mean-

ingful forces acting at a edge-face and face-face contact are the resultant forces rn =
∑
κ rn

κ and rt =
∑
κ rt

κ, where

κ ∈ {2, 3}. It is easily shown that rn ≥ 0 and |rt| ≤ µrn if the two/three contact points obey Signorini’s conditions and220

Coulomb’s friction law. Since only the force resultants and relative displacements are material at a double or triple

contact, the choice of the two or three representative points of a face-edge or face-face contact is a matter of technical

convenience with no real impact on the result. The contact problem is then solved for the different points generated

using the same strategy as mentioned in Section 2.4. Note that, the detection methods mentioned above can only be

used for convex objects. When concave objects are modeled, two solutions are possible. The first is to use dedicated225

detection methods less unstable than previous ones [60]. The second is to consider concave particles as an assembly

of convex particles (when possible) and to use the previous methods.

Now, concerning the computation of the rotation of the particles, the difficulty comes from two aspects: 1) the

non-linearity induced by coupled differential equations as mentioned in 2.2.1 and 2) the integration of the rotation

speed ω.230

10



(a) (b)

Figure 4: (a) Relative error ∆ET , in percent, on the total energy conservation for the free non-principal rotational motion of one polyhedron, at

the end of a simulated time of 150 minutes, as a function of the time step and for increasing rotation speed ω0 imposed on each axis of the inertia

frame. (b) Maximum relative error ∆Emax
T during the collision of two rotating polyhedrons (for a duration of 150 minutes) as a function of the time

step and for increasing rotation speed. Note, the vertical dashed line materialize the time step used in the simulations presented in Sec.3.

Concerning the first point, and assuming that the rotation speeds of the grains are “low” (see test cases below) we

use a semi-implicite integrator for the Euler equations as follows:

ωi+1 = ω f ree + J−1 Mi+1, (14)

where J−1 is the inverse of the inertia matrix, M is the resultant of the contact impulse torque, and ω f ree = J−1 Mext
i+1 −

ωi × Jωi + ωi the free rotation speed. Concerning the second point, i.e. for the integration of the rotation speed ω,

there are several approaches in the literature to deal with this problem [61], but there is no “perfect” one. The default235

choice that we made in the LMGC90 platform consists in a sort of “linearized” method. Basically, each vector of the

inertia frame ek
i at the step i is transformed by a rotation increment hω as follows:

e∗k+1 = ek
i + (1 − θ)hωi × ek

i (15)

which are used to predict the orientation. After solving the contact forces, Equation (14) is used to update the veloci-

ties:

ek
i+1 = e∗k+1 + θhωi+1 × e∗k. (16)

Equations (15) and (16) require a re-orthogonalization of the main inertial frame. Note that an alternative method240

proposed by Hugues and Winget [62], which preserves both the orthogonality and the metrics of the main frame of

inertia is also implemented in the LMGC90 platform. Both methods give essentially the same results.
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In order to assess the accuracy of the strategy used to integrate rotations, two test cases are considered: (1) the free

rotation of a polyhedron combining different main axes of inertia and (2) a collision test between two polyhedra in

the presence of gravitational force considering a normal restitution coefficient equal to 1. For both cases, we evaluate,245

at each moment, the total energy of the system, noted ET . We note ET,0 the total energy of the system at the initial

instant (t=0). The relative error, noted ∆ET , expressed as a percentage, is given by:

∆ET = 100
ET − ET,0

ET,0
. (17)

Figure 4(a) shows the evolution of ∆ET for the first benchmark (reduced in this case to rotational energy) after 150

minutes of simulated time, as a function of the time step and the initial rotation speed. As expected, ∆ET increases

almost linearly with the time step due to the linearization proposed by the equation (15). It can also be noted that ∆ET250

increases with the increase of ω0 (two orders of magnitude at the same time step).

The figure 4(b) shows the maximum error ∆Emax
T when two rotating polyhedra collide (measured over a period

of 150 minutes) depending on the time step and the initial rotation speed. Again, as the θ method is a first-order

integrator, the total energy is not exactly conserved since, in addition to the time integration of the rotations, collisions

introduce approximation errors into the models. Note that the vertical dashed line shown in both figures materialize255

the time step used in the simulations presented in Sec.3 (see corresponding discussion below).

For a more technical explanation of the implementation of the method, see the chapter 9 in [20]. The reliability

and robustness of this method have been tested for several years in previous applications to granular materials, see for

example [63, 64, 65, 66, 59, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77].

2.5.2. Cohesive contact laws260

It has been proposed that the smallest particles in an aggregate could constitute a sort of granular bridges between

the larger particles [32]. As such, the finest material in an asteroid would form a weak cohesive matrix that binds

the larger rocks and boulders. By implicitly taking into account this phenomenon, cohesion between large particles

can be implicitly represented by a Maugis-Dugdale law, based on a threshold force at separation, denoted r0. In the

first order, it can be considered constant but it could be dependent on the particle size, shape, cleanliness, rugosity or265

others characteristics of the systems such as temperature, quantities of water and the presence of volatiles among the

most important [58]. Such an attractive force r0 is activated when particles are close enough, leading to the definition

of an activation distance, denoted d0.

In the CD framework, cohesive forces are easily introduced by shifting upwards the Signorini’s condition (see

Fig. 5b) and by replacing rn by r∗n = rn + r0 both in Eq. (9) leading to a new set of inequalities:270

(rn + r0) ≥ 0 vn ≥ 0 (rn + r0).vn = 0 , (18)

for δn ≤ d0. When δn > d0, rn vanishes.
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rn

v̄n−r0
v̄n

r∗n = rn + r0

⇒

(a) (b)

Figure 5: Signorini condition re-written in terms of impulse and formal velocity for a cohesive contact (a) with a threshold value of −r0 and (b)

shifted upwards from a value of −r0 (b).

2.5.3. Gravitational forces

The implementation of gravitational forces is of paramount importance when simulating granular asteroids. These

forces will be distinctly important for asteroid-size systems, but different algorithms exist depending of the number of

particles that form the system. The first form is a direct calculation of complexity O(N2) which is best suited for small275

system of only up to a few thousands of particles. Next come tree codes algorithms, originally developed by Barnes

and Hut [78] and later modified in order to improve the formation of the hierarchical tree (O(N log N)). A variation

of a tree-code algorithm was implemented by Sánchez [30] which used a static, regular-grid to take advantage of the

packing of a granular system in a condensed phase. This method has been called a “static domain decomposition

technique.” This method is of order O(N2), but is at least an 10 times faster than the direct calculation.280

Regardless of the algorithm used to compute gravitational forces on the particles, applying them within the struc-

ture of the CD-method it is very simple. In this context, gravitational forces are seen as external forces, which are

taken into account directly through the explicit calculation of the free velocities vα, f ree as shown in Eq.7.

In this work the Open Source Python library written by Mike Grudić, called pykdgrav, is used 3 [79]. This routine

is not to be confused with the PKDgrav code which has been used for many years in the Planetary and Space Science285

community to carry out research on asteroids, comets and planetary rings. Grudić affirms however, having taken the

idea of implementing a kd-tree instead of an octree from PKDgrav. pykdgrav, which has been validated in [80, 81], is a

package that implements the Barnes-Hut method [78] for computing the combined gravitational field and/or potential

of N particles. The kd-tree is implemented as a numba jitclass to achieve much higher performance than the equivalent

pure Python implementation. The package implements OpenMP multithreading, but no support for higher parallelism290

is implemented at the moment.

3https://github.com/mikegrudic/pykdgrav

13



2.6. LMGC90 Implementation

The CD framework has been implemented in the LMGC904 open-source platform under open-source license

CECILL, initially developed by Jean and Dubois ([43]5) to address multi-contact problems. The software benefits

today from a number of contributions such as contact detection between polyhedra by Saussine et al.[47], solver295

parallelization with OpenMP by Renouf et al.[50], thermal and electrical coupling effects by Renouf [49], coupling

with fluids [82] or various type of contact interactions such cohesive zone models [83] for simulating, for example,

breakable particles.

In order to facilitate the evolution and favour the adaptability of the code, it has been designed using an object

oriented approach and is managed via a python interface. Naturally, particles are objects, however, they are not the only300

entities that benefit from the pseudo-orientation object of the code. In fact, contacts between two particles and their

behaviour are also considered as objects. Each of these objects has data, as well as methods for input, output, display,

pre-detection and contact detection or explicit and implicit resolution. Practically, the code proposes a global pattern

to model and solve the problem, with various functionalities, which the user may enrich with its own routines through

plug points. Basically the user needs to define the modelling ingredients (the bulk behaviour of the components of the305

system, the kind of interactions between these components among others) and the numerical strategy to simulate the

evolution of the system.

Table 2 shows how the CD method is used in the platform. The main steps exposed in the previous sections are

presented as a pseudo algorithm.

3. Application to the Simulation of Granular Asteroids310

In order to highlight the potential of the CD method, through the LMGC90 software, in the modelling of aster-

oids as self-gravitating and cohesive granular assembly, different types of simulations have been carried out: 1. the

gravitational accretion of spherical and polyhedral particles and, 2. the spin-up processes of spherical self-gravitating

aggregates. First, the accretion process is presented, detailing the different parameters and initial conditions used,

both for aggregates made of spheres or polyhedra. In a second step, starting from the final configuration of the ac-315

cretion process of aggregates of spheres, simulations reproducing the spin-up process are performed and their results

discussed.

3.1. Packing preparation

Our numerical samples are composed of ns solid particles with density ρ = 5 164kg.m−3 and with diameters (i.e.,

circumscribed spheres in the case of polyhedral shape particle) d varying between dmin = 7.5m and dmax = 10m with320

a uniform distribution of particle volume fractions, where dmin (resp. dmax) is the minimum (resp. maximum) particle

4In French “Logiciel de Mécanique Gérant le Contact” written in Fortran90
5https://git-xen.lmgc.univ-montp2.fr/lmgc90
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System initialization

Time step loop: i = i + 1

Position prediction: q∗ = qi + h(1 − θ)q̇i

Rotation prediction: e∗k+1 = ek
i + h(1 − θ)ωi × ek

i

Gravitational Force computation: FG

Free Velocity computation: (q̇ f ree, ω f ree)

Contact detection in configuration q∗, e∗k+1

Contact problem initialization

NSGS iterations: k = k + 1
Contact loop: α = α + 1

RHS computation: bk
α

Local contact problem resolution: (vk+1
α , rk+1

α ) solution


Convergence test

Position correction: q̇i+1 = q̇ f ree +M−1Hri+1

Rotation correction: ωi+1 = ω f ree + J−1MHri+1

Table 2: Pseudo code of the CD approach

diameter. Particles are randomly deposited in a cubic grid of mesh size equal to dmax ; see Fig.6. We consider two

groups of particles assemblies: one made of spheres and a second made of polyhedra. Polyhedral particles are build by

randomly generating nv vertex on a unit sphere randomly distributed between 10 to 70. The convex hull of these points

is created by associating three vertices for each face. This condition implies that the number of faces is simply given325

by n f = 2nv − 4 ([59]). Particle platyness and elongation are defined from the ratio of the principal axis length of the

particles. In order to avoid undesirable effects induced by anisotropic shape of the particles, platyness and elongation

parameters are set in the range [0.5, 1]. This means that, numerically, the sets of vertices are generated until this

condition is satisfied. Figure 6(c) shows a few examples of the polyhedral particles generated for the simulations. In

order to evaluate the correctness of the physical behavior and the scaling of the simulations, ns is varied in the set330

{125, 512, 1 000, 3 375, 8 000, 15 625, 27 000} for spheres assembly, and in the set {125, 512, 1 000, 3 375, 8 000} for

polyhedra assembly. Thus, in total 12 packings were build, 7 composed of spheres and 5 composed of polyhedral

particles. For all the simulations presented in this paper, the restitution coefficients are set to zero. This choice is

motivated by experimental observation that suggests that, in a multicontact system, multiple shocks can dissipate

large amounts of kinetic energy in very short times, even if the restitution coefficient is large [84, 85]. So, since in335

CD the characteristic observation time (i.e. the time step) is large, compared to the characteristic time of successive

collisions, the choice of a restitution coefficient equal to 0 is appropriate. The time step is fixed to 5× 10−2s which is
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(a) (b)

(c)

Figure 6: Initial position for a packing of a) 1 000 spheres and b) 1 000 polyhedrons. Examples of polyhedra used in the simulations (c)

sufficient to obtain less than 1% error on the calculation of the rotations (see dashed line in Fig.4a) since the maximum

rotational velocities of the particles in the simulations presented in section 3.2 do not exceed 5× 10−2 rad/s over a few

seconds while the mean rotation speed is of order 10−3.340

3.2. Particle accretion process.

In this section we discuss the particle accretion process and the effect of parameters such as particle number, inter-

granular friction and grain shape on different physical quantities. Numerical efficiency is also discussed in terms of

CPU time spent in each phase of the CD-algorithm. Note that, during the accretion simulation cohesion between the

particles is set to 0.345

3.2.1. Kinetic energy

Figure 7 shows different snapshot taken during the accretion for the 8000-particle polyhedron assembly. As clas-

sically observed, particles are approaching each other in a non-homogeneous manner. We observe some zones denser

than others with, in particular, the formation of “branches of grain” aligned along the vector joining each corners of

the englobing cube to the potential aggregate center. Indeed, near the box corners the grains are farthest from the350

center and therefore have to travel a longer distance in order to be agglomerated. At the end of the accretion process,

in absence of inter-particle cohesion and anisotropic shape of the particles or anisotropic shape of the containing box,
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the shape of the aggregate is spherical as illustrated in Fig.7(e) for aggregate composed of polyhedral particles. Figure

7(f) shows also the shape of aggregate made of spheres at the end of the accretion process for different values of ns.

(f)

Figure 7: Accretion evolution of a packing made of 8 000 polyhedra (snapshots a, b, c and d). Shape of the final state aggregate made of polyhedra

(e) and spheres for ns ∈ [125, 1 000, 8 000, 27 000] (f).

Figure 8 shows the evolution of the mean kinetic energy 〈Ec〉 (in spheres assemblies), defined as the total kinetic355

energy divided by the number of particles, as a function of time for (a) different values of ns and inter-particle friction

equal to 0, and for (b) ns = 3375 and inter-particle friction varied from 0 to 0.8. The evolution of 〈Ec〉 is almost

identical for all the simulations. We observe a quick jump of the kinetic energy to a peak at t ' 20min followed by a

rapid fall-off over a more or less wide time interval depending on the number of particles. Basically this fall-off occur

for t ∈ [∼ 20min,∼ 25min] for ns = 27000 and t ∈ [∼ 20min,∼ 40min] for ns = 125. The inter-particle friction do not360

modify the maximum value of the kinetic energy can reach, but the increase in friction has the effect of shortening the

time interval over which the first drop in kinetic energy occurs. The rapid increases of 〈Ec〉 is mainly due to the very

loose nature of the initial-state packing. Then, the kinetic energy relaxes as the time is increased and reach a constant

plateau with very small values from t > 125min for all ns. The residual-state value of the kinetic energy is, in average,

independent with ns. The inset in figure 8(a) show the variation of the kinetic energy peak both in assembly of spheres365
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and polyhedra at µ = 0. We see that 〈Ec〉 increases exponentially with the number of particles ns regardless of the

shape of the particles. The evolution of the kinetic energy is closely related to various dissipative mechanisms at the

particles scale, which can be understood through the evolution of the particle connectivity within the assembly.

(a) (b)

Figure 8: Evolution of the mean kinetic energy, noted < Ec >, during the accretion of spheres (a) for inter-particle friction fixed to 0 and (b) for

ns = 3 375 and different values of the inter-particle friction. The inset in (a) shows the relation between the maximal value of < Ec > and ns in

assembly of spheres and polyhedra. Different colors corresponde to different particle numbers.

3.2.2. Connectivity and packing fraction

Figure 9(a) shows the evolution of the coordination number Z (defined as the mean number of contact per particle)370

as a function of time in assembly of spheres. Note that for the sake of clarity the evolution of Z in aggregates of

polyhedra is not shown as the curves are basically the same. First, Z quickly increases from 0 to ' 1.5 on the time

interval [0,' 20min], which coincide with the rapid increase of 〈Ec〉. In this interval we do not observe any effects

of the number of particles. Binary shocks dominate the dynamics and energy is mainly dissipated through inelastic

collisions (we recall that the coefficients of restitution are fixed to 0 in all the simulations). Then, after a very small375

decrease, we observe a non-linear increase of the coordination number in all simulations, which tends asymptotically

to a maximum value Zmax. Fluctuations around the mean evolution decline also as the number of particles is increased.

Figure 9(b) shows Zmax, averaged in the stabilized regime (i.e. for t > 125min), as a function of the number of

particles in aggregates of spheres (disks symbols) and polyhedra (square symbols) at µ = 0. Zmax as a function of the

inter-particle friction in spheres assembly is shown in the inset of Fig.9(b). Basically, Zmax increases from 3.5 and380

asymptotically tends to values close to 5 as ns increases in aggregates of spheres, and from 5 to 7 in aggregates of

polyhedra. Note that for polyhedra, face-face contacts are counted three times, face-edge contacts are counted twice

while face-vertex and edge-edge contacts once since, as discussed in section 2.5.1, each type of contact involves a
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different number of geometric constraints. At the same time, we see that Zmax declines from 6 to 4 as the inter-particle

friction increases in aggregates of spheres. Basically, as described in several earlier studies, in the idealised case of a385

confined granular assembly without stress gradient, for the so-called “jammed state”, Z jammed declines as µ increases

tends to 6 as µ tends to 0 for aggregates of spheres (12 for non-spherical particles assembly), and to 4 for large friction

values, both in spherical and non-spherical particle aggregates ([86, 87, 59]). Obviously, in the presence of bulk forces

(i.e. gravitational forces in our case), we expect Zmax < Z jammed since less geometrical and mechanical constrains are

necessary in order to reach acceptable equilibrium positions, in particular for particles surrounding the aggregates. But390

we see here, that for gravitational aggregates, Zmax is largely dependent on ns; therefore, we must carefully calibrate

the number of particles in order to carry out the most realistic simulations.

(a) (b)

Figure 9: (a) Evolution of the coordination number Z as a function of the time (i.e during the accretion process) in assembly of spheres at µ = 0. For

the sake of clarity the variation of Z in assembly of polyhedra is not shown as the evolution remain basically the same. (b) Coordination number

Zmax as a function of the number of particles ns averaged in the stabilized regime (i.e. for t > 125min) for frictionless assembly of polyhedra

(square symbols) and spheres (disks symbols). The inset in (b) shows averaged values of Zmax as a function of µ for ns = 3375 spherical particles.

Error bars represent the standard deviation in the stabilised regime. Different colors correspond to different particle numbers.

Figure 10(a) displays the variation of aggregates diameter Dmax, normalized by the mean diameter 〈d〉 (diameter

of the circumscribed spheres for polyhedra), as a function of the number of particles ns. Let us recall that, by construc-

tion, 〈d〉 is identical between spherical and polyhedral particles aggregates. Basically, Dmax increases as a power law395

with ns. For a same number of particles, the size of the aggregate made of spheres is larger than that of the aggregate

made of polyhedra since the polyhedra volume is lower to that of spheres. Nevertheless, it is interesting to note that,

by normalizing Dmax by d∗, the mean diameter of equivalent spheres of the same volume to that of polyhedra, the

data collapses on a same curve (see inset Fig.10(a)). Finally, we show that Dmax first increases with the inter-particle

friction and then saturates for µ > 0.4 in spheres aggregates (see inset Fig.10(b) for ns = 3375).400
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Along the same line, the variations of the final state value of the packing fraction ν (defined from the total volume

of the particles divided by the volume of the encompassing sphere and averaged over t > 125min), is shown in Fig.

10(b) as a function of the number of particles ns, both for frictionless spheres and polyhedra aggregates. In contrast

to the evolution of the final-state coordination number, the packing fraction remains slightly dependent on the number

of particles. Also, as often observed in the literature, and consistently with the variation of Dmax with µ, ν declines405

quickly as the local friction is increased and tend toward a plateau-value at larger values of friction (i.e. for µ > 0.4) ;

see inset Fig.10(b) for ns = 3375.

Figure 10: (a) Log-log representation of the evolution of the aggregate diameter, normalized by particle mean diameter d, as a function of ns in

assembly of spheres (disks symbols) and polyhedra (square symbols) at µ = 0. (b) Packing fraction ν of the aggregate as a function of ns in

assembly of spheres (disks symbols) and polyhedra (square symbols) at µ = 0. The inset in (b) shows the variation of both, ν and dmax as a function

of the inter-particle friction µ in aggregates of spheres for ns = 3375. Different colors correspond to different particle numbers.

3.2.3. Stress transmission

It is also interesting to evaluate the evolution of the mean pressure within the assembly during the accretion

process. This can be done via the granular stress tensor σ at any stage of accretion, which is calculated from the410

simulation data via the contacts position and forces. Let’s start with the internal moment tensor Mp of each particle

p, defined by ([88, 89]):

Mp
i j =
∑
c∈p

f c
i rc

j , (19)

where f c
i is the i component of the force exerted on particle p at contact c, rc

j is the j component of the position vector

of the same contact (vector joining the particle center to the contact point), and the summation runs over all contacts
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c of particle p. The average stress tensor σ in a given volume V is then defined by ([88, 89]):415

σ =
1
V

∑
p∈V

Mp, (20)

In the case of particle accretion, the definition of the volume in which particles evolve is neither trivial nor unique. On

the contrary, once agglomerated, and given the previous discussion on the average shape and size of the agglomerates

at the end of the accretion, it is quite natural to consider the volume of the encompassing sphere. Thus, and just for

the sake of convenience, the volume we consider is that of the encompassing sphere at each instant t. The mean stress

in 3D is then given by P = (σ1 + σ2 + σ3)/3, where σ1, σ2 and σ3 are the principal stresses.420

Figure 11(a) shows the evolution of P as a function of time in an assembly of spheres at zero friction. Again, for

the sake of clarity, the evolution of P in assembly of polyhedra is not shown as the curves remain the same as for

assembly of spheres. We see that P quickly increases to a peak value which depend on ns. As discussed before, in

the first instance the dynamics are mainly governed by rapid collisions within the assembly. The number of collisions

increases as the number of particles increases too, explaining the increase of the value of the peak-pressure as ns425

is increased. Then, P quickly decreases around a mean constant value which fluctuations declines as the time is

increased.

Figure 11(b) shows 〈P〉, defined from the mean values of P beyond t > 125min, as a function of Dmax, both for

spheres and polyhedra assembly. The inset shows a log-log representation. We observe that 〈P〉 increases linearly with

Dmax for both, spheres and polyhedra. Interestingly, the data collapses along a single common straight line regardless430

of grain shape. Let’s consider the ideal case of a “non-granular” asteroid, i.e. an asteroid made of a single monolithic

rock with a homogeneous distribution of its density. Following the Gauss theorem, saying that the gravitational field

g(r) at distance r from the center of a spherical mass of diameter Dmax is identical to that of a material point, where

all the mass of the corresponding sphere would be concentrated in this point, we get:

g(r) = g0
r

Dmax
, (21)

where g0 = GMa/D2
max with G the gravitational constant and Ma =

∑
p∈V mp the total mass of the asteroid, with mp435

the mass of a particle p. Then, if we assume that the interior of the asteroid is in hydrostatic equilibrium like a liquid

mass floating in a vacuum, the differential of the pressure can be related to the gravitational field by dP = −ρ0g(r)dr,

which leads to the following equation for the stress gradient within the granular asteroid:

P(r) =
1
4
ρg0Dmax(1 − 4

r2

D2
max

). (22)

As a result, the mean pressure 〈P〉 is given by:

〈P〉 =
2

Dmax

∫ Dmax/2

0
P(r)dr =

1
6
ρg0Dmax. (23)

Finally, assuming a small particle size distribution, the total mass Ma of the asteroid can be rewritten as a product of440

characteristic density ρ∗ and the volume of the encompassing spheres as Ma = ρ∗πD3
max/6, with ρ∗ = nsρ0〈d〉3. By
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replacing this relation in the expression of g0 we deduce that 〈P〉 ∝ D2
max. As we can see in Figure 11, the prediction

given by Eq.23 is in good agreement with our numerical data both for aggregates of spheres and polyhedra. The

discrepancy we see for the largest diameters can be explained by the very simplifying assumptions made.

(a) (b)

Figure 11: (a) Evolution of the stress P as a function of time in assembly of spheres for different values of ns in frictionless assembly of spheres.

(b) Variation of the mean stress 〈P〉 averaged in the steady state (i.e. for t > 125min) as a function of Dmax for both, assembly of spheres and

polyhedra at µ = 0. The inset show the same data in log-log representation. The red lines are the approximations given by Eq.23. Different colors

corresponde to different particle numbers

3.2.4. Numerical efficiency445

Finally, in this section we discuss more numerical details about the time spent in each step of the Contact Dynamics

algorithm in order to evaluate the numerical method (and its implementation). The average time spent in the main

time-consuming parts of a time step is measured as a function of the number of particles. Figure 6 presents, in log-

log scale, the average CPU time used during contact detection and resolution (Gauss-Seidel algorithm) as well as in

the pykdgrav library as a function of the number of particles present in the simulation in spheres assembly (a) and450

polyhedra assembly (b).

In both systems, the CPU-time spent in contact detection and gravitational forces calculation is almost linear

(in log-log scale) with the number of particles. In spheres assemblies the CPU-time spent for gravitational forces

calculation is longer than the CPU-time spent in contact detection. We observe the contrary for polyhedra assemblies

in which the CPU-time spent for contact detection is larger to the CPU-time spent in gravitational forces calculation.455

Indeed, the time spent in the pykdgrav library is naturally independent of particle shape, while the procedure to detect

contact between particles is much more complex to that between spheres as discussed in Sec.2.5.1.

In both cases, for spheres and polyhedra assemblies, most of the time is spent solving the contact problem. This
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(a) (b)

Figure 12: Computation time vs. nslog(ns) during accretion process for (a) spheres assembly and (b) polyhedra assembly. Different colors

corresponde to different particle numbers.

point has been identified for a long time and has led to the implementation of parallel computing techniques to reduce

the time consumed by this part of the method [50, 90]. The evolution of the time spent in solving the contact problem is460

less linear (in log-log scale) than the other two curves. Indeed, the number of iterations of the Gauss-Seidel algorithm

is not constant over time, strong variations of this number can disturb the mean value, which explains the non-linear

behaviour observed on the Figs 12a and Fig. 12b.

3.3. Spin-up process

The test conditions are close to those used in the literature [31]. All the simulations consist of 3 375 spheres and465

have as initial state the final state obtained after the accretion process. An initial rotation speed of 2.7 10−4 rad.s−1

is given to the sample around the Oz axis passing through the centre of gravity of the sample. Friction and normal

restitution are set to zero. Then, every 50 minutes, an increment of 9 × 10−5 rad.s−1 is given to the sample. The

difference between each simulation is related to the value of the cohesive force used. The latter is varied in the set

f0 ∈ {1N, 10N, 100N, 1 000N}. The behaviour of the system over time is observed through different quantities.470

Figure 13 shows four configurations of the most cohesive aggregate during its evolution over time. In order to

better appreciate the deformation of the aggregate, it is presented in the (O; y, z) (right) and (O; y, z) (left) planes.

When the speed of rotation remains low, the aggregate keeps a more or less spherical shape (a). Above a certain

threshold, the aggregate becomes more deformed. This results in a collapse in the direction of the axis of rotation and

a relatively uniform expansion in the orthogonal plane (b and c). Then, high porosities appear in the sample, leading475

to a complete disruption (d).

The effect of local cohesion modifies the time at which the phenomena described above appear. Basically, the

collapse of the cohesive self-gravitating aggregate occurs earlier as f0 tends to 0. Figure 14 shows the evolution of
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Figure 13: Different simulation snapshots for the aggregate with the highest cohesion value in the (O; x, y) and (O; y, z) planes at time equal to a)

160, b) 320, c) 480 and d) 640 min.

the semi-axes of the equivalent equal-volume ellipsoid as a function of time for all values of f0. All systems have a

similar evolution. At the beginning of the simulation, the values of the semi-axes in the different directions are equal480

since all aggregates are spherical. During the spin up process, a deviation occurs between the value of the semi-axis

in the direction of the axis of rotation and the other two values. The latter decreases and reaches a stationary value

equivalent to a few particle diameters, while the other two increase continuously. This is reflected in the flattening of

the aggregate during the spin-up process and its expansion in the radial plane until it breaks up.

As cohesion is increased, a slower decrease in the value of the semi-axis in the direction of the axis of rotation and485

a reduction in the gap between the two main semi-axes occurs. Finally, the simulation time from which the values of

the semi-axes diverge by more than 3 mean diameters increases with the value of cohesion, from 290min for f0 = 1N

to 354min for f0 = 1 000N. As expected, cohesion has the effect of limiting radial expansion and preserving symmetry

for the aggregate as long as a critical spin velocity is not reached, in agreement with previous research [35, 91, 92].

Our data reveals also that the critical spin rate increases with cohesion.490

The loss of symmetry in the radial plane is shown in Figure 15 showing the velocity field within the aggregate for

the four cohesion values at two different simulation times. After 400min of simulated time, the velocity field remains

homogeneous whatever the cohesion value used. After 560min of simulated time, the different systems no longer

present the same appearance. For the weakest cohesion values, some particles are ejected from the aggregate (see (a)

and (b) in Fig.15). For the largest cohesions, strong deformations are observed (see (c) and (d) in Fig. 15), but no495

particles are yet in free flight. It can also be noted that the aggregate takes on a three-pointed star shape, with the

length of the branches being more or less pronounced as a function of the cohesion intensity.

Figure 16 shows the evolution of the mean kinetic energy of the system (a) and the evolution of the mean pressure P

within the assembly (b) both as a function of time and for the different values of f0. The mean pressure P is computed
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Figure 14: Deviation of the semi-axes of the dynamically equivalent equal-volume ellipsoid during the spin-up process: (a) f0 = 1N, (b) f0 = 10

N, (c) f0 = 100 N and (d) f0 = 1 000 N.

Figure 15: Representation of the velocity field in the (O; x, y) plane at two different simulation times and for the different cohesion values: (a) 1 N,

(b) 10 N, (c) 100 N and (d) 1 000 N
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(a) (b)

Figure 16: Evolution of (a) the mean kinetic energy, noted < Ec > and (b) the pressure at the centre of the aggregate, as a function of time for

different values of f0.

following Eq.20 in which the total volume V is computed as the volume of the encompassing ellipse. The small500

jumps in kinetic energy observed in Fig.16(a) all along the simulation are directly related to the rotation increments.

Basically, the evolution of the kinetic energy is almost identical for all cohesion values, which is : first a non linear

increases, until a divergence is observed from t > 800min. Conversely to the mean kinetic energy, P declines as the

time is increased and reach a value of 0 precisely from t > 800min. We note also that fluctuations around a mean

tendency increases as f0 increases too.505

(a) (b)

Figure 17: Evolution of (a) the solid fraction ν and (b) coordination number Z, both as a function of time and for all values of f0.

Finally, Fig. 17 shows the evolution of (a) the solid fraction ν, and (b) the evolution of the coordination number Z,

both as a function of time. The solid fraction remains constant during the first third of the simulation and then starts
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to decrease during the second third (see Fig. 17a). This decrease is characterized by small oscillations related to the

pulses given to the aggregate to spin it up (see insert in Fig. 17a). This is followed by a rapid decrease, characterizing

the disruption of the aggregate. A strong cohesion has the effect of erasing these oscillations. This results in greater510

variations in the evolution of the solid fraction, leading to a less compact system than low cohesive systems.

The evolution of Z is also affected by the value of the particle-particle cohesive forces within the system. For the

two lowest values, there is an almost rapid decrease up to half of the simulation time, then this decrease is combined

with a periodic fluctuation, where the period is related to the velocity increments given to the aggregate. For the

cohesive forces of 100 N, the behaviour is similar but the coordination number remains greater. Finally, for the515

greatest cohesion, it remains constant over three quarters of the simulation and then decreases and increases over the

last quarter. The velocity increments thus induce a destabilisation of the sample, leading to a radial expansion of the

sample. When the cohesion is sufficiently large, it remobilises the contacts ensuring a re-compaction of the system.

Otherwise, the particles move more freely around the periphery, probably to the point of sample rupture.

4. Conclusion520

In this paper, we have presented a numerical method and its implementation in an open-source code (LMGC90)

for the simulation of gravitational aggregates. The Contact Dynamics method is one of a family of Discrete Element

Methods that have been developed during the last four to five decades for the simulation of granular materials, or

divided media in general terms. As it has been shown, these methods have also been applied for the simulation of

galaxies, gases and man-made structures among the most prominent. In the context of asteroids however, its use525

is still very rare with less than a handful of papers that have shown its potential as a research tool for Planetary

Science research. We have provided a simplified description of the mathematical formalism that was introduced by

the creators of the method, its implementation in the LMGC90 simulations code, the parallelisation method that has

been implemented and a few examples of gravitational accretion and rotational disruption of asteroid size cohesive

aggregates.530

One of the main advantages of this code over others that have been in use for the last two decades is the relative

ease to simulate non-spherical particles. As it can be readily observed, naturally occurring granular materials are

formed by a large number of non-spherical particles with a very wide size distribution. Which means that, contrary

to what happens with spherical particles, like the ones commonly used in simulation, any pair of particles can have

multiple points of contact and they can all have a different geometry. This, together with the added complexity of535

the implementation of self-gravity turned the problem of simulating self-gravitating aggregates into a challenging and

complex task.

In order to test the performance of the implementation of the numerical method in the code, now that self-gravity

was implemented, we ran a number of simulations in which we changed the number of particles of the aggregates

as well as their shape and cohesive forces. In these examples, though not fully representative of real asteroids, we540
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wanted to show not only the potential of the numerical method, but also of the computational implementation. In

order to do that, the examples were of aggregates formed by spherical and not spherical particles, we varied the

friction and cohesive forces between pairs of particles in contact and monitored their evolution through the accretion

and disruption processes. Quantities such as internal pressure, which comes from the evaluation of the stress tensor,

coordination number, solid fraction, kinetic energy, angular velocity, semi axis of rotation, velocity fields were directly545

measured or evaluated. All of them were in agreement with previously published research.

This being so, and given the open source platform used by the developers at the University of Montpellier, we

now feel confident that this simulation code is ready to be used as a research tool for Planetary Sciences, especially

on topics related to small planetary bodies.
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[14] I. Iordanoff, B. Sève, Y. Berthier, Solid third body analysis using a discrete approach: Influence of adhesion and particle size on the macro-

scopic behavior of the contact, ASME J. Tribol. 124 (2002) 530–538.

[15] J. Hahn, Realistic animation of rigid bodies, Comp. Graph. 22 (1988) 299–308.

[16] J. J. Moreau, Unilateral contact and dry friction in finite freedom dynamics, in: J. Moreau, e. P.-D. Panagiotopoulos (Eds.), Non Smooth

Mechanics and Applications, CISM Courses and Lectures, Vol. 302 (Springer-Verlag, Wien, New York), 1988, pp. 1–82.600

[17] M. Jean, J. J. Moreau, Unilaterality and dry friction in the dynamics of rigid bodies collection, in: A. Curnier (Ed.), Contact Mechanics

International Symposium, Presses Polytechniques et Universitaires Romanes, 1992, pp. 31–48.

[18] D. Baraff, Issues in computing contact forces for non penetrating rigid bodies, Algorithmica 10 (1993) 292–352.

[19] F. Dubois, V. Acary, M. Jean, The Contact Dynamics method: A nonsmooth story, C.R. Mécanique 346 (3) (2018) 247–262.
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