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The aim of this paper is to give a precise proof of the completeness of Lamb modes of an elastic isotropic plate. This proof is relatively simple and short but relies on two powerful mathematical theorems. The first one is a theorem on elliptic systems with a parameter due to Agranovich and Vishik. The second one is a theorem due to Locker which gives a criterion to show the completeness of the set of generalized eigenvectors of a Hilbert-Schmidt discrete operator.

Introduction

Lamb waves are extensively used in nondestructive testing to detect defects in a thin plate because they can scan a wide range of the plate. The modal formulation of the diffraction of elastic waves by a defect in a plate, used for defect detection, relies on the basis property of Lamb modes in the Hilbert space associated to the physical problem ( [START_REF] Bourgeois | On the use of Lamb modes in the linear sampling method for elastic waveguides[END_REF], Assumption 2.6, [START_REF] Bourgeois | On the use of the linear sampling method to identify cracks in elastic waveguides[END_REF], Conjecture 2.3, [START_REF] Baronian | Linear sampling method applied to non destructive testing of an elastic waveguide: theory, numerics and experiments[END_REF], Conjecture 2). But this property has not yet been mathematically proved. A weaker property is the completeness of Lamb modes. The basis property and the completeness property of Lamb modes are not equivalent because Lamb modes are solution of a non-self-adjoint spectral problem, thus two Lamb modes corresponding to distinct eigenvalues are not necessarily orthogonal (see section 4).

The paper [START_REF] Kirrmann | On the completeness of Lamb modes[END_REF] proposes a proof of the completeness of Lamb modes. The proof in this paper relies on a theorem (Theorem 4.2, p.67 of [START_REF] Kirrmann | On the completeness of Lamb modes[END_REF]) which is not at all proved. In [START_REF] Kirrmann | On the completeness of Lamb modes[END_REF], p.68 it is written "The proof of the theorem-but not the theorem itself-is contained in the fundamental paper of Agmon [START_REF] Agmon | On the eigenfunctions and on the eigenvalues of general elliptic boundary value problems[END_REF], pp.128-130".

But it is not obvious to see a link between Theorem 4.2, p.67 of [START_REF] Kirrmann | On the completeness of Lamb modes[END_REF] and Theorem 3.2, p.128 of [START_REF] Agmon | On the eigenfunctions and on the eigenvalues of general elliptic boundary value problems[END_REF], if that is the case. As is asserted in [START_REF] Besserer | Mode series expansions at vertical boundaries in elastic waveguides[END_REF], p.56 concerning the proof in [START_REF] Kirrmann | On the completeness of Lamb modes[END_REF], "However his proof failed in an estimate on circles similar to that presented above. There an unknown inequality had been used that could not be 1 proved". In [START_REF] Besserer | Mode series expansions at vertical boundaries in elastic waveguides[END_REF], pp.54-56 a very short outline of the proof of the completeness of Lamb modes is proposed, but according to [START_REF] Besserer | Mode series expansions at vertical boundaries in elastic waveguides[END_REF] the details of the proof are in [START_REF] Besserer | The completeness of seismic surface waves[END_REF] (written in German). As is written in [START_REF] Pagneux | Revisiting the edge resonance for Lamb waves in a semi-infinite plate[END_REF], p.649 "It is remarkable that, for such a venerable subject, there remain fundamental open questions; e.g., the mathematical proof of the completeness of the Lamb modes has not yet been achieved entirely".

It seems that up to now there is no full proof of the completeness of Lamb modes in the litterature.

In the present paper we give a precise, detailed and rigorous proof of the completeness of Lamb modes and associated modes. This proof is relatively simple and short but relies on two powerful mathematical theorems. The first one is a theorem on elliptic systems with a parameter due to Agranovich and Vishik ( [START_REF] Agranovich | Elliptic problems with a parameter and parabolic problems of general type[END_REF]) which provides precise estimates in the complex plane of the resolvent of the unbounded operator associated to the physical problem. The second one is a theorem due to Locker ( [START_REF] Locker | Spectral Theory of Non-Self-Adjoint Two-Point Differential Operators[END_REF]) which gives a criterion to show the completeness of the set of generalized eigenvectors of a Hilbert-Schmidt discrete operator ( "a very powerful completeness theorem", [START_REF] Locker | Spectral Theory of Non-Self-Adjoint Two-Point Differential Operators[END_REF], p. ix). The proof in the present paper is provided for traction-free plates on the upper and lower boundary which is the classical case ( [START_REF] Achenbach | Wave Propagation in Elastic Solids[END_REF], p.220) and is easily extendible to the case of clamped plates on the upper or lower boundary, see Remark 4.1.

It should be noted that in [START_REF] Kirrmann | On the completeness of Lamb modes[END_REF] and [START_REF] Besserer | Mode series expansions at vertical boundaries in elastic waveguides[END_REF] only the case of a plate which is traction-free on one boundary and clamped on the other is considered.

The paper is organized as follows. In section 2 we estabish the equations of the spectral problem related to Lamb modes and we show that the unbounded operator associated to the physical problem is non-self-adjoint. In section 3, applying a theorem from [START_REF] Agranovich | Elliptic problems with a parameter and parabolic problems of general type[END_REF] (Theorem 3.1), we give precise resolvent estimates in the complex plane of the unbounded operator associated to the spectral problem for Lamb modes (Theorem 3.2). Finally in section 4, applying a theorem from [START_REF] Locker | Spectral Theory of Non-Self-Adjoint Two-Point Differential Operators[END_REF] (Theorem 4.1) we prove the completeness of Lamb modes and associated modes (Theorem 4.2).

Set-up of the problem

In the sequel we shall use the following notations. The set of natural numbers will be denoted by N Let us consider a linearly elastic plate of thickness 2h occupying the open set Ω of R 3 (see Figure 1):

Ω = {x ∈ R 3 , -h < x 1 < h}.
(2.1)

Figure 1: Geometry of the plate

The plate is assumed to be homogeneous and isotropic (with Lamé coefficients λ and µ such that 3λ + 2µ > 0 and µ > 0, see [START_REF] Salençon | Handbook of Continuum Mechanics[END_REF], p.341), with mass density ρ and traction-free on the upper and lower boundary. Denote by u = (u i ), ε ij (u), σ ij (u) the displacement field, the components of the strain tensor and the components of the stress tensor associated to u. The elastodynamics equations and boundary conditions for the plate are written as follows (the derivative with respect to time and to x i being denoted respectively by a dot and by ∂ i ):

∂ j σ ij (u) = ρ üi in Ω, (2.2) 
with

σ ij (u) = λ(div u)δ ij + 2µε ij (u) in Ω, (2.3) 
ε ij (u) = 1 2 (∂ j u i + ∂ i u j ) in Ω (2.4)
and

σ i1 (u)(x 1 = ±h) = 0. (2.5) 
We seek the displacement field u solution of the elastodynamics equations (2.2), (2.3), (2.4), (2.5) under the form of harmonic waves propagating in the x 3 direction and independant of x 2 because of the invariance of the physical properties in the x 2 direction. We use the following notations:

u(x 1 , x 3 , t) = Re(ũ(x 1 , x 3 , t)), (2.6 
)

ũ(x 1 , x 3 , t) = v(x 1 )e i(βx3-ωt) , v =      v 1 v 2 v 3      , (2.7) 
where ω > 0 is fixed and β ∈ C is to be determined. We have the formulas:

σ ij (ũ)ε ij (δu) = λ(div ũ)(div δu) + 2µε ij (ũ)ε ij (δu), (2.11 
)

div ũ = (∂ 1 v 1 + iβv 3 )e i(βx3-ωt) , (2.12 
)

ε 11 (ũ) = ∂ 1 v 1 e i(βx3-ωt) , ε 22 (ũ) = 0, ε 33 (ũ) = iβv 3 e i(βx3-ωt) , (2.13) 
ε 12 (ũ) = 1/2∂ 1 v 2 e i(βx3-ωt) , ε 13 (ũ) = 1/2(∂ 1 v 3 + iβv 1 )e i(βx3-ωt) , ε 23 (ũ) = 1/2iβv 2 e i(βx3-ωt) . (2.14)
We choose δu under the form

δu(x 1 , x 3 ) = δv(x 1 )ϕ(x 3 ), δv =      δv 1 δv 2 δv 3      , (2.15) 
where ϕ ∈ C ∞ 0 (R, C). The following formulas hold:

div δu = ∂ 1 δv 1 ϕ + δv 3 ∂ 3 ϕ, (2.16 
)

ε 11 (δu) = ∂ 1 δv 1 ϕ, ε 22 (δu) = 0, ε 33 (δu) = δv 3 ∂ 3 ϕ, ( 2 
.17)

ε 12 (δu) = 1/2∂ 1 δv 2 ϕ, ε 13 (δu) = 1/2(∂ 1 δv 3 ϕ + δv 1 ∂ 3 ϕ), ε 23 (δu) = 1/2δv 2 ∂ 3 ϕ. (2.18)
We get:

div ũ div δu = (∂ 1 v 1 + iβv 3 )(∂ 1 δv 1 ϕ + δv 3 ∂ 3 ϕ)e i(βx3-ωt) , (2.19) 
ε ij (ũ)ε ij (δu) = {∂ 1 v 1 ∂ 1 δv 1 ϕ + iβv 3 δv 3 ∂ 3 ϕ + +1/2∂ 1 v 2 ∂ 1 δv 2 ϕ + 1/2(∂ 1 v 3 + iβv 1 )(∂ 1 δv 3 ϕ + δv 1 ∂ 3 ϕ) + 1/2iβv 2 δv 2 ∂ 3 ϕ}e i(βx3-ωt) , (2.20) 
ρ üi δu i = -ρω 2 (v 1 δv 1 + v 2 δv 2 + v 3 δv 3 )ϕe i(βx3-ωt) .
(2.21)

Choose ϕ under the form ϕ(x 3 ) = e iβx3 ψ(x 3 ) where ψ ∈ C ∞ 0 (R, R) and R ψ = 1. Then ϕ(x 3 )e iβx3 = ψ(x 3 ) and ∂ 3 ϕ(x 3 )e iβx3 = ∂ 3 ψ(x 3 ) -iβψ(x 3 ). Taking into account that R ∂ 3 ψ = 0 and gathering all the previous results we obtain a mathematical formulation of the problem: with the notation ω h = (-h, h),

for a fixed ω > 0, find β ∈ C such that ∃ v = (v 1 , v 2 , v 3 ) T = 0 ∈ H 1 (ω h , C 3 ), such that for all δv = (δv 1 , δv 2 , δv 3 ) T ∈ H 1 (ω h , C 3 ), a(v, δv) + βb(v, δv) + β 2 c(v, δv) = 0 (2.22)
where for all v, δv ∈ H 1 (ω h , C 3 ),

a(v, δv) = a 0 (v, δv) -ω 2 l(v, δv), (2.23) 
a 0 (v, δv) = ω h (λ + 2µ)∂ 1 v 1 ∂ 1 δv 1 + µ(∂ 1 v 2 ∂ 1 δv 2 + ∂ 1 v 3 ∂ 1 δv 3 ), (2.24) l(v, δv) = ω h ρ(v 1 δv 1 + v 2 δv 2 + v 3 δv 3 ), (2.25) b(v, δv) = ω h λ(-i∂ 1 v 1 δv 3 + iv 3 ∂ 1 δv 1 ) + µ(-i∂ 1 v 3 δv 1 + iv 1 ∂ 1 δv 3 ), (2.26) c(v, δv) = ω h (λ + 2µ)v 3 δv 3 + µ(v 1 δv 1 + v 2 δv 2 ). (2.27) Then v is solution of (2.22) iff v ∈ H 2 (ω h , C 3
) and v satisfies the following equations

(λ + 2µ)∂ 11 v 1 + (λ + µ)iβ∂ 1 v 3 = (µβ 2 -ω 2 ρ)v 1 in ω h , (2.28 
)

µ∂ 11 v 2 = (µβ 2 -ω 2 ρ)v 2 in ω h , (2.29 
)

µ∂ 11 v 3 + (λ + µ)iβ∂ 1 v 1 = ((λ + 2µ)β 2 -ω 2 ρ)v 3 in ω h , (2.30) 
and boundary conditions

(λ + 2µ)∂ 1 v 1 (±h) + λiβv 3 (±h) = 0, (2.31) µ∂ 1 v 2 (±h) = 0, (2.32) µ(∂ 1 v 3 (±h) + iβv 1 (±h)) = 0. (2.33)
The variational problem (2.22) is splitted in two independant problems: one for the components v 1 , v 3 (Lamb modes) and one for the component v 2 (SH modes).

The spectral problem for SH modes is very simple. From a theorem similar to [START_REF] Brezis | Functional Analysis, Sobolev Spaces and Partial Differential Equations[END_REF], Theorem 8.22

for the Neumann boundary conditions, there exists a sequence of real numbers {λ n } +∞ n=1 , λ 1 = 0, λ n ≥ 0 (n = 1, . . . , +∞), λ n → +∞ when n → +∞, and a Hilbert basis

{e n } +∞ n=1 of L 2 (ω h ) such that e n ∈ C ∞ (ω h ) (n = 1, . . . , +∞) and -∂ 11 e n = λ n e n in ω h , (2.34) 
∂ 1 e n (±h) = 0.

(2.35)

The explicit form of the eigenvectors e n may be found in [START_REF] Achenbach | Wave Propagation in Elastic Solids[END_REF], p.206. The sequence {e n } +∞ n=1 also forms a Hilbert basis of eigenvectors of the spectral problem for SH modes. The corresponding β are

β n = ± ω 2 ρ µ -λ n if ω 2 ρ µ -λ n > 0, β n = 0 if ω 2 ρ µ -λ n = 0, β n = ±i λ n -ω 2 ρ µ if ω 2 ρ µ -λ n < 0.
(2.36)

We see that only the eigenvectors associated to the β n such that

β n ≥ 0 or -iβ n > 0 form a Hilbert basis of L 2 (ω h ).
In the sequel we shall examine the spectral problem for Lamb modes. Lamb modes are solution of the following problem: for a fixed ω > 0, find β ∈ C (iβ will be called a Lamb eigenvalue) such that ∃

v L = (v 1 , v 3 ) T = 0 ∈ H 1 (ω h , C 2 ) (v L will be called a Lamb mode), such that for all δv L = (δv 1 , δv 3 ) T ∈ H 1 (ω h , C 2 ), a L (v L , δv L ) + βb L (v L , δv L ) + β 2 c L (v L , δv L ) = 0 (2.37)
where for all v L , δv

L ∈ H 1 (ω h , C 2 ), a L (v L , δv L ) = a 0,L (v L , δv L ) -ω 2 l L (v L , δv L ), (2.38) 
a 0,L (v L , δv L ) = ω h (λ + 2µ)∂ 1 v 1 ∂ 1 δv 1 + µ∂ 1 v 3 ∂ 1 δv 3 , (2.39) l L (v L , δv L ) = ω h ρ(v 1 δv 1 + v 3 δv 3 ), (2.40) b L (v L , δv L ) = ω h λ(-i∂ 1 v 1 δv 3 + iv 3 ∂ 1 δv 1 ) + µ(-i∂ 1 v 3 δv 1 + iv 1 ∂ 1 δv 3 ), (2.41) c L (v L , δv L ) = ω h (λ + 2µ)v 3 δv 3 + µv 1 δv 1 . (2.42)
With the notations

A L =   λ + 2µ 0 0 µ   , B L =   0 λ + µ λ + µ 0   , C L =   µ 0 0 λ + 2µ   (2.43)
and

D L =   0 λ µ 0   , (2.44) 
for all sufficiently regular v L , δv L , one can write

a 0,L (v L , δv L ) = (A L ∂ 1 v L , ∂ 1 δv L ) 0,ω h = -(A L ∂ 11 v L , δv L ) 0,ω h + [A L ∂ 1 v L • δv L ] h -h = -(A L v L , ∂ 11 δv L ) 0,ω h + [A L v L • ∂ 1 δv L ] h -h , (2.45) b L (v L , δv L ) = -i(B L ∂ 1 v L , δv L ) 0,ω h + i[D L v L • δv L ] h -h = i(B L v L , ∂ 1 δv L ) 0,ω h -i[v L • D L δv L ] h -h (2.46) and c L (v L , δv L ) = (C L v L , δv L ) 0,ω h . (2.47) 
The characterization (2.37) of Lamb modes is equivalent to v L ∈ H 2 (ω h , C 2 ) and to equations (2.28),

(2.30), (2.31) and (2.33) which read as follows:

A L ∂ 11 v L + iβB L ∂ 1 v L + (ω 2 ρ -β 2 C L )v L = 0 in ω h (2.48)
and

A L ∂ 1 v L (±h) + iβD L v L (±h) = 0. (2.49)
With the notations 

V L =   v L iβv L   , (2.50) 
à =   0 I -C L -1 (ω 2 ρ + A L ∂ 11 ) -C L -1 B L ∂ 1   (2.51) and B = ( A L ∂ 1 D L ), ( 2 
G(T ) = {(x, T x), x ∈ D(T )} is closed in H × H. The graph norm of an element (x, T x) of G(T ) is by definition ||x|| + ||T x||. With the notations W = H 2 (ω h , C 2 ), V = H 1 (ω h , C 2 ), H = L 2 (ω h , C 2 ), (2.55) 
H = V × H, V = W × V, (2.56) 
à and B define an unbounded operator A in H with domain

D(A) = {U ∈ H, ÃU ∈ H, BU (±h) = 0} = {U ∈ V, BU (±h) = 0} (2.57)
and by

∀U ∈ D(A), AU = ÃU.
(2.58)

The following proposition holds:

Proposition 2.1
The unbounded operator A is closed and its domain D(A) is dense in H.

Proof On D(A) the graph norm and the norm on V are equivalent then the operator A is closed.

On the other hand, suppose that

U = (U 1 , U 2 ) ∈ H is orthogonal to D(A). Then it is orthogonal to {0} × C ∞ 0 (ω h , C 2 ) that is to say U 2 is orthogonal to C ∞ 0 (ω h , C 2 )
for the scalar product of H, so that

U 2 = 0. If V 1 ∈ W , it is possible to construct V 2 ∈ V such that (V 1 , V 2 ) ∈ D(A). Then for all V 1 ∈ W , U 1 is orthogonal to V 1
for the scalar product of V . Since W is dense in V one obtains U 1 = 0 and the conclusion follows.

Let us equip the Hilbert space H with the scalar product (equivalent to the natural scalar product on

H) : for all U = (U 1 , U 2 ) and δU = (δU 1 , δU 2 ) ∈ H, (U, δU ) H = a 0,L (U 1 , δU 1 ) + (U 1 , δU 1 ) 0,ω h + c(U 2 , δU 2 ).
(2.59)

In Appendix A we show that if H is equipped with the scalar product (2.59), then A is non-self-adjoint.

This result is not essential for the sequel of the paper. On the other hand the asymptotics of the Lamb eigenvalues derived by [START_REF] Merkulov | Calculation of the spectrum of wave numbers for Lamb waves in a plate[END_REF] shows that the set of Lamb eigenvalues is neither included in the real axis nor in the imaginary axis so that neither A nor iA is self-adjoint. More precisely, in [START_REF] Merkulov | Calculation of the spectrum of wave numbers for Lamb waves in a plate[END_REF] it is shown that there exist constant C 1 and C 2 > 0 such that the Lamb eigenvalues are asymptotically of the form

±C 1 n ± iC 2 log n + O( log n n ), n → +∞. (2.60)
This result is consistent with Theorem 3.2.

Resolvent estimates

Before proceeding we first set some definitions and results about Hilbert space operators ( 

(A -iβI)U = F. (3.1)
This equation is equivalent to

U 2 = iβU 1 + F 1 in ω h (3.2)
and

A L ∂ 11 U 1 + iβB L ∂ 1 U 1 + (ω 2 ρ -β 2 C L )U 1 = -iβC L F 1 -B L ∂ 1 F 1 -C L F 2 in ω h . (3.3) 
The condition U ∈ D(A) is equivalent to

A L ∂ 1 U 1 (±h) + iβD L U 1 (±h) = -D L F 1 (±h). (3.4) 
If U = (U 1 , U 2 ) ∈ D(A) satisfies (3.
2), (3.3) then v L = U 1 satisfies the following variational formulation:

for all δv L = (δv 1 , δv 3 ) T ∈ H 1 (ω h , C 2 ), a L (v L , δv L ) + βb L (v L , δv L ) + β 2 c L (v L , δv L ) = (C L F 2 , δv L ) 0,ω h + (B L ∂ 1 F 1 , δv L ) 0,ω h + iβ(C L F 1 , δv L ) 0,ω h -[D L F 1 • δv L ] h -h . (3.5) 
Conversely if v L satisfies the variational formulation (3.5

) then U = (U 1 , U 2 ) where U 1 = v L and U 2 is
given by (3.2) is such that U ∈ D(A) and U satisfies (3.3). But with the notation

Ω h = ω h × (0, 1) (see Figure 2), for all v ∈ H 1 (ω h , C 3 ), for all β ∈ R, a(v, v) + βb(v, v) + β 2 c(v, v) = Ω h (σ ij (u)ε ij (u) -ω 2 ρu i u i ) (3.6) 
where

u(x 1 , x 3 ) = v(x 1 )e iβx3 . (3.7) 
Owing to Korn inequality, there exist two constants C 1 , C 2 > 0 such that for all u ∈ H 1 (Ω h , C 3 ),

Ω h σ ij (u)ε ij (u) ≥ C 1 ||u|| 2 1,Ω h -C 2 ||u|| 2 0,Ω h . (3.8)
But if u is given by (3.7) then

|u| 2 1,Ω h = |v| 2 1,ω h + β 2 ||v|| 2 0,ω h (3.9) Figure 2: Open set Ω h = (-h, h) × (0, 1)
and

||u|| 2 0,Ω h = ||v|| 2 0,ω h . (3.10) 
From (3.6), (3.8), (3.9) and (3.10), there exist C > 0 and β 0 > 0 such that for all β ∈ R, |β| ≥ β 0 , for all

v ∈ H 1 (ω h , C 3 ), a(v, v) + βb(v, v) + β 2 c(v, v) ≥ C(|v| 2 1,ω h + β 2 ||v|| 2 0,ω h ) ≥ C||v|| 2 1,ω h . (3.11)
Consequently there exist C > 0 and

β 0 > 0 such that for all β ∈ R, |β| ≥ β 0 , for all v L ∈ H 1 (ω h , C 2 ), a L (v L , v L ) + βb L (v L , v L ) + β 2 c L (v L , v L ) ≥ C(|v L | 2 1,ω h + β 2 ||v L || 2 0,ω h ) ≥ C||v L || 2 1,ω h . (3.12) 
In view of (3.12), (3.2) and Lax-Milgram theorem, if β ∈ R, |β| ≥ β 0 , then A -iβI is one-to-one from D(A) onto H and (A -iβI) -1 is continuous from H into H which implies iβ ∈ ρ(A).

Taking (3.2) and (3.3) into account, if β ∈ R, |β| ≥ β 0 , then (A -iβI) -1 is continuous from H into V.
Since the embedding from V into H is compact it can be inferred and (A -iβI) -1 is a compact operator in H and thus A has a compact resolvent.

Let us now examine the behavior of the resolvent for

β ∈ C. If β ∈ C, β = a + ib, then for all v L ∈ H 1 (ω h , C 2 ), Re a L (v L , v L ) + βb L (v L , v L ) + β 2 c L (v L , v L ) = a L (v L , v L ) + ab L (v L , v L ) + (a 2 -b 2 )c L (v L , v L ). (3.13)
Let us choose 0 < α < 1. Due to (3.12) it follows that if |a| ≥ β 0 and |b| ≤ α|a|, then for all

v L ∈ H 1 (ω h , C 2 ), a L (v L , v L ) + ab L (v L , v L ) + (a 2 -b 2 )c L (v L , v L ) ≥ a L (v L , v L ) + ab L (v L , v L ) + (1 -α 2 )a 2 c L (v L , v L ) ≥ C(|v L | 2 1,ω h + a 2 ||v L || 2 0,ω h ) -α 2 a 2 c L (v L , v L ). (3.14) 
Thus there exist α, 0 < α < 1 and C > 0 such that if |a| ≥ β 0 and |b| ≤ α|a|, then for all

v L ∈ H 1 (ω h , C 2 ), Re a L (v L , v L ) + βb L (v L , v L ) + β 2 c L (v L , v L ) ≥ C||v L || 2 1,ω h . (3.15) Figure 3: Set |a| ≥ β 0 , |b| ≤ α|a|
Therefore, as in the case where β ∈ R, with these values of β 0 and α, if |a| ≥ β 0 and |b| ≤ α|a| (see Figure 3), it follows that iβ ∈ ρ(A) and (A -iβI) -1 is a compact operator in H. Up to now we have shown that there exists a sector containing the non-negative real axis (resp. the non-positive real axis), symmetric with respect to this axis, such that if β belongs to this sector, then iβ belongs to the resolvent set of A if |β| is large enough. Now we shall prove a stronger result: the same conclusion is true for all sector with the same properties and with any angle < π.

In order to get this stronger result, we shall use the theory of elliptic problems with a parameter ( [START_REF] Agranovich | Elliptic problems with a parameter and parabolic problems of general type[END_REF]).

Let us outline the results of [START_REF] Agranovich | Elliptic problems with a parameter and parabolic problems of general type[END_REF] we shall apply ([9], Chapter I).We have adapted the results of [START_REF] Agranovich | Elliptic problems with a parameter and parabolic problems of general type[END_REF] to the case of interest here, that is the case of an open bounded interval of R.

Let G be an open bounded interval of R. Consider the system of equations

A(x, D, q)u(x, q) = f (x), x ∈ G, (3.16) 
where u and f are vector functions with values in C N (N ∈ N * ), A is a square matrix of order N consisting of differential operators in x with complex coefficients that have a polynomial dependence on a parameter q and are C ∞ with respect to x ∈ G and D = -i∂ x . The parameter q varies in a sector of the complex plane α ≤ arg q ≤ β denoted by Q. On the boundary ∂G (consisting of the union of two real numbers) we are given the conditions:

B j (x, D, q)u(x, q) = g j (x), x ∈ ∂G, j = 1, . . . , r.

(3.17)

Here B j is a row of order N consisting of differential operators in x with complex coefficients that have a polynomial dependence on the parameter q and are C ∞ with respect to x ∈ G and g j is a function defined on ∂G with values in C. The symbols A(x, ξ, q) and B j (x, ξ, q) are polynomials in (ξ, q) of degree s and m j . Let us denote by A 0 (x, ξ, q) and B j0 (x, ξ, q) the principal parts of A(x, ξ, q) and B j (x, ξ, q) formed of homogeneous polynomials of degree s and m j in (ξ, q) and set l 0 = max(s, m 1 + 1, . . . , m r + 1). We now state the two conditions under which estimates of the solutions of (3.16), (3.17) can be established.

Condition 3.1 If x ∈ G, q ∈ Q, ξ ∈ R, |ξ| + |q| = 0, then det A 0 (x, ξ, q) = 0.
Moreover it is assumed that for x ∈ G, q ∈ Q, q = 0, the roots of the equation in λ: det A 0 (x, λ, q) = 0 (which, from the first assumption, are not real) are equally distributed between the upper and lower half-plane. The number r of boundary conditions is taken to be N s 2 .

Condition 3.2 If x ∈ ∂G, we suppose that the operators A and B j are written in the system of coordinates connected with this point (in this system of coordinates, G locally lies in the half-line y > 0 and ∂G is the point y = 0, see [START_REF] Agranovich | Elliptic problems with a parameter and parabolic problems of general type[END_REF], section 1.9). We consider the problem on the half-line (with the notation

D y = -i∂ y )
A 0 (0, D y , q)v(y) = 0, y > 0, (3.18)

{B j0 (0, D y , q)v}(y = 0) = h j , j = 1, . . . , r. (3.19)
It is required that if q = 0, q ∈ Q, this problem should have for any h j one and only one solution in the class M of stable solutions of (3.18).

Under conditions 3.1 and 3.2 the following fundamental result holds true ([9], Theorems 6.1 and 6.2):

Theorem 3.1 Suppose that problem (3.16), (3.17) satisfies conditions 3.1 and 3.2 and that l is an integer ≥ l 0 . Then for q ∈ Q with sufficiently large moduli, if f ∈ H l-s (G, C N ), problem (3.16), (3.17) has a unique solution u ∈ H l (G, C N ). Moreover there exists a constant C > 0 such that for q ∈ Q with sufficiently large moduli,

|||u||| l,G ≤ C(|||f ||| l-s,G + r j=1 |q| l-mj -1/2 ( x∈∂G |g j (x)|)). (3.20) 
In (3.20), we have used the following notation:

if m ∈ R, m ≥ 0, |||.||| m,G = (||.|| 2 m,G + |q| 2m ||.|| 2 0,G ) 1/2
. Moreover if m ∈ N, due to the interpolational inequality ( [START_REF] Agranovich | Elliptic problems with a parameter and parabolic problems of general type[END_REF], pp.61-62), there exist constants C 1 and

C 2 > 0 such that for all u ∈ H m (G, C N ), C 1 |||u||| m,G ≤ ( m k=0 |q| 2k ||u|| 2 m-k,G ) 1/2 ≤ C 2 |||u||| m,G . (3.21) 
By examining the proof in [START_REF] Agranovich | Elliptic problems with a parameter and parabolic problems of general type[END_REF], pp.71-72, the term |||g j ||| l-mj -1/2,∂G in estimate (6.17) of [START_REF] Agranovich | Elliptic problems with a parameter and parabolic problems of general type[END_REF] has been replaced by |q| l-mj -1/2 ( x∈∂G |g j (x)|) in (3.20).

Figure 4: Set B θ0

The system (3.3) may be written under the form (with the notation D 1 = -i∂ 1 ):

L(D 1 , β)U 1 = A L D 11 U 1 + βB L D 1 U 1 + (β 2 C L -ω 2 ρ)U 1 = iβC L F 1 + B L ∂ 1 F 1 + C L F 2 in ω h , (3.22) 
where

L(ξ, β) = A L ξ 2 + βB L ξ + β 2 C L -ω 2 ρI. (3.23) 
On the other hand, equation (3.4) may be written under the form:

{M (D 1 , β)U 1 }(±h) = A L D 1 U 1 (±h) + βD L U 1 (±h) = iD L F 1 (±h), (3.24) 
where

M (ξ, β) = A L ξ + βD L . (3.25) 
Let θ 0 ∈ R be such that 0 < θ 0 < π/2 and suppose that β ∈ B θ0 (see Figure 4) where

B θ0 = β = |β|e iθ , |θ| ≤ θ 0 or |θ -π| ≤ θ 0 . (3.26) 
We shall show that the operators L(D 1 , β) and M (D 1 , β) satisfy conditions 3.1 and 3.2 when β ∈ B θ0 .

Lemma 3.1 The operator L(D 1 , β) satisfies condition 3.1 when β ∈ B θ0 .

Proof The principal part of L(ξ, β) is

L 0 (ξ, β) = A L ξ 2 + βB L ξ + β 2 C L =   (λ + 2µ)ξ 2 + µβ 2 (λ + µ)ξβ (λ + µ)ξβ µξ 2 + (λ + 2µ)β 2   , (3.27) 
so that Proof For the point of coordinate x 1 = γh (γ = ±1) of the boundary, the interior normal to ω h is -γ.

det L 0 (ξ, β) = ((λ + 2µ)ξ 2 + µβ 2 )(µξ 2 + (λ + 2µ)β 2 ) -(λ + µ) 2 ξ 2 β 2 = (λ + 2µ)µ(ξ 2 + β 2 ) 2 . (3.28) Consequently if β ∈ B θ0 , ξ ∈ R
In the neighborhood of the x 1 = γh of the boundary, we choose the local coordinate y = -γx 1 + h, so that the boundary point x 1 = γh is such that y = 0 and the points of the open set ω h are locally in the set (y > 0). We must write equation (3.22) with F = (F 1 , F 2 ) = (0, 0) in a neighborhood of a point of the boundary x 1 = γh in the corresponding local coordinate and take the principal part of the symbol of the corresponding operator, which is L 0 (-γξ, β). We must first determine the space M of stable solutions of the system:

L 0 (-γD y , β)w(y) = 0 in (y > 0). (3.29) 
A basis of solutions of M is identified in Appendix B. With the notations (B.36), (B.37) we obtain: (3.39)

w ε 1 (0) =   1 γεi   , (3.30) 
w ε 2 (0) =   ε λ+3µ β(λ+µ) 0   , (3.31) 
∂ y w ε 1 (y) = -εβ   1 γεi   e -εβy , (3.32) 
∂ y w ε 2 (y) =   (1 -εβy)   1 γεi   -εβ   ε λ+3µ β(λ+µ) 0     e -εβy , (3.33 
The system (3.37) boils down to

  εβ (λ + 2µ)/(λ + µ) β εµ/(λ + µ)     a 1 a 2   = 1 2µ   iγh 1 h 2   . (3.40)
The determinant of this system is -β and is = 0 if β ∈ B θ0 , β = 0: condition 3.2 is satisfied.

If H be a separable Hilbert space and {x n } +∞ n=1 is a Hilbert basis in H, a bounded linear operator in H is said to be a Hilbert-Schmidt operator if the quantity ||T || 2 = ( 

+∞ n=1 ||T x n || 2 )
= (F 1 , F 2 ) ∈ H, for these β, ||U 1 || 2,ω h + |β|||U 1 || 1,ω h + |β| 2 ||U 1 || 0,ω h ≤ C(||F 1 || 1,ω h + |β|||F 1 || 0,ω h + ||F 2 || 0,ω h + |β| 1/2 |F 1 (h)| + |β| 1/2 |F 1 (-h)|). (3.42)
But by equation (1.10) of [START_REF] Agranovich | Elliptic problems with a parameter and parabolic problems of general type[END_REF] in dimension n = 1, there exists a constant C > 0 such that for all u ∈ H 1 (ω h ), for all β ∈ C, Let us now state the fundamental theorem of [START_REF] Locker | Spectral Theory of Non-Self-Adjoint Two-Point Differential Operators[END_REF], p.80:

|β| 1/2 |u(±h)| ≤ C(||u|| 1,ω h + |β|||u|| 0,ω h ). ( 3 
Theorem 4.1 Let H be a separable Hilbert space, let T be a Hilbert-Schmidt discrete operator in H.

Suppose there exists a set of five rays γ j : arg λ = θ j , j = 1, . . . , 5, in the complex plane such that (i) the angles between adjacent rays are < π/2, (ii) for |λ| sufficiently large all the points on the five rays belong to ρ(T ), and

(iii) there exists N ∈ N such that the resolvent of T satisfies:

||(T -λI) -1 || = O(|λ| N ) as |λ| → +∞ along each ray γ j . (4.4) 
Then Sp(T ) = S ∞ (T ) = H, that is the set of generalized eigenvectors of T is complete in H.

Theorem 3.2 shows that A is a Hilbert-Schmidt discrete operator in H.

Before stating Theorem 4.2, let us introduce the polynomial operator pencil P associated to Lamb modes. This polynomial operator pencil P is defined by: for all µ ∈ C, for all v ∈ H 2 (ω h , C 2 ),

P (µ)v =   P I (µ)v P B (µ)v   , (4.5) 
with

P I (µ)v = A L ∂ 11 v + µB L ∂ 1 v + ω 2 ρv + µ 2 C L v ∈ L 2 (ω h , C 2 ) (4.6) 
and

P B (µ)v = (A L ∂ 1 v(h) + µD L v(h), A L ∂ 1 v(-h) + µD L v(-h)) ∈ C 2 . (4.7) With this definition of P , v L ∈ H 2 (ω h , C 2 ), v L = 0 is a Lamb mode corresponding to the Lamb eigenvalue µ = iβ (β ∈ C) iff P (µ)v L = 0. If v L ∈ H 2 (ω h , C 2 ), v L = 0 is a Lamb mode corresponding to the Lamb eigenvalue µ = iβ, a family of vectors v 1 , . . . , v k ∈ H 2 (ω h , C 2
) is said to be associated to the Lamb mode For all δU 2 ∈ V , the map u ∈ V → a 0,L (u, δU 2 ) -ω 2 l L (u, δU 2 ) is continuous on V equipped with the scalar product a 0,L (., .) + (., .) 0,ω h . By the Riesz representation theorem there exists a unique R(δU 2 ) ∈ V such that for all u ∈ V , a 0,L (u, δU 2 ) -ω 2 l L (u, δU 2 ) = a 0,L (u, R(δU 2 )) + (u, R(δU 2 )) 0,ω h . A basis of the space M of stable solutions of (3.29) is formed by {w ε 1 , w ε 2 } where ε is choosen such that Re(εβ) > 0.

v 0 = v L iff P (µ)v p + P (µ)v p-1 + (P (µ)/2)v p-2 + • • • + (P (p) (µ)/p!)v 0 = 0, p = 0, . . . , k. ( 4 

(containing 0 )

 0 and the set of positive natural numbers by N * (= N \ {0}). If n, m ∈ N * and Ω is an open set of R n , the set of C ∞ functions from Ω with values in R m and with compact support in Ω will be denoted by C ∞ 0 (Ω, R m ), with similar notations for functions with values in C m . If k ∈ N * , the set of functions from Ω with values in R m whose components are in the Sobolev space H k (Ω) will be denoted by H k (Ω, R m ), with similar notations for functions with values in C m . The inner product in H k (Ω, R m ) or H k (Ω, C m ) will be denoted by (., .) k,Ω , the associated norm by ||.|| k,Ω and the associated semi-norm by |.| k,Ω. The identity of a vector space will be denoted by I regardless of the vector space. Recall that the word "iff" means "if and only if".

  [START_REF] Locker | Spectral Theory of Non-Self-Adjoint Two-Point Differential Operators[END_REF], p.21). If H is a Hilbert space and T is an unbounded closed linear operator in H, the resolvent set of T denoted by ρ(T ) is the set of λ ∈ C such that the operator T -λI is a one-to-one mapping from its domainD(T -λI) = D(T ) onto the Hilbert space H (in that case (T -λI) -1 is a bounded operator in H). The spectrum of T is the complement of ρ(T ) in C: σ(T ) = C \ ρ(T ). If λ ∈ ρ(T ),the operator (T -λI) -1 is called the resolvent of T . Let us now study the resolvent of A. If β ∈ C and F = (F 1 , F 2 ) ∈ H, let us seek the solutions U ∈ D(A) of the equation:

Lemma 3 . 2

 32 and |ξ| + |β| = 0 then det L 0 (ξ, β) = 0. On the other hand for β ∈ B θ0 and β = 0, the roots of the equation in λ: det L 0 (λ, β) = 0 are λ = ±iβ and thus are equally distributed between the upper and lower half-plane. The number r of boundary conditions is 2 and is equal to N s 2 : condition 3.1 is satisfied. The operators L(D 1 , β) and M (D 1 , β) satisfy condition 3.2 when β ∈ B θ0 .

1 + a 2 w ε 2 ( 3

 123 of M may be written under the form w = a 1 w ε .36) where a 1 , a 2 ∈ C. The principal part of the symbol of the boundary operator written in the local coordinate y is M (-γξ, β). Now let us establish condition 3.2. Given (h 1 , h 2 ) ∈ C 2 , we must show that there is a unique w of the form (3.36) satisfying the following system {M (-γD y , β)w}(0) = -A L γD y w(0) + βD L w(0) if w is given by (3.36) then-A L γD y w(0) =   -(λ + 2µ)iεβγ -µ(λ + 2µ)2iγ/(λ + µ)

1 2

 1 is finite ([10], p.64). Theorems 3.1 and Lemmas 3.1, 3.2 imply Theorem 3.2 Let θ 0 be such that 0 < θ 0 < π/2. Then there exist constants B > 0 and C > 0 such that if β ∈ B θ0 and |β| ≥ B, then iβ belongs to the resolvent set of A and ||(A -iβI) -1 || ≤ C. (3.41) Moreover for these values of β, the resolvent (A -iβI) -1 is a Hilbert-Schmidt operator in H. Proof Applying Theorem 3.1 and equation (3.21) to equation (3.3)(or (3.22)) with boundary conditions (3.4) (or (3.24)), with the values l = 2, s = 2, r = 2, m 1 = m 2 = 1, it can be inferred that there exists a constant B > 0 such that (3.3), (3.4) has a unique solution for β ∈ B θ0 and |β| ≥ B and that there exists a constant C > 0 such that for all F

  .43) Let σ(T ) = {λ n } +∞ n=1 be any enumeration of the spectrum of T , let m n (m n ∈ N * , n = 1, . . . , +∞) denote the ascent of the operator T -λ n I and let P n , n = 1, . . . , +∞, denote the projection of H onto the generalized eigenspace N ((T -λ n I) mn ) along the range R((T -λ n I) mn ). Let S ∞ (T ) be the linear subspace of H S ∞ (T ) = {u ∈ H, u = +∞ n=1 P n u} (4.3) and Sp(T ) be the linear subspace of H spanned by the set of generalized eigenvectors of T . It is easily seen that Sp(T ) = S ∞ (T ).

. 8 )

 8 The vectors v 1 , . . . , v k are called associated modes. Applying Theorems 3.2 and 4.1 we obtain Theorem 4.2 The set of Lamb modes and associated modes is complete in V = H 1 (ω h , C 2 ).

B-γαW 1 +Y 1 .Y 1 = 1 ,, w ε 2 , ε = ±1} with w ε 1 (

 111121 (A.19) In view of (A.18) and (A.19) we obtain: ∀U ∈ D(A * ), A * U = Ã * U, Determination of a basis of M The dimension of the space of all the solutions of the system (3.29) is four. Let us first search solutions of (3.29) under the form w(y) = W e iαy , W = α ∈ C and W = 0. We must have L 0 (-γα, β)W = 0, (B.23) thus det L 0 (-γα, β) = 0 or α 2 = -β 2 ⇔ α = εiβ, ε = ±1. (B.24) Equation (3.27) implies L 0 (-γα, β) = (λ + µ)β βW 3 = 0 or W 3 = γεiW 1 . (B.26) Let us search other solutions of (3.29) under the form w(y) = (X + yY )e iαy = (X + yY )e -εβy , X = where L 0 (-γα, β)Y = 0, therefore Y 3 = γεiY 1 . We have D y (yY e iαy ) = Y (αy -i)e iαy , D 2 y (yY e iαy ) = Y (α 2 y -2iα)e iαy , (B.28) thus L 0 (-γD y , β)(yY e iαy ) = [yL 0 (-γα, β) + L 1 (α, β, γ)]Y e iαy , (B.29)withL 1 (α, β, γ) = -i   (λ + 2µ)(2α) -(λ + µ)γβ -(λ + µ)γβ µ(2α) (B.31)Equation(3.29) where w is given by (B.27) yields[yL 0 (-γεiβ, β) + L 1 (εiβ, β, γ)]Y + L 0 (-γεiβ, β)X = 0, + 3µ)Y 1 + (λ + µ)β 2 (-X 1 -γεiX 2 ) = 0. (B.34) Let us choose the following solution of (B.34) X 1 = ε λ + 3µ β(λ + µ) , X 2 = 0. (B.35) A basis of solutions of (3.29) is formed by {w ε 1

  The displacement field ũ (with values in C 3 ) is formally characterized by the following variational problem: for all "regular" displacement field δu with values in C 3 and with compact support in Ω,

	m( ü, δu) + k(ũ, δu) = 0	(2.8)
	with the notations		
	k(u, δu) =	σ ij (u)ε ij (δu)	(2.9)
	Ω		
	and		
	m(u, δu) =	ρu i δu i .	(2.10)
		Ω	
		Replacing t by t + π/2ω in (2.6) it is easily seen
	that in equations (2.2), (2.3), (2.4), (2.5) u may be replaced by ũ.	
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In view of (3.42) and (3.43) we obtain therefrom that there exists a constant C > 0 such that for all F = (F 1 , F 2 ) ∈ H, for all β ∈ B θ0 such that |β| ≥ B, 

and from H 1 (ω h , C 2 ) into L 2 (ω h , C 2 ) are Hilbert-Schmidt operators by Maurin Theorem ( [START_REF] Adams | Sobolev Spaces[END_REF], p.202), it follows that for β ∈ B θ0 , |β| ≥ B, the resolvent (A -iβI) -1 is a Hilbert-Schmidt operator in H.

Completeness of Lamb modes

We now summarize some facts about Hilbert spaces. If T is an unbounded linear operator in a Hilbert space H, let us denote the null space of T by N (T ) and the range of T by R(T ). The linear subspaces 

A sequence of vectors {u n } +∞ n=1 of a Hilbert space H (with inner product (., .) H ) is an orthonormal system if by definition (u n , u m ) H = δ nm , n, m = 1, . . . , +∞. If a sequence of vectors {u n } +∞ n=1 of a Hilbert space H is an orthonormal system then this sequence is a (Hilbert) basis iff it is complete ( [START_REF] Christensen | An Introduction to Frames and Riesz Bases[END_REF], Theorem 3.4.2). But this is not true if the sequence of vectors {u n } +∞ n=1 is not an orthonormal system. If T is an unbounded densely defined closed linear operator in a separable Hilbert space H, T is a Hilbert-Schmidt discrete operator iff by definition there exists a point α ∈ ρ(T ) such that the resolvent

Let us recall some results about Hilbert-Schmidt discrete operators ([10], p.79). The spectrum of a Hilbert-Schmidt discrete operator in a separable Hilbert space H is a countable set having no finite limit points in C. Each point λ 0 ∈ σ(T ) is an eigenvalue of T and the ascent and descent of T -λ 0 I are finite and equal (= p), the generalized eigenspace N ((T -λ 0 I) p ) is finite dimensional with

Figure 5: Choice of θ j , j = 0, 1, . . . , 5

Proof From Theorem 3.2, for all θ 0 such that 0 < θ 0 < π/2, if λ ∈ iB θ0 and λ is sufficiently large then λ belongs to the resolvent set of A. Since

it follows that if 2π/5 < θ 0 < π/2, the five rays argλ = θ j where θ j = 2(j -1)π/5 + π/2, j = 1, . . . , 5

are included in iB θ0 (see Figure 5). Apply Theorem 3.2 with θ 0 such that 2π/5 < θ 0 < π/2 and 

Therefore U 1 1 is a Lamb mode corresponding to the Lamb eigenvalue iβ ∈ C and the vectors U j 1 , j = 2, . . . , m (and in particular U 1 = U m 1 ) are associated modes. Consequently we have shown that the set of Lamb modes and associated modes is complete in V = H 1 (ω h , C 2 ). Remark 4.1 We have considered the case of a traction-free plate on the upper and lower boundary. But the case of a clamped plate on the upper or lower boundary can easily be carried out. Assume for example that the plate is clamped on the lower boundary and traction-free on the upper boundary. Let V 0 be the space V 0 = {v ∈ H 1 (ω h , C 2 ), v(-h) = 0}. In (2.37), the space H 1 (ω h , C 2 ) (=V ) must be replaced by V 0 . Equation (2.54) must be replaced by V L (-h) = 0 and BV L (h) = 0. In the proof of Lemma 3.2 (3.37) must be replaced by 

The set of all the families U j = (U j 1 , U j 2 ), j = 0, . . . , m -1 for all the eigenvalues iβ of A is complete in H = V × H. This result is stronger than the completeness of Lamb modes and associated modes.

Remark 4.3 Under some assumptions the Lamb modes can be organized as follows [START_REF] Bourgeois | On the use of Lamb modes in the linear sampling method for elastic waveguides[END_REF], p.5:

1. The right-going modes which correspond to Im β > 0 (for non-propagating modes) or ∂ω ∂β > 0 (for propagating modes), 2. The left-going modes which correspond to Im β < 0 (for non-propagating modes) or ∂ω ∂β < 0 (for propagating modes).

The question arises whether only the set of right-going modes or only the set of left-going modes is complete. The result of Remark 4.2, which is stronger than the result of completeness of Lamb modes and associated modes, seems to be useless to show such a result. As far as the SH modes are concerned, with similar assumptions and definitions, the set of right-going modes or the set of left-going modes form a Hilbert basis, see equation (2.36).
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A A is non-self-adjoint By definition the adjoint A * of A (which is well-defined since the domain of A is dense in H) is an unbounded operator with domain:

For all U ∈ D(A), for all δU ∈ H,

Since U ∈ D(A) the boundary part in (A.14) is

Consequently with the notation