N
N

N

HAL

open science

Detecting abnormal DINS traffic using unsupervised

machine learning

Thi Quynh Nguyen, Romain Laborde, Abdelmalek Benzekri, Bruno Qu’hen

» To cite this version:

Thi Quynh Nguyen, Romain Laborde, Abdelmalek Benzekri, Bruno Qu’hen. Detecting abnormal
DNS traffic using unsupervised machine learning. 4th Cyber Security in Networking Conference:
Cyber Security in Networking (CSNet 2020), IEEE Communications Society, Oct 2020, Lausanne,
Switzerland. pp.1-8, 10.1109/CSNet50428.2020.9265466 . hal-03184957

HAL Id: hal-03184957
https://hal.science/hal-03184957
Submitted on 30 Mar 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-03184957
https://hal.archives-ouvertes.fr

archives-ouvertes

Detecting abnormal DNS traffic using unsupervised
machine learning
Thi Quynh Nguyen, Romain Laborde, Abdelmalek Benzekri, Bruno Qu’hen

» To cite this version:

Thi Quynh Nguyen, Romain Laborde, Abdelmalek Benzekri, Bruno Qu’hen. Detecting abnormal
DNS traffic using unsupervised machine learning. 4th Cyber Security in Networking Conference:
Cyber Security in Networking (CSNet 2020), IEEE Communications Society, Oct 2020, Lausanne,
Switzerland. pp.1-8, 10.1109/CSNet50428.2020.9265466 . hal-03184957

HAL Id: hal-03184957
https://hal.archives-ouvertes.fr/hal-03184957
Submitted on 30 Mar 2021

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche frangais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.archives-ouvertes.fr/hal-03184957
https://hal.archives-ouvertes.fr

Detecting abnormal DNS traffic using unsupervised
machine learning

Romain Laborde
University Paul Sabatier
Toulouse, France
romain.laborde@irit.fr

Thi Quynh Nguyen
University Paul Sabatier
Toulouse, France
MODIS
Courbevoie, France
thi-quynh.nguyen@irit.fr

Abstract— Nowadays, complex attacks like Advanced
Persistent Threats (APTs) often use tunneling techniques to
avoid being detected by security systems like Intrusion
Detection System (IDS), Security Event Information
Management (SIEMs) or firewalls. Companies try to identify
these APTs by defining rules on their intrusion detection system,
but it is a hard task that requires a lot of time and effort. In this
study, we compare the performance of four unsupervised
machine-learning algorithms: K-means, Gaussian Mixture
Model (GMM), Density-Based Spatial Clustering of
Applications with Noise (DBSCAN), and Local Outlier Factor
(LOF) on the Boss of the SOC Dataset Version 1 (Botsv1) dataset
of the Splunk project to detect malicious DNS traffics. Then we
propose an approach that combines DBSCAN and K Nearest
Neighbor (KNN) to achieve 100% detection rate and between
1.6% and 2.3% false-positive rate. A simple post-analysis
consisting in ranking the IP addresses according to the number
of requests or volume of bytes sent determines the infected
machines.

Keywords—Anomaly detection, DNS tunneling, C&C, K-
means, GMM, LOF, DBSCAN

L. INTRODUCTION

Advanced Persistent Threats (APTs) are sophisticated
and premeditated attacks perpetrated by a threat group of
highly skilled attackers combining multiple competencies to
achieve specific and predetermined fraudulent goals. Rather
than opportunistically attacking a system, the intruders gain
access to a network and remain undetected for an extended
period. The complexity of APTs attacks makes them difficult
to identify [1]. Since they target critical companies and
govemments, they constitute one of the biggest security
challenges [2].

To tackle such a challenge, MITRE has proposed
ATT&CK, an open source knowledge base of adversary
Tactics, Techniques and Procedures (TTPs) based on real-
world observations. Tactics are the goals an attacker aims to
reach. MITRE ATT&CK lists 12 tactics: Initial access,
Execution, Persistence, Privilege escalation, Defense evasion,
Credential access, Discovery, Lateral movement, Collection,
Command and Control (C&C), Exfiltration. Impact. To
achieve these objectives, attackers use one or more
techniques. For instance, APT32 [3] has targeted multiple
private sector industries in Southeast Asian countries like
Vietnam, Laos, and Cambodia. It employed 55 different threat
techniques to attack their target.

Currently, companies are trying to improve their capability
of detecting APTs by translating MITRE ATT&CK TTPs into
detection rules on their Intrusion Detection Systems (IDS).
However, writing such rules is a very hard task that requires

Abdelmalek Benzekri
University Paul Sabatier
Toulouse, France
abdelmalek.benzekn@irit.fr

Bruno Qu’hen
MODIS
Courbevoie, France
bruno.quhen@modis.com

building many highly complex indicators of compromise.
When studying APT32, the attackers used Cobalt Strike's
malleable C&C functionality to hide malicious traffic inside
authorized network traffic e.g. DNS, HTTP and HTTPS. The
group's backdoor could exfiltrate data by encoding it within
the subdomain field of DNS packets.

In this article, we focus only on detecting the C&C tactic
and more specifically on threat techniques consisting in hiding
malicious traffic inside the DNS protocol. These malicious
traffics are very similar to genuine DNS traffic. They use the
same UDP port 53 and respect the DNS messages structure.
Thus, detecting such traffic cannot be limited to analyzing port
numbers or inspecting the structure of the messages. A deeper
analysis is required to assess the behavior of the entities by
combining multiple information such as the number of bytes
exchanged, the duration, the time the message was sent, etc.
Nowadays many companies are using Security Event
Information Management (SIEMs) to manage event logs and
protect their network from attacks. However, writing
detection rules in SIEMs while considering a large number of
criteria is no more possible. What is the correct threshold
value for each criterion? How to combine constraints on
criteria? APTs are being executed by skilled attackers, where
the attack rate is controlled in order to go under the radar and
remain undetected.

Machine learning techniques can help in such a complex
detection task. There exist two families of machine learning
techniques: supervised and unsupervised methods. Supervised
methods can learn patterns from training datasets that
comprise the input features and the expected results called
labels. Supervised algorithms are good for specific tasks such
as image detection. However, this approach has two
drawbacks in our context. First, the performance of the
algorithm depends on the exhaustivity of the training dataset.
An algorithm trained with a specific set of threat techniques
might not detect zero-knowledge attacks. An algorithm
trained to detect genuine traffic will be specific to the
organization where the training dataset has been captured. The
second issue is related to the cost of labelling datasets. A large
number of image datasets exists because labelling images does
not require specific skills. In case of network security, the
context is completely different. Labelling network security
traffic can only be performed by security experts which
implies exponential increase of the cost of this task.
Unsupervised methods don't need any training which resolves
the two previously mentioned drawbacks. However, it is more
difficult to have the same result as the supervised methods can
obtain.

We propose in this article a behavioral analysis approach
based on unsupervised machine learning. We compare the
performance of four unsupervised machine-learning
algorithms: K-means, GMM, DBSCAN, and LOF on the
Botsv1 dataset of the Splunk project [4] to detect malicious
DNS traffics. This study exhibits the benefits of DBSCAN.
Then we propose a new approach that combines DBSCAN
and KNN that achieves 100% for detection rate and 2.3% for
false-positive rate. A simple post-processing consisting in
ranking the IP addresses according to the number of requests
and the volume of bytes sent helps us easily identify the
infected machines.

The rest of the article is as follows. First, we present the
related work. Then, we introduce K-means, GMM, DBSCAN,
and LOF in section III. Section IV describes our detection
approach, the dataset, and the comparison of the four
unsupervised algorithms. We also show how the parameters
of DBSCAN can be tuned automatically with KNN. Finally,
Section V concludes the article and indicates prospects for
future works.

II. RELATED WORK

We summarize in this section the different related work.
First, we present unsupervised machine learning approaches
for detecting generic network intrusions. Then we focus on all
machine learning approaches to detect abnormal DNS traffic.

A. Unsupervised approaches for the detection of attacks

Leon et al. [5] presented a new approach to anomaly
detection based on the Unsupervised Niche Clustering (UNC)
and apply it to network intrusion detection. The UNC is a
genetic niching technique for clustering, which can determine
the number of clusters automatically. The authors characterize
each predicted cluster using a fuzzy membership function.
Moreover, they use the Maximal Density Estimator (MDE)
refinement to improve the quality of the solution and Principal
Component Analysis (PCA) to reduce the complexity of the
dataset and further enhance the performance of the proposed
approach. The model has been tested on the KDD Cup 1999
dataset [6] and shows a detection rate of 99.2% and a false
alarm rate of 2.2%.

Casas et al. [7] presented UNIDS, an Unsupervised
Network Intrusion Detection System capable of detecting
unknown network attacks without using any kind of
signatures, labeled traffic, or training. UNIDS contains three
consecutive steps. First, it uses a standard change-detection
algorithm on three simple and classic volume metrics (bytes,
packets, and flows per time slot) to detect an anomalous time
slot in which the clustering analysis will be performed.
Secondly, it uses a robust multi-clustering algorithm, based on
a combination of Sub-Space Clustering (SSC), Density-based
Clustering, and Evidence Accumulation Clustering (EAC)
techniques to identify outlying flows. Finally, a predefined
threshold allows determining the anomalies. They evaluate
UNIDS on KDD Cup 1999 dataset where the detection rate is
more than 90% and the false positive rate is less than 1%.

Amoli et al. [8] proposed a real-time unsupervised NIDS
for high-speed networks. This NIDS contains two separate
engines which allow network intrusion detection. The first
engine monitors the behavior of the network to detect
intrusions in real time using DBSCAN with an automated self-
adaptive threshold. The second engine is to detect the internal
botnet. It clusters specific network features to detect

centralized and decentralized botnet C&C communication.
Two datasets were used to evaluate the proposed approach:
DARPA and ISCX [9]. The proposed model achieved a
98.39% accuracy and 3.61% false positive rate.

Aliakbarisani et al. [10] propose a linear metric learning
method for unsupervised Network Anomaly Detection
Systems (NADSs), which uses distance-based clustering or
classification methods. The unsupervised clustering based
NADS contains the training and testing phases. The training
phase has five steps: Filtering, Metric Learning,
Transformation, Clustering and Boundary Estimation. They
use one-class SVM in the Boundary Estimation. And the
testing phase consists of three steps: Transformation, Dividing
and Classifying. They evaluate their NADS on the Kyoto
2006+ [11] and NSL-KDD [12] datasets. With the metric
learning, the algorithms can improve the performance.

Kazato et al. [13] described a method for estimating the
maliciousness of indicators of compromise (IoCs). This
method contains three main steps: gather relational
information and extract individual IoC features; build an IoC
graph using existing loC nodes in the graphical pre-built IoC;
estimate GCN-based IoC maliciousness. They use two
characteristics in the graph convolutional network (GCN) to
improve the precision of the estimation, which are the
individual ToC functionalities and the relationships between
the IoCs. They create a dataset of 20,000 domain names
(resolved by DNS published on the Internet), 10,000 benign
domain names (listed on Alexa Top Sites), 10,000 malicious
domain names (resolvable from Abuse.ch ZeuS Tracker and
DNS - BH Malware Domain Blocklist) to evaluate their
approach, and the true positive rate is 88%.

Gunes Kayacik et al. [14] presented an approach of Self-
Organizing Feature Maps (SOM) hierarchy with multiple
layers. They build the hierarchical SOM architectures with
two learning algorithms: SOM is used at each layer of the
hierarchy and Potential Function Clustering is used to
quantize the number of SOM neurons ‘perceived’ by the
second layer for the 6-feature architecture alone. To evaluate
this method, they apply this two-layers SOM hierarchy to the
KDD CUP 1999 database. With 41 functionalities, the second
and third layers are sufficient: the first layer based on six basic
functions; the second layer is based on nine basic functions
and 32 derived functionalities. The proposed method achieved
a 90% true positive rate and a 1.38% false positive rate.

Zanero and Serazzi [15] proposed a two-tier architecture
to analyze network packets for network intrusion detection.
The first tier of the system classifies packet payload using an
unsupervised clustering algorithm (K-means, Principal
Direction Divisive Partitioning (PDDP), and SOM). The
second tier detects the anomalies in each single packet and in
a sequence of packets with the SDLE algorithm of
SmartSifter. Moreover, they propose improvements and
heuristics to increase the throughput of SOM to a rate suitable
for online intrusion detection. They use the DARPA 1999 [16]
database to evaluate, the true positive rate is only 66.7%.

Chen et al. [17] proposed the federated learning assisted
deep autoencoding Gaussian mixture model (FDAGMM) for
network anomaly detection. It is an improvement of the
DAGMM (Deep Autoencoding Gaussian Mixture Model) by
using Federated Learning in order to handle scenarios where
training data is insufficient because normal users are unwilling
or unable to share private information. FDAGMM is a

combination of three algorithms: Auto-encoding to reduce the
dimension, Gaussian Mixture Model to estimate density, and
Federated Learning to improve its performance with more
data and also protecting privacy. They evaluate this method
on the KDD CUP 1999 database, and the true positive rate is
98.03%.

Alam et al. [18] presented a network intrusion and real-
time anomaly detection system that utilizes a memristor based
autoencoder. Autoencoders is an unsupervised algorithm and
can recognize anomalous data quickly and accurately.
Memristor is a new class of nanoscale semiconductor devices
and can perform in parallel many multiply-add operations in
the analog domain. Thus, using memristor devices to perform
autoencoders computations allows presenting extreme low
power systems for real-time intrusion and anomaly detection.
They use the NSL-KDD database for evaluation, and the
overall detection accuracy of this system is 92.91%.

Authors employed most of unsupervised techniques and
achieve good results. However, they assess their work against
datasets that contain attacks that are not representative to
current APTs attacks.

B. DNS based C&C communication detection

Fewer researches deal with abnormal DNS detection. And
most of them proposed to use supervised machine learning
techniques.

Homem and Papapetrou [19] introduced a machine
learning approach, based on three features IP packet length,
DNS Query Name Entropy, and DNS Query Name Length, to
identify protocols (HTTP, HTTPS, FTP, POP3) transported in
DNS tunneling. They benchmark the performance of four
classification models (decision trees, support vector machines,
k-nearest neighbors, and neural networks) on a DNS tunneled
traffic dataset. Neural networks give the best result with a 95%
accuracy.

Lin et al. [20] proposed an application-layer tunnel
detection method by applying a rule-based domain name
filtering for Domain Generation Algorithm (DGA) based on a
trigtam model and machine learning. They tested the
effectiveness of the proposed method by conducting
experiments on DNS, HTTP, HTTPS tunnels. In each tunnel
type, they applied and compared six classification algorithms
(Gaussian Bayes, SVM, C4.5, Random Forest, GBDT,
XGboost). Except Gauss Bayes, the classification results of
the five machine learning algorithms were good (Precision >
0.97, Accuracy > 0.98).

Berg et al. [21] compared the different models
(Multinomial neural network and Random forest) on the
Request, Response and Full feature set. Experiments showed
the performance of the models increases when training the
models on the query and response pairs rather than using only
queries or responses. The accuracy of the models is more than
83%.

Although abnormal DNS detection works achieve good
detection results, they use supervised learning approaches and
thus require a training dataset. In addition, a common critic
that applies to these works is the use of non-public datasets.
Therefore, it is difficult to replicate the experiments. That’s
why we propose in this article a behavioral analysis approach
based on clustering for detecting malicious DNS traffics. We
evaluate our approach on a public dataset: Botsv1 dataset of
the Splunk project.

III. UNSUPERVISED OUTLIERS DETECTION

As explained in the introduction, applying supervised
learning algorithms for detecting malicious network traffic
raises issues due to the exhaustivity of the training dataset and
high labelling cost. There exist many unsupervised anomaly
detection algorithms such as Density-based spatial clustering
of applications with noise (DBSCAN), Isolation Forests,
Local Outlier Factor (LOF), etc.[22] We present in this section
four techniques: K-means, Gaussian Mixture Model (GMM),
LOF and DBSCAN that will be evaluated later in this article.

A. K-means

K-means [23] is a distance-based algorithm. It tries to
group the closest points to form a cluster. K-means algorithm
is composed of 3 steps:

1. Initialization: choose randomly K data points which
are K-centroids of K groups of data.

2. Cluster Assignment: classify the data points to the
clusters where the distance between the point and the
centroid is minimum (in Euclidean distance).

3. Move the centroid: recalculate the centroids to be the
mean of all the points in the clusters. Repeat step 2
and 3 until the centroids stop moving.

K-means can run fast and efficiently on any dataset.
However, the accuracy of its output depends a lot on the
number of clusters (K). Moreover, K-means only uses circle
forms for graphs, thus it lacks the flexibility to change the
shape of the clusters.

B. Gaussian Mixture Models

Gaussian mixture models (GMM) [24] is a distribution-
based algorithm. Similar to K-means, we have to choose the
number of clusters. GMM assumes that there are A/ Gaussian
component densities and it tries to group the data points
belonging to the same component together.

GMM is a parametric probability density function
represented as a weighted sum of M component Gaussian
densities given by this equation:

p(x|d) = ?4:1 w; (x|, Z)

Where x is D-dimensional continuous-valued features, ;
are the mixture weights that satisfy the constraint Y;}2, w; =
1, and g(x|u;, Z;) are the component Gaussian densities.

Each component density is a D-variate Gaussian function
of the form:

1 1 P S
_ 3 G-m) TS)
glxlp, Z) = Wﬁ’ R !

with mean vector y;, and covariance matrix ;.

All the parameters that made up GMM, including the mean
vectors, the covariance matrices, and the mixture weights
from M components densities are represented by this notation:

A={u, 2w} i=1,..,.M

There are several approaches for estimating the
parameters of GMM and the most popular one is Expectation-
Maximization (EM) algorithm [25], which iteratively
optimizes the model using maximum likelihood estimates.
Expectation-Maximization is composed of 4 steps:

1. Initialization: Values can be randomly assigned to
the means, variances, and mixture weights.
Morteover, another approach consists in using some
form of binary Vector quantization estimation or the
results obtained by a previous K-Means run to define
these values.

2. E-step: for each point, calculate the probability that
it belongs to each cluster/component. This
probability will be higher when the point is assigned
to the right cluster and lower otherwise.

3. M-step: update the Gaussian parameters (1) for each
component to fits points assigned to them.

4. Evaluate the convergence: check for convergence of
the parameters. If some convergence threshold is
reached, stop the algorithm. If not, return to F-step
(step 2). The new model then becomes the initial
model for the next iteration.

While the clusters created by K-means have a circular
shape, GMM can handle oblong clusters. K-means is a hard
classification whereas GMM is a soft one. GMM provides the
probabilities that a given data point belongs to each of the
possible clusters.

C. Density-Based Spatial Clustering of Applications with
Noise

Density-Based Spatial Clustering of Applications with
Noise (DBSCAN) [26] clusters points together and identifies
any points not belonging to a cluster as outliers. DBSCAN has
two parameters that need to be defined:

— min samples: the minimum number of points
required to form a dense region (a cluster).

— eps (e): a distance measure that will be used to locate
the points in the neighborhood of any point.

DBSCAN labels the data points as core points, border
points, or outlier points. A given point p is a core point if it
has at least min samples points in its eps distance. A point g
is a border point if it is not a core point, and lies within the eps
distance of any core point. Outlier points are those that are
neither core points nor border points.

DBSCAN is composed of 3 steps:

1. DBSCAN takes an arbitrary point that has not been
visited (until all points have been visited).

2. The eps neighborhood of this point is extracted (all
points within the eps distance). If it contains enough
points (min_samples), then this point is a core point
and a cluster is created. Otherwise, this point is
labeled as noise (anomaly). However, this point
might also be found in an eps neighborhood of
another point, and therefore, in that case, it will be a
border point and a part of that cluster.

3. [Ifa point is a part of a cluster, its eps neighborhood
is also a part of that cluster. This process continues
until all points are visited.

If the value of min samples is too large, DBSCAN can
detect anomalies but with a high false positive rate. Otherwise,
if the value is too small, DBSCAN cannot detect all
anomalies. Similarly, if the value of eps is too large, DBSCAN
cannot detect all the anomalies. While if it is too small,

DBSCAN can detect anomalies but the false positive rate is
high. Therefore, selecting good values for these parameters is
important.

D. Local Outlier Factor

Local Outlier Factor (LOF) [27] is a density-based
algorithm to identify local outliers. A point is an outlier if the
density around that point has a big difference with the density
around its neighbors. LOF is more concerned with a local data
distribution than a global data distribution.

LOF depends on 1 single input parameter; MinPts, which
is the number of nearest neighbors used in defining the local
neighborhood. It consists of 7 steps:

1. Choose MinPts = K as the input parameter.

2. For each data point p in the data set D, calculate
distances between p and all other points. Let’s define
d(p.q) as the distance between 2 points p and g. We
can choose any metric for the distance computation
such as Euclidean or Manhattan.

3. Find the K”-nearest neighbor of p. Then calculate the
distance from p to that point and call it K-distance(p).
K-distance(p) provides a measure of the density
around point p. When K-distance(p) is small, the arca
around p is dense and vice versa.

4. Then find the K-distance neighborhood of p, which
contains every point whose distance from p is not
greater than K-distance(p), ie. Nig(p) ={q €
D | d(p,q) < K — distance(p)} Note that
[Nk (p)| or the number of points in Ny (p) can be
greater than K because there might multiple points
with the same distance to p.

5. Calculate the reachability distance of p with respect
to each of the other points using this formula:

reach_dist K(p,0) = max {K — distance(0),d(p, 0)}

Simply put, if p is far away from o then the
reachability distance between them is their actual
distance d(p,0). Otherwise, if they are sufficiently
close, the actual distance is replaced by the K-
distance of o.

6. Calculate the Local Reachability Density (LRD) of
p. which is an estimation of the density at point p,
defined as the inverse of the average reachability
distance of the K nearest neighbors of p:

o eng(p) Teach_dist K(p, 0)

[Nk (P)]

A low value of LRD, (p) indicates that p is far from
its closest cluster.

7. Calculate Local Outlier Factor (LOF) of p, which is
a ratio that determines whether or not a point is an
outlier with respect to its neighborhood. Basically,
LOF(p) is the average of the ratios of the local
reachability density of p and those of p’s K-nearest
neighbors:

LRDy(p) = 1/ g:

LRD (0)
Zo ENg(p) LRDK (p)

[Nk (0)]

LOF,(p) =

A high value of LOF,(p) implies that the density
around p is much different from the density around
its K nearest neighbors. Thus, indicating that p is
potentially an outlier.

LOF works well in outlier detection but the number of
neighbors K must be manually chosen. Increasing K or
reducing it too much could lead to misclassification as
outliers.

IV. AN UNSUPERVISED MACHINE LEARNING-BASED
APPROACH TO DETECT ABNORMAL DNS TRAFFIC

In this section, we present our approach for detecting
abnormal DNS traffic. This process has been created
considering two hypotheses. First, APTs are sophisticated
attacks perpetrated by a threat group of highly skilled attackers
whose objective is to remain undetected for an extended
period. These attackers are trying to control their malicious
traffic to go under the radar. Thus, most of the network traftic
is genuine. The traffic corresponding to such attacks is very
low (e.g., less than 2 or 3% of the traffic). Indeed, if the
malicious traffic is higher, we consider that traditional
detection systems such as SIEMs can detect it. The second
hypothesis is related to detecting anomality. Without previous
knowledge, detecting outliers requires comparing similar
entities only. Consequently, the network traffic must be
preprocessed to separate the different network services (DNS,
HTTP(S), SMTP(S), etc.) before applying outlier detection.
Thus, our detection process is the following (Figure 1):

1. Separate the network traffic by service.

2. For each service, apply unsupervised machine
learning to detect outliers. We will evaluate four
algorithms K-means, GMM, DBSCAN, and LOF. In
our case, we will restrict the analysis to only DNS
traffic.

3. Post-analyze the outliers to determine the infected
machines

The experimentation and the evaluation of the approach
have been conducted using the Botsvl dataset [4] of the
Splunk project. This dataset is public and contains DNS-based
C&C traffic. After introducing the Botsv1 dataset, we describe
the data preparation. Then, we present the evaluation of the
four algorithms and select the best one to further improve.
Finally, we analyze the results and show how a simple post-
analysis can provide useful information.

Filtering by
Service
(DNS, HTTP.

Detect outlier
(based on Machine
Learning)

Figure 1. Our proposed approach
A. Choice of the dataset & preparation for evaluation

Our goal is to detect abnormal DNS traffic which may
carry C&C other data flows. We searched for public datasets
which contain both benign DNS and DNS tunneling. We also
want this dataset to be representative of current DNS-based
attacks.

Authors of related work ([19] [20] [21]) created their own
dataset by using several free tools for performing DNS

tunneling, such as loDine, Dns2tcp (as high- throughput
tunneling tools), FrameworkPOS and Backdoor.Win32.Denis
(as DNS exfiltration malware). However, these datasets are
not public and cannot be reused or evaluated.

Ryan Kovar, David Herrald, and James Brodsky from
Splunk have recently published the Boss of the SOC Dataset
Version 1 (Botsvl) [4]. This dataset contains evidence
captured during actual computer security incidents, or from
realistic lab recreations of security incidents. Botsv1 consists
of two parts: the original dataset containing all data, and a
much smaller version of the original dataset containing only
attack data. The original dataset is available in several
formats: 6.1GB compressed, several JSON files by source
type, several CSV files by source type (such as stream:dns,
stream:http, stream:snmp, etc). Our purpose is to detect
abnormal DNS traffic, thus we selected “stream:dns” only
(step 1 of our process). Splunk also provides an additional log
file that contains only the DNS-attack connections (called in
the rest of the article DNS-attack logs). This log file is used to
evaluate the DNS attack detection performance of the
unsupervised algorithms.

B. Data preparation

Since Botsvl-DNS and DNS-attack logs are raw Splunk
logs, they must be transformed to create a proper dataset
suitable for applying machine learning algorithms. First, we
chose the following features: message type, transaction id,
src_ip, src_port, dest_ip, dest port, bytes, bytes in,
bytes out, time taken, transport, timestamps. From
timestamps, we extracted three sub-features: hour, minute,
week number (0-4: weekday, 5-6: weekend). The categorical
variables have been transformed in order to calculate
distances. We used one hot encoding for message type (query
into 1 and response into 0) and transport (tcp into 0 and udp
into 1). We also applied a dummy encoding on the network
part of the IP addresses (src _ip and dest_ip).

After selecting and preparing the features, we labelled the
Botsv1-DNS dataset using the DNS-attack logs that allows us
to determine which connection is abnormal. The resulting
labelled dataset contains 1,362,580 genuine DNS connections
and 7418 attack connections. In order to evaluate how
machine learning algorithms can detect abnormal DNS traffic
with different attack percentages, we generated seven sub-
datasets of 100,000 records that respectively contain 0.1%,
0.5%, 1%, 2%, 3%, 4% and 5% of attacks.

C. Evaluation of algorithms

The second step of our process consists in applying
outliers detection algorithms. We evaluated four algorithms,
namely, K-means, GMM, LOF, and DBSCAN (see section
I1T) based on the seven datasets (from 0.1 et 5% of attacks).
We configured K-means and GMM to categorize the datasets
in two clusters (K = 2) to separate genuine and abnormal DNS
connections. DBSCAN and LOF were tuned according to the
maximum attack percentage (5%). Therefore, we set to 5% the
min_samples value of DBSCAN, and the number neighbors
of LOF. Finally, we defined eps to 6 for DBSCAN. This value
was obtained experimentally.

We use the detection rate (DR) and the false positive rate
(FPR) to evaluate the performance of the algorithms. The
detection rate is the number of attacks detected by the system
divided by the number of attacks in the dataset. The false

positive rate is the number of normal connections that are
misclassified as attacks divided by the number of normal
connections in the dataset. As consequence, a good algorithm
should achieve a high DR value while keeping the FPR low.

Figure 2 and Figure 3 display the abnormal DNS
connections DR and the FPR of the four algorithms for the
seven sub-datasets. K-means and GMM yield bad results. The
DR of K-means ranges from 54% to 59.3% and the FPR from
57.7% to 58.1%. The DR of GMM is better and varies from
58.5% to 100% but the FPR fluctuates between 57.8% and
96.6%. In addition, the performance of GMM is not stable and
depends on the attack rate. LOF has good DR results when the
attack rate varies from 0.1% to 2%. However, the FPR ranges
from 8.1% to 9.9%. DBSCAN gives the best results when the
attack rate is less than or equal to 2% with the DR at 100%
and the FPR from 6.6% to 8.5%. The FPR (16%) is higher
than LOF when the attack rate is 3%. Nevertheless, the DR of
LOF drops to 98% while it remains 100% for DBSCAN.
Therefore, we choose DBSCAN to further improvement and
considered the attack rate to be less than or equals to 3%. This
assumption is consistent with our hypothesis that the attack is
conducted by highly skilled attackers.

Comparison of Detection Rates between Kmeans, GMM,
DBSCAN, LOF (100,000 records)
100%

90%
80%
70%
60%
50%
40%
30%
20%
10%
0%
0.1% 0.5% 1% 2% 3% 4% 5%

Attack percentage

Detection Rate (DR)

mKmeans mGMM mDBSCAN = LOF

Figure 2. Detection Rate comparison

Comparison of False Positive Rates between Kmeans,
GMM, DBSCAN, LOF (100,000 records)

4% 5

%

100%
90%
80%
70%
60%

50%

40%

30%

20%

10% l
ooy [|] | [|

0.1% 0.5% 1% 2% 3%
Attack percentage

False Positive Rates (FPR)

mKmeans mGMM m DBSCAN LOF

Figure 3. False Positive Rate comparison

We concentrated on DBSCAN and tried to tune the values
of min_samples and eps. Firstly, we kept the value of eps to 6
and change the value of min_samples to 100, 500, 1000, 2000,
and 3000 (i.e. respectively 0.1%, 0.5%, 1%, 2% and 3% of the
dataset). Figure 4 and Figure 5 depict the DR and FPR of
DBSCAN when changing the value of min samples on the
five sub-datasets with different attack percentages (attack rate
0.1%, 0.5%, 1%, 2% and 3%). The best min_samples value is
clearly corelated with the attack rate when considering the

DR. As a consequence, the value of min samples should be
defined according to the maximum expected attack rate value.
However, the FPR increases at the same time as min_samples.
When the value of min samples is equal to 2000 (i.e. 2% of
the dataset), the FPR ranges from 2.1% to 2.26% while it
grows up to 6.6% to 16% when min_samples is equal to 3000
(e.g. 3% of the dataset).

With these observations, we decided to choose 2000 as the
value of min_samples (i.e. 2% of the dataset) when trying to
improve the performance of DBSCAN. However, the
performance of DBSCAN depends also on the value of eps. In
this case, we initially defined eps to 6 which was obtained
experimentally. In order to generalize our approach, we need
to calculate the optimal value algorithmically.

The optimal value of eps can be computed using the K-
nearest neighbors (KNN) similar to the approach proposed by
Gaonkar and Sawant [28]. The basic idea of the algorithm is
to calculate the average distance between each point and its K-
nearest neighbors, where K = min_samples.

Detection Rates of DBSCAN(eps = 6) on 100,000 records
100%

9
80%
70%
[
S
4
3
2
1
. Almem n n
100 500 1000

2000 3000
min_samples =100, 500, 1000, 2000, 3000

Detection Rate (DR)
Q
R

FERIER

=}

m0.1%attacks m0.5% attacks m 1% attacks 2% attacks m 3% attacks

Figure 4. Detection Rates of DBSCAN (change min_samples)

False Positive Rates of DBSCAN (eps = 6) on 100,000
records

100%
90%
80%
70%
60%
50%
40%
30%
20%
10%
0% R ————] | | l
100 500 1000 2000 3000
min_samples =100, 500, 1000, 2000, 3000

False Positive Rate (FPR)

m0.1% attacks m0.5% attacks m 1% attacks 2% attacks m 3% attacks

Figure 5. False Positive Rates of DBSCAN (change min_samples)

Then we sort those average distances in ascending order
and choose the value that covers 96% of the data to be the
value of eps. Thus, the value of eps can be automatically
computed for a given dataset and a given value of K (K =
min_samples). By applying this technique, we obtained the
value of 6.5 for eps. This computed value is close to the one
we obtained by experimentation.

To conclude the evaluation of DBSCAN, we calculate the
Areca Under Curve - Receiver Operating Characteristics
(AUC-ROC) [29]. which is a performance metric for binary
classification problem (in our case, benign and attack). ROC

is a probability curve that demonstrates the performance of
models in distinguishing two classes. The whole arca
underneath the ROC (between the ROC line and the axis) is
the AUC. The value of AUC ranges from O to 1. The bigger
arca is, the higher AUC and the better the model is at
predicting benign traffic and attacks. Figure 6 shows the
performance of DBSCAN. The final result is relatively good
in all cases with the DR at 100%, the FPR from 1.6% to 2.3%
and AUC from 0.988 to 0.992.

10
09
08
07
@
2
S os
=
S os
=
51
2 os
[
o 03
—— ROC 0.1%attacks, AUC=0.988
02 ROC 0.5%attacks, AUC=0.990
ROC 1%attacks, AUC=0.992
iy —— ROC 2%attacks, AUC=0.991
00 ~—— ROC 3%attacks, AUC=0.989

00 o1 02 03 04 0s 06 07 08 09 10
Flase Positive Rate

Figure 6. ROC curves for the dataset 100,000 records

D. Critical analysis of results and Post analysis

Using DBSCAN to identify outliers gives relatively good
results with DR at 100% and the FPR ranges from 1.6% to
2.3%. However, 2.3% of FPR in a dataset containing 100,000
records means there are 2300 benign connections
misclassified. Therefore, detecting infected hosts still requires
a lot of manual work.

Top 10 high request src (100,000 records, 0.5% attacks)

192.168.250.100
192.168.250.20
192.168.250.40
192.168.225.96
2,192.168.225.111
b 19216823165
192.168.231.50
192.168.230.31
192.168.231.42
192.168.224.9
0 2 4 6 8 100 10 140
total request
Figure 7. Top 10 number of requests of outlier dataset

We analyzed the results after applying DBSCAN to see if
we can determine more precisely abnormal DNS
communications. Infected hosts change their DNS behavior
like increasing the volume of requests or the volume of bytes
out that may identify signs of C&C communication or data
movement. Thus, we ranked the IP addresses in the abnormal
cluster regarding the number of requests and the number of
bytes sent out. Figure 7 shows the top 10 high number of
requests and Figure 8 displays the top 10 high volume of bytes
sent out of the anomaly cluster after applying DBSCAN on
the dataset with 0.5% attacks. Three IP addresses stand out:
192.168.250.100, 192.168.250.20 and 192.168.250.40. These
IP addresses correspond exactly to the three machines that
were infected in the dataset.

One can argue that apply the same ranking on the whole
dataset would give the same result. Figure 9 displays the top

10 high requests and Figure 10 shows the top 10 high bytes
out from the original 0.5% attacks. We can see that
192.168.250.100 and 192.168.250.20 are hidden in the middle
of this top 10 ranking without any significative difference
from benign DNS traffic. Worst, 192.168.250.40 is not in the
top 10.

This proves the usefulness of applying DBSCAN to detect
outliers and that a simple post-analysis on the abnormal cluster
can help to discover infected hosts.

Top 10 high bytes out src (100,000 records, 0.5% attacks)

192.168.250.100
192.168.250.20
192.168.250.40
192.168 231.34
192.168.229.38
192.168.224.25
192.168.231.15
192.168.225.83
192.168.227.50
192.168.231.1

(’) 25'00 SOIOO 75IOO IOOIOD 125;00]50‘00 17.’;00
total bytes out

Figure 8. Top 10 volume of bytes out of outlier dataset

sc_ip

Top 10 high request src (100,000 records, 0.5% attacks)

192.168.225.111
192.168.229.203
192.168.225.96
192.168.250.100
192.168.250.20
192.168.225.46
192.168.225.44
192.168.225.45
192.168.230.23
192.168.229.224

0 100 200 300 400 500 600

total request

e
o
&

Figure 9. Top 10 number of requests of original dataset

Top 10 high bytes out src (100,000 records, 0.5% attacks)

192.168.225.111
192.168.229.203

192.168.225.96
192.168.250.100

192.168.250.20

192.168.225.46

192.168.225.45

192.168.225.44
192.168.229.246
192.168.229.233

0 20000 40000 60000 80000
total bytes out

Figure 10. Top 10 volume of bytes out of original dataset

=
!
B

100000

V. CONCLUSION AND FUTURE WORK

In this paper, we presented a behavioral analysis approach
based on unsupervised machine learning for detecting
malicious DNS traffic with the hypothesis that the dataset
contains only DNS traffic, and malicious traffic is rare (less
than 3%). We used the logs Botsv1 provided by Splunk and
extracted the information to build a dataset. We compared the
performance of four algorithms K-means, GMM, LOF, and
DBSCAN on the dataset 100,000 records with different attack
percentages. DBSCAN gives the best result with the DR at

100% and the FPR ranges from 6.6% to 16% in case the attack
rate varies from 0.1% to 3%.

We improved the performance of DBSCAN by tuning
parameters min samples and eps. The value of min samples
depends on the attack rate. Setting it at 2% of the dataset
allows us to detect abnormal DNS traffic ranging from 0.1%
to 3% of the whole traffic. Using KNN gives us the ability to
automatically determine a good value for eps. Thus, we are
able to achieve 100% DR, while keeping the FPR as low as
1.6%to 2.3% and the AUC as high as 0.988 to 0.992.

After removing benign entities, we analyzed the outlier
cluster detected by DBSCAN. By looking at changes in DN'S
behavior like the high number of requests or volume of bytes
out, we could determine the infected hosts, which was not
possible in the original data.

In the future, we will extend our approach to other
protocols like HTTP(S) and SMTP(S). We will also apply
ensemble learning methods [30] that combines the decisions
from multiple models to improve the overall detection
performance and reliability. Finally, we aim at integrating
such techniques into a global security management
infrastructure (e.g., [31], [32]) to dynamically respond to
detected attacks.

ACKNOWLEDGMENT

This work was supported by MODIS, France. Special
thanks go to Louis Garcia, Charles Fortunet (Innovation
Center, MODIS) for their fruitful comments.

REFERENCES

[1] A. Benzekri, R. Laborde, A. Oglaza, D. Rammal, and F. Barrére,
“Dynamic security management driven by situations: An exploratory
analysis of logs for the identification of security situations,” in 2019
3rd Cyber Security in Networking Conference (CSNet), 2019, pp. 66—
72.

[2] “Cybersecurity 2019-2020.” https://www.ptsecurity.com/ww-
en/analytics/cybersecurity-2019-2020/ (accessed Sep. 18, 2020).

[3] “APT32, Sealotus, OceanLotus, APT-C-00, Group G0050 | MITRE
ATT&CK®.” https://attack.mitre.org/groups/G0050/ (accessed Jun.
12, 2020).

[4] splunk/botsvl. Splunk GitHub, 2020.

[5] E.Leon, O. Nasraoui, and J. Gomez, “Anomaly detection based on
unsupervised niche clustering with application to network intrusion
detection,” in Proceedings of the 2004 Congress on Evolutionary
Computation (IEEE Cat. No.O4THS8753), Portland, OR, USA, 2004,
pp. 502-508, doi: 10.1109/CEC.2004.1330898.

[6] “KDD Cup 1999 Data.”
http://kdd.ics.uci.edu/databases/kddcup99/kddeup99.html (accessed
Sep. 18, 2020).

[7]1 P. Casas, J. Mazel, and P. Owezarski, “Unsupervised Network
Intrusion Detection Systems: Detecting the Unknown without
Knowledge,” Comput. Commun., vol. 35, no. 7, pp. 772783, Apr.
2012, doi: 10.1016/j.comcom.2012.01.016.

[8] P.V.Amoli, T. Hamalainen, G. David, and M. Zolotukhin,
“Unsupervised Network Intrusion Detection Systems for Zero-Day
Fast- Spreading Attacks and Botnets,” p. 13.

[9]1 A. Shiravi, H. Shiravi, M. Tavallaee, and A. A. Ghorbani, “Toward

developing a systematic approach to generate benchmark datasets for

intrusion detection,” Comput. Secur., vol. 31, no. 3, pp. 357-374,

May 2012, doi: 10.1016/j.c0se.2011.12.012.

R. Aliakbarisani, A. Ghasemi, and S. Felix Wu, “A data-driven

metric learning-based scheme for unsupervised network anomaly

detection,” Comput. Electr. Eng., vol. 73, pp. 71-83, Jan. 2019, doi:
10.1016/j.compeleceng.2018.11.003.

“Traffic Data from Kyoto University’s Honeypots.”

http://www.takakura.com/Kyoto data/ (accessed Sep. 20, 2020).

“NSL-KDD | Datasets | Research | Canadian Institute for

Cybersecurity | UNB.” https://www.unb.ca/cic/datasets/nsl.html

(accessed Sep. 20, 2020).

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]
[28]

[29]

[30]

[31]

[32]

Y. Kazato, Y. Nakagawa, and Y. Nakatani, “Improving
Maliciousness Estimation of Indicator of Compromise Using Graph
Convolutional Networks,” in 2020 I[EEE 1 7th Annual Consumer
Communications & Networking Conference (CCNC), Las Vegas,
NV, USA, Jan. 2020, pp. 1-7, doi:
10.1109/CCNC46108.2020.9045113.

H. Gunes Kayacik, A. Nur Zincir-Heywood, and M. I. Heywood, “A
hierarchical SOM-based intrusion detection system,” Eng. Appl.
Artif. Intell., vol. 20, no. 4, pp. 439-451, Jun. 2007, doi:
10.1016/j.engappai.2006.09.005.

S. Zanero and G. Serazzi, “Unsupervised learning algorithms for
intrusion detection,” in NOMS 2008 - 2008 IEEE Network
Operations and Management Symposium, Salvador, Bahia, Brazil,
2008, pp. 1043-1048, doi: 10.1109/NOMS.2008.4575276.

“1999 DARPA Intrusion Detection Evaluation Dataset | MIT Lincoln
Laboratory.” https://www.1l.mit.edu/r-d/datasets/1999-darpa-
intrusion-detection-evaluation-dataset (accessed Sep. 18, 2020).

Y. Chen, J. Zhang, and C. K. Yeo, “Network Anomaly Detection
Using Federated Deep Autoencoding Gaussian Mixture Model,” in
Machine Learning for Networking, vol. 12081, S. Boumerdassi, E.
Renault, and P. Miihlethaler, Eds. Cham: Springer International
Publishing, 2020, pp. 1-14.

Md. S. Alam et al., “Memristor Based Autoencoder for Unsupervised
Real-Time Network Intrusion and Anomaly Detection,” in
Proceedings of the International Conference on Neuromorphic
Systems, Knoxville TN USA, Jul. 2019, pp. 1-8, doi:
10.1145/3354265.3354267.

I. Homem and P. Papapetrou, “HARNESSING PREDICTIVE
MODELS FOR ASSISTING NETWORK FORENSIC
INVESTIGATIONS OF DNS TUNNELS,” p. 12, 2017.

H. Lin, G. Liu, and Z. Yan, “Detection of Application-Layer Tunnels
with Rules and Machine Learning,” in Security, Privacy, and
Anonymity in Computation, Communication, and Storage, vol.
11611, G. Wang, J. Feng, M. Z. A. Bhuiyan, and R. Lu, Eds. Cham:
Springer International Publishing, 2019, pp. 441-455.

A. Berg and D. Forsberg, “Identifying DNS-tunneled traffic with
predictive models,” ArXiv190611246 Cs, Jun. 2019, Accessed: Jun.
09, 2020. [Online]. Available: http://arxiv.org/abs/1906.11246.

C. Jose, “Anomaly Detection Techniques in Python,” Medium, May
13, 2019. https://medium.com/learningdatascience/anomaly-
detection-techniques-in-python-50f650c75aaf (accessed Jun. 12,
2020).

J. Macqueen, “SOME METHODS FOR CLASSIFICATION AND
ANALYSIS OF MULTIVARIATE OBSERVATIONS,” Multivar.
Obs., p. 17.

D. Reynolds, “Gaussian Mixture Models,” in Encyclopedia of
Biometrics, S. Z. Li and A. Jain, Eds. Boston, MA: Springer US,
2009, pp. 659-663.

A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum
Likelihood from Incomplete Data Via the EA Algorithm,” J. R. Stat.
Soc. Ser. B Methodol., vol. 39, no. 1, pp. 1-22, Sep. 1977, doi:
10.1111/4.2517-6161.1977.tb01600.x.

M. Ester, H.-P. Kriegel, J. Sander, and X. Xu, “A density-based
algorithm for discovering clusters in large spatial databases with
noise.,” in Kdd, 1996, vol. 96, no. 34, pp. 226-231.

M. M. Breunig, H.-P. Kriegel, R. T. Ng, and J. Sander, “LOF:
Identifying Density-Based Local Outliers,” p. 12.

M. N. Gaonkar and K. Sawant, “AutoEpsDBSCAN : DBSCAN with
Eps Automatic for Large Dataset,” vol. 2, no. 2, p. 6.

A. P. Bradley, “The use of the area under the ROC curve in the
evaluation of machine learning algorithms,” Pattern Recognit., vol.
30, no. 7, pp. 1145-1159, Jul. 1997, doi: 10.1016/S0031-
3203(96)00142-2.

O. Sagi and L. Rokach, “Ensemble learning: A survey,” Wiley
Interdiscip. Rev. Data Min. Knowl. Discov., vol. 8, no. 4, Jul. 2018,
doi: 10.1002/widm.1249.

B. Kabbani, R. Laborde, F. Barrere, and A. Benzekri, “Specification
and enforcement of dynamic authorization policies oriented by
situations,” in New Technologies, Mobility and Security (NTMS),
2014 6th International Conference on, 2014, pp. 1-6, Accessed: Aug.
28, 2015. [Online]. Available:

http://ieeexplore.icee.org/xpls/abs all.jsp?arnumber=6814050.

R. Laborde, A. Oglaza, A. S. Wazan, F. Barrere, and A. Benzekri, “A
situation-driven framework for dynamic security management,” Ann.
Telecommun., vol. 74, no. 3—4, pp. 185-196, 2019.

