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Abstract

The phenomenon of division by zero is considered from the perspec-
tives of logic and informatics respectively. Division rather than multi-
plicative inverse is taken as the point of departure. A classification of
views on division by zero is proposed: principled, physics based princi-
pled, quasi-principled, curiosity driven, pragmatic, and ad hoc. A survey
is provided of different perspectives on the value of 1/0 with for each view
an assessment view from the perspectives of logic and computing. No
attempt is made to survey the long and diverse history of the subject.
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1 Introduction

In the context of rational numbers the constants 0 and 1 and the operations of
addition ( + ) subtraction ( − ) as well as multiplication ( · ) and division
( / ) play a key role. When starting with a binary primitive for subtraction
unary opposite is an abbreviation as follows: −x = 0−x, and given a two-place
division function unary inverse is an abbreviation as follows: x−1 = 1/x.

Number systems may be developed in many ways. I will assume that a
set N has been chosen which serves as the natural numbers including 0 and 1
and equipped with addition and multiplication. Now one may first contemplate
subtraction. For many inputs from N subtraction is unproblematic, e.g. 7−5 = 2
and subtraction is a valid operation by all means. However it turns out that
say 5 − 7 poses a problem. There seems to be a general consensus that the
phenomenon of 5 − 7 having no value in N is best solved by working in Z,
chosen as an extension of N, containing negative values. Then 5− 7 = −2 and
−2 is taken to be a value not in need of further evaluation.

Now in logic there is a significant tradition of taking the value of 7− 5 equal
to 0 because one insists not to extend the domain N. N has been brought to
prominence in the second half of the 19th Century mainly by Dedekind and
Peano. Gödel’s results regarding the incompleteness of axioms for arithmetic,
and for that reason for mathematics at large, are stated and proven about N. In
logic the tradition has grown to denote subtraction on natural numbers which
returns 0 rather than negative values (which don’t exist in the naturals) as
monus ( ·− ) so that 5 ·−7 = 0. When asked about the true value of 5−7 in the
setting of natural numbers logicians are unimpressed and will reply that they
prefer to use − in the context of integers where that question has a unique
and convincing answer.

In informatics most (if not all) program notations will have 5 − 7 well de-
fined and equal to −2. In program notations it is uncommon to have a standard
type natural which denotes a subtype of integer and the need for a monus
function does not arise. Unsigned integers are common in program notations
but these are conceived as finite domains and involve modulo arithmetic mod-
ulo the number of representable numbers (+1), so that working with monus
is an unnecessary complication. The monus function has ample application in
theoretical work, however.

Proceeding with division it is plausible to start out from Z rather than from
N and consider the “problem of subtraction” solved, by having subtraction as

3



a total function, i.e. defined on all inputs. Division is clear for many inputs for
instance 4/2 = 2, but not for all inputs, for instance not for 3/2. By extend-
ing the Z once more and embedding it in Q, a field of rational numbers, most
divisions become well-defined, though exceptional cases arise from attempts to
divide by zero. This observation leads to the paradigmatic question: what is
1/0? There is a long history of speculation and contemplation concerning this
particular question. Today’s conventional response, at least for the automated
arithmetic of floating point approximations of real numbers, is that 1/0 = +∞,
an idea which was implemented already by Konrad Zuse in the earliest stage of
electronic computer design. The idea that 1/0 = +∞ is best appreciated as one
option out of a plurality of views on division by zero, and mapping out the plu-
rality of views on that matter is my objective in this paper. I will restrict focus
mainly to considerations from logic and computing, leaving al but untouched
the aspects (if any exist) of relevance for the identification of 1/0 which have a
background mathematics, physics, and philosophy.

Abbreviation: DbZ. Below I will use DbZ as an abbreviation for the theme
of division by zero, not just for questions regarding the value and status of 1/0.

1.1 Structure of the paper

The structure of the paper is as follows: first I will survey different ways in
which DbZ may appear in logic and computer science. The survey takes the
form of a 5 layer model, mainly focusing on computing. Thereafter I provide
a list of qualifications of perspectives on DbZ. DbZ being a controversial topic
such qualifications matter a lot, and it is helpful to have these qualifications
in an explicit form. Then I will describe the current mainstream view on DbZ
as it appears in educational practice as well as in most work of professional
mathematicians. I will conclude that justification of the mainstream position
is puzzling, an observation which may be contrasted with ubiquitous claims to
the contrary.

Having given a detailed description I am in the position to survey alterna-
tive views of which there are many. I will distinguish 11 different alternative
positions on DbZ. Although the positions on DbZ in the survey are theoretical
positions, it is useful to contrast these positions with observations made on the
handling of DbZ in different programming languages. Throughout the paper
there will be links to programming practice in various program notations. The
paper ends with some concluding remarks, phrased as conclusions about DbZ.

2 Aspects of division by zero in computing

A major source of information regarding questions about division by zero in
the context of informatics has come about from programming languages and
language design. This takes place at different layers.
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2.1 Five layer model for DbZ in computer programming

I will speak of DbZ for any occurrence of division by zero. I will speak of DvZ
handling in order to refer to the policy of dealing with DbZ for a program or
program notation. DbZ (and DbZ handling) can be static or dynamic. For logic
there is only the layer of theoretical reflection while for computing the situation
is far more complicated than that. Five layers of abstraction concerning DbZ
can be distinguished as follows.

Theory of computer science layer. In the top layer design proposals are
contemplated and analysed, some of which may become ubiquitous and
some of which may never be implemented.

Program notation independent standardisation layer. Program notation
design is guided by various standards which are supposedly valid for a plu-
rality of such design. A famous example is ASCII, an original standard
for the binary representation of characters. In connection with DbZ the
IEEE 754 floating point standard provides suggestions for how to design
program notations when it comes to implementations of reals (in fact al-
ways a subset of rationals). This standard deals extensively with DbZ
and, importantly, does not impose that a run is aborted as soon as DbZ
occurs. On the contrary it is suggested to proceed calculations with a
signed infinite value, the sign depending on the sign of the numerator. Di-
viding 0 by 0 is considered worse, but again instead of imposing abortion
it is suggested that calculations proceed with NaN an entity.

The world of NaNs is complicated. There will be a plurality of NaNs, at
least two of them. Silent NaNs are distinguished from signalling NaNs which
cause an exception or an abort of the run.

Program notation specific standardisation layer. A design for a program
notation requires a precise description (standard) which explains those
who intend to implement a program notation what must be doen, and
which explains users of such implementations what they may expect. A
particular program notation may be documented ins such a manner that
it is undefined (red unspecified) how to handle an instance of DbZ. The
documentation may be much more specific about that matter as well.

Program notation implementation specific layer. This layer is amenable
to empirical observation. Given a specific implementation of a program
notation it can be analysed what behaviour results from programs the
execution of which will contain instances of DbZ. The following aspects
arise:

• Compile time rejection of a candidate program because the occur-
rence of DbZ follows from the text at hand. (This option is unfeasible
as it is for a given text undecidable whether or not a fracterm with
denominator equal to zero will occur during a computation. What
could be done is to ask the programmer to prove that property and
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to make the compiler check the proof. Admittedly forcing the pro-
grammer to work in that manner would be a very big step, which
given current technology is not likely to be taken in the near future.)

• Run time abortion with an error message upon an occurrence of DbZ.

• Run time exception handling with an error message upon an occur-
rence of DbZ.

• Run time evaluation of DbZ into a specific non-numerical value (to
name some options NaN, inf, +inf,-inf).

• Run time exception handling with an error message upon calculations
following an occurrence of DbZ, the first steps of which have been
handled with the help of non-numerical values.

Program specific layer. In the program specific layer it is analysed how and
why in a particular application a certain policy on DbZ handling is made
use of, and of course, if and how that use could be improved.

3 Qualitative labelling of positions on DbZ

Principled position. A principled position on DbZ involves the perspective
that not only the position is consistent and workable but in addition the
idea that as a position it is superior to alternative positions on DbZ, this
superiority being based on quite general considerations.

Examples.

(i) The mainstream position on DbZ (strictly maintaining that an expres-
sion p/q is only used in a context where arguably q is nonzero).

(i) The Division by Zero calculus due to S. Saitoh et.al. (see e.g. [34]
and references cited in that paper), adopting ∀x(x/0 = 0) and the logical
consequences thereof as a point of departure for developing arithmetic as
well as analysis in mathematics).

(iii) The view that the equation ∀x(x/x = 1) expresses a universally valid
principle, and by consequence the assertion that 0/0 = 1.

Physics based principled position. Some positions take inspiration from ob-
servations on calculations in physics and argue for the validity and signifi-
cance of certain design decisions by pointing to correspondences with such
computations.

Example.

The position that 0/0 = 1 corresponds well with certain laws and calcu-
lations in physics.

Quasi-principled position. A quasi-principled position on DbZ involves the
idea that at least for certain areas of application the position at hand is
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arguably superior to alternative positions. A quasi-principled position on
DbZ can accommodate without hesitation the existence of deviating alter-
native quasi-principled positions as long as these are meant for application
in other areas.

Examples.

(i) The design of transrationals, transreals and transcomplex numbers
([2, 26]) reflects a quasi-principled position. This position is a realiza-
tion (though not a unique one) in the context of DbZ of the more gen-
eral principled position, held by the designers, of transmathematics, that
mathematical systems are best equipped with total functions.

(ii) the common meadows of [14] (with 1/0 = ⊥) represent a quasi-
principled position. Common meadows are suitable, more so than any
of the other alternative views on DbZ, for formalizing the mainstream
position on DbZ.

(iii) The IEEE 754 standard expresses a view (with 1/0 = +∞, and 0/0 =
Φ, where Φ is Nullity, a transrational constant) which is principled in
the sense that design decisions have been taken after ample reflection in
a plurality or committees only and which is quasi-principled because the
standard is a man-made entity the design of which always comes with
possible but rejected alternatives. (The description of the requirements
of the standard with 1/0 = +∞ and 0/0 = Φ ought to be explained in
terms of the somewhat counterintuitive “equational” logic of NaNs, but
such details are better covered elsewhere.)

Curiosity driven position. A curiosity driven position is detached from any
judgment of practical or theoretical value of the position at hand.

Example.

The work by Komori in 1975 ([31]) and by Ono in 1983 ([?]) on pseud-
ofields, adopting 1/0 = 0, both represent a curiosity driven position.

Pragmatic position. A pragmatic position involves a choice for a particular
view on DbZ while acknowledging that for the application at hand the ad-
vantage of the chosen positions over some of the other possible positions
on DbZ is at best marginal.

Example.

For instance choosing 1/0 = 0 in the design of a proof checking system
(e.g. Coq or Isabelle), is only marginally better (more convenient) than
choosing 1/0 = 1 or say 1/0 = 754.

Ad hoc position. Ad ad hoc position on DbZ (or on a DbZ related matter)
is a mere design decision without a clearly pronounced rationale.

Example.
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As an example I mention the original design decision that 0/0 = 1 in
APL. (Not the case, however, in the online APL environment I have been
experimenting with, see 7.1 below.)

4 Mainstream position on DbZ

According to mainstream views 1/0 is undefined, and expressions like 1/0 must
be avoided as a matter of principle.

Adopting that 1/0 has no definition, in other words that division is a partial
function, in combination with pursuing and demanding a style of writing which
avoids the use of any expression which is undefined for the reason of involving
an occurrence of division by zero is the mainstream perspective on division by
zero in mathematics and in school arithmetic as well.

The mainstream view will reject the assertion “1/0 is undefined” because
any use of an expression like 1/0 stands in sharp contrast with the supposedly
well-known objective of dividing 1 by 0. Any attempt to find a value for 1/0 is
considered incoherent given the fact that 0 · a = 0 for all a and the existence of
an a such that 0 · a = 1 can be excluded beforehand. But this observation must
not be read as 1/0 denoting an irrational number, as 1/0 is far less rational than
being merely irrational (i.e. not being the value of a ratio).

Following the remark made above in the first item of the description of the
program specific standardisation layer, it is hardly conceivable to extend the
mainstream conventions to the current practice of imperative programming.
Doing so requires formal methods, programmer written correctness proofs, and
a proof checking compilers, which is possible in principle, but not yet in practice.
Having said that program verification technology is becoming better and better
and may pessimism on the matter may soon be outdated.

4.1 Connections of the mainstream position with infor-
matics and logic

• Most, if not all, work in theoretical informatics adopts the mainstream
position on division by zero, unless the theme of division by zero is the
topic at hand (I am unaware of any exception).

• Most, if not all, work in logic adopts the mainstream position on division
by zero, unless the theme of division by zero is the topic at hand. However,
in model theory it is often assumed that 1/0 has some predefined (but
arbitrary) value and the work is then arranged in such a manner that the
choice of that value is immaterial.

• The status of division by zero is classically not regarded as a worry for the
foundations of mathematics which is worth more than casual attention.
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4.2 Elaboration of the mainstream position.

I notice that from the mainstream perspective the assertion that “
∑∞

n=1 1/n is
undefined” is adopted as a meaningful assertion. That is done in view of that
fact that non-convergence of said infinite sum is a non-trivial mathematical
insight itself worth of a mathematical proof. In fact the mainstream approach
tolerates expressions without value in most, if not all, circumstances, while the
mainstream approach rejects the use of expressions for which the nonexistence
of a value is manifest without proof. Arguably division by zero is unique in
that respect, and in all other cases a more flexible approach to the acceptance
of notations is taken.

I hold that in the mainstream view “a result of dividing 1 by 0 cannot exist”
represents the paradigmatic instance of mathematical non-existence. Moreover
this very state of affairs is appreciated for its power to support the awareness
of non-existence as a first class citizen in mathematical discourse at a very
early level of mathematical education. Awareness of non-existence supports
an understanding of mathematics as a battle against the (collective) enemy of
non-existence.

4.3 Elusive foundations of the mainstream position

Because of the notorious ambiguity of “fraction”, is it a value or is it an ex-
pression, I will speak of a fracterm if an expression is meant. A fracterm is
an expression with division as the leading function symbol, I refer to [7] for an
exposition on fracterms.

The “mainstream” objection against using the fracterm 1/0 is founded on
wide-spread certainty regarding validity of the equation 0 · x = 0 which implies
0 · x 6= 1. If, however, it is 100% certain that 0 · x 6= 1 then 1/0 must be a
non-denoting fracterm, i.e. a fracterm to which no meaning is assigned. And it
is a plausible rule of thumb that surely non-denoting fracterms should not be
used.

Now, the objection that 1/0 does not exist because there is no known rational
number p which satisfies 0 · p = 1 cannot be held against the use of 1/0. Indeed
there is no principled objection against the use of

√
2, an objection which is

merely based on the absence of a rational number that satisfies p2 = 1. And
there is no principled objection against the use of

√
−1 based on the absence of

a real number p that satisfies p2 = −1. Notations are not rejected if these are
meaningful in larger number systems. Now returning to the fracterm 1/0 it is
far from obvious why it is so often supposed to be self-evident that x ·0 = 1 will
not be satisfied in any significant extensions of the number system. If that is a
theorem, it is in need of a proof. If it is an axiom then that should be said, if
it is an empirical observation then the relevant facts must be put on the table.

Rejecting as mathematically non-professional and as a sign of defective un-
derstanding any use of the fracterm 1/0 can only be based on adopting the truth
of 0 · x = 0 (and of 0 · x 6= 1) as more far reaching than most “ordinary” axioms
of arithmetic. Doing so can be done for different reasons, however, and at least
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the following options for motivating that assumption may be distinguished, each
of which support current mainstream notational practices regarding division by
zero.

(i) 0 · x = 0 is considered a fundamental axiom which will hold forever by
way of a collective mental decision, (and 0 · x = 0 is a more far reaching truth
than for instance x2 ≥ 0 a fact which easily follows from the understanding of
a square as the surface of a geometrical figure. It is also a more far reaching
truth than 1 + 1 6= 0 which turns out to hold in a field of characteristic 2.)

(ii) Until now no mathematician has developed an extension of the known
number system(s) with elements for which 0 ·x = 0 fails and where 1/0 acquires
a proper value, and which has gained broad acceptance. At the same time one
is aware that his state of affairs might conceivably change in the future. For
instance the introduction of non-standard numbers in nonstandard analysis, in
the 60ties of the 20th Century, has created new numbers. The introduction
of nonstandard analysis has turned the Archimedian axiom ∀x ∈ R(x > 0 →∨
n∈N(x < n)) into a defeasible fact.

In other words: rejection of the use of 1/0 is sufficiently grounded in the
observation that no currently accepted number system introduces a value for
that fracterm.

(iii) It is a fundamental but unprovable hypothesis underlying the design of
mainstream arithmetic that no such extension of the known number systems will
be found and for that reason any use of 1/0 may be rejected. This hypothesis
may be compared with the hypothesis that Peano’s axioms are consistent.

(iv) A general dislike of the fracterm 1/0 is a mainstream attitude at the
moment but that observation must not be taken too seriously and mainstream
thinking may change on this matter and may turn to alternative options in the
future. That mathematical education nowadays pays much attention to integer
numbers with addition subtraction and multiplication and to the extension to
the field of rational numbers is perhaps only a temporary phase, and once other
parts of mathematics gain prominence the focus on disputing the credibility of
say 1/0 may fade away.
In school arithmetic, students are often told that obviously there is no x such
that 0 · x = 1, with as an immediate consequence that 1/0 is obviously non-
denoting. But I see no way in which it is (or might be) obvious (for beginning
students) that for all plausible extensions of the integers, now and in the future,
there will be no such x. once more contemplating

√
−1, which asks for a scenario

where x2 is negative, it must be acknowledged that a considerable amount of
out of the box thinking may be needed to find a scenario where for some x,
0 · x = 1 holds.

4.4 Mismatch with terminology from informatics

In informatics, in particular in the science of computer programming, if a lan-
guage standard states that say the result of dividing by zero is undefined that
means that in an implementation anything can happen. If say it is required
instead that upon having been instructed to divide by zero the run of a pro-
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gram must abort with a runtime error message then that requirement must be
explicitly stated.

In the theory of computation a value being undefined is often identified
with divergence (i.e. non-termination) of the computation of that value (by a
given program on a given machine or machine model). The latter interpretation
of “undefined” has little connection with the interpretation of assertions that
“division by zero is undefined”.

In mathematics, however, the assertion that division by zero is undefined
implies that an expression 1/0 must not be given a meaning (even if that could
be done).

4.5 Ammended mainstream: 0/0 = 0 with 1/0 undefined

The mainstream position may be somewhat more tolerant by adopting the frac-
term 0/0, and assuming that 0/0 = 0. This assumption is consistent with the
idea that when x/y = z it must be the case that y ·z = x. Having 1/0 undefined
may go hand in hand with adopting 0/0 = 0. I will refer to that position as the
ammended mainstream position on DbZ.

4.6 Peripheral numbers: thinking outside the box

When deviation from the mainstream position it is plausible to think of “new”
entities as numbers, and to allow there new entities not to comply with one
or more conventional rules. I will speak of peripheral numbers and I will use
a formal definition of that notion. The idea, though not formally required is
that non-peripheral numbers constitute an additive ring, the peripheral numbers
lying outside that ring.

Definition 4.1. (Peripheral numbers) Let Σ contain + ,− , 0, all for sort s.
An element p of sort As of a Σ-algebra A is peripheral in A if p+ (−p) 6= 0.

5 Grounds for deviating from the mainstream
position on DbZ

Whoever deviates from the mainstream position will need to find reasons for
doing so. In the case of DbZ there is a plurality of reasons one may put forward
for motivating other positions. It is impossible to give an ordering of importance
for these reasons because different alternative views differ on the matter of
relative weight of different possible reasons.

Empirical grounds I. DbZ is a phenomenon which occurs or may occur dur-
ing the run of a computer program. Even if considered undesirable the
question how to proceed when a computation calls for the evaluation of an
expression like 1/0 cannot be avoided. Now the observation is that many
(imperative) program notations will require that the fragment

x = 1/0; print(x); print(′,′ ); y = −x; print(y)
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(with x = t denoting an assignment, and x a variable capable of containing
floating point values) will produces something like

+Inf , −Inf

The key observation is that 1/0 is supposed to have a signed value different
from the usual values. This arrangement is so wide-spread that it is far
from obvious that the mainstream position is worth its name. In the world
of computer programming the mainstream position is a minority position.

Remark. I have not found any research work which explains in terms
of examples and results about such examples why it is or might be an
advantage that a run of a program proceeds, while working with “infinite”
values instead of aborting or raising an exception. Of course there is
empirical evidence that the use of peripheral values allows computing to
proceed where it otherwise might have to stop, and that in this manner
the use of peripheral values may be time-saving, but there seems to be
no theoretical account of such matters which formulates said advantage in
terms of stated theorems with proofs.

Abortion or raising an exception will happen in some but not all program
notations with the following fragment:

x = 1/0; print(x); print(′,′ ); y = x− x; print(y)

The idea is that although one may still claim that upon the assignment
x = 1/0 it is known that, say x > 17, following the assignment y = x− x

no such information exists about y there is no reliable information about
the size of y relative to ordinary values.

In any case from the perspective of current program notations: (i) an
expression 1/0 is program text will in most notations not give rise to a
compile time error, and (ii) it is the rule rather than the exception that
1/0 is given a value which can be used in computations and which more
or less behaves like other (conventional) values.

Empirical grounds II. For computer supported proof systems it is conven-
tional to adopt a rule of the form 1/0 = a for some number a and then
to make the logic independent of the choice of a. A well-known choice for
a is a = 0. In model theory (a branch of mathematical logic) a similar
convention is often assumed, and in model theory it is usual to simply
state that some fixed but unspecified a has been chosen for that purpose.

Pragmatic grounds I. If one prefers to use equational logic rather than first
order logic it becomes a significant advantage to have all operations total.
All known logics of partial functions (of which there are many) are quite
complicated in comparison with the equational fragment of first order
logic.

For instance if one intends to specify division by means of equational
axioms, an ambition which is implicit in the methodology of datatypes and
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abstract datatypes and which has its roots in software engineering, then
working with total functions (and with totalised division in particular)
turns out to be a significant advantage.

For fans of equational logic 1/0 = 0 is a relevant choice because it gives rise
to nice equations, to a workable logic and to an attractive meta-theory.
The choice 1/0 = ⊥ is an alternative which, though less elegant, lies much
closer to the mainstream ambition.

Pragmatic grounds II. One may hold that having a theory of numbers which
is closer to what happens in modern computer programming will have
many advantages: it may lead to more suitable applied mathematics, and
to a better exploitation of computing resources.

Ideological grounds I. One may hold that in the times of computing partial
operations are a problematic concept right from the start. A pocket cal-
culator will usually return an error message when asked to compute 1/0
(a formalisation of that convention is found by working with 1/0 = ⊥),
but it won’t stop working, wait forever, or need to be thrown away, or
to be restarted somehow (although clearing some memory which may be
required after performing an unfortunate division comes close to that).
Integrating exception handling in datatypes can be a good idea and is a
good idea in arithmetic. When motivated by this particular motive, one
will prefer having 1/0 = +∞ over say 1/0 = 0.

Ideological grounds II. One may hold that on the basis of philosophical or
other non-technical arguments there are deeper reasons to assign a mean-
ing to say 1/0 or to 0/0. These deeper reasons are then considered to
be quite independent of practical considerations. At least the following
positions have support on the basis of ideological considerations:

• 1/0 = +∞,

• 1/0 = 0,

• 0/0 = 0,

• 0/0 = 1.

6 Associativity and commutativity preserving al-
ternative views on DbZ

In [6] I have surveyed alternative options for division by zero. The focus of that
survey is on AC preserving alternatives with AC standing for associativity and
commutativity of addition as well as of multiplication. Here I will provide a
summary of that survey while paying more attention to methodological mat-
ters. The following options may be distinguished, the list being by no means
exhaustive.
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6.1 Logic(s) of partial functions

1/0 is undefined but there is no objection against the use of expressions like 1/0
or 2/(3− (1 + 2)). This idea underlies various logics of partial functions which
have emerged within logic as well as within computer science. This subject is
large and I can only give some references which are by no means covering the
theme at hand. I mention [22, 40, 29, 30].

The fundamental distinction between the use of a logic of partial functions
and the mainstream view is that the expression 1/0 is considered to feature no
fundamental typing problem, which justifies, or even requires its rejection, it
merely has no value.

Connections with logic and informatics. Various software specification
languages (e.g. VDM and CASL) make use of partial functions and logics of
partial functions, a policy which works for division by zero as well.

Comments on logics of partial functions in relation to DbZ. There
are different logics of partial functions. So-called Kleene equality identifies 1/0
with itself (i.e. 1/0 = 1/0 while in other such logics deriving an equation t = r
implies the that both t and r are denoting a value, from which it follows that
x = x is not a plausible axiom.

To the best of my knowledge each known logic of partial functions is sub-
stantially more complicated than first order logic, or equational logic, i.e. the
equational fragment of first order logic.

Now it is tempting to think that first order logic serves as a logical underpin-
ning of school arithmetic but that is not the case. To see this one may consider
the following assertion Φ ≡ ∀x(x 6= 0→ x · (1/x) = 1) which, I suppose will be
agreed to by most school teachers. However for Φ to be true it must (assuming
that first order logic is used) hold for all substitutions of x including x = 0.
Thus 0 6= 0→ 0 · (1/0) = 1 must hold true, which in turn requires 0 · (1/0) = 1
to have some truth value (either true or false, both truth values will do), and
which requires taking the subexpression 1/0 seriously somehow.

If one insists on formalising school arithmetic in first order logic it is advis-
able not to have division as an operation in the signature (otherwise avoiding an
expression 1/0 is impossible) but to work with x/y “as a notation for the unique
z such that y · z = x if z exists” and to adopt the rule that assertions involving
division must first be translated to equivalent assertions without division before
analysing the meaning.

6.2 Four brands of adopting 1/0 = 0

Adopting 1/0 = 0 is possible if one takes Φ ≡ ∀x(x 6= 0→ x · (1/x) = 1) as an
axiom for division and agrees that making division total by taking x/0 = 0 is
consistent with Φ. Adopting 1/0 = 0, however, can be done with quite different
objectives in mind.
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6.2.1 Principled zero-totalisation
(division by zero calculus)

Saburoh Saitoh and co-workers claim (since 2014) that adopting 1/0 = 0 is
a profitable idea for mathematics at large and that doing so would constitute
a step forward. Principled zero-totalisation is a far reaching assumption and
collecting evidence for that position lies outside the scope of this paper. I refer
to [34] for work in that direction. Much more work has been done concerning
the division by zero calculus. I mention only a few of the available papers: [32,
37, 38, 39]

6.2.2 Pragmatic zero totalisation
(Coq, Isabelle, Lean)

The ad hoc position has been taken on board by various informaticians, mainly
in the context of theorem proving where avoiding the use of a logic of partial
functions is a useful simplification and where adopting 1/0 = 0 is only a con-
vention which is marginally preferable to adopting say 1/0 = 75 which would
make no difference given that “translating away” division is done anyway.

Examples of proof systems that adopt 1/0 = 0 are: Coq, Isabelle, Lean.
Of course one may claim that these systems merely use a function different
from division and have not bothered to choose another name and symbol for it
thereby creating some needless confusion about the semantics of division.

6.2.3 Curiosity driven zero totalisation
(pseudofields, involutive meadows)

To this category I include Komori [31] and Ono [36]. These papers provide a
substantial information on the model theory of pseudofields, i.e. fields equipped
with an inverse for which 0−1 = 0. Both papers seem to be the first papers about
DbZ containing significant mathematical and logical information. There is no
indication that these authors intended to claim any methodological advantages
of the use of pseudofields.

Theoretical work on involutive meadows with a logical style belongs to this
category, for instance: [13, 9, 8, 11, 20, 21, 12, 5].

6.2.4 Quasi-principled zero-totalisation
(involutive meadows)

The theory of (involutive) meadows is a logic style version of the division by zero
calculus. This approach is used for the specification of arithmetical datatypes
in [17]. The quasi-principled position has been applied in the theory of program-
ming languages for the purpose of axiomatising probabilistic primitives in [35]
and for a description of forensic reasoning in [3].
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6.3 Quasi-principled ⊥-enlargement of rationals
(common meadows)

In a common meadow (see [14]) one works with the identity 1/0 = ⊥. Here ⊥
is an peripheral value (number) which is absorptive in the context of numbers.

Connections with computing. If one adopts the idea that an occurrence
of ⊥ in a run constitutes an unsurmountable problem, then the model is quite
descriptive for DbZ handling in certain program notations.

• The program notation Algol (as realized by https://www.tutorialspoint.

com/execute_algol_online.php) conforms the common meadows model
by delivering a runtime error on each attempt to divide by 0. Algol 60
deviates from the mainstream position in that expressions like 1/0 are not
rejected at compile time, but whenever a value ⊥ occurs in a computation
that fact causes the run to abort or to raise an exception.

• The same behaviour is observed for Python (https://www.programiz.
com/python-programming/online-compiler/).

• To the best of my knowledge there is no available theoretical literature
which explains in any depth why would be is a significant advantage for a
program notation to adopt say 1/0 = +∞. The fact that the latter design
decision has been repeated so often does not prove beyond reasonable
doubt that such an advantage actually exists and it is conceivable that on
the long run 1/0 = Φ (representing a non-signalling NaN will be generally
adopted for program notations. I find it less likely that 1/0 = 0 will be
adopted for program notations, in spite of the fact that it has become the
preferred choice for proof checking systems.

• The fundamental strength of common meadows lies in the proximity with
the mainstream view, assuming one is willing to understand ⊥ as “being
undefined”.

6.4 Quasi-principled totalisation with an unsigned infinity
(wheels)

In wheels the idea is that 1/0 = ∞ where ∞ is an unsigned infinite value.
The Riemann sphere serves as an inspiration for the design of Wheels, number
systems with a single unsigned infinity coupled with an absorptive value. I label
this approach is quasi-principled because the arguments raised in favour of it
exceed mere arguments of convenience, and are based on an intrinsic analysis
of what division in arithmetic is supposed to be. As references for wheels I
mention [41, 23, 24]

There seems to be no manifest application of wheels to informatics. The
strength of wheels resides primarily in an adequate rendering of the Riemann
sphere in that model.
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6.5 Quasi-principled totalisation with signed infinities
(transmathematics)

Here 1/0 = ∞, (−1)/0 = −∞, 1/∞ = 1/(−∞) = 0 whereas 0/0, 0 · (1/0),
∞ + (−∞) are identified with an absorptive value (element). This position is
elaborated under the name transmathematics in e.g. [2], and [26]. In trans-
mathematics a peripheral entity nullity (written Φ) is used as a name for the
absorptive element, (the element which its denoted with ⊥ in other approaches).

Connection with logic and informatics

• This position is close to DbZ handling in the program notation Pascal
(I used the online Pascal environments https://www.onlinegdb.com/

online_Pascal_compiler and https://rextester.com/l/Pascal_online_

compiler for experimenting with division). In Pascal ∞ is denoted +Inf,
−∞ is denoted -Inf. +Inf equals itself and differs from -Inf. Both of
these values is printed as output and can be passed as parameter for a
procedure. Pascal adopts Nan + 3 = Nan etc. as in the setting of Tran-
sreals. Operations like p := 0.0 ? (1.0/0.0) produce error messages. In
fact whenever the Transreal value of an expression equals Nullity (i.e. ⊥
in transmathematics). Pascal will produce a run time error when being
asked to evaluate the expression.

Proposition 6.1. Ignoring roundoff phenomena including the size of do-
mains Pascal (i.e. the mentioned implementation of it) provides a faith-
ful implementation of transreals, under the convention that Nullity (from
transreals) is implemented either as an abort with error message or as
arriving at the special value Nan .

However at closer inspection the handling of DbZ in this Pascal implemen-
tation is not easy to follow, with x, y, z declared as variables for single

(and the same for declaration as double):

x := 1/0; y := (−1)/0; z := x + y; writeln(z) aborts, while
z := 1/0 + ((−1)/0); writeln(z) produces Nan.

• The transreal perspective on division by zero is reflected in Java even bet-
ter than in Pascal, though not completely. At least when using https://

www.jdoodle.com/online-java-compiler/ and if one works with double

values. An expression 1.0/0.0 inside a program will produce value +Infinity,
while the expression (−1.0)/0.0 produces −Infinity. Terms like 0.0 ?
(1.0/0.0) produce NaN, a value which can be used in computations with-
out any problem. However, in contrast with transreals NaN is not equal to
itself (i.e. testing p == p when p evaluates to NaN yields false).

Proposition 6.2. Equality of transreals (written as =tr ) can be defined
in terms of Java equality (in Java written as == ) as follows:

x =tr y ⇐⇒ x == y ∨ (¬x == x ∧ ¬y == y)
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• In GO we find the same DbZ handling as in Java (using the online tool
for GO: https://play.golang.org).

• The work on transrationals and transreals (as a part of transmathematics)
may be considered to belong to theoretical computer science (datatypes/theory
of software engineering).

• In logic similar work is to be expected in connection with constructive
analysis but am unaware of approaches to constructive analysis which
adopt the same policy on division by zero.

7 Non-associative alternative views on DbZ

Some alternative views of DbZ dispose of associativity of multiplication. This
happens when options like 0/0 = 1 and/or (1/0) · 0 = 1 are adopted.

7.1 DbZ in the program notation APL

In the program notation APL as implemented on replit.com calculations pro-
ceed in unexpected ways.

APL uses its own symbol for division, which I have replaced here by / for
consistency of the paper, moreover 1 stands for 1.0 and 0 stands for 0.0; here
t = r stands for t evaluates to r, and ⊥ is represents an abort (i.e. no proper
result) with error message (depending on input).

1/0 =∞,
1 · (1/0) = ⊥,

Apparently 1 is not a left unit for multiplication.
−(1/0) = −∞,
(−(1/0)) · 1 = ⊥,

Apparently 1 is not a right unit for multiplication.
−0 = 0
1/(−0) = −∞,

Apparently APL evaluation equivalence (written say ≡apl ) is not a congru-
ence: 0 ≡apl −0 while 1/0 6≡apl 1/(−0).

0 · (1/0) = 0,
(1/0) · 0 = 1,

Apparently multiplication in APL is not commutative.
((1/0) · 1) · (−1) = 0,
(1/0) · (1 · (−1)) =∞,

Apparently multiplication in APL is not associative.

Some other observations on this particular APL implementation:
(1/0) · (−1) = 0, (−1) · (1/0) = ⊥, 1/0 + 1/0 = ∞, 1/0 · 1/0 = ∞,

(1/0) · ((−1)/0) = 0, (1/0) · (1/(−0)) = 0, (1/(−0)) · 0 = ⊥, (1/0) · (−0) = 1,
(−0) · (1/0) = 0, 0 · ((−1)/0) = 0, 0/0 = ⊥, 1/0− 1/0 = ⊥.
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Originally APL adopts 0/0 = 1 (see [33]) but that is not the case in the online
replit.com environment. Still a residue of that identity is visible in (1/0)·0 = 1.
I have not been able to discover the rationale behind the behaviour of this APL
implementation regarding DbZ.

7.2 Principled 0/0 = 1 adoptation.

In [42, 43] grounds are formulated for adopting 0/0 = 1, I am unconvinced
by these arguments, but undeniably having grounds for accepting or rejecyting
that thesis are sound.

7.3 Curiosity driven 0/0 = 1 adoptation

I have not found literature on curiosity driven work based on the assumption
that 0/0 = 1. Nevertheless I include this option because it potentially consti-
tutes a path towards further novel work on DbZ. A price to be paid is that
multiplication will not be associative (see [4] for more on that assumption), but
doing so may be worth the effort.

8 Concluding remarks

The concluding remars are organised as conclusion regarding the three areas
where DbZ may be of relevance: mathematics, logic and informatics (or more
specifically computing).

8.1 DbZ in mathematics.

However, in view of the large number of alternative positions it is hard to imag-
ine that either of these will gain world-wide prominence in the near future. I
expect that the future of DbZ will allow room for different views on the matter.
When it comes to spotting an alternative perspective on DbZ which is useful
within mathematics I see 3 candidates: (i) division by zero calculus, (ii) trans-
mathematics, and (iii) logic(s) of partial functions. A discussion of the potential
of use of these approaches lies outside the scope of this paper, the focus of which
is on logic, and on computing. However, there is an area in between of math-
ematics, logic and computing to which I want to draw special attention: the
principles of school arithmetic.

8.2 DbZ in logic.

Logical work on DbZ has thus far been carried out in three directions: (i) logics
of partial functions, (ii) involutive meadows, and (iii) common meadows.

Nevertheless, it is fair to say that as far as mathematical logicians are con-
cerned and for disparate reasons DbZ handling does not pose a problem for
them which is worth of much attention. This lack of interest in DbZ related
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matters may be connected with a focus on first order logics (and stronger logics)
rather than on conditional equational logic.

8.3 DbZ in computing

Regarding DbZ in computing I will formulate 7 more specific conclusions and
two open problems.

1. 1/0 is denoting. In as far as one considers DbZ an empirical matter it
matters to look at today’s plurality of programming languages: it is the
rule rather than the exception that a computation involving an evaluation
of (say) 1/0 will carry on without aborting or raising an exception, and it
is a rule rather than an exception that 1/0 evaluates to a positive value
understood as a positive infinite value (i.e. larger than all ordinary values).

2. Peripheral numbers. Datatypes for number systems able to model the
current practice of computer programming are bound to possess one or
more what I call peripheral numbers. Here are 5 relatively well-known
peripheral numbers, more of these can be imagined or extracted from
computing practice:

∞ (unsigned infinite value),

+∞ (positive infinite value),

−∞ (negative infinite value),

⊥ (signalling NaN), and,

Φ (silent/nonsignalling NaN).

Here Φ is the constant called Nullity in the transrationals/transreals of [2].
The peripheral numbers ∞,+∞,−∞ are formal infinities, to be distin-
guished from the actual infinity of the size of an non-finite set and the
potential infinity of the limit of the sequence of natural numbers.

3. (Re)naming matters. When writing [18] no attention was paid to the
difference in status that one may attribute to ⊥ and φ. In hindsight
naming matters. In that paper an abstract datatype Qtr is specified (that
is an isomorphism class of datatypes say containing datatype say Qtr).

As a consequence it is only after renaming ⊥ into Φ that the abstract
datatype Qtr captures the essence of transrationals completely. Following
module algebra notation (from [10]) the renaming function can be denoted
ρ(⊥,Φ) (a permutation of the constants names ⊥ and Φ) and we may write:

Qtransrat = ρ(⊥,Φ)(Qtr) and Qtransrat = ρ(⊥,Φ)(Qtr)

for the appropriately renamed datatype and abstract datatype respec-
tively.
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4. Prominence of transrationals. The only datatype which has (until
now) been designed, analysed, and published with the intention to under-
stand how DbZ works in program notations of later date than Algol 60 is
the datatype of transreals (or its subsystem of transrationals). For tran-
sreals I refer to [2], and [26] and references cited in those papers. However
the following additional remarks are in order:

(i) I am unaware of a program notation which handles DbZ precisely as
it works in transreals (though Java comes quite close). However, Pop-11
(see e.g. [1]) can make use of a library so that its floating point system
then works just as prescribed by transreal arithmetic (at least regarding
matters of DbZ).

(ii) Finding how and where a program notation deviates (regarding its DbZ
handling) from transreals provides a useful perspective on how DbZ has
been implemented in that specific program notation. In other words the
datatype of transreals captures the complexities involved in the practice
of DbZ quite well.

(iii) I have not yet found a program notation which deviates from the
datatype of transreals and which at the same give rise to the design of
a (reasonably attractive) modified datatype for numbers with DbZ which
is better suitable for an explanation of how DbZ works in that specific
program notation.

(iv) The IEEE 754 floating point standard shows manifest similarities
with transreals (regarding DbZ) but is at the same considerably more
complicated than design of transreals. More specifically IEEE 754 seems
to assign status and relevance to negative NaN values, an idea which lies
entirely outside the scope of transrationals. A datatype which may underly
IEEE 754 has not yet been designed and may not exist. An attempt to
model negative NaN’s was made in [4] but the resulting datatype is not
very illuminating.

(v) I am unaware of any suggestions in the current literature on how to
extend, modify, or improve the design of the datatype of transrationals
(transreals) in such a manner that a better fit with “observations in the
field” is obtained.

5. Combining ⊥ and Φ. With Enl⊥(A) I denote the enlargement of datatype
A with an absorptive element (and constant) ⊥. If the signature of A
contains already a constant named ⊥, A is left unchanged by the trans-
formation Enl⊥(A). Now the datatype of transrationsals as mentioned in
item 3 above can be enlarged in this way to obtain a datatype Qtransrat,⊥:

Qtransrat,⊥ = Enl⊥(Qtransrat)

Subsequently one may develop enrichments of Qtransrat,⊥ in order to de-
velop datatypes which specify how DbZ works in various program nota-
tions. For any datatype the signature of which contains 0 and 1 one may
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introduce a function == :→ z such that x == x :→ z equals z for all
x (i.e. x == x :→ z = z) and x == y :→ y equals 0 for pairs x, y so
that x 6= y (i.e. x 6= y → x == y :→ z = 0). I write enr== :→(A) for the
enrichment of datatype A with the function == :→ (which is included
in the signature at the same time. If a function == :→ happens to
be present in the signature of A already then A is left unaffected.) The
datatype Qtransrat,⊥,== :→ given by

Qtransrat,⊥,== :→ = Enr== :→(Qtransrat,⊥)

provides the expressive power to describe the plurality of patterns of han-
dling DbZ as observed when experimenting with various program nota-
tions/environments.

For instance consider a program notation PN that features an implemen-
tation of the division function / which aborts as soon as division by 0
occurs (ALGOL 60 works like that). This state of affairs can be modeled
by writing:

x/PN y = x/y + (y == 0) :→ ⊥+ (y == Φ) :→ ⊥+ (y == ⊥) :→ ⊥

6. Application area for datatype theory. DbZ (as it occurs in the
practice of computer programming) is an attractive area for the use of
datatypes and abstract datatypes (see e.g. [28] for an introduction). With
the design of an algebraic specification of the abstract datatype of transra-
tional numbers a first step in that direction has been made in [18] following
the approach of the considerably simpler algebraic specification of ratio-
nals in [17], with the specification of the abstract datatype of wheels of
rationals (as presented in [19]) as an intermediate step). The complex-
ity of the world of expressions in transrational arithmetic is highlighted
in [6], whereas the potential of transreal analysis is convincingly illustrated
in [27].

7. Definition of peripheral numbers. For the discussion in this paper
0 ·x 6= x serves as an appropriate definition of a number being peripheral.
That definition must be revised, however, upon the introduction of an
inifinitesimal constant ι which satisfies 0 · ι = 0 while it may also satisfy
ι+(−ι) = ⊥ (or ι+(−ι) = Φ). A “better” definition of x being peripheral
is x+ (−x) 6= 0, as in Definition 4.1.

8. Open problems on term rewriting in the presence of ⊥. The
abstract datatype

ADT(Enl⊥(Q( / )))

is computable and it allows an initial algebra specification (hinted at
in [15]). With [16] it follows that with the help of auxiliary functions
an initial algebra specification can be given which constitute a confluent
and terminating term rewriting system.
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Problem 8.1. Does ADT(Enl⊥(Q( / ))) a possess an initial algebra spec-
ification which viewed as a term rewriting system is confluent and termi-
nating?

An equally fundamental and open question is the following:

Problem 8.2. Is the equational theory of ADT(Enl⊥(Q( / ))) decidable?

8.4 DbZ in teaching arithmetic

The following conclusions may be of relevance for the educational science of
teaching arithmetic.

1. Mainstream in doubt. The certainty shown by many proponents of the
mainstream perspective on DbZ, namely that such a phenomenon may and
even must be rejected by all means, including ridiculing those who look
for alternative options to DbZ, is an illusion. The topic is complicated
and with computing increasingly finding a foothold in mathematics at all
levels it is just a matter of time that the mainstream position will be given
up in favour of a more flexible perspective on DbZ.

2. For primary education: 1/0 is a fracterm without meaning. In
primary education I propose that it can be said that 1/0 is a fracterm
which will not be given a meaning, at least not in the near future. In vari-
ous branches of logic and computing, however, so may be said in addition,
it is customary to assign a meaning to 1/0. (The notion of a fracterm is
introduced in [15] and is developed further in [7]. The latter paper uses a
common meadow of rationals as its semantic basis)

The situation is comparable with
√
−1 which can be imagined by students

who are familiar with say
√

4 = 2 long before they are told what
√
−1

might mean in an extension of the number system they are looking at as
students when becoming familiar with the

√
sign.

When asked what sort of value 1/0 can take it may be said that:

(i) Mathematicians and logicians who use computers for doing mathe-
matics (in particular proof generation and proof checking) frequently opt
for adopting 1/0 = 0, just for convenience as it turns out. Significant
communities are making use of 1/0 = 0 for these reasons.

(ii) For computing at large and mathematical modelling of dynamic sys-
tems (so-called number crunching) working with 1/0 = +Inf is the most
popular choice (which comes as no surprise in view of the fact that IEEE
754 floating point standard prescribes that way of going about DbZ).

3. DbZ in the foundations of elementary arithmetic. I hold that ele-
mentary arithmetic (mathematics) as it is taught in primary education is
not identical to merely a subset of professional arithmetic (mathematics).
More specifically I hold that there is more room and need for a syntactic
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perspective at the elementary level. Symbols and expressions start their
life in the mind of a human agent long before a mature perspective on se-
mantics has been acquired. These initial phases allow being studied from
the perspective from the subject matter at hand. What may be considered
an immature view on a piece of professional mathematics may potentially
be framed as a mature view on a different though similar content.

Given its massive and ubiquitous presence world-wide, and in the light
of the formidable investments in time and money made in arithmetical
education it is reasonable to pursue the development of proper foundations
of school arithmetic as a subject matter, that is a focus on what is taught
quite independently of how it is taught, on why it is taught or on when it
is taught.

DbZ, or rather policies for avoiding DbZ are among the core themes of
elementary arithmetic. I expect that the common meadows ([14]) of ratio-
nals will provide a suitable basis for further development of foundations
of school arithmetic. An example of such work is [7] in which the notion
of a fraction is scrutinized.

4. Common meadows of rationals: tools for explaining the foun-
dations of school mathematics. The educational relevance of DbZ is
highlighted in detail in [25]. Common meadows of rationals (i.e. work-
ing with 1/0 = ⊥) have a role to play in the formalization of the main-
stream way of dealing with DbZ. The idea is that the rules of engagement
concerning DbZ as embodied in the mainstream approach can be prof-
itably explained by way of a translation of a mathematical story about
Q( / ) (a datatype of rational numbers with a partial division operator),
to Enl⊥(Q( / )), the ⊥ enlargement of Q( / ). In principle such a trans-
lation can be given just as well into a setting where 1/0 = 0 but working
with Enl⊥(Q( / )) is far closer to the intuition of partiality of division.
The key advantage of the translation to Enl⊥(Q( / )) is that subsequently
first order logic (FOL) and its equational fragment, equational logic, can
be used without hesitation. Some details require attention, however.

Given an expression t for Σ(Q( / )) (i.e. the signature of unital rings
augmented with a name for division), var(t) is the collection of variables
occurring in t and Σvar(t) is the sum of the variables in var(t) if that set is
nonempty and 0 if it is empty. (The use of Σ for sum and for signature is
wholly unrelated). Now consider an equation t = r then we may have in
mind a notion of t = r being valid from the mainstream perspective:

Q( / ) |=mainstream t = r

Then |=mainstream can be explained by the following equivalence:
Q( / ) |=mainstream t = r if and only if the following holds:

Enl⊥(Q( / )) |= 0·t = 0·Σvar(t)∧0·r = 0·Σvar(r)∧t+0·Σvar(r) = r+0·Σvar(t)
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Now it follows for instance that: Q( / ) |=mainstream 0 ·x = 0. Formalisa-
tion of (DbZ) mainstream style proofs require dealing with assertions of
the form:

Q( / ) |=mainstream φ→ t = r

where φ expresses the combination of assumptions which have been made
(both in the statement of the fact to be shown, as during the proof)
about the variables occurring in t and in r. Expanding on the details of
(explaining the meaning of) conditional reasoning about partial functions
lies outside the scope of this survey.

It should be noticed, however, that making use of the assumption 1/0 = ⊥
for explaining the details of the mainstream view by itself caries little
weight when arguing that 0 · x = x is defeasible. Indeed mainstream
reasoning with partial division can be given foundations by other means
for instance along the lines of [40] which is not based on the totalisation
of functions.

5. Determination of 1/0 is a matter of design, not of science. Assign-
ing a value to 1/0 is part of the design of arithmetical language, a design
which may be tailor made for specific conditions and objectives. Differ-
ent objectives call for different arithmetical languages thereby leading to
differences in dealing with DbZ.

Under the assumption (which I subscribe to myself) that determination of
1/0 by choosing from a menu of options (including the mainstream view
of DbZ) is a matter of design, there is no merit in asking for scientific
(mathematical, logical, philosophical) consensus on the value (if any) of
1/0, and there is no substance in claiming the existence of such consensus.

Adopting axioms is a matter of design just as the determination of certain
values is. Adopting x ≥ 0 amounts to the exclusion of negative numbers,
Adopting x2 ≥ 0 amounts to the exclusion of (non-real) complex numbers;
adopting x·y = y ·x excludes quaternions; adopting the Archimedian prin-
ciple excludes non-standard numbers. In the same vein adopting the axiom
0 ·x = 0 amounts to excluding the peripheral numbers ∞,+∞,−∞,⊥,Φ.
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