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DIVISION BY ZERO IN LOGIC AND COMPUTING

JAN A. BERGSTRA

Abstract. The phenomenon of division by zero is considered from the per-

spectives of logic and informatics respectively. Division rather than multi-

plicative inverse is taken as the point of departure. A classification of views
on division by zero is proposed: principled, physics based principled, quasi-

principled, curiosity driven, pragmatic, and ad hoc. A survey is provided of

different perspectives on the value of 1/0 with for each view an assessment
view from the perspectives of logic and computing. No attempt is made to

survey the long and diverse history of the subject.

1. Introduction

In the context of rational numbers the constants 0 and 1 and the operations of
addition ( + ) and subtraction ( − ) as well as multiplication ( · ) and division
( / ) play a key role. When starting with a binary primitive for subtraction unary
opposite is an abbreviation as follows: −x = 0− x, and given a two-place division
function unary inverse is an abbreviation as follows: x−1 = 1/x.

Number systems may be developed in many ways. I will assume that a set N
has been chosen which serves as the natural numbers including 0 and 1 and which
is equipped with addition and multiplication. I will first consider subtraction. For
many inputs from N subtraction is unproblematic, e.g. 7− 5 = 2 and subtraction
is a valid operation by all means. However it turns out that say 5 − 7 poses a
problem. There seems to be a general consensus that the phenomenon of 5 − 7
having no value in N is best solved by working in Z, chosen as an extension of N,
containing negative values. Then 5− 7 = −2 and −2 is taken to be a value not in
need of further evaluation.

In mathematical logic, however, there is a significant tradition of taking the
value of 7 − 5 equal to 0 because one insists not to extend the domain N. N has
been brought to prominence in the second half of the 19th Century mainly by
Dedekind and Peano. Gödel’s results regarding the incompleteness of axioms for
arithmetic, and for that reason for mathematics at large, are stated and proven
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about N. In logic the tradition has grown to denote subtraction on natural numbers
which returns 0 rather than negative values (which don’t exist in the naturals) as
monus ( ·− ) so that 5 ·− 7 = 0. When asked about the true value of 5 − 7 in
the setting of natural numbers logicians are unimpressed and will reply that they
prefer to use − in the context of integers where that question has a unique and
convincing answer.

In informatics most (if not all) program notations will have 5 − 7 well defined
and equal to −2. In program notations it is uncommon to have a standard type
natural which denotes a subtype of integer and the need for a monus function
does not arise. Unsigned integers are common in program notations but these are
conceived as finite domains and involve modulo arithmetic modulo the number
of representable numbers (+1), so that working with monus is an unnecessary
complication. The monus function has ample application in theoretical work,
however.

I will write division with x/y rather than x÷ y. Proceeding with division it is
plausible to start out from Z rather than from N and thereby to consider the “prob-
lem of subtraction” solved, by having subtraction as a total function, i.e. defined
on all inputs. Division is clear for many inputs for instance 4/2 = 2, but not for
all inputs, for instance not for 3/2. By extending the Z once more and embedding
it in Q, a field of rational numbers, most divisions become well-defined, though
exceptional cases arise from attempts to divide by zero. This observation leads to
the paradigmatic question: what is 1/0? There is a long history of speculation and
contemplation concerning this particular question. Today’s conventional response,
at least for the automated arithmetic of floating point approximations of real num-
bers, is that 1/0 = +∞, an idea which was implemented already by Konrad Zuse
in the earliest stage of electronic computer design. The idea that 1/0 = +∞ is
best appreciated as one option out of a plurality of views on division by zero, and
mapping out the plurality of views on that matter is my objective in this paper.
I will restrict focus mainly to considerations from logic and computing, leaving al
but untouched the aspects (if any exist) of relevance for the identification of 1/0
which have a background mathematics, physics, and philosophy.

Abbreviation: DbZ. Below I will use DbZ as an abbreviation for the theme
of division by zero, not just for questions regarding the value and status of the
particular expression 1/0.

1.1. Structure of the paper. The structure of the paper is as follows: first I
will survey different ways in which DbZ may appear in logic and computer science.
The survey takes the form of a 5 layer model, mainly focusing on computing.
Thereafter I provide a list of qualifications of perspectives on DbZ. DbZ being a
controversial topic, such qualifications matter a lot, and it is helpful to have these
qualifications in an explicit form. Then I will describe the current mainstream
view on DbZ as it appears in educational practice as well as in most work of
professional mathematicians. I will conclude that justification of the mainstream
position is puzzling.
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Having given a detailed description of what I call the mainstream position I
am in the position to survey alternative views of which there are many. I will
distinguish 11 different alternative positions on DbZ. Although the positions on
DbZ in the survey are theoretical positions, it is useful to contrast these posi-
tions with observations made on the handling of DbZ in different programming
languages. Throughout the paper there will be links to programming practice
in various program notations. The paper ends with some concluding remarks,
phrased as conclusions about DbZ.

2. Aspects of division by zero in computing

A major source of information regarding questions about division by zero in the
context of informatics has come about from programming languages and language
design. This takes place at different layers.

2.1. Five layer model for DbZ in computer programming. I will speak of
DbZ for any occurrence of division by zero. I will speak of DbZ handling in order
to refer to the policy of dealing with DbZ for a program or program notation. DbZ
(and DbZ handling) can be static or dynamic. For logic there is only the layer
of theoretical reflection while for computing the situation is far more complicated
than that. Five layers of abstraction concerning DbZ can be distinguished as
follows.

Theory of computer science layer: In the top layer design proposals are
contemplated and analysed, some of which may become ubiquitous and
some of which may never be implemented.

Program notation independent standardisation layer: The design of
program notations is guided by various standards which are supposedly
valid for a plurality of such designs. A famous example is ASCII, an
original standard for the binary representation of characters. In connection
with DbZ the IEEE 754 floating point standard provides suggestions for
how to design program notations when it comes to implementations of reals
(in fact always a subset of rationals). This standard deals extensively with
DbZ and, importantly, does not impose that a run is aborted as soon as
DbZ occurs. On the contrary it is suggested to proceed calculations with
a signed infinite value, the sign depending on the sign of the numerator.
Dividing 0 by 0 is considered worse, but again instead of imposing abortion
it is suggested that calculations proceed with NaN yet another “unfamiliar”
entity.

The world of NaNs is complicated. There will be a plurality of NaNs,
at least two of them. Silent NaNs are distinguished from signalling NaNs
which cause an exception or an abort of the run.

Program notation specific standardisation layer: A design for a pro-
gram notation requires a precise description (standard) which explains
those who intend to implement a program notation what must be done,
and which explains users of such implementations what they may expect.
A particular program notation may be documented ins such a manner that
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it is undefined (read unspecified) how to handle an instance of DbZ. The
documentation may be much more specific about that matter as well.

Program notation implementation specific layer: This layer of issues
related to DbZ is amenable to empirical observation. Given a specific
implementation of a program notation it can be analysed what behaviour
results from programs the execution of which will contain instances of
DbZ. The following aspects arise:
• Compile time rejection of a candidate program whenever the occur-

rence of DbZ follows from the text at hand.
From a theoretical perspective this option is unfeasible as it is for a
given text undecidable whether or not a fracterm with denominator
equal to zero will occur during a computation. What could be done
is to ask the programmer to prove that property and to make the
compiler check the proof. Admittedly forcing the programmer to
work in that manner would be a very big step, which given current
technology is not likely to be taken in the near future.

• Run time abortion with an error message upon an occurrence of DbZ.
• Run time exception handling with an error message upon an occur-

rence of DbZ.
• Run time evaluation of DbZ into a specific non-numerical value (to

name some options NaN, inf, +inf,-inf).
• Run time exception handling with an error message upon calculations

following an occurrence of DbZ, the first steps of which have been
handled with the help of non-numerical values.

Program specific layer: In the program specific layer it is analysed how
and why in a particular application a certain policy on DbZ handling is
made use of, and of course, if and how that use could be improved.

3. Qualitative labelling of positions on DbZ

In spite of the apparent simplicity of the theme there is a plurality of positions
about DbZ some of which are mutually irreconcilable. In advance of surveying
positions on DbZ I will provide a qualitative labeling of such positions.

Principled position: A principled position on DbZ involves the perspec-
tive that not only the position is consistent and workable but in addition
the idea that as a position it is superior to alternative positions on DbZ,
this superiority being based on quite general considerations.

Examples of principled positions.
(i) The mainstream position on DbZ (strictly maintaining that an ex-

pression p/q is only used in a context where arguably q is nonzero).
(ii) The Division by Zero Calculus (DBZC) due to S. Saitoh et.al. (see

e.g. [1] and references cited in that paper), adopting ∀x (x/0 = 0) and
the logical consequences thereof as a point of departure for developing
arithmetic as well as analysis in mathematics). DBZC involves the idea
that working with 1/0 = 0 is a very useful suggestion for mathematics at
large.
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(iii) The view that the equation ∀x (x/x = 1) expresses a universally
valid principle, and by consequence the assertion that 0/0 = 1.

Physics based principled position: Some positions take inspiration from
observations on calculations in physics and argue for the validity and sig-
nificance of certain design decisions by pointing to correspondences with
such computations.

Example.
The position that 0/0 = 1 corresponds well with certain laws and cal-

culations in physics.
Quasi-principled position: A quasi-principled position on DbZ involves

the idea that at least for certain areas of application the position at hand
is arguably superior to alternative positions. A quasi-principled position
on DbZ can accommodate without hesitation the existence of deviating
alternative quasi-principled positions as long as these are meant for appli-
cation in other areas.

Examples of quasi-principled positions.
(i) The design of transrationals, transreals and transcomplex numbers

([2, 3]) reflects a quasi-principled position. This position is a realization
(though not a unique one) in the context of DbZ of the more general prin-
cipled position, held by the designers, of transmathematics, that mathe-
matical systems are best equipped with total functions, and in addition
that ordered infinities constitute an essential feature.

(ii) The common meadows of [4] (where 1/0 = ⊥) represent a quasi-
principled position. Common meadows are suitable, more so than any of
the other alternative views on DbZ, as the general basis for the design of
approaches involving an absorptive element.

(iii) The IEEE 754 standard expresses a view (with 1/0 = +∞, and
0/0 = Φ, where Φ is Nullity, a transrational constant) which is principled
in the sense that design decisions have been taken after ample reflection
in a plurality or committees only and which is quasi-principled because
the standard is a man-made entity the design of which always comes with
possible but rejected alternatives. (The description of the requirements
of the standard with 1/0 = +∞ and 0/0 = Φ ought to be explained in
terms of the somewhat counterintuitive “equational” logic of NaNs, but
such details are better covered elsewhere.)

Curiosity driven position: A curiosity driven position is detached from
any judgment of practical or theoretical value of the position at hand.

Example. The work by Komori in 1975 ([5]) and by Ono in 1983 ([6]) on
pseudofields, adopting 1/0 = 0, both represent a curiosity driven position.

Pragmatic position: A pragmatic position involves a choice for a particu-
lar view on DbZ while acknowledging that for the application at hand the
advantage of the chosen positions over some of the other possible positions
on DbZ is at best marginal.
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Examples of pragmatic positions.
(i) Working with 1/0 = 0 is applied in the design of proof checking

systems (e.g. Coq or Isabelle); at the same time it is acknowledged that
choosing 1/0 = 0 is only marginally better (more convenient) than choos-
ing 1/0 = 1 or say 1/0 = 754. What matters is to avoid needless com-
plications with division being a partial function in a context where all
assertions are going to be formally proven with checked proofs, thereby
removing any incentive of taking undesired behaviour into account.

(ii) Theoretical work in logic, and in model theory in particular often
adopts the assumption that 1/0 = a for some fixed but unspecified rational
or real number a. Texts are written in such a matter that the choice of
a is immaterial. The advantage of that approach appears at once upon
contemplating the first order sentence φ ≡ ∀x.(x 6= 0 → x/x = 1). By
taking 0/0 = 0 · (1/0) = 0 · a = 0 one finds that 0/0 6= 1 an observation
which suffices to have φ true. However, if 0/0 = 1 cannot be assigned a
truth value then that holds for φ as well (at least in a setting of classical
first order logic).

Ad hoc position: Ad ad hoc position on DbZ (or on a DbZ related matter)
is a mere design decision without a clearly pronounced rationale.

Example.
As an example I mention the original design decision that 0/0 = 1 in

APL. (Not the case, however, in the online APL environment I have been
experimenting with, see 7.1 below.)

4. Mainstream position on DbZ

According to mainstream views 1/0 is undefined, and expressions like 1/0 must
be avoided as a matter of principle.

Adopting that 1/0 has no definition, in other words that division is a partial
function, in combination with pursuing and demanding a style of writing which
avoids the use of any expression which is undefined for the reason of involving an
occurrence of division by zero is the mainstream perspective on division by zero
in mathematics and in school arithmetic as well.

The mainstream view will reject the assertion “1/0 is undefined” because any
use of an expression like 1/0 stands in sharp contrast with the supposedly well-
known futility of the objective of dividing 1 by 0. Any attempt to find a value for
1/0 is considered incoherent given the fact that 0 ·a = 0 for all a and the existence
of an a such that 0 · a = 1 can be excluded beforehand. But this observation must
not be read as 1/0 denoting an irrational number, as 1/0 is far less rational than
being merely irrational (i.e. not being the value of a ratio).

Following the remark made above in the first item of the description of the pro-
gram specific standardisation layer, it is hardly conceivable to extend the main-
stream conventions to the current practice of imperative programming. Doing so
requires formal methods, programmer written correctness proofs, and proof check-
ing compilers, which is possible in principle, but not yet in practice. Having said
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that, program verification technology is rapidly maturing and pessimism on the
matter may soon be outdated.

Characterising the mainstream position on DbZ is not at all trivial. I will only
briefly sketch my own views:

• Two perspectives on DbZ should be distinguished:
(i) DbZ partial function assessment. Having a partial function

assessment of DBZ (DBZ partialism) consists of the view that issues with
DbZ are merely and only issues regarding the use of a specific partial
function (that is division) on arguments (in this case pairs of arguments)
where the function takes no value,

(ii) DbZ logical pole assessment. Adopting the logical pole assess-
ment of DbZ (DbZ poleism) comprises the idea that 1/0 represents a more
significant complication than merely arises from x/y being partial, and
being undefined for y = 0. Not only has the real function λx.1/x a pole
in x = 0, but in addition an assertion say “1/x = 3” which features an
undefined substitution instance of division, has a logical pole in x = 0.
The presence of a logical pole implies (in this case) that it is impossible
to assign a truth value to the assertion 1/0 = 3 proper and also to any
assertion having 1/0 = 3 as a subformula.
• DbZ logical pole assessment plausibly comes with the following claims:

(i) λx. log x has a logical pole in x = 0,
(ii) λx. log x is undefined for x = −1 but it has no logical pole at x = −1,
(iii)
√
−1 is undefined and λx.

√
x is a partial function, but

(iii) λx.
√
x has no logical pole in x = −1.

• I assume that the primary intuition regarding DbZ is that of the partial
function assessment. Then subsequent disassociation as discussed in [7]
may create an awareness of DbZ as a logical pole, an awareness which
may again cease upon subsequent association (also [7]) of the notions of
partiality and pole, and so on.
• Viewing DbZ as a pole goes hand in hand with adopting a 4-valued first

order short-circuit logic (FOSCL4vl) with truth values {t, f, d, m} for true,
false, divergent (undefined), and meaningless (pole) respectively. Informa-
tion on the quantifier free fragment of this logic can be found in [8], [9],
and [10].

This works as follows: the informal assertion “for all rational x, if x 6= 0
then x/x = 1” translates (formalises) into: ∀x ∈ Q.(x 6= 0 →b x/x = 1).
Substituting 0 for x one finds 0 6= 0 →b [x→ 0](x/x = 1). Now (0 6= 0) = f

and [x→ 0](x/x = 1) = d, and one obtains t →b d = t, as expected.
However, now consider “for all rational x, if x 6= x then 1/0 = 3”. I

claim that this assertion is problematic from a conventional (mainstream)
perspective because of the occurrence of 1/0 in it. The second sentence
translates to ∀x ∈ Q.(x 6= x →b x/0 = 3). Substituting number n for x
yields n 6= n →b [x → n](1/0 = 3) and f →b [x → n](x/0 = 3). Now one
notices that the subexpression 1/0 of the assertion “x/0 = 3” must nec-
essarily be undefined (indeed no substitution will yield a defined outcome
for the substitution [x→ n](x/0 = 3)) the “component” [x→ n](x/0 = 3)
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features inescapable evaluation of a logical pole a state of affairs can be
expressed as [x → n](x/0 = 3) = m. Then with t →b m = m we find m for
the truth value of n 6= n →b [x → n](1/0 = 3), and thereupon we also
find m for the truth value of ∀x ∈ Q.(x 6= x →b x/0 = 3) (where universal
quantification behaves just as an infinite conjunction and inherits the way
it deals with d and m).

Sentences which are adequate from a mainstream perspective must not
(via the short-circuit logic) translate into a sentence with truth value m in
the four valued logic. A brief description of 4-valued strict short-circuit
logic is given in the Appendix (Section 9) below.
• I hold that mainstream notational conventions can be adequately ex-

plained when adopting the DbZ logical pole assessment as an underly-
ing principle and by understanding that idea in terms of a 4-valued logic
as outlined above. Upon adopting the logical pole assessment one would
refuse to see total extensions of the division functions being similar or re-
lated. One actively resists making division total (in whatever way and for
whatever purpose) or “in the same league” simply because the phenome-
non of a logical pole is considered a vital asset.

One accepts that the phenomenon of a logical pole is absent from float-
ing point arithmetic and that in such circumstances totalisation of division
may become helpful.
• Conventional objections against defining 1/0 as having a value mostly

adopt DbZ partial function assessment, and it is in opposition to DbZ
partialism that various brands of DbZ totalism (a preference for the sug-
gestion that division is total and dividing by zero is well-defined) have
been put forward. Adopting a particular form of DbZ totalism as an al-
ternative for DbZ partialism is the perspective which underlies the division
by zero calculus (DBZC), the work on transrationals and transreals, and
the work on involutive meadows and on common meadows. In summary:
taking DbZ partialism as the point of departure alternatives are found by
contemplating a plurality of alternative arithmetical datatypes.
• Adopting the conception of DbZ as a pole creates an incentive for looking

for alternatives for the overall logic in which arithmetical calculations are
embedded, rather than to look for ways of making division a total function.

4.1. Connections of the mainstream position with informatics and logic.

• Most, if not all, work in theoretical informatics adopts the mainstream
position on division by zero, unless the theme of division by zero is the
topic at hand (I am unaware of any exception).
• Most, if not all, work in logic adopts the mainstream position on division by

zero, unless the theme of division by zero is the topic at hand. However,
in model theory it is often assumed that 1/0 has some predefined (but
arbitrary) value and the work is then arranged in such a manner that the
choice of that value is immaterial.
• The status of division by zero is traditionally not regarded as a worry for

the foundations of mathematics which is worth more than casual attention.
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4.2. Elaboration of the mainstream position. I notice that from the main-
stream perspective the assertion that “

∑∞
n=1 1/n is undefined” is adopted as a

meaningful assertion. That is done in view of that fact that non-convergence of
said infinite sum is a non-trivial mathematical insight itself worth of a mathemat-
ical proof. In fact the mainstream approach tolerates expressions without value
in most, if not all, circumstances, while the mainstream approach rejects the use
of expressions for which the nonexistence of a value is manifest without proof.
Arguably division by zero is unique in that respect, with the logarithm of zero in
a similar position, while in other cases a more flexible approach to the acceptance
of notations is taken.

I hold that in the mainstream view “a result of dividing 1 by 0 cannot exist”
represents the paradigmatic instance of mathematical non-existence. Moreover
this very state of affairs is appreciated for its power to support the awareness of
non-existence as a first class citizen in mathematical discourse at a very early level
of mathematical education. Awareness of non-existence supports an understanding
of mathematics as a battle against the (collective) enemy of non-existence.

4.3. Elusive foundations of the mainstream position. Because of the no-
torious ambiguity of “fraction”, is it a value or is it an expression, I will speak of
a fracterm if an expression is meant. A fracterm is an expression with division as
the leading function symbol. I refer to [11] for an exposition on fracterms.

Regarding fracterms versus fractions I notice that fractions have been defined
in the literature in disparate ways and there is no indication equation fractions
with fracterms amounts to a common understanding of fractions. For instance in
the phrase “field of fractions” fraction is understood as a number rather than as
an expression. In [12] is it suggested that unlike rational number fraction is not
a mathematical notion. In [13] a variety of different perspectives on fractions are
discussed, [14] suggests that fractions are expressions, [15] views fractions as values,
while [16] indicates that fractions are pairs of integers. Thus I will preferably use
fracterm if the flexibility (polymorphism) of fraction is unwanted, in spite of the
fact that for some persons fractions and fracterm are the same, keeping in mind
that for other persons that very identification is undesirable.

The “mainstream” objection against using the fracterm 1/0 is founded on wide-
spread certainty regarding validity of the equation 0 ·x = 0 which implies 0 ·x 6= 1.
If, however, it is 100% certain that 0 · x 6= 1 then 1/0 must be a non-denoting
fracterm, i.e. a fracterm to which no meaning is assigned. And then it is a
plausible rule of thumb that such non-denoting fracterms should not be used.

Now, the objection that 1/0 does not exist because there is no known rational
number p which satisfies 0 · p = 1 cannot be held against the use of 1/0. Indeed

there is no principled objection against the use of
√

2, which (as an objection)
is merely based on the absence of a rational number that satisfies p2 = 1. And
there is no principled objection against the use of

√
−1 based on the absence of

a real number p that satisfies p2 = −1. Notations are not rejected in case these
are meaningful (that is denoting) in larger number systems. Now returning to the
fracterm 1/0 it is far from obvious that x · 0 = 1 will not and can not be satisfied
in any significant extension of the number system. If that is a theorem, it is in



10 JAN A. BERGSTRA

need of a proof. If it is an axiom then that should be said, if it is an empirical
observation then the relevant facts must be put on the table.

Rejecting as mathematically non-professional and as a sign of defective under-
standing any use of the fracterm 1/0 can only be based on adopting the truth of
0 · x = 0 (and of 0 · x 6= 1) as more far reaching than most “ordinary” axioms of
arithmetic. I notice that x · y = y · x is considered defeasible (skew fields), and
x · (y ·z) = (x ·y) ·z is considered defeasible (octonions). Maintaining the universal
validity of 0 · x = 0 can be done for different reasons, however, each of which may
be used to argue against the possibility that 1/0 has a value, and in favour of
the current mainstream position. I will survey some of the positions in favour of
maintaining 0 · x = 0 as an irrefutable principle.

(1) It may be claimed that 0 · x = 0 is to be considered a fundamental axiom
which will hold forever by way of a collective mental decision, (and 0·x = 0
is a more far reaching truth than for instance x2 ≥ 0 a fact which easily
follows from the understanding of a square as the surface of a geometrical
figure. It is also a more far reaching truth than 1 + 1 6= 0 which turns out
to hold in a field of characteristic 2.)

(2) It may be claimed that until now no mathematician has developed an
extension of the known number system(s) with elements for which 0 ·
x = 0 fails and where 1/0 acquires a proper value, and which has gained
broad acceptance. At the same time one is aware that his state of affairs
might conceivably change in the future. For instance the introduction
of non-standard numbers in nonstandard analysis, in the 60ties of the
20th Century, has created new numbers. The introduction of nonstandard
analysis has turned the Archimedian axiom ∀x ∈ R(x > 0→

∨
n∈N(x < n))

into a defeasible fact.
In other words: rejection of the use of 1/0 is sufficiently grounded in

the observation that no currently accepted number system introduces a
value for that fracterm.

(3) It may be claimed that it is a fundamental but unprovable hypothesis
underlying the design of mainstream arithmetic that no such extension of
the known number systems defeating 0 · x = 0 will be found and for that
reason any use of 1/0 may be rejected. This hypothesis may be compared
with the hypothesis that Peano’s axioms are consistent.

(4) It may be claimed that while a general dislike of the fracterm 1/0 is a
mainstream attitude at the moment, that veryobservation must not be
taken too seriously and mainstream thinking may change on this matter
and may turn to alternative options in the future. That mathematical
education nowadays pays much attention to integer numbers with addi-
tion, subtraction and multiplication and to the extension to the field of
rational numbers is perhaps only a temporary phase, and once other parts
of mathematics gain prominence the focus on disputing the credibility of
say 1/0 may fade away.

In school arithmetic, students are often told that obviously there is no x such that
0 · x = 1, with as an immediate consequence that 1/0 is obviously non-denoting.
But I see no way in which it is (or might be) obvious (for beginning students)
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that for all plausible extensions of the integers, now and in the future, there will
be no such x. Once more contemplating

√
−1, which asks for a scenario where x2

is negative, it must be acknowledged that a considerable degree of out of the box
thinking may be needed to find a convincing scenario where for some x, 0 · x = 1
holds.

4.4. Mismatch with terminology from informatics. In informatics, in par-
ticular in the science of computer programming, if a language standard states that
say the result of dividing by zero is undefined that means that in an implemen-
tation anything can happen. If say it is required instead that upon having been
instructed to divide by zero the run of a program must abort with a runtime error
message then that requirement must be explicitly stated.

In the theory of computation a value being undefined is often identified with
divergence (i.e. non-termination) of the computation of that value (by a given
program on a given machine or machine model). The latter interpretation of “un-
defined” has little connection with the interpretation of assertions that “division
by zero is undefined”.

In mathematics, however, the assertion that division by zero is undefined implies
that an expression 1/0 must not be given a meaning (even if that could be done).

4.5. Ammended mainstream: 0/0 = 0 with 1/0 undefined. The main-
stream position may be rendered somewhat more tolerant by adopting the frac-
term 0/0, and assuming that 0/0 = 0. This assumption is consistent with the
idea that when x/y = z it must be the case that y · z = x. Having 1/0 undefined
may go hand in hand with adopting 0/0 = 0. I will refer to that position as the
ammended mainstream position on DbZ.

4.6. Peripheral numbers: thinking outside the box. When deviating from
the mainstream position it is plausible to think of “new” entities as numbers, and
to allow there new entities not to comply with one or more conventional rules. I
will speak of peripheral numbers and I will use a formal definition of that notion.
The idea, though not formally required, is that non-peripheral numbers constitute
an additive ring, the peripheral numbers lying outside that ring.

Definition 4.1. (Peripheral numbers) Let Σ contain + ,− , 0, all for sort s. An
element p of sort As of a Σ-algebra A is peripheral in A if p+ (−p) 6= 0.

5. Grounds for deviating from the mainstream position on DbZ

Whoever deviates from the mainstream position will need to find reasons for
doing so. In the case of DbZ there is a plurality of reasons one may put forward
for motivating other positions. It is impossible to give an ordering of importance
for these reasons because different alternative views differ on the matter of relative
weight of different possible reasons.

Empirical grounds I: DbZ is a phenomenon which occurs or may occur
during the run of a computer program. Even if considered undesirable the
question how to proceed when a computation calls for the evaluation of an
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expression like 1/0 cannot be avoided. Now the observation is that many
(imperative) program notations will require that the fragment

x = 1/0; print(x); print(′,′ ); y = −x; print(y)

(with x = t denoting an assignment, and x a variable capable of containing
floating point values) will produce something like

+Inf , −Inf
The key observation is that 1/0 is supposed to have a signed value different
from the usual values. This arrangement is so wide-spread that it is far
from obvious that the mainstream position is worth its name. In the world
of computer programming the mainstream position is a minority position.

Remark. I have not found any research work which explains in terms
of examples and results about such examples why it is or might be an
advantage that a run of a program proceeds, while working with “infinite”
values instead of aborting or raising an exception. Of course there is
empirical evidence that the use of peripheral values allows computing to
proceed where it otherwise might have to stop, and that in this manner
the use of peripheral values may be time-saving, but there seems to be
no theoretical account of such matters which formulates said advantage in
terms of explicitly stated theorems with corresponding proofs.

Abortion or raising an exception will happen in some but not all pro-
gram notations with the following fragment:

x = 1/0; print(x); print(′,′ ); y = x− x; print(y)

The idea is that although one may still claim that upon the assignment
x = 1/0 it is known that, say x > 17, following the assignment y = x− x

no such information exists about y there is no reliable information about
the size of y relative to ordinary values.

In any case from the perspective of current program notations: (i) an
expression 1/0 is program text will in most notations not give rise to a
compile time error, and (ii) it is the rule rather than the exception that
1/0 is given a value which can be used in computations and which more
or less behaves like other (conventional) values.

Empirical grounds II: For computer supported proof systems it is con-
ventional to adopt a rule of the form 1/0 = a for some number a and then
to make the logic independent of the choice of a. A well-known choice for
a is a = 0. In model theory (a branch of mathematical logic) a similar
convention is often assumed, and in model theory it is usual to simply
state that some fixed but unspecified a has been chosen for that purpose.

Pragmatic grounds I: If one prefers to use equational logic rather than
first order logic it becomes a significant advantage to have all operations
total. All known logics of partial functions (of which there are many)
are quite complicated in comparison with the equational fragment of first
order logic.

For instance if one intends to specify division by means of equational
axioms, an ambition which is implicit in the methodology of datatypes and
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abstract datatypes and which has its roots in software engineering, then
working with total functions (and with totalised division in particular)
turns out to be a significant advantage.

For fans of equational logic 1/0 = 0 is a relevant choice because it gives
rise to nice equations, to a workable logic, and to an attractive meta-
theory. The choice 1/0 = ⊥ is an alternative which, though less elegant,
more closely reflects mainstream intuitions on DbZ.

Pragmatic grounds II: One may hold that having a theory of numbers
which is closer to what happens in modern computer programming will
have many advantages: it may lead to more suitable applied mathematics,
and to a better exploitation of computing resources.

Ideological grounds I: One may hold that in the times of computing par-
tial operations are a problematic concept right from the start. A pocket
calculator will usually return an error message when asked to compute 1/0
(a formalisation of that convention is found by working with 1/0 = ⊥),
but it won’t stop working, wait forever, or need to be thrown away, or
to be restarted somehow (although clearing some memory which may be
required after performing an unfortunate division comes close to that).
Integrating exception handling in datatypes can be a good idea and is a
good idea in arithmetic. When motivated by this particular motive, one
will prefer having 1/0 = +∞ over say 1/0 = 0.

Ideological grounds II: One may hold that on the basis of philosophical
or other non-technical arguments there are deeper reasons to assign a
meaning to say 1/0 or to 0/0. These deeper reasons are then considered
to be quite independent of practical considerations. At least the following
positions have support on the basis of ideological considerations:
• 1/0 = +∞,
• 1/0 = 0,
• 0/0 = 0,
• 0/0 = 1.

6. Associativity and commutativity preserving alternatives for DbZ

In [48] I have surveyed alternative options for division by zero. The focus of
that survey is on AC preserving alternatives with AC standing for associativity
and commutativity of addition as well as of multiplication. Here I will provide a
summary of that survey while paying more attention to methodological matters.
The following options may be distinguished, the list being by no means exhaustive.

6.1. Logic(s) of partial functions. 1/0 is undefined but there is no objection
against the use of expressions like 1/0 or 2/(3 − (1 + 2)). This idea underlies
various logics of partial functions which have emerged within logic as well as within
computer science. This subject is large and I can only give some references which
are by no means covering the theme at hand. I mention [18, 19, 20, ?].
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The fundamental distinction between the use of a logic of partial functions and
the mainstream view is that the expression 1/0 is considered to feature no funda-
mental typing problem, which justifies, or even requires its rejection, it merely has
no value.
Connections with logic and informatics. Various software specification languages
(e.g. VDM and CASL) make use of partial functions and logics of partial functions,
a policy which works for division by zero as well.
Comments on logics of partial functions in relation to DbZ.. There are different
logics of partial functions. So-called Kleene equality identifies 1/0 with itself (i.e.
1/0 = 1/0 while in other such logics deriving an equation t = r implies the that
both t and r are denoting a value, from which it follows that x = x is not a
plausible axiom.

To the best of my knowledge each known logic of partial functions is sub-
stantially more complicated than first order logic, or equational logic, i.e. the
equational fragment of first order logic.

Now it is tempting to think that first order logic serves as a logical underpinning
of school arithmetic but that is not the case. To see this one may consider the
following assertion Φ ≡ ∀x(x 6= 0→ x · (1/x) = 1) which, I suppose will be agreed
to by most school teachers. However for Φ to be true it must (assuming that
first order logic is used) hold for all substitutions of x including x = 0. Thus
0 6= 0 → 0 · (1/0) = 1 must hold true, which in turn requires 0 · (1/0) = 1 to
have some truth value (either true or false, both truth values will do), and which
requires taking the subexpression 1/0 seriously somehow.

If one insists on formalising school arithmetic in first order logic it is advisable
not to have division as an operation in the signature (otherwise avoiding an ex-
pression 1/0 is impossible) but to work with x/y “as a notation for the unique
z such that y · z = x if z exists” and to adopt the rule that assertions involving
division must first be translated to equivalent assertions without division before
analysing the meaning.

6.2. Four brands of adopting 1/0 = 0. Adopting 1/0 = 0 is possible if one
takes Φ ≡ ∀x(x 6= 0 → x · (1/x) = 1) as an axiom for division and agrees that
making division total by taking x/0 = 0 is consistent with Φ. Adopting 1/0 = 0,
however, can be done with quite different objectives in mind.

6.2.1. Principled zero-totalisation
(division by zero calculus). Saburoh Saitoh and co-workers claim (since 2014) that
adopting 1/0 = 0 is a profitable idea for mathematics at large and that doing so
would constitute a step forward. Principled zero-totalisation is a far reaching
assumption and collecting evidence for that position lies outside the scope of this
paper. I refer to [1] for work in that direction. Much more work has been done
concerning the division by zero calculus. I mention only a few of the available
papers: [21, 22, 23, 24]

6.2.2. Pragmatic zero totalisation
(Coq, Isabelle, Lean). The ad hoc position has been taken on board by various
informaticians, mainly in the context of theorem proving where avoiding the use of
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a logic of partial functions is a useful simplification and where adopting 1/0 = 0 is
only a convention which is marginally preferable to adopting say 1/0 = 75 which
would make no difference given that “translating away” division is done anyway.

Examples of proof systems that adopt 1/0 = 0 are: Coq, Isabelle, Lean. Of
course one may claim that these systems merely use a function different from
division and have not bothered to choose another name and symbol for it thereby
creating some needless confusion about the semantics of division.

6.2.3. Curiosity driven zero totalisation
(pseudofields, involutive meadows). To this category I include Komori [5] and
Ono [6]. These papers provide a substantial information on the model theory
of pseudofields, i.e. fields equipped with an inverse for which 0−1 = 0. Both pa-
pers seem to be the first papers about DbZ containing significant mathematical
and logical information. There is no indication that these authors intended to
claim any methodological advantages of the use of pseudofields.

Theoretical work on involutive meadows with a logical style belongs to this
category, for instance: [25, 26, 27, 28, 29, 30, 31, 32].

6.2.4. Quasi-principled zero-totalisation
(involutive meadows). The theory of (involutive) meadows is a logic style version
of the division by zero calculus. This approach is used for the specification of
arithmetical datatypes in [33]. The quasi-principled position has been applied in
the theory of programming languages for the purpose of axiomatising probabilistic
primitives in [34] and for a description of forensic reasoning in [35].

6.3. Quasi-principled ⊥-enlargement of rationals
(common meadows). In a common meadow (see [4]) one works with the iden-
tity 1/0 = ⊥. Here ⊥ is an peripheral value (number) which is absorptive in the
context of numbers.

Connections with computing. If one adopts the idea that an occurrence of ⊥ in
a run constitutes an unsurmountable problem, then the model is quite descriptive
for DbZ handling in certain program notations.

• The program notation Algol as implemented by
https://www.tutorialspoint.com/execute_algol_online.php

conforms with the common meadows model by delivering a runtime error
on each attempt to divide by 0. Algol 60 deviates from the mainstream
position in that expressions like 1/0 are not rejected at compile time, but
whenever a value ⊥ occurs in a computation that fact causes the run to
abort or to raise an exception.
• The same behaviour is observed for Python, as implemented by
https://www.programiz.com/python-programming/online-compiler/

• To the best of my knowledge there is no available theoretical literature
which explains in any depth why would be is a significant advantage for a
program notation to adopt say 1/0 = +∞. The fact that the latter design
decision has been repeated so often does not prove beyond reasonable
doubt that such an advantage actually exists and it is conceivable that on
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the long run 1/0 = Φ (representing a non-signalling NaN will be generally
adopted for program notations.
• The fundamental strength of common meadows lies in the proximity with

the mainstream view, assuming one is willing to understand ⊥ as “being
undefined”.

6.4. Quasi-principled totalisation with an unsigned infinity
(wheels). In wheels the idea is that 1/0 = ∞ where ∞ is an unsigned infinite
value. The Riemann sphere serves as an inspiration for the design of Wheels,
number systems with a single unsigned infinity coupled with an absorptive value.
I label this approach is quasi-principled because the arguments raised in favour
of it exceed mere arguments of convenience, and are based on an intrinsic anal-
ysis of what division in arithmetic is supposed to be. As references for wheels I
mention [36, 37, 38]

There seems to be no manifest application of wheels to informatics. The
strength of wheels resides primarily in an adequate rendering of the Riemann
sphere in that model.

6.5. Quasi-principled totalisation with signed infinities
(transmathematics). Here 1/0 = ∞, (−1)/0 = −∞, 1/∞ = 1/(−∞) = 0
whereas 0/0, 0 ·(1/0),∞+(−∞) are identified with an absorptive value (element).
This position is elaborated under the name transmathematics in e.g. [2], and [3]. In
transmathematics a peripheral entity nullity (written Φ) is used as a name for the
absorptive element, (the element which its denoted with ⊥ in other approaches).
Connection with logic and informatics.

• This position is close to DbZ handling in the program notation Pascal. I
used the online Pascal environments
https://www.onlinegdb.com/online_Pascal_compiler and
https://rextester.com/l/Pascal_online_compiler

for experimenting with division. In Pascal ∞ is denoted +Inf, −∞ is de-
noted -Inf. +Inf equals itself and differs from -Inf. Both of these values
may be printed as output and can be passed as parameter for a procedure.
Pascal adopts Nan + 3 = Nan etc. as in the setting of Transreals. Opera-
tions like p := 0.0?(1.0/0.0) produce error messages. In fact whenever the
Transreal value of an expression equals Nullity (i.e. Φ in transmathemat-
ics), Pascal will produce a run time error when being asked to evaluate
the expression.

Proposition 6.1. Ignoring roundoff phenomena including the size of do-
mains Pascal (i.e. the mentioned implementation of it) provides a faithful
implementation of transreals, under the convention that Nullity (from tran-
sreals) is implemented either as an abort with error message or as arriving
at the special value Nan .

However at closer inspection the handling of DbZ in these Pascal im-
plementations are not easy to grasp, with x, y, z declared as variables for
single (and the same for declaration as double):
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x := 1/0; y := (−1)/0; z := x + y; writeln(z) aborts, while
z := 1/0 + ((−1)/0); writeln(z) produces Nan.
• The transreal perspective on division by zero is reflected in Java even bet-

ter than in Pascal, though not completely. At least when using
https://www.jdoodle.com/online-java-compiler/ and if one works
with double values. An expression 1.0/0.0 inside a program will produce
value +Infinity, while the expression (−1.0)/0.0 produces −Infinity.
Terms like 0.0 ? (1.0/0.0) produce NaN, a value which can be used in com-
putations without any problem. However, in contrast with transreals NaN
is not equal to itself (i.e. testing p == p when p evaluates to NaN yields
false).

Proposition 6.2. Equality of transreals (written as =tr ) can be defined
in terms of Java equality (in Java written as == ) as follows:

x =tr y ⇐⇒ x == y ∨ (¬x == x ∧ ¬y == y)

• In GO we find the same DbZ handling as in Java (using the online tool
for GO: https://play.golang.org).
• The work on transrationals and transreals (as a part of transmathematics)

may be considered to belong to theoretical computer science (datatypes,
theory of software engineering).
• In logic similar work is to be expected in connection with constructive

analysis but am unaware of approaches to constructive analysis which
adopt the same policy on division by zero.

7. Non-associative alternative views on DbZ

Some alternative views of DbZ dispose of associativity of multiplication. This
happens when options like 0/0 = 1 and/or (1/0) · 0 = 1 are adopted.

7.1. DbZ in the program notation APL. In the program notation APL as
implemented on replit.com calculations proceed in unexpected ways.

APL uses its own symbol for division, which I have replaced here by / for
consistency of the paper, moreover 1 stands for 1.0 and 0 stands for 0.0; here t = r
stands for t evaluates to r, and ⊥ is represents an abort (i.e. no proper result)
with error message (depending on input).

1/0 =∞,
1 · (1/0) = ⊥,

Apparently 1 is not a left unit for multiplication.
−(1/0) = −∞,
(−(1/0)) · 1 = ⊥,

Apparently 1 is not a right unit for multiplication.
−0 = 0
1/(−0) = −∞,

Apparently APL evaluation equivalence (written say ≡apl ) is not a congruence:
0 ≡apl −0 while 1/0 6≡apl 1/(−0).

0 · (1/0) = 0,
(1/0) · 0 = 1,
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Apparently multiplication in APL is not commutative.
((1/0) · 1) · (−1) = 0,
(1/0) · (1 · (−1)) =∞,

Apparently multiplication in APL is not associative.

Some other observations on this particular APL implementation:
(1/0) · (−1) = 0, (−1) · (1/0) = ⊥, 1/0 + 1/0 = ∞, 1/0 · 1/0 = ∞, (1/0) ·

((−1)/0) = 0, (1/0)·(1/(−0)) = 0, (1/(−0))·0 = ⊥, (1/0)·(−0) = 1, (−0)·(1/0) =
0, 0 · ((−1)/0) = 0, 0/0 = ⊥, 1/0− 1/0 = ⊥.

Originally APL adopts 0/0 = 1 (see [39]) but that is not the case in the online
replit.com environment. Still a residue of that identity is visible in (1/0) · 0 = 1.
I have not been able to discover the rationale behind the behaviour of this APL
implementation regarding DbZ.

7.2. Principled 0/0 = 1 adoptation. In [40, 41] grounds are formulated for
adopting 0/0 = 1, I am unconvinced by these arguments, but undeniably having
grounds for accepting or rejecyting that thesis are sound.

7.3. Curiosity driven 0/0 = 1 adoptation. I have not found literature on
curiosity driven work based on the assumption that 0/0 = 1. Nevertheless I
include this option because it potentially constitutes a path towards further novel
work on DbZ. A price to be paid is that multiplication will not be associative
(see [17] for further details on that assumption), but doing so may be worth the
effort.

8. Concluding remarks

The concluding remars are organised as conclusion regarding the three areas
where DbZ may be of relevance: mathematics, logic and informatics (or more
specifically computing).

8.1. DbZ in mathematics. However, in view of the large number of alternative
positions it is hard to imagine that either of these will gain world-wide prominence
in the near future. I expect that the future of DbZ will allow room for different
views on the matter. When it comes to spotting an alternative perspective on
DbZ which is useful within mathematics I see 3 candidates: (i) division by zero
calculus, (ii) transmathematics, and (iii) logic(s) of partial functions. A discussion
of the potential of use of these approaches lies outside the scope of this paper, the
focus of which is on logic, and on computing. However, there is an area in between
of mathematics, logic and computing to which I want to draw special attention:
the principles of school arithmetic.

8.2. DbZ in logic. Logical work on DbZ has thus far been carried out in three
directions: (i) logics of partial functions, (ii) involutive meadows, and (iii) common
meadows.

Nevertheless, it is fair to say that as far as mathematical logicians are concerned
and for disparate reasons DbZ handling does not pose a problem for them which
is worth of much attention. This lack of interest in DbZ related matters may be
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connected with a focus on first order logics (and stronger logics) rather than on
conditional equational logic.

8.3. DbZ in computing. Regarding DbZ in computing I will formulate 7 more
specific conclusions and two open problems.

(1) 1/0 is denoting. In as far as one considers DbZ an empirical matter it is
plausible to look at today’s plurality of programming languages: it is the
rule rather than the exception that a computation involving an evaluation
of (say) 1/0 will carry on without aborting or raising an exception, and it
is a rule rather than an exception that 1/0 evaluates to a positive value
understood as a positive infinite value (i.e. larger than all ordinary values).

(2) Peripheral numbers. Datatypes for number systems able to model the
current practice of computer programming are bound to possess one or
more what I call peripheral numbers. Here are 5 relatively well-known
peripheral numbers, more of these can be imagined or extracted from
computing practice:
∞ (unsigned infinite value),
+∞ (positive infinite value),
−∞ (negative infinite value),
⊥ (signalling NaN), and,
Φ (silent/nonsignalling NaN).
Here Φ is the constant called Nullity in the transrationals/transreals

of [2]. The peripheral numbers ∞,+∞,−∞ are formal infinities, to be
distinguished from the actual infinity of the size of an non-finite set and
the potential infinity of the limit of the sequence of natural numbers.

(3) (Re)naming matters. When writing [42] no attention was paid to the
difference in status that one may attribute to ⊥ and φ. In hindsight
naming matters. In that paper an abstract datatype Qtr is specified (that
is an isomorphism class of datatypes say containing datatype say Qtr).

As a consequence it is only after renaming ⊥ into Φ that the abstract
datatype Qtr captures the essence of transrationals completely. Following
module algebra notation (from [43]) the renaming function can be denoted
ρ(⊥,Φ) (a permutation of the constants names ⊥ and Φ) and we may write:

Qtransrat = ρ(⊥,Φ)(Qtr) and Qtransrat = ρ(⊥,Φ)(Qtr)

for the appropriately renamed datatype and abstract datatype respec-
tively.

(4) Prominence of transrationals. The only datatype which has (until
now) been designed, analysed, and published with the intention to under-
stand how DbZ works in program notations of later date than Algol 60 is
the datatype of transreals (or its subsystem of transrationals). For tran-
sreals I refer to [2], and [3] and references cited in those papers. However
the following additional remarks are in order:

(i) I am unaware of a program notation which handles DbZ precisely as
it works in transreals (though Java comes quite close). However, Pop-11
(see e.g. [44]) can make use of a library so that its floating point system
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then works just as prescribed by transreal arithmetic (at least regarding
matters of DbZ).

(ii) Finding how and where a program notation deviates (regarding
its DbZ handling) from transreals provides a useful perspective on how
DbZ has been implemented in that specific program notation. In other
words the datatype of transreals captures the complexities involved in the
practice of DbZ quite well.

(iii) I have not yet found a program notation which deviates from the
datatype of transreals and which at the same give rise to the design of
a (reasonably attractive) modified datatype for numbers with DbZ which
is better suitable for an explanation of how DbZ works in that specific
program notation.

(iv) The IEEE 754 floating point standard shows manifest similarities
with transreals (regarding DbZ) but is at the same considerably more
complicated than design of transreals. More specifically IEEE 754 seems
to assign status and relevance to negative NaN values, an idea which lies
entirely outside the scope of transrationals. A datatype which may underly
IEEE 754 has not yet been designed and may not exist. An attempt to
model negative NaN’s was made in [17] but the resulting datatype is not
very illuminating.

(v) I am unaware of any suggestions in the current literature on how
to extend, modify, or improve the design of the datatype of transrationals
(transreals) in such a manner that a better fit with “observations in the
field” is obtained.

(5) Combining ⊥ and Φ. With Enl⊥(A) I will denote the enlargement of
datatype A with an absorptive element (and constant) ⊥. If the signa-
ture of A contains already a constant named ⊥, A is left unchanged by
the transformation Enl⊥(A). Now the datatype of transrationsals as men-
tioned in item 3 above can be enlarged in this way to obtain a datatype
Qtransrat,⊥:

Qtransrat,⊥ = Enl⊥(Qtransrat)

Subsequently one may develop enrichments of Qtransrat,⊥ in order to de-
velop datatypes which specify how DbZ works in various program nota-
tions. For any datatype the signature of which contains 0 and 1 one may
introduce a function == :→ z such that x == x :→ z equals z for all
x (i.e. x == x :→ z = z) and x == y :→ y equals 0 for pairs x, y so
that x 6= y (i.e. x 6= y → x == y :→ z = 0). I write enr== :→(A) for the
enrichment of datatype A with the function == :→ (which is included
in the signature at the same time. If a function == :→ happens to
be present in the signature of A already then A is left unaffected.) The
datatype Qtransrat,⊥,== :→ given by

Qtransrat,⊥,== :→ = Enr== :→(Qtransrat,⊥)

provides the expressive power to describe the plurality of patterns of han-
dling DbZ as observed when experimenting with various program nota-
tions/environments.
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For instance consider a program notation PN that features an imple-
mentation of the division function / which aborts as soon as division by
0 occurs (ALGOL 60 works like that). This state of affairs can be modeled
by writing:

x/PN y = x/y + (y == 0) :→ ⊥+ (y == Φ) :→ ⊥+ (y == ⊥) :→ ⊥
(6) Application area for datatype theory. DbZ (as it occurs in the

practice of computer programming) is an attractive area for the use of
datatypes and abstract datatypes (see e.g. [45] for an introduction and [46]
for an exposition of principles). With the design of an algebraic specifica-
tion of the abstract datatype of transrational numbers a first step in that
direction has been made in [42] following the approach of the considerably
simpler algebraic specification of rationals in [33], with the specification
of the abstract datatype of wheels of rationals (as presented in [47]) as an
intermediate step). The complexity of the world of expressions in transra-
tional arithmetic is highlighted in [48], whereas the potential of transreal
analysis is convincingly illustrated in [49].

(7) Definition of peripheral numbers. For the discussion in this paper
0 · x 6= x serves as an appropriate definition of a number being peripheral.
That definition must be revised, however, upon the introduction of an
inifinitesimal constant ι which satisfies 0 · ι = 0 while it may also satisfy
ι+(−ι) = ⊥ (or ι+(−ι) = Φ). A “better” definition of x being peripheral
is x+ (−x) 6= 0, as in Definition 4.1.

(8) Open problems on term rewriting in the presence of ⊥. The
abstract datatype

ADT(Enl⊥(Q( / )))

is computable and it allows an initial algebra specification (hinted at
in [50]). With [51] it follows that with the help of auxiliary functions
an initial algebra specification can be given which constitute a confluent
and terminating term rewriting system.

Problem 8.1. Does ADT(Enl⊥(Q( / ))) a possess an initial algebra speci-
fication which viewed as a term rewriting system is confluent and termi-
nating?

An equally fundamental and open question is the following:

Problem 8.2. Is the equational theory of ADT(Enl⊥(Q( / ))) decidable?

8.4. DbZ in teaching arithmetic. The following conclusions may be of rele-
vance for the educational science of teaching arithmetic.

(1) Mainstream in doubt. The certainty shown by many proponents of the
mainstream perspective on DbZ, namely that such a phenomenon may and
even must be rejected by all means, including ridiculing those who look
for alternative options to DbZ, is an illusion. The topic is complicated
and with computing increasingly finding a foothold in mathematics at all
levels it is just a matter of time that the mainstream position will be given
up in favour of a more flexible perspective on DbZ.
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(2) For primary education: 1/0 is a fracterm without meaning. In
primary education I propose that it can be said that 1/0 is a fracterm which
will not be given a meaning, at least not in the near future. In various
branches of logic and computing, however, so may be said in addition, it
is customary to assign a meaning to 1/0. (The notion of a fracterm is
introduced in [50] and is developed further in [11]. The latter paper uses
a common meadow of rationals as its semantic basis).

The situation is comparable with
√
−1 which can be imagined by stu-

dents who are familiar with say
√

4 = 2 long before they are told what√
−1 might mean in an extension of the number system they are looking

at as students when becoming familiar with the
√

sign.

When asked what sort of value 1/0 can take it may be said that:
(i) Mathematicians and logicians who make use of computers for doing

mathematics (in particular proof generation and proof checking) frequently
opt for adopting 1/0 = 0, just for convenience as it turns out. Significant
communities are making use of 1/0 = 0 for these reasons.

(ii) For computing at large and mathematical modelling of dynamic
systems (so-called number crunching) working with 1/0 = +Inf is the
most popular choice (which comes as no surprise in view of the fact that
IEEE 754 floating point standard prescribes that way of going about DbZ).

(3) DbZ in the foundations of elementary arithmetic. I hold that ele-
mentary arithmetic (mathematics) as it is taught in primary education is
not identical to merely a subset of professional arithmetic (mathematics).
More specifically I hold that there is more room and need for a syntactic
perspective at the elementary level. Symbols and expressions start their
life in the mind of a human agent long before a mature perspective on se-
mantics has been acquired. These initial phases allow being studied from
the perspective from the subject matter at hand. What may be considered
an immature view on a piece of professional mathematics may potentially
be framed as a mature view on a different though similar content.

Given its massive and ubiquitous presence world-wide, and in the light
of the formidable investments in time and money made in arithmetical
education it is reasonable to pursue the development of proper foundations
of school arithmetic as a subject matter, that is a focus on what is taught
quite independently of how it is taught, on why it is taught or on when it
is taught.

DbZ, or rather policies for avoiding DbZ are among the core themes of
elementary arithmetic. I expect that the common meadows ([4]) of ratio-
nals will provide a suitable basis for further development of foundations
of school arithmetic. An example of such work is [11] in which the notion
of a fraction is scrutinized.

(4) Common meadows of rationals: tools for explaining the founda-
tions of school mathematics. The educational relevance of DbZ is high-
lighted in detail in [52]. Common meadows of rationals (i.e. working with
1/0 = ⊥) have a role to play in the formalization of the mainstream way
of dealing with DbZ. The idea is that the rules of engagement concerning



DIVISION BY ZERO IN LOGIC AND COMPUTING 23

DbZ as embodied in the mainstream approach can be profitably explained
by way of a translation of a mathematical story about Q( / ) (a datatype
of rational numbers with a partial division operator), to Enl⊥(Q( / )), the
⊥ enlargement of Q( / ). In principle such a translation can be given
just as well into a setting where 1/0 = 0 but working with Enl⊥(Q( / ))
is far closer to the intuition of partiality of division. The key advantage
of the translation to Enl⊥(Q( / )) is that subsequently first order logic
(FOL) and its equational fragment, equational logic, can be used without
hesitation. Some details require attention, however.

Given an expression t for Σ(Q( / )) (i.e. the signature of unital rings
augmented with a name for division), var(t) is the collection of variables
occurring in t and Σvar(t) is the sum of the variables in var(t) if that set is
nonempty and 0 if it is empty. (The use of Σ for sum and for signature is
wholly unrelated). Now consider an equation t = r then we may have in
mind a notion of t = r being valid from the mainstream perspective:

Q( / ) |=mainstream t = r

Then |=mainstream can be explained by the following equivalence:
Q( / ) |=mainstream t = r if and only if the following holds:

Enl⊥(Q( / )) |= 0 · t = 0 · Σvar(t) ∧ 0 · r = 0 · Σvar(r) ∧ t+ 0 · Σvar(r) = r + 0 · Σvar(t)

Now it follows for instance that: Q( / ) |=mainstream 0 · x = 0. Formali-
sation of (DbZ) mainstream style proofs require dealing with assertions of
the form:

Q( / ) |=mainstream φ→ t = r

where φ expresses the combination of assumptions which have been made
(both in the statement of the fact to be shown, as during the proof)
about the variables occurring in t and in r. Expanding on the details of
(explaining the meaning of) conditional reasoning about partial functions
lies outside the scope of this survey.

It should be noticed, however, that making use of the assumption 1/0 =
⊥ for explaining the details of the mainstream view by itself caries little
weight when arguing that 0 · x = x is defeasible. Indeed mainstream
reasoning with partial division can be given foundations by other means
for instance along the lines of [19] which is not based on the totalisation
of functions.

(5) Determination of 1/0 is a matter of design, not of science. Assign-
ing a value to 1/0 is part of the design of arithmetical language, a design
which may be tailor made for specific conditions and objectives. Differ-
ent objectives call for different arithmetical languages thereby leading to
differences in dealing with DbZ.

Under the assumption (which I subscribe to myself) that determina-
tion of 1/0 by choosing from a menu of options (including the logical pole
view of DbZ) is a matter of design, there is no merit in asking for scien-
tific (mathematical, logical, philosophical) consensus on the value (if any)
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of 1/0, and there is limited substance in claiming the existence of such
consensus.

Adopting axioms is a matter of design just as the determination of
certain values is. Adopting x ≥ 0 amounts to the exclusion of negative
numbers, Adopting x2 ≥ 0 amounts to the exclusion of (non-real) com-
plex numbers; adopting x · y = y · x excludes quaternions; adopting the
Archimedian principle excludes non-standard numbers. In the same vein
adopting the axiom 0 ·x = 0 amounts to excluding the peripheral numbers
∞,+∞,−∞,⊥,Φ.

Finally the choice of a most appropriate logic for describing conventions
of elementary arithmetic is a matter of design. An experiment with para-
consistency for dealing with fractions in [53] made me look for other non-
classical logics which may be helpful for understanding elementary arith-
metic, then ending up with the 4-valued short-circuit logic as set out in
Paragraph 4 above. It cannot be excluded, however, that choosing an-
other non-classical logic yields an even better fit with observed practices
in elementary arithmetic.

Acknowledgment. James Anderson (Reading, UK) has made a number quite
helpful and detailed comments and suggestions concerning an earlier draft of this
paper. Kees Middelburg (Voorschoten, NL) and Alban Ponse (Amsterdam NL)
gave useful feedback as well.

9. Appendix on strict 4-valued short-circuit logic

Consider Q(÷): a structure of rational numbers which is equipped with a partial
division function, which I will write ÷. I understand ÷ as a function for which
the fact that 1 ÷ 0 is undefined is intentional, that is, part of the rationale and
of the design. Thus, the absence of a value a so that 1 ÷ 0 = a neither expresses
an inability to find an adequate a nor the implausibility of the existence of such
a value a. By writing 1 ÷ 0 ↑ it is merely expressed that 1 ÷ 0 has no value and
I notice that such is intentionally the case. There is no merit in looking for an a
such that 1÷ 0 = a in precisely the same manner that there is no merit in looking
for the square root of two among the rational numbers.

Perhaps a caricature: there is no merit in finding an element of the empty
set, that is a set theory without empty set, because of a dislike of emptiness. Of
course one may prefer a different set theory in which no empty set exists, but
one cannot deny the rationale of a set theory involving an empty set, including
the viewpoint that the emptyness of the empty set is an intentional feature the
presence of which for the designers of the corresponding set theory does not show a
weakness of any kind. Assuming that 1÷0 has no value, that very fact constitutes
a design decision. Justification of a design decision is not required in principle,
and in this particular case the justification may simply be that the nonexistence of
1÷ 0 conveys significant information about a field. In a field the expression 1÷ 0
is not particularly helpful for denoting any specific value.
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For the sake of simplicity, I will discuss the envisaged short-circuit logic only
in relation to Q(÷), a structure in which the relevant phenomena can be illus-
trated quite well. A valuation σ assigns values (here elements of Q) to all rel-
evant variables. With (Q(÷), σ |= t) the value of t in Q under valuation σ
is denoted. I will write div for that value. Thus for instance for all valua-
tions σ, (Q(÷), σ |= (2 ÷ (x − x)) + 5) = div. I will write Q(÷), σ |= t ↑ for
(Q(÷), σ |= t) = div. Four additional predicates on terms, ↑∀, ↑∃, ↓∀, ↓∃ are intro-
duced as follows:

Q(÷) |=↑∀ if and only if for all valuations σ, Q(÷), σ |= t ↑,
Q(÷) |=↑∃ if and only if for some valuation σ, Q(÷), σ |= t ↑,
Q(÷) |=↓∀ if and only if for all valuations σ, Q(÷), σ |= t ↓,
Q(÷) |=↓∃ if and only if for some valuation σ, Q(÷), σ |= t ↓.

Of these predicates the most significant one is ↑∀. I will write t ↑∀ as an
abbreviation of Q |= t ↑∀. We find that for closed terms t, for all valuations
σ,Q(÷), σ |= t ↑ if and only if t ↑∀, and σ,Q(÷), σ |= t ↓ if and only if t ↓∀.

In the presence of variables the situation is more diverse, however: 1/(x− y) ↓∃
but after substituting x for y: 1/(x − x) ↑∀. As a logic we have the following
formulae:

φ =true | false | t = r | ¬φ |
φ ∨

b
φ | φ ∧b φ | φ →b φ | φ ∨

b
φ | φ ∧b φ |

φ →b φ | φ→ bφ | φ ←b φ | ← bφ |
φ∀x.φ | ∃x.φ

For details about the notation for the asymmetric (sequential) logical connectives
I refer to [8, 9, 10].

Definition 9.1. A (logical) formula φ contains a logical pole if it has a subterm
t, the variables of which may be free or bound in φ such that t ↑∀.

Now Q(÷), σ |= φ is defined as follows: if φ contains a logical pole then m (the
fourth truth value representing meaninglessness). Otherwise perform conventional
short-circuit evaluation on φ. Here a universal quantifier produces true only if
that happens for all substitution instances while an existential quantifier produces
true if that happens for some substitution instances (while for other instances
divergence is allowed).

The short-circuit logic is called strict because short-circuiting will not overcome
the presence of a logical pole which acts as an absorptive element at the level of
the logic.
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