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Abstract

In an arithmetical structure one can make division a total function by
defining 1/0 to be an element of the structure, or by adding a new element,
such as an error element also denoted with a new constant symbol, an
unsigned infinity or one or both signed infinities, one positive and one
negative. We define an enlargement of a field to a transfield, in which
division is totalised by setting 1/0 equal to the positive infinite value and
-1/0 equal to its opposite, and which also contains an error element to
help control their effects. We construct the transrational numbers as a
transfield of the field of rational numbers and consider it as an abstract
data type. We give it an equational specification under initial algebra
semantics.

1 Introduction

Arithmetical structures are the oldest and most important data types. The
rational numbers are particularly fundamental in practical applications: we
measure the world with rational numbers and today’s computers calculate only
with rational numbers. However, as a data type completely central to computer
science, the rationals are only slowly being analysed and understood as an ab-
stract data type. The theory of algebraic specifications for abstract data types,
with its wealth of concepts, results and tools, have only lately been applied to
the rationals. Classical mathematics has viewed the rationals as a field, i.e., a
commutative ring in which each non-zero element has a unique multiplicative
inverse; this leads to inverse x−1 not being a total operator on 0. The need
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to rule out zero means that a field cannot be axiomatised by total operations
satisfying equations or conditional equations, the core specification methods for
the theory.

In arithmetical structures, the most important partial operator is 1/x when
x = 0. Among the approaches to making division or inverse total are structures
in which:

1. 1/0 behaves as one of the elements in the structure, e.g., 0 or 1;

2. 1/0 behaves as an error element ⊥ additional to the structure;

3. 1/0 behaves as an infinite element ∞, additional to the structure;

4. 1/0 and −1/0 behaves as infinite elements ∞ and −∞, respectively, and
additional to the structure.

There are plenty of examples of these approaches in theory and practice, often
to solve a technical issue in an ad hoc way.

All four approaches deliver workable and interesting ways of removing par-
tiality. In the case of (ii), basic properties such as the absorption laws

⊥ + x =⊥, ⊥ . x =⊥

are expected to hold. In the case of (iii) and (iv) basic properties such as

∞+ x =∞, ∞.x =∞, ∞+∞ =∞, ∞.∞ =∞, ∞.(−∞) = −∞

are expected and begin to shape intuitions about the semantics. However,
adding elements to structures commonly cause complications, because the new
elements must operate sensibly with all the algebraic constants and operations
of the structure. For example, in the case of adding infinity, we can easily find
possible identities that are unattractive and against some arithmetic intuitions,
such as:

0.∞ =∞ or ∞−∞ = 0.

Thus a next step, in the case of infinity ∞, is to also add an error element ⊥ so
that some unwanted or suspect results can be controlled. For instance:

0.∞ =⊥, and, indeed, ∞−∞ =⊥.

If 1/0 is defined then the rationals can be axiomatised by equations: an
initial algebra specification of the rationals was accomplished in [14] by taking
approach (1). Furthermore, approach (1), especially 1/0 = 0, was examined
in some generality through a theory of meadows, which are an axiomatically
defined class of arithmetical algebras first studied in [14, 6]. Earlier, mead-
ows, with a focus on first order axiomatisations thereof, had been studied in
significant detail and depth under the name of pseudofields in [22].

Later, meadows with an error element, approach (2), were extensively de-
veloped in [9]; and the infinity element, approaches (3) and (4), were discussed
in [4].
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The idea of adding infinity and an error element is not new – such ele-
ments are mentioned in informal specifications of floating point arithmetic [23].
A theoretical analysis motivated by theorem proving is based upon algebraic
structures called wheels, which are an axiomatically defined class of algebras
first studied in [24, 17]. Wheels contain the elements positive infinity and error.
Along with the key ideas of a wheel – namely, 1

0 = ∞ and 1
∞ = 0 – come the

subtle controlling properties that 0.∞ =⊥ and ∞+∞ =⊥.
The viability or fitness for purpose of any method of totalising division de-

pends upon the axioms for the structures and, subsequently, on their application
to a computational problem. Both axiomatisations of meadows and wheels start
with familiar axioms for commutative ring-like structures to which axioms for
inverse −1 are added. Central to both meadows, wheels and other approaches
to totalisation is the field of rational numbers and the problem of totalising
division; see [14] and for several other options for division by zero [4].

In the case of meadows, the development uses the theory of algebraic speci-
fications of abstract data types, in which a central concept is axiomatisation by
a finite set E of equations over a signature Σ, whose initial algebra defines the
data type up to isomorphism. Thus, in [14], a finite equational specification is
given, of the rationals up to isomorphism with 1/0 = 0, which in other words
defines the abstract data type Q0 of the meadow of rational numbers. Inter-
estingly, an equational specification for the rational numbers was open until
[14].

In this paper we examine the basic structure of rational number arithmetic
augmented by the infinite elements ∞ and −∞ and ⊥. We call this structure
the algebra of transrationals, which we adopt from a semantic model called
transreal arithmetic in [1, 18]. The transrationals are a minimal subalgebra of
the transreals.

We will extend and adapt the techniques from meadows [6] to give an equa-
tional specification for the transfield Qtr of rational numbers as abstract data
type: we give a set of equations Etr over the signature Σtr such that

I(Σtr, Etr) ≡ Qtr.

The structure of the paper is as follows. In section 2 we recall some basic
semantics of floating point arithmetic, which provides some additional motiva-
tion for our interest. In section 3 we list some basic concepts and principles
of our general approach, including the methodology of abstract data type the-
ory and the focus of our interest, namely arithmetical structures. In section
4 we introduce a construction of the transfield of an ordered field and apply
it to a construction of the field of rationals. in section 5 we give it its initial
algebra specification. Section 6 makes some concluding remarks on equational
axiomatisations, floating point and other approaches.

We assume that the reader is familiar with the basic algebraic concepts used
to model data types: signature, algebra, expansion, reduct, congruence, term,
homomorphism, equational theory, first order theory, etc. These basics can be
found in several inroductions to algebraic methods and abstract data type theory
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[21, 27, 19, 20]. We have chosen to keep our algebraic techniques very simple to
focus attention on a topic for theoretical investigation, namely arithmetic data
type theory.

2 Transrationals and floating point arithmetic

As is evident from the Introduction, our point of departure is the analysis of
arithmetical structures of computational interest using the theory of abstract
data types. The transrationals are a particularly interesting arithmetical struc-
ture not least for the light they shine on computer arithmetics such as floating
point arithmetic. Many reasons for developing the transreals, and implicitly the
transrationals, have been elaborated in the works of James Anderson and his
co-workers including [1, 18]. Here we will focus on their relevance to floating
point arithmetic.

Viewed as a data type, floating point arithmetic is an arithmetical data type
for a finite subset of the rational numbers. Its actual design strives for an ap-
proximation of rational number arithmetic that is “best possible” according to
certain working criteria. The design is a finite data type that can be imple-
mented in computer hardware and involves complications such as the following:

1. Every number must be represented in a bit pattern of fixed length (e.g.,
2n bits).

2. Except for zero 0, which is represented with a dummy exponent, each
finite number is coded by a pair containing a decimal number 1 ≤ d ≤ 10
of fixed length l and a power e ∈ [−k, k] of 10. A finite set of rationals
can be represented in this way.

3. Arithmetical operations on floating point numbers cannot always be car-
ried out exactly and rounding will occur.

4. Partial arithmetical operations are avoided by using the special values ∞
(infinity) and −∞ (minus infinity) to represent 1

0 and −1
0 , respectively,

and an error value to represent 0
0 .

5. Partial operations also use error values that enable them to terminate on
certain data, e.g, a “not a number” value, quiet NaN or qNaN ).

6. Partial operations may lead to exceptions and interrupts that are modelled
by special error values signalling, e.g, a “not a number ” value, signalling
NaN or sNaN).

7. Due to the presence of error values there is no total ordering of the domain
of floating point arithmetic.

8. In some models of floating point arithmetic 1
∞ = 0 and 1

−∞ = −0 with
−0 different from 0.
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The arithmetical data type of transrationals adapts the data type of rational
numbers by including∞ and −∞ and a single quiet NaN, which is here called ⊥.
We notice that Anderson denotes this object by Φ and calls it nullity, thereby
emphasising that its role may be more significant than simply representing an
error. It sets 1

∞ = 1
−∞ = 0. Seen from the point of view of the rationals, the

transrationals are a semantic model of some key features to be found in floating
point arithmetic. They are idealisations, of course, that ‘correct’ issues with
floating point: the transrationals enjoy associativity, are infinite and dense in
the reals, etc.

3 Preliminaries on ADTs

3.1 The Approach of ADTs

The theory of abstract data types is based upon the following principle:

Principle. In programming, data is characterised by the operations and tests
we can use on the data. All the data can be constructed and accessed by applying
the operations to given constants. An interface to the data type is a syntactic
declaration of these constant, operator and test names. What is known to the
programmer about the implementation of the data type is only a set of proper-
ties of the constants, operators and tests. The interface and set of properties is
called a specification of an abstract data type.

These ideas about programming are faithfully modelled by the algebraic and
logical theories of general algebras and relational structures. In particular, the
interface is modelled by a signature Σ and the properties modelled by an ax-
iomatic theory T .

Principle. An abstract data type is an isomorphism class of algebras of com-
mon signature. Each algebra is a possible representation or construction or
implementation of the abstract data type. The algebras for which all the data
can be constructed from the constants by the operations of the abstract data type
are the minimal algebras.

Thus, to specify an abstract data type is to specify an isomorphism class of
algebras. In the case of the field of rational numbers, the standard notation
Q will stand for the the isomorphism type and Q will stand for a particular
representative or construction or implementation of the rational isomorphism
type.

In general, conditions are added to this idea of an abstract data type, of
which finite, computable, semicomputable abstract data types are common;
notice such properties must be isomorphism invariants of algebras. Computable
algebras have important roles in modelling data [25], and especially in classical
field theory [26]. Of course, the rationals are a computable data type.
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Let us expand on the ideas introduced above.
The interface is a signature Σ and, typically, the properties form a set T

of first order axioms about the constants, operations and tests in Σ. A Σ-
algebra is Σ-minimal if all the elements of A can be constructed by applying the
operations to the constants of A. The pair (Σ,T ) is an axiomatic specification
and Alg(Σ,T ) is the class of all Σ-structures that satisfy the axioms of T . Of
particular importance is the case when the axiomatisations consist of a set E
of equations only. Such an equational specification (Σ,E) has an initial algebra
I(Σ,E) in the class Alg(Σ,E) that is unique up to isomorphism. The initial
algebra has an important representative structure. Let T (Σ) be the set of
all closed terms over the signature Σ. Define a congruence on T (Σ) for any
t1, t2 ∈ T (Σ),

t1 ≡ t2 ⇐⇒ E ` t1 = t2

Then we have the factor algebra

I(Σ,E) ∼= T (Σ)/ ≡.

Thus the

Specification Problem. Given an algebra A representing an implemen-
tation of an abstract data type, can we find an equational specification (Σ,E)
such that I(Σ,E) ∼= T (Σ)/ ∼= A.

Algebras can be extended by adding new elements to their domain; and they
can be expanded by adding new constants and operations to their signature.
Often both extensions and expansions are performed, especially to add auxil-
iary operators in order to find or simplify equations in specifications. These
actions of extension and expansion and their combination are what we call en-
largements of the algebra. Obviously, the transrationals are an enlargement of
the rationals.

The general specification problem for computable, semicomputable and co-
semicomputable abstract data types has been studied in depth [12, 3, 13]. In
general, auxiliary operators and even auxiliary sorts may be needed. For exam-
ple, small equational specifications exist for all computable data types, provided
some auxiliary operations may appear in the specification; indeed, general the-
ory shows that the rational number data types studied here are computable
and, therefore, can all be specified with 6 auxiliary functions and 4 equations
only [12]! However, these general theoretical results use advanced methods from
computability theory and do not yield recognisable and useable axiomatisations.
Here the equational specifications are close to the algebra and do not use aux-
iliary operators.

3.2 Arithmetic structures

Consider the following signature Σtr for transfields which simply adds two char-
acteristic constants, ∞ for infinity and ⊥, to the signature Σm for meadows:
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signature Σtr

sorts num

constants 0 :→ num
1 :→ num
∞ :→ num
⊥:→ num

operations + : num× num→ num
. : num× num→ num
− : num→ num
−1 : num→ num
/ : num× num→ num

end

We have not added −∞ for negative infinity as we can use the term −(∞). Note
that the signature for meadows is richer than those commonly used for working
with fields and skew structures; often inverse −1 is not an explicit operation
having an axiomatisation, and binary divison / seems to be rarely used. (In
some cases of interest to us it is convenient to add other binary operations such
as subtraction − : v × v → v.)

Definition 3.1. Σ is an arithmetic signature if it extends the meadow signature,
i.e., Σm ⊂ Σ.

Clearly, a transfield signature is an arithmetic signature in this sense.

4 The transrationals

4.1 The transfield of a field

A field F is a commutative ring with 1 6= 0 and in which, for all x ∈ F , if x 6= 0
then there exists a unique y ∈ F such that x.y = 1. Let (F,≤) be an ordered
field. We propose to enlarge F by extending with new elements

e, ip and in

representing error, positive infinity and negative infinity, respectively; and ex-
panding with the inverse operation −1.

We also expand the signature with constant names

⊥, ∞

for e, ip – note we will not need a name for in.
This new structure Ftr we call the transfield of F . This is a special case of

a more general concept of transfield in [18].
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The new elements and operations are defined on the domain Ftr = F ∪
{e, ip, in} as follows. First, we make the extension of the ring operations:

Additive inverse

−e = e

−ip = in

−in = ip

Addition

e+ x = e for all x ∈ Ftr

x+ e = e for all x ∈ Ftr

ip + x = ip for all x ∈ F
in + x = in for all x ∈ F
ip + ip = ip

ip + in = e

in + ip = e

in + in = in

Multiplication

e.x = e for all x ∈ Ftr

x.e = e for all x ∈ Ftr

ip.0 = e

0.ip = e

in.0 = e

0.in = e

ip.x = ip for all x ∈ F, x > 0

x.ip = ip for all x ∈ F, x > 0

ip.x = in for all x ∈ F, x < 0

x.ip = in for all x ∈ F, x < 0

in.x = ip for all x ∈ F, x < 0

x.in = ip for all x ∈ F, x < 0

ip.ip = ip

ip.in = in

in.ip = in

in.in = ip
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Inverse

e−1 = e

i−1p = 0

i−1n = 0

0−1 = ip

x−1 = (unique y)[x.y = 1] for all x ∈ F, x 6= 0

Note that the ordering on F is essential for the construction of Ftr but is
not a relation in the signature of either F or Ftr.

4.2 A concrete representation of the rationals

We start with a ring Q of rational numbers with unit. This is an algebra that
is not minimal.

We begin the construction of the rationals from the integers Z as follows:
let

SFP = {(n,m) : n,m ∈ Z,m > 0, and gcd(n,m) = 1}.

SFP stands for simplified fracpairs. For further information on fracpairs see
[10]. Note we seek to avoid equivalence classes in this construction.

The additive identity is uniquely defined by (0, 1); note that elements such
as (0, 2) are not in SFP . The multiplicative unit is (1, 1).

We define the operations in stages starting with addition:

(n,m) + (p, q) = (a, b)

where

a =
nq +mp

gcd(nq +mp,mq)

and
b =

mq

gcd(nq +mp,mq)

Secondly, we define multiplication:

(n,m).(p, q) = (a, b)

where

a =
np

gcd(np,mq)

and
b =

mq

gcd(np,mq)

Thirdly, we define additive inverse:
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−(n,m) = (−n,m).

Let

Q = (SFP | (0, 1), (1, 1),+,−, .)

4.3 A concrete representation of the transrationals

To build an algebra Qtr of transrational numbers we need to add elements
that behave like ± infinity and error. We apply to Q the construction of the
transfield of an ordered field given in section 4.1. However, instead of extending
Q by adding the elements e, ip and in of the general construction to Q we add
the following. The element (1, 0) will represent infinity ∞, the element (−1, 0)
will represent the opposite of infinity −∞ and the element (0, 0) will represent
error ⊥.

The elements (1, 0), (−1, 0) and (0, 0) are not in the set SFP , which requires
the second coordinate m > 0, and so we define

SFPtr = SFP ∪ {(1, 0), (−1, 0), (0, 0)}.

Thus the structure Q is extended to the algebra

Q[(1, 1), (0, 0)] = (SFPtr | (0, 1), (1, 1),+,−, .)

The new elements are not named constants.
At this point we expand the algebra Q[(1, 1), (0, 0)] with inverse operation

−1 again defined by the construction in section 4.1:
This extended structure

Qtr = (SFPtr | (0, 1), (1, 1), (1, 0), (0, 0),+,−, .,−1 )

is an algebra of transrational numbers.

Lemma 4.1. The algebra Qtr is a Σtr-minimal algebra.

Definition 4.1. The abstract data type Qtr of the algebra of transrational num-
bers is the isomorphism class of the Σtr-minimal algebra Qtr.

5 Initial algebra specification of transrationals

5.1 Axioms

The complete set of equational axioms is given in Table 1.
Notice that axioms 33 and 34 introduce two auxiliary operators (division

and square) to make other axioms and arguments more familiar and easier to
read; they can be removed.

To get the feel of these axioms we prove carefully some identities that will be
needed in proofs later on. As with all axiomatisations of algebraic structures,
the lemmas are needed to build up a stock of basic properties, some of which
could have been chosen as axioms. We start with the following observation:
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x+ y = y + x (1)

(x+ y) + z = x+ (y + z) (2)

x+ 0 = x (3)

x+ (−x) = 0.x (4)

x.y = y.x (5)

x.(y.z) = (x.y).z (6)

x.1 = x (7)

(x.y)−1 + 0.(x−1 + y−1) = x−1.y−1 + 0.(x−1 + y−1) (8)

(x−1)−1 + (0.x) = x+ (0.x) (9)

(−x)−1 + (0.x−1) = −(x−1) + (0.x−1) (10)

(x+ y).z + (0.z) = (x.z + y.z) + (0.z) (11)

0.0 = 0 (12)

0−1 =∞ (13)

∞−1 = 0 (14)

(−∞)−1 = 0 (15)

∞+ 1 =∞ (16)

∞− 1 =∞ (17)

∞.∞ =∞ (18)

∞+∞ =∞ (19)

∞+ (−∞) =⊥ (20)

−(x+ y) = (−x) + (−y) (21)

(−x).y = −(x.y) (22)

−(−x) = x (23)

0.∞ =⊥ (24)

− ⊥ =⊥ (25)

⊥−1 =⊥ (26)

⊥ + ⊥ =⊥ (27)

1 + ⊥ =⊥ (28)

∞ + ⊥ =⊥ (29)

(x.y) + ⊥ = x+ (y+ ⊥) (30)

x−1+ ⊥ = x+ ⊥ (31)

(−x) + ⊥ = x+ ⊥ (32)
x

y
= x.y−1 (33)

x2 = x.x (34)

1 + 0.((x+ y) + (z + u)) =
((x2 + y2) + (z2 + u2)) + 1

((x2 + y2) + (z2 + u2)) + 1
(35)

∞+ 0.((x+ y) + (z + u)) =
((x2 + y2) + (z2 + u2)) + 1

0
+ 0.((x+ y) + (z + u))

(36)

Table 1: Etr: An initial algebra specification of the abstract datatype of tran-
srationals
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Lemma 5.1. (Σtr, Etr) `⊥ . ⊥=⊥.

Proof.

⊥ . ⊥ = (0.∞).(0.∞) by axiom 24

= 0.(∞.(0.∞)) by axiom 6

= 0.((∞.0).∞)) by axiom 6

= 0.((0.∞).∞)) by axiom 5

= 0.(0.(∞.∞)) by axiom 6

= (0.0).(∞.∞)) by axiom 6

= 0.∞. by axioms 12 and 18

=⊥ by axiom 24

ut

In further proofs we will use associativity and commutativity without refer-
ence to the respective axioms.

Lemma 5.2. For all closed Σtr terms t,

(Σtr, Etr) ` t + ⊥=⊥ and (Σtr, Etr) ` t . ⊥=⊥

Proof. Consider the first statement using induction on the structure of t. The
basis cases of t + ⊥ are as follows. If t ≡ 0 apply axiom 3. If t ≡ 1 use axiom 28.
If t ≡ ∞ use axiom 29. For t ≡ −∞ write

−∞+ ⊥ = −∞− ⊥ by axiom 25

= −(∞+ ⊥) by axiom 21

= −(⊥) by axiom 29

=⊥ by axiom 25

For t ≡⊥ use axiom 27.
The induction steps follow by applying axiom 31, axiom 29, and axiom 30,

and Lemma 5.1. ut

The lemma prompts to note that the absorption law x + ⊥=⊥ is not prov-
able from the equations of Etr. This is because all our equations in Etr have
exactly the same variables on both sides of the equality sign, which is a prop-
erty preserved by equational deduction. (A rationale for choosing this type of
equation is given in section 6.2.) Next, recall the properties of numerals. Let
n = 1 + 1 + . . .+ 1 (n-times). Then the following is easy to check:

Lemma 5.3. (Σtr, Etr) ` n+m = n+m and (Σtr, Etr) ` n.m = n.m.

Lemma 5.4. (Σtr, Etr) ` 0.n = 0.
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Proof. We do this by induction on n. As basis note that if n = 0 or n = 1 then
the lemma is true by the axioms 7 and 12. Suppose the lemma is true for n = k
and consider n = k + 1. Using the axioms we deduce that

0.k + 1 = k + 1.0 by commutativity, axiom 5

= (k + 1).0 by definition of numerals

= (k + 1).0 + 0 by axiom 3

= (k + 1).0 + 0.0 by axiom 12

= (0.k + 0.1) + 0.0 by axiom 11

= (0 + 0) + 0 by induction hypothesis and axioms 7 and 12

= 0. by axiom 3

ut

Lemma 5.5. (Σtr, Etr) ` m.m−1 = 1 for m > 0.

Proof. Applying Lagrange’s Theorem to m − 1, let m = p2 + q2 + r2 + s2 + 1.
Then:

m

m
=
p2 + q2 + r2 + s2 + 1

p2 + q2 + r2 + s2 + 1

= 1 + 0.(p+ q + r + s) by axiom 35

= 1 + 0.(p+ q + r + s) by Lemma 5.3

= 1 + 0 by Lemma 5.4

= 1

ut

Lemma 5.6. (Σtr, Etr) ` 0.m−1 = 0 for m > 0.

Proof.

0.m−1 = (0.m).m−1 by Lemma 5.4

= 0.(m.m−1) by axiom 6

= 0.1 by Lemma 5.5

= 0 by axiom 7

ut

Lemma 5.7. (Σtr, Etr) ` 0.(n.m−1) = 0 for m > 0.
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Proof.

0.(n.m−1) = (0.n).m−1 by axiom 6

= 0.m−1 by Lemma 5.4

= 0 by Lemma 5.6

ut

Lemma 5.8. (Σtr, Etr) ` (n.m−1)−1 = m.n−1 for m,n > 0.

Proof. First, with Lemma 5.4, we find 0.m = 0 so that with axiom 9 we deduce

(m−1)−1 = m.

Now axiom 8 yields

(n.(m−1)−1) + (0.(n−1 + (m−1)−1)) = (n−1.(m−1)−1) + (0.(n−1 + (m−1)−1)).

And with 0.m = 0 we have

(n.(m−1)−1) + (0.(n−1 +m)) = (n−1.(m−1)−1) + (0.(n−1 +m)).

Taking z = 0 from axiom 11 we find (x+ y).0 = x.0 + y.0 whence with commu-
tativity:

(n.(m−1)−1) + ((0.n−1) + (0.m)) = (n−1.(m−1)−1) + ((0.n−1) + (0.m)).

Combining this with Lemmas 5.4 and 5.6, we can obtain the required result. ut

Turning to ∞ we have these basic properties:.

Lemma 5.9. (Σtr, Etr) ` ∞+m =∞

Proof. By induction on m. If m = 0 and m = 1 then the lemma follows from
the axioms 3 and 16, respectively. Suppose m = k + 1. Then ∞ + (k + 1) =
(∞+ k) + 1 by lemma 5.3 and axiom 2. By the induction hypothesis on k, we
have ∞+ 1 =∞ by axiom 16. ut

And with a similar proof one obtains:

Lemma 5.10. (Σtr, Etr) ` ∞−m =∞

Lemma 5.11. (Σtr, Etr) ` ∞.m = ∞ and, for m > 0, (Σtr, Etr) ` ∞.m−1 =
∞.
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Proof. Consider the first statement. Applying Lagrange’s Theorem, let m =
p2 + q2 + r2 + s2 + 1. Then

∞.m =
m

0
by axiom 13

=
p2 + q2 + r2 + s2 + 1

0
by substitution

=
p2 + q2 + r2 + s2 + 1

0
+ 0 by axiom 3

=
p2 + q2 + r2 + s2 + 1

0
+ 0.(p+ q + r + s+ 1) by Lemma 5.3 and

Lemma 5.4

=∞+ 0.(p+ q + r + s+ 1) by axiom 36

=∞. by Lemma 5.4 and

axiom 3

Next, consider the second statement.

∞.m−1 = (∞.m).m−1 by the previous part of the lemma

=∞.(m.m−1) by associativity

=∞ by Lemma 5.5

ut

Lemma 5.12. (Σtr, Etr) ` ∞.(n.m−1) =∞ for m > 0.

Proof. By combining both parts of Lemma 5.11. ut

Lemma 5.13. (Σtr, Etr) ` −0 = 0

Proof.

−0 = −0 + 0 by axiom 3

= 0 + (−0) by axiom 1

= 0.0 by axiom 4

= 0 by axiom 12

ut

5.2 Theorem

Theorem 5.1. The initial algebra I(Σtr, Etr) of the equations in Etr is iso-
morphic to the algebra Qtr of transrationals.

15



Proof. We will take the standard term representation T (Σtr, Etr) of initial alge-
bra I(Σtr, Etr) and show that T (Σtr, Etr) ∼= Qtr. Recall (3.1) that T (Σtr, Etr) =
T (Σtr)/ ≡Etr

and that for t1, t2 ∈ T (Σtr),

t1 ≡Etr
t2 ⇐⇒ Etr ` t1 = t2.

To work with the congruence we define a transversal Tr of unique represen-
tatives of the equivalence classes of ≡Etr . Let

Tr = {n.m−1,⊥,∞,−∞ | (n,m) ∈ SFP}.

Lemma 5.14. (Σtr, Etr) |= Qtr.

Proof. To prove soundness we inspect each axiom and show its validity in Qtr.
This involves 32 equations, often with many case distinctions each. We give
some examples to illustrate the pattern of reasoning.

First, consider if any one of the variables is the error element (0, 0). Note
that all equations have the property that the variables that appear on the left
side of the equality sign also appear on the right, and vice versa. The definition
of the operations in the error case of section 4.3 shows that (0, 0) propagates.
Thus, all equations are valid if one of the variables is (0, 0). Thus we need only
consider the equations when their variables have values that are rationals or
infinities. Note that the infinities do not always propagate, which can lead to
many case distinctions in the equations having several variables.

1. Consider associativity: x + (y + z) = (x + y) + z. If all variables are ra-
tionals then the equation is easily seen to be valid. There are 26 cases involving
the rationals and infinities (1, 0) and (−1, 0). For example, suppose x = (1, 0),
y = (1, 0) and z = (−1, 0). Then the LHS is (1, 0) + ((1, 0) + (−1, 0)) = (1, 0) +
(0, 0) = (0, 0) and the RHS is ((1, 0)+(1, 0))+(−1, 0) = (1, 0)+(−1, 0) = (0, 0).

2. Consider (x−1)−1 + 0.x = x+ 0.x. If x ∈ Q then the axiom is satisfied imme-
diately when x 6= 0 and almost immediately when x = 0. Consider the guard
term 0.x which appears on both sides. If x = (1, 0) then (0, 1).(1, 0) = (0, 0).
By definition, anything added to (0, 0) results in (0, 0). Thus, LHS=RHS. Sim-
ilarly, If x = (−1, 0) then (0, 1).(−1, 0) = (0, 0) and again LHS=RHS.

3. Consider the four squares equation 35. If all the x, y, z, u are assigned ratio-
nal numbers then it is easy to see that the equation holds. There are 34−1 = 80
cases remaining in which at least one variable is not assigned a rational value.
Consider two cases.

If x = (1, 0) and y, z, u are rationals then the numerator and the denominator
of the fracterm is (1,0). Thus the RHS is (1, 0).(1, 0)−1 = (1, 0).(0, 1) = (0, 0).
On the LHS the sum of the variables is (1,0). Thus the LHS is (1,1) + (0,1).(1,0)
= (1,1) + (0,0) = (0,0). So LHS = RHS.

Let x = (1, 0), x = (−1, 0) and z, u be rationals. Note that the variables on
the RHS are squared and so (−1, 0).(−1, 0) = (1, 0) and we have numerator and
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denominator evaluates to (1,0) and their division to (0,0), as previously. On the
LHS the sum of the variable is immediately (0,0) and so evaluates to (0,0) and
LHS = RHS.

With these illustrative cases we conclude the argument for the lemma.
ut

T (Σtr, Etr) is the initial algebra of the class of models of (Σtr, Etr). By
the lemma Qtr is such a model and so by intitiality, there exists a unique
surjective homomorphism φ : T (Σtr, Etr) −→ Qtr. We have to show that φ
is an isomorphism. We do this by proving by induction the following lemma:

Lemma 5.15. Every term t ∈ T (Σtr) reduces to an element t0 of the transversal
Tr, i.e., (Σtr, Etr) ` t = t0.

We deal with the constants in the base case and the operator symbols in the
induction step. There are several case distinctions and the argument uses the
36 equations in various subtle ways.

Basis Case: The Constants. Clearly, the transversal contains the constants
⊥, ∞. We will show that the constant 0 is 0.1−1 using axioms of x.1 = x
(axiom 7) and associativity:

0 = 0.1 = 0.(1.1−1) = (0.1).1−1 = 0.1−1.

Last we show the constant 1 is 1.1−1 using the four squares axiom:

1

1
=

02 + 02 + 02 + 02 + 1

02 + 02 + 02 + 02 + 1
= 1 + 0.(0 + 0 + 0 + 0) = 1.

Both are in the transversal.

Induction Step. There are four operators −,−1 ,+, . to consider.

Additive inverse. Consider the leading operator symbol − and term t = −s.
By induction, the subterm s reduces to one of four cases: s = ∞, s = −∞,
s =⊥ and s = n.m−1 in the transversal Tr. From the axioms, the first two cases
of −s are immediate as −∞, −(−∞) =∞ (axiom 23) and − ⊥=⊥ (axiom 25)
are in the transversal. Finally, Suppose t = −(n.m−1). Then, by axiom 22,
t = (−n.m−1), which is in the transversal.

ut

Multiplicative inverse. Consider the leading operator symbol −1 and term t =
s−1. By induction, the subterm s reduces to one of five cases: s =∞, s = −∞,
s =⊥, s = 0.m−1 and s = n.m−1 with n 6= 0 in the transversal Tr.

If s =∞ then s−1 = 0 by axiom 14 which is in the transversal.
If s = −∞ then s−1 = 0 by axiom 15 which is in the transversal.
If s =⊥ then axiom 26 yields s−1 =⊥ which is in the transversal.
If s = 0.m−1 then
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s−1 = (0.m−1)−1

= 0−1 by Lemma 5.6

=∞ by axiom 13

which is in the transversal.
If s = n.m−1 for n,m 6= 0 then

s−1 = (n.m−1)−1

= n−1.(m−1)−1 by Lemma 5.8

= n−1.((m−1)−1 + 0) by axiom 3

= n−1.((m−1)−1 + 0.m) by Lemma 5.4

= n−1.(m+ 0.m) by axiom 9

= n−1.(m+ 0) by Lemma 5.4

= n−1.m by axiom 3

= m.n−1 by axiom 5

which is in the transversal.
If s = −n.m−1 for n 6= 0 then with the previous case and axiom 10 one finds

s = −n.m−1 = −m.n−1 which is in the transversal.

Addition. Consider the leading operator symbol + and term t = r + s. For
notational ease, we write a for n and b for m. By induction, the subterms r, s
reduce to one of ten cases in the table below:

r ⊥ ⊥ ⊥ ⊥ ∞ ∞ −∞ ∞ −∞ a.b−1

s ⊥ ∞ −∞ a.b−1 ∞ −∞ −∞ a.b−1 a.b−1 c.d−1

The first four cases where r =⊥ follow from the axiom x + ⊥=⊥ and commu-
tativity. The next case ∞ +∞ = ∞ is axiom 19. The case ∞ + (−∞) =⊥ is
axiom 20. There are three cases left.

Now

∞+ a.b−1 =∞.b−1 + a.b−1 by Lemma 5.11

= (∞.b−1 + a.b−1) + 0.b−1 by axiom 3 and Lemma 5.6

= (∞+ a).b−1 + 0.b−1 by axiom 11

=∞.b−1 + 0 by Lemma 5.9 and Lemma 5.6

=∞.b−1 by axiom 3

=∞ by Lemma 5.11

which is in the transversal.
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−∞+ a.b−1 = −∞+−(−(a.b−1)) by axiom 23

= −∞+−((−a).b−1) by axiom 22

= −(∞+ a.b−1) by axiom 21

= −∞ by the previous case

Consider the last case:

a.b−1 + c.d−1 = a.b−1.1 + c.d−1.1 by axiom 7

= a.b−1.d.d−1 + c.d−1.b.b−1 by Lemma 5.5

= a.d.b−1.d−1 + c.b.d−1.b−1 by axiom 5

= (a.d.b−1.d−1 + c.b.d−1.b−1) + 0.b−1.d−1 by axiom 3 and

Lemma 5.6

= (a.d+ c.b).b−1.d−1 + 0.b−1.d−1 by axiom 11

=
a.d+ c.b

bd
+ 0 by axiom 33 and

Lemma 5.6

=
a.d+ c.b

bd
. by axiom 3

To finish this deduction: let p = gcd(a.d + c.b, bd). Choose p′, p′′ such that

p.p′ = a.d + c.b and p.p′′ = b.d. Then a.d+c.b
bd = p.p′

p.p′′ = p′

p′′ , which is in the
transversal.

Multiplication. Consider the leading operator symbol . and term t = r.s. By in-
duction, the subterms r, s reduce to one of nine cases as in the table for addition
above; each case will need an argument.

⊥ . ⊥ = (∞.0).(∞.0) by axiom 24

=∞.∞.0 by axioms 6, 5, 12

=∞.0 by axiom 18

=⊥ by axioms 6 and 24

which is in the transversal. The next case is straightforward:

⊥ .∞ = (∞.0).∞ by axiom 24

= (∞.∞).0 by axioms 6, 5

=∞.0 by axiom 18

=⊥ by axiom 24
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which is in the transversal.

⊥ .−∞ = (−∞). ⊥ by axiom 5

= −(∞. ⊥) by axiom 22

=∞.0 by axiom 18

= − ⊥ by previous case

=⊥ by axiom 25

which is in the transversal.

⊥ .a.b−1 = (∞.0).a.b−1 by axiom 24

=∞.(0.a.b−1) by axiom 6

=∞.0 by Lemma 5.7

=⊥ by axiom 24

which is in the transversal.

The case ∞.∞ =∞ is axiom 18.

∞.(−∞) = (−∞).∞ by axiom 5

= −(∞.∞) by axiom 22

= −∞ by axiom 18

which is in the transversal.

The case ∞.a.b−1 =∞ is Lemma 5.12.

−∞.(a.b−1) = −(∞.a.b−1) by axiom 22

= −∞ by previous case

which is in the transversal.
Finally, the last case is this deduction: let p = gcd(ac, bd)
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a.b−1.c.d−1 = (a.c).(b.d)−1 by axioms 5 and 8

= (p.p′).(p.p′′)−1 by substitution

= (p.p′).(p−1.p′′−1) by axiom 8

= (p.p−1).(p′p′′−1) by axiom 5

= (1.p′p′′−1) by Lemma 5.5

= p′p′′−1 by axiom 7

which is in the transversal.
This concludes the proof of the theorem.

5.3 Qtr as a final algebra

We will prove that Qtr is also final among the minimal algebras satisfying the
equations in Etr. To do this it is convenient to have a few further lemmas.

Lemma 5.16. If x ∈ Q and x 6= 0 then x.x−1 = 1.

Proof. By inspection. ut
ut

Lemma 5.17. If x ∈ Q and x > 0 then x.∞ = ∞. If x ∈ Q and x < 0 then
x.∞ = −∞.

Proof. By inspection. ut

Theorem 5.2. Let A be any Σtr algebra and φ : Qtr −→ A be any Σtr ho-
momorphism that is surjective. Then φ is either an isomorphism, and A is
isomorphic to Qtr, or φ is the trivial homomorphism and A is the unit algebra.

Proof. Assume that φ is an epimorphism that is not an isomorphism. Then
there are x and y such that x 6= y and φ(x) = φ(y) in A. We will show
that A is the unit algebra and φ is trivial. At first sight there are 13 cases to
consider depending upon x and y being rationals, ∞, −∞, or ⊥. By symmetry
of equality, and dealing with each case in a certain order these can be reduced
to 7 cases:

x ⊥ ⊥ ⊥ ∞ ∞ −∞ r
y ∞ −∞ r −∞ r r r

Case 1: x =⊥ and y =∞ and φ(⊥) = φ(∞) in A.
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φ(0) = φ(
1

∞
) by axiom 13

=
φ(1)

φ(∞)
φ is a homomorphism

=
φ(1)

φ(⊥)
by case assumption

= φ(
1

⊥
) φ is a homomorphism

= φ(⊥) by axiom 26

Thus, φ(0) = φ(⊥) implies 0A =⊥A since φ is a homomorphism. Now the
identity x + 0 = x holds in Qtr and so it holds in the homomorphic image A.
In particular, for all z ∈ A,

z = z + 0A = z + ⊥A=⊥A

Thus A is the unit algebra.

Case 2: x =⊥ and y = −∞ and φ(⊥) = φ(−∞) in A.

φ(∞) = φ(−(−∞)) by axiom 23

= −φ(−∞) φ is a homomorphism

= −φ(⊥) by case assumption

= φ(− ⊥) φ is a homomorphism

= φ(⊥) by axiom 25

Since φ(∞) = φ(⊥) we are in Case 1, and A is the unit algebra.

Case 3: x =⊥ and y = r for r 6= 0 and φ(⊥) = φ(r) in A.

φ(1) = φ(
r

r
) by Lemma 5.5

=
φ(r)

φ(r)
φ is a homomorphism

=
φ(⊥)

φ(⊥)
by case assumption

= φ(
⊥
⊥

) φ is a homomorphism

= φ(⊥) by ⊥ . ⊥=⊥ as derived in the proof of Lemma 5.1 and axiom 26

Thus, 1A =⊥A. Now the identity x = 1.x holds in Qtr and so it holds in the
homomorphic image A. In particular, for all z ∈ A,

z = z. ⊥A=⊥A
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and so A is the unit algebra.

Case 4: x =∞ and y = −∞ and φ(∞) = φ(−∞) in A

φ(0) = φ(
1

∞
) by axiom 14

= φ(
1

∞+∞
) by axiom 19

=
φ(1)

φ(∞) + φ(∞)
φ is a homomorphism

=
φ(1)

φ(∞) + φ(−∞)
by case assumption

=
φ(1)

φ(∞+ (−∞))
φ is a homomorphism

=
φ(1)

φ(⊥)
by axiom 20

= φ(
1

⊥
) φ is a homomorphism

= φ(⊥) by axiom 26

Thus, φ(0) = φ(⊥) and a rational and⊥maps to the same value, which is Case 3.

Case 5: x =∞ and y = r and φ(∞) = φ(r) in A
This has 3 subcases. First, consider x = ∞ and y = 0 and φ(∞) = φ(0).

Then:

φ(0) = φ(0.0) by axiom 12

= φ(0).φ(0) φ is a homomorphism

= φ(0).φ(∞) by case assumption

= φ(0.∞) φ is a homomorphism

= φ(⊥) by axiom 24

Thus φ(0) = φ(⊥) and we are in Case 3.
Second, consider x =∞ and y = r where r ∈ Q and r > 0, and φ(∞) = φ(r).

Then:

φ(1) = φ(r.r−1) by Lemma 5.5

= φ(r).φ(r−1) φ is a homomorphism

= φ(∞).φ(r−1) by case assumption

= φ(∞.r−1) φ is a homomorphism

= φ(∞) by Lemma 5.11
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Thus φ(1) = φ(∞) and we conclude with this deduction:

φ(0) = φ(0.1) by axiom 7

= φ(0).φ(1) φ is a homomorphism

= φ(0).φ(∞) by case assumption

= φ(0.∞) φ is a homomorphism

= φ(⊥) by axiom 24

Thus φ(0) = φ(⊥) and we are again in Case 3.
The third case is x =∞ and y = r where r ∈ Q and r < 0, and φ(∞) = φ(r);

this is similar to the second case.

Case 6: x = −∞ and y = r and φ(−∞) = φ(r) in A

−φ(−∞) = −φ(r) by axioms 22 and 5

φ(−−∞) = −φ(r) φ is a homomorphism

φ(∞) = −φ(r) by axiom 23

φ(∞) = φ(−r) φ is a homomorphism

Thus, a rational and ∞ maps to the same value, which is Case 5.

Case 7: x = r and y = s and φ(r) = φ(s) in A. Start with some special cases:
suppose r = 1 and s = 0 and φ(1) = φ(0). Then first we claim: φ(−1) = φ(1).

−φ(1) = −φ(0) by axiom 22 and 5

φ(−1) = φ(−0) φ is a homomorphism

= φ(0) by Lemma 5.13

= φ(1) by case assumption

Thus, φ(−1) = φ(1).

φ(∞) = φ(∞.1) by identity 7

−φ(1) = φ(∞).φ(1) φ is a homomorphism

φ(−1) = φ(∞).φ(−1) by claim above

= φ(∞.(−1)) φ is a homomorphism

= φ(−∞) by axiom 22 and 5

Thus, a rational and −∞ maps to the same value, we are in Case 6.
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Turning to subcase r = 0 and s 6= 0 in Qtr,

φ(1) = φ(
s

s
) by Lemma 5.5

=
φ(s)

φ(s)
φ is a homomorphism

=
φ(0)

φ(0)
φ is a homomorphism

= φ(0).φ(
1

0
) φ is a homomorphism

= φ(0).φ(∞) by axiom 13

= φ(0.∞) φ is a homomorphism

= φ(⊥) by axiom 24

Thus, a rational and ⊥ maps to the same value, which is Case 3. Finally, we
complete this case: suppose φ(r) = φ(s). Then φ(r) − φ(r) = φ(s) − φ(r) and
φ(0) = φ(s− r) in A This is the case above. ut

The following is immediate.

Corollary 5.1. Algebra Qtr is both initial and final in the class Algmin(Σtr, Etr)
of minimal algebras satisfying the axioms of Etr.

6 Concluding Remarks

6.1 Expansion with a sign function

It is central to the idea of transrationals and transreals that the infinite elements
admit an ordering, leaving only ⊥ as an unordered element. Following [5],
a practical way to deal with the ordering of a meadow is to introduce a sign
function s(−). This is possible in the context of transrationals as well. Equations
for the sign function can be chosen as follows:

s(0) = 0 (37)

s(⊥) =⊥ (38)

s(∞) = 1 (39)

s(−x) = −s(x) (40)

s(
x2 + y2 + z2 + u2 + 1

a2 + b2 + c2 + d2 + 1
) + 0.(x+y + z + u+ a+ b+ c+ d)

= 1 + 0.(x+ y + z + u+ a+ b+ c+ d)
(41)

Adding these equations to the equations of Etr enriches the initial algebra with
a sign function.
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6.2 Reflections on floating point

Floating point numbers constitute a subset of the rational numbers and here
we have shown how to enlarge the field of rationals to model more closely some
semantic aspects of floating point arithmetic. The introduction of ∞ and −∞
was perhaps the first step to ensure the division operations were total. We
also introduced the error element ⊥ that we viewed as a quiet “not a number”
qNaN. We can step closer to floating point behaviour by introducing a fourth
new element to model a signalling “not a number” or sNaN. Suppose we add
⊥s for the purpose of signalling the need for an interrupt. We can expect the
interrupt to take precedence and satisfy the simple axioms:

− ⊥s =⊥s (42)

⊥−1s =⊥s (43)

x+ ⊥s =⊥s (44)

x. ⊥s =⊥s (45)

s(⊥s) =⊥s (46)

Clearly, combing these two basic forms of error ⊥ and ⊥s are a complication
but one that can be managed by our equations. In fact these four axioms can
be simply added to the axioms of Etr to give an initial algebra specification of
an enlarged structure for the transrationals having the stronger error element
⊥s.

The simple addition of the signalling axioms is an attractive property but
does require special features in the design of Etr. The specification Etr is
designed to be “weak” in order to cope with such developments. The large
number of very simple axioms and the absence of general axioms like x + ⊥=⊥
is one consequence; and the painstaking recovery of properties in lemmas and
deductions is another. The equations are designed to have the same variables
on both sides of the equality sign to cope smoothly with error propagation.

6.3 On approaches to total division

Using a general conceptual framework for analysing numerical data types with
total operations, we have given a general mathematical model of the transra-
tional numbers.

The concept of a meadow emerged when we were making an algebraic specifi-
cation of the rational numbers in [14]; we studied the axiomatic class of meadows
in [6]. A substantial series of papers has built an algebraic theory of meadows,
e.g., [15, 7, 11, 8].

The concept of a wheel was introduced by Anton Setzer in unpublished
notes [24]. It was motivated by Jens Blanck’s lectures on exact real number
computations, based on domains, and Per Martin Löf’s suggestion to allow 0 in
denominators of elements of quotient fields. Later wheels were studied in greater
generality and published by Jesper Carlström [17]. Carlström generalised the
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constructions to semirings, developed equations and identities, and considered
the class of wheels. In [16] we have provided an equational specification of
the wheel of rationals as an abstract data type. An alternative initial algebra
specification of the wheel of rationals can be obtained from Etr by replacing
∞+∞ =∞ by ∞ = −∞.

The concept of a transfield and of the transrationals we have taken from [18],
wherein the focus of the models are the transreals which are intended to support
Analysis for computers [1]. There has been considerable criticism, voiced by
experts in the field, of the introduction of transreals by James Anderson et. al.
for instance in [2].

Now some comments can be made on three of these critical remarks: (i) as
far as we know the transrationals and transreals were novel structures around
1998, and the suggestion (made in [2]) that these structures were well-known
in mathematics or logic or computer science (e.g., ring theory, model theory,
domain theory, abstract data type theory) lacks confirmation, in particular the
precise relation between positive infinity, negative infinity, and nullity was a
novel design choice; (ii) the suggestion that studying error propagation in infinite
data types is “totally meaningless” is in contrast with the extensive literature
on infinite data types with error handling; (iii) considering the transrationals
and transreals to be merely a rediscovery of IEEE floating point NaN (or qNaN)
misses the point that there is a definite lack of theoretical clarity to the design
of the floating point number system when it comes to the additional values such
as infinity, NaN, qNaN, sNaN, and negative infinity. From the perspective of
abstract data type theory, and the design of software specification languages
which makes use of abstract data types, Anderson’s approach was and still is
entirely natural.

Acknowledgement We thank Alban Ponse, University of Amsterdam, for
pointing out an inconsistency in a previous version of the specification with the
help of Prover9-Mace4, which led to the current form of axiom 10.
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