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Abstract

We consider the Stokes-transport system, a model for the evolution of an incompressible

viscous fluid with inhomogeneous density. This equation was already known to be globally

well-posed for any L1
∩ L∞ initial density with finite first moment in R

3. We show that

similar results hold on different domain types. We prove that the system is globally well-

posed for L∞ initial data in bounded domains of R
2 and R

3 as well as in the infinite

strip R × (0, 1). These results contrast with the ill-posedness of a similar problem, the

incompressible porous medium equation, for which uniqueness is known to fail for such a

density regularity.

Keywords: Incompressible viscous fluid, active scalar equation, global well-posedness, steady
Stokes equation, transport equation

1 Introduction

This contribution is dedicated to the study of the following coupling between the transport
equation and the Stokes equation,






∂tρ+ u · ∇ρ = 0
−∆u+∇p = −ρez

divu = 0
ρ|t=0 = ρ0,

(1.0)

where ρ, u and p respectively stand for the density, velocity and pressure of a fluid, ρ0 is the initial
density profile and ez is the vertical upward unitary vector. This system is a model of evolution
of an incompressible and viscous fluid having an inhomogeneous density or buoyancy subject
to the gravity directed by −ez . It differs from the classical Boussinesq equation by neglecting
the velocity self-advection term and the diffusion of the density. It is especially derived as
the mesoscopic model of a cloud of inertialess particles sedimenting in a Stokes fluid, see for
instance [9, 12]. This system belongs to a broad family of transport equations with non-local
velocity field, the active scalar equations, meaning that u depends on ρ in a non-local way. The
vorticity equation, the surface quasi-geostrophic equation and the incompressible porous medium
equation (IPM) are examples of extensively studied systems having this structure, see [2] for an
overview. In particular, the IPM is a well-known model for the evolution of an incompressible
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inhomogeneous fluid inside a porous material, which writes as the system (1.0) where one replaces
the Stokes equation by Darcy’s law, namely

u+∇p = −ρez.

To our knowledge, (1.0) has been shown to be well-posed in the whole space R
3 by Höfer [9]

and Mecherbet [13]. In particular, Mecherbet proved that for any ρ0 ∈ L1 ∩ L∞ having a finite
first moment, the system (1.0) admits a unique solution, global in time,

(ρ,u) ∈ L∞(R+;L
1(R3) ∩ L∞(R3))× L∞(R+;W

1,∞(R3)).

We thereafter state the well-posedness of (1.0) for initial data ρ0 in L∞(Ω), for any regular
enough bounded subdomain Ω of R2 and R

3, as well as in the infinite strip R × (0, 1). These
results stand out with the ill-posedness of IPM, for which uniqueness fails on various domains
for weak solutions associated to L∞ initial data, see [5, 15]. Even for Sobolev data, the question
of global in time well-posedness of IPM is still open, see [10], although the particular case of a
small and smooth perturbation of a stationary density profile does lead to a global solution, as
proved in [4].

In both Höfer and Mecherbet works, the proof of existence of a solution relies on a fixed point
argument, respectively a contracting map and a Picard iteration. The latter consists in solving
successively the Stokes and the transport equations, providing function sequences that appear
to be convergent. This convergence is proven thanks to a stability estimate on the solutions
of the transport equation, combined with an energy estimate for the Stokes equation. In the
full space R

3, one can express the solution of the Stokes equation as the convolution with the
adequate Green kernel. Thanks to this explicit formula, Mecherbet established the stability
estimate on solutions of the Stokes equation, controlled by the Wasserstein distance between
their source terms. Combined with a stability estimate for the transport equation, expressed
with the Wasserstein distance, this provides the contraction inequality allowing to apply the
Picard argument. In particular, the Wasserstein distance allows to state the stability estimate
without any derivability assumption on the density. In the following, we will emphasize the fact
that the shape of the spatial domain on which one solves (1.0) strongly conditions the way one
have to address the Stokes part. Apart from that, the classical transport theory is not as much
sensitive to the geometry of the domain, as long as the velocity field is bounded and Lipschitz,
with extra condition on the possible boundaries. Moreover it appears that ρ is the push-forward
of ρ0 by the flow of u. In particular, if ρ0 is a patch, the density ρ will remain a patch at all
times.

In this paper, we follow a strategy similar to the one adopted by Mecherbet [13] in order to
prove the well-posedness of (1.0) on bounded domains of R2 and R

3. Since the Green kernel
associated to the Stokes equation is no longer explicit for such domains in general, the remaining
exploitable tools are the energy estimate and an elliptic gain of regularity due to Stokes equation.
We also replaced the Wasserstein distance, the use of which requires an explicit kernel, by
some negative Sobolev norms. Notice that both metrics are relatable, see for instance [14,
subsection 5.5.2]. We also impose the Dirichlet boundary condition on the velocity, considering
more precisely the system






∂tρ+ u · ∇ρ = 0 in R+ × Ω,
−∆u+∇p = −ρez in R+ × Ω,

divu = 0 in R+ × Ω,
u = 0 in R+ × ∂Ω,

ρ|t=0 = ρ0 in Ω.

(1.1)
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Our first result is the following well-posedness theorem for this system, which comes together
with a stability estimate left in Proposition 2.7.

Theorem 1.1. Let Ω be a bounded domain of class C2 of Rd for d = 2 or 3. For any ρ0 ∈ L∞(Ω)
there exists a unique solution (ρ,u) to (1.1) in

L∞(R+;L
∞(Ω))× L∞(R+;W

1,∞(Ω)).

We further deal with the infinite strip domain R × (0, 1). The main difference lies in the
analysis of the Stokes equation. To work with L∞ densities requires to deal with velocity profiles
that are not square-integrable. To overcome this observation we work with Kato spaces, also
called uniformly local Sobolev spaces. Using some classical tools we provide a proof of the well-
posedness of the Stokes equation in this framework, since we could not find this result in the
literature. In particular we prove that a L∞ datum induces a W 1,∞ solution, as in the bounded
domain case, which will provide handy Lipchitz velocity fields to deal further with the transport
part. The method consists in considering an increasing covering of bounded open subsets of the
strip, and to solve the Stokes problem on each of these subdomains. This provides a sequence
of functions on R × (0, 1). By managing carefully the interior estimates of the elements of this
sequence, we prove its boundedness in the uniformly locally H1 function space, denoted H1

uloc

and defined in paragraph 3.1.1. Therefore we obtain a H1
uloc solution by a compact argument.

Uniqueness comes from the well-posedness in the classical H1 framework. Using the elliptic
regularity of the Stokes equation in bounded domains, we prove the H2

uloc regularity of the
solution on the strip. Hence we obtain a leverage to establish existence of a unique solution in
W 2,q

uloc for Lq
uloc data for exponents 2 < q < ∞, and to conclude to the well-posedness of the

problem in W 1,∞ for L∞ data by Sobolev embeddings. The proof of the well-posedness of the
coupling then lies in the extension of results used in the bounded domain case to the infinite
strip through the uniformly local topology. Precisely, we consider in Ω = R× (0, 1) the system





∂tρ+ u · ∇ρ = 0 in R+ × Ω,
−∆u+∇p = −ρez in R+ × Ω,

divu = 0 in R+ × Ω,
u = 0 in R+ × ∂Ω,∫

u1 dz = 0 in R+ ×R,
ρ|t=0 = ρ0 in Ω,

(1.2)

where the extra condition on the flux
∫
u1 dz is introduced and discussed in paragraph 3.1.2.

In the end, the well-posedness of (1.2) almost writes as in Theorem 1.1, with a similar stability
result stated in Proposition 3.10.

Theorem 1.2. Let Ω = R× (0, 1). For any ρ0 ∈ L∞(Ω) there exists a unique solution (ρ,u) to
(1.2) in

L∞(R+;L
∞(Ω))× L∞(R+;W

1,∞(Ω)).

It is rather natural to wonder if this result extends to the case of the layer domain R
2 ×

(0, 1). It appears that the Stokes problem in this unbounded domain raises some additional
difficulties, among those finding a functional space in which the problem admits a unique solution,
in accordance with the handling of the interior estimates mentioned in the previous paragraph,
see Remark 3.6 for further details. We abstain from considering this case in the present work.

The paper is organized in Section 2, dedicated to the bounded domain case, and Section 3,
dedicated to the infinite strip case. Both sections are ordered in the same way. Subsections
1 recall and prove the necessary prerequisites about the Stokes equation, including the well-
posedness complete proof in the infinite strip in Section 3. Subsections 2 contain preliminary
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results concerning the transport theory, and in particular the stability estimates proofs. Subsec-
tions 3 are dedicated to the proofs of Theorem 1.1 and Theorem 1.2, respectively. Ultimately,
we state and prove the stability estimates of the coupling in Subsections 4.

Definitions and notations

The dimension d is always 2 or 3. A domain Ω is a non-empty open and simply connected subset
of Rd. The Bochner spaces are denoted by Lq([0, T );B(Ω)) with 1 ≤ q ≤ ∞, T ∈ [0,∞] and
B(Ω) a Banach or a Fréchet space of functions defined in Ω. It is endowed with its classical norm
denoted here ‖ · ‖Lq(0,T ;B), the space domain being specified only when differing from the whole
domain Ω. A vector valued map is denoted by a bold symbol, implicitly of size d. We note u|∂Ω
the trace of u on the boundary of a domain Ω, when the boundary is regular enough to define it.
We sometimes write f ≡ c to signify that a function f is constant to c with respect to time. We
denote by C any non-negative constant that is adjusted from one line to another, independent
of the data and we specify its eventual space or exponent dependencies when necessary. We
sometimes write f . g, meaning there exists such a constant C such that f ≤ Cg, as well as
f ≃ g, meaning f . g and g . f .

2 Well-posedness of the coupling in a bounded domain

In this section, and unless stated otherwise, Ω denotes a bounded domain of Rd with Lipschitz
boundary.

2.1 Preliminaries on the Stokes problem in a bounded domain

Let us recall the Stokes problem on Ω, defined in the weak sense,




−∆u+∇p = f in Ω,
divu = g in Ω,

u = 0 on ∂Ω,
(2.1)

where f and g belong to functional spaces specified further. Notice that it is necessary for g to
satisfy the following compatibility condition due to the homogeneous assumption,

∫

Ω

g =

∫

Ω

divu =

∫

∂Ω

u · n = 0. (2.2)

The well-posedness of this problem is well known for Sobolev data, see in particular [7, Theo-
rem IV.6.1 and Exercise I.6.3], reported below. We especially use that L∞ data induce W 1,∞

solutions, see the following corollary, which will provide velocity fields easy to deal with in the
transport part.

Theorem 2.1 (Galdi). Let Ω be a bounded domain of Rd of class C2 and let 1 < q < ∞.
1. For any f ∈ Lq(Ω) and g ∈ W 1,q(Ω) satisfying (2.2), there exists a unique1 pair (u, p) in

W 2,q(Ω)×
(
W 1,q(Ω)/R

)
satisfying (2.1), which moreover obeys the inequality

‖u‖W 2,q + ‖p‖W 1,q ≤ C (‖f‖Lq + ‖g‖W 1,q) ; (2.3)

1Unless explicitly stated otherwise, the canonical representative of p considered is the one having zero average
over Ω.
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2. For any f ∈ W−1,q(Ω) there exists a unique pair (u, p) in W 1,q(Ω)× (Lq(Ω)/R) satisfying
(2.1) with g = 0, which moreover obeys the inequality

‖u‖W 1,q + ‖p‖Lq ≤ C‖f‖W−1,q . (2.4)

The L∞ to W 1,∞ regularity of the problem is deduced from the Sobolev embeddings of
W 2,4(Ω) in W 1,∞(Ω) and W 1,4(Ω) in L∞(Ω) for d = 2 and 3.

Corollary 2.2. Let Ω be a bounded domain of R
d of class C2. For any f ∈ L∞(Ω), there

exists a unique pair (u, p) in W 1,∞(Ω)× (L∞(Ω)/R) satisfying (2.1), which moreover obeys the
inequality

‖u‖W 1,∞ + ‖p‖L∞ ≤ C‖f‖L∞. (2.5)

2.2 Preliminaries on the transport equation and stability estimates

Let us consider the transport equation, in the weak sense, for a given vector field u ∈ L∞(R+;W
1,∞(Ω))

satisfying the Dirichlet condition u|∂Ω ≡ 0,
{

∂tρ+ u · ∇ρ = 0 in R+ × Ω,
ρ(0, ·) = ρ0 in Ω.

(2.6)

We recall the definition of the characteristic (map) or flow X associated to the vector field u,
as the solution of

∀s, t ∈ R+, ∀x ∈ Ω,

{
∂tX(t, s, x) = u(t,X(t, s, x))
X(s, s, x) = x.

The Cauchy-Lipschitz theory ensures that X is well defined, and that for any s, t ∈ R
+, X(t, s, ·)

is a homeomorphism from Ω onto itself, satisfying the composition principle

∀r, s, t ∈ R+, X(t, s, ·) ◦X(s, r, ·) = X(t, r, ·).

In particular we have the relation X(t, 0, ·)−1 = X(0, t, ·). From now on, we use indifferently the
following notations

∀t ∈ R+, X(t) = X(t, ·) = X(t, 0, ·), X(−t) := X(0, t, ·).

Let us enumerate a few classical properties of the flow. These are elementary consequences of
Duhamel formula and Gronwall inequality.

Lemma 2.3. Let u ∈ L∞(R+;W
1,∞(Ω)) with u|∂Ω ≡ 0. The associated characteristic map X

satisfies,
∀t ∈ R, ∀x, y ∈ Ω, |X(t, x)−X(t, y)| ≤ eC|t|‖∇u‖L∞(0,t;L∞) |x− y|. (2.7)

In particular X(t) is bi-Lipschitz for any t. Recall that Liouville theorem ensures that if
divu ≡ 0 the jacobian determinant of X(t) is identically equal to 1 with respect to t. Besides,
let us introduce a classical stability estimate on the characteristics.

Lemma 2.4. Let ui ∈ L∞(R+;W
1,∞(Ω)) with ui|∂Ω ≡ 0 and divui ≡ 0 for i = 1, 2. If Ω is

bounded, the associated characteristic maps Xi satisfy, for any 1 ≤ q ≤ ∞,

∀t ∈ R+, ‖X1(t)−X2(t)‖Lq ≤ teCt‖∇u1‖L∞(0,t;L∞)‖u1 − u2‖L∞(0,t;Lq). (2.8)

If q = ∞, the inequality holds true for unbounded Ω.
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Proof. Let us consider Ω bounded. From Duhamel formula we write for any t ∈ R+ and x ∈ Ω,

X1(t, x)−X2(t, x) =

∫ t

0

u1(τ,X1(τ, x)) − u2(τ,X2(τ, x)) dτ

=

∫ t

0

u1(τ,X1(τ, x)) − u1(τ,X2(τ, x)) dτ

+

∫ t

0

u1(τ,X2(τ, x))− u2(τ,X2(τ, x)) dτ.

The Lipschitz regularity of ui and the Minkowski inequality provide, for any 1 ≤ q ≤ ∞,

‖X1(t)−X2(t)‖Lq ≤ C‖∇u‖L∞(0,t;L∞)

∫ t

0

‖X1(τ)−X2(τ)‖Lq dτ

+

∫ t

0

‖u1(τ,X2(τ)) − u2(τ,X2(τ))‖Lq dτ.

As a consequence of Liouville theorem, one has for 1 ≤ q < ∞ and τ ∈ [0, t],

‖u1(τ,X2(τ)) − u2(τ,X2(τ))‖Lq = ‖u1(τ, ·)− u2(τ, ·))‖Lq .

The case q = ∞ holds naturally true. Then we have

‖X1(t) − X2(t)‖Lq ≤ C‖∇u1‖L∞(0,t;L∞)

∫ t

0

‖X1(τ) − X2(τ)‖Lq dτ + t‖u1 − u2‖L∞(0,t;Lq),

which yields (2.8) by Gronwall inequality.

The classical characteristics method provides the well-posedness of the transport equation.

Proposition 2.5. Let Ω be a Lipschitz domain of R
d, not necessarily bounded. Let u ∈

L∞(R+;W
1,∞(Ω)) with u|∂Ω ≡ 0, and let ρ0 ∈ L∞(Ω). There exists a unique ρ in L∞(R+;L

∞(Ω))
satisfying (2.6), which is moreover the push-forward of ρ0 by the characteristic X of u, namely

∀t ∈ R+, ρ(t) = ρ0 ◦X(−t).

In particular the Lq norm of the solution ρ is constant in time, for any 1 ≤ q ≤ ∞. Besides, we
state the following estimate of the evolution of the difference of two solutions of (2.6) associated
to distinct velocity fields.

Proposition 2.6. Let ui ∈ L∞(R+;W
1,∞(Ω)), with ui|∂Ω ≡ 0 and divui ≡ 0, for i = 1, 2.

Let ρ0 ∈ L∞(Ω) and ρi be the solutions of (2.6) associated to ui with initial datum ρ0. For any
1 < q < ∞ there exists T̄ (‖∇ui‖L∞) > 0 and C(Ω, q) > 0 such that for any T ∈ [0, T̄ ],

‖ρ1 − ρ2‖L∞(0,T ;W−1,q) ≤ C‖ρ0‖L∞TeCT‖∇u1‖L∞(0,T ;L∞)‖u1 − u2‖L∞(0,T ;Lq).

Proof. Let t ∈ R+ and ϕ ∈ C∞
c (Ω). Since the vector fields ui are divergence-free, the Liouville

theorem ensures the following change of variable,

Iϕ :=

∫

Ω

(
ρ1(t, x)− ρ2(t, x)

)
ϕ(x) dx

=

∫

Ω

(
ρ0(X1(−t, x))− ρ0(X2(−t, x))

)
ϕ(x) dx

=

∫

Ω

ρ0(x)
(
ϕ(X1(t, x))− ϕ(X2(t, x))

)
dx.
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Since ϕ is smooth, we can write

Iϕ =

∫

Ω

ρ0(x)
(
X1(t, x) −X2(t, x)

)
·

∫ 1

0

∇ϕ(Xθ(t, x)) dθ dx,

where we set Xθ(t, x) := θX1(t, x) + (1− θ)X2(t, x). Then, Hölder’s inequality provides

|Iϕ| ≤ ‖ρ0‖L∞‖X1(t)−X2(t)‖Lq

∫ 1

0

‖∇ϕ(Xθ(t))‖Lq′ dθ. (2.9)

Let us show that Xθ(t) is bi-Lipschitz from Ω onto its range. Consider the derivative of the
Duhamel formula satisfied by Xi,

∇Xi(t, ·)− Id =

∫ t

0

∇ui(τ,Xi(τ, ·)) · ∇Xi(τ, ·) dτ

and deduce thanks to inequality (2.7) the uniform estimate

‖∇Xi(t)− Id‖L∞ ≤ C‖∇ui‖L∞(0,t;L∞)

(
eCt‖∇ui‖L∞(0,t;L∞) − 1

)
.

Therefore for some arbitrary constant C > 1 there exists T̄ (‖∇ui‖L∞) > 0 such that

∀t ∈ [0, T̄ ], C−1 ≤ det ∇Xi(t) ≤ C,

and such that the Lipschitz constants of Xi(t) are uniformly bounded with respect to t, by a
constant smaller than 1, as follows,

LT̄ := max
i

sup
t∈[0,T̄ ]

Lip(Xi(t)− Id) < 1.

The latter inequality ensures the injectivity of Xθ(t), since for any x, y ∈ Ω, the equality
Xθ(t, x) = Xθ(t, y) is equivalent to

x − y = θ
(
X1(t, y) − y −

(
X1(t, x) − x

))
+ (1 − θ)

(
X2(t, y) − y −

(
X2(t, x) − x

))
,

and implies
|x− y| ≤ LT̄ |x− y|,

so that x = y since LT̄ < 1. In the end we have proved that Xθ(t) is bi-Lipschitz for any
θ ∈ [0, 1] and t ∈ [0, T̄ ], with a uniform bound on its jacobian determinant, independent of θ and
t. Therefore we have for any 1 < q < ∞,

‖∇ϕ(Xθ(t))‖Lq′ ≤ Cq‖∇ϕ‖Lq . (2.10)

Combining (2.9) and (2.10) leads to

∀t ∈ [0, T̄ ],

∫

Ω

(ρ1(t, x) − ρ2(t, x))ϕ(x) dx ≤ C‖ρ0‖L∞‖X1(t)−X2(t)‖Lq‖ϕ‖W 1,q′ .

Plugging the stability estimate (2.8) and taking the supremum over the test functions provides
the following bound on the negative Sobolev norm,

∀t ∈ [0, T̄ ], ‖ρ1(t)− ρ2(t)‖W−1,q ≤ C‖ρ0‖L∞teCt‖∇u1‖L∞(0,t;L∞)‖u1 − u2‖L∞(0,t;Lq).

It remains to consider the supremum over t ∈ [0, T ] for any T ≤ T̄ to get the result.
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2.3 Proof of Theorem 1.1

The strategy of the proof is inspired from the one adopted by Mecherbet in [13] for the space
domain R

3. In [13] the author solves successively Stokes and transport problems, providing
a contracting sequence of velocity fields and density profiles. Here the contracting property is
obtained by combination of the Stokes estimate from Theorem 2.1 and the stability estimate for
the transport from Proposition 2.6. Both interplay in the case of the whole space thanks to the
Green kernel, also called Oseen tensor, representation of the Stokes solution and the stability
estimates formulated with the Wasserstein distance. Since we work in general open bounded
domains, we do not use Green kernels but only rely on the variational estimates. We also replace
the Wasserstein distance, handled by Mecherbet, by negative Sobolev norms. Both are known
to be related, see [14, subsection 5.5.2], and in our case present the same asset to allow the
statement of stability estimates without any derivability assumption concerning the density.

Local existence : Set ρ0 ≡ ρ0 in L∞(R+;L
∞(Ω)). Theorem 2.1 and Proposition 2.5 allow to

define the following sequences by induction on N ∈ N,

ρN ∈ L∞(R+;L
∞(Ω)), uN ∈ L∞(R+;W

1,∞(Ω)),

satisfying for any N ∈ N the Stokes problem




−∆uN +∇pN = −ρNez in R+ × Ω,
divuN = 0 in R+ × Ω,

uN = 0 in R+ × ∂Ω,
(2.11)

and the transport equation
{

∂tρ
N+1 + uN · ∇ρN+1 = 0 in R+ × Ω,

ρN+1|t=0 = ρ0 in Ω.
(2.12)

Let us denote B := C‖ρ0‖L∞ with adjustable constant. Since ρN is the push-forward of ρ0 by
the flow of uN−1, we have the uniform bound

∀N, ‖ρN‖L∞(R+;L∞) = ‖ρ0‖L∞ ≤ B.

Using althemore Stokes estimate (2.5), we obtain

∀N, ‖uN‖L∞(R+;W 1,∞) ≤ C‖ρN‖L∞(R+,L∞) ≤ B.

Hence ρN ,uN and ∇uN converge in w∗ − L∞(R+ × Ω) up to the extraction of subsequences.
Besides, estimates from Proposition 2.6 and Theorem 2.1 ensure that there exists T̄ (‖ρ0‖L∞) > 0
such that

∀T ∈ [0, T̄ ], ‖ρN+1 − ρN‖L∞(0,T ;H−1) ≤ BTeBT‖uN − uN−1‖L∞(0,T ;H1)

≤ BTeBT‖ρN − ρN−1‖L∞(0,T ;H−1). (2.13)

We see that for T > 0 small enough we have BTeBT < 1 so that (ρN )N is a Cauchy sequence in
L∞(0, T ;H−1(Ω)). As a consequence of the Stokes estimate (2.3), we have that (uN )N is also a
Cauchy sequence, in L∞(0, T ;H1(Ω)). Its limit belongs to L∞(0, T ;W 1,∞(Ω)) since it converges
for the weak∗ topology. In particular, uN converges in L1(0, T ;W 1,1(Ω)), which together with
the weak∗ convergence of (ρN )N allows to pass to the limit in the weak formulations of both
(2.11) and (2.12). Therefore the limit (ρ,u) satisfies (1.1) on a short time, with regularity

L∞(0, T ;L∞(Ω))× L∞(0, T ;W 1,∞(Ω)).
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Local uniqueness : Let (ρi,ui) be two such solutions of (1.1). The estimate (2.13) adapts in

‖ρ1 − ρ2‖L∞(0,T ;H−1) ≤ BTeBT‖ρ1 − ρ2‖L∞(0,T ;H−1),

up to the choice of a smaller T > 0. We deduce that ρ1 = ρ2 on [0, T ], and that u1 = u2 thanks
to the Stokes estimate.

Globality : By existence and uniqueness of a solution to (1.1) locally in time, we know that
there exists a unique maximal solution (ρ,u) on some interval [0, T ∗) with T ∗ ∈ [0,∞]. Remark
that T ∗ depends only on ‖ρ0‖L∞. Since ‖ρ‖L∞ ≡ ‖ρ0‖L∞ , a classical continuation argument
implies that T ∗ = ∞, which proves that the solution is global.

2.4 Stability estimate for the system in a bounded domain

We prove a stability estimate for the Stokes-transport system, inherited from Proposition 2.6.

Proposition 2.7. Let ρ0,i ∈ L∞(Ω) and set ρi the solution of (1.1) with initial datum ρ0,i for
i = 1, 2. For any 1 < q < ∞ there exists C(Ω, q, ‖ρ0,i‖L∞) > 0 such that

∀T ∈ R+, ‖ρ1 − ρ2‖L∞(0,T ;W−1,q) ≤ CeCT ‖ρ0,1 − ρ0,2‖W−1,q . (2.14)

Proof. Let us set ui the velocity fields associated to ρi for i = 1, 2. Set ρ1,2 the solution of (2.6)
with initial datum ρ0,1 and vector field u2. Hence, consider the triangular inequality

∀T ∈ R+, ‖ρ1 − ρ2‖L∞(0,T ;W−1,q) ≤ ‖ρ1 − ρ1,2‖L∞(0,T ;W−1,q)︸ ︷︷ ︸
I1

+ ‖ρ1,2 − ρ2‖L∞(0,T ;W−1,q)︸ ︷︷ ︸
I2

From Proposition 2.6 and estimate (2.5) we know that there exists some T̄ (‖ρ0,1‖L∞) > 0 and
C(Ω, q) > 0 such that

∀T ∈ [0, T̄ ], I1 ≤ C‖ρ0,1‖L∞eCT‖∇u1‖L∞(0,T ;L∞)‖u1 − u2‖L∞(0,T ;Lq).

Let us denote B := Cmaxi ‖ρ0,i‖L∞ . Stokes estimates (2.4) and (2.5) respectively provide here

‖u1 − u2‖L∞(0,T ;Lq) ≤ C‖ρ1 − ρ2‖L∞(0,T ;W−1,q), ‖∇u1‖L∞(0,T ;L∞) ≤ B,

which yields
∀T ∈ [0, T̄ ], I1 ≤ BTeBT‖ρ1 − ρ2‖L∞(0,T ;W−1,q).

To bound I2 let us apply again Liouville theorem for any t ∈ R+ and ϕ ∈ C∞
c (Ω), to get

∫

Ω

(
ρ1,2(t, x)− ρ2(t, x)

)
ϕ(x) dx =

∫

Ω

(ρ0,1(x) − ρ0,2(x))ϕ(X2(t, x)) dx.

Now we have, by definition of the Sobolev norm,
∫

Ω

(
ρ1,2(t, x)− ρ2(t, x)

)
ϕ(x) dx ≤ ‖ρ0,1 − ρ0,2‖W−1,q‖ϕ(X2(t))‖W 1,q′ .

From estimates (2.7) and (2.5) together with the bound ‖∇Xi‖L∞(0,t;L∞) ≤ CeBt provided by
Lemma 2.4, it follows

‖ϕ(X2(t))‖W 1,q′ ≤ CeBt‖ϕ‖W 1,q′ .
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Passing to the supremum over the test functions gives

I2 ≤ CeBT ‖ρ0,1 − ρ0,2‖W−1,q .

In the end we have shown that

∀T ∈ [0, T̄ ], ‖ρ1 − ρ2‖L∞(0,T ;W−1,q) ≤ BTeBT ‖ρ1 − ρ2‖L∞(0,T ;W−1,q)

+ CeBT ‖ρ0,1 − ρ0,2‖L∞(0,T ;W−1,q).

Up to the choice of a small enough T̄ > 0, we have

∀T ∈ [0, T̄ ], ‖ρ1 − ρ2‖L∞(0,T ;W−1,q) ≤
CeBT̄

1−BT̄eBT̄︸ ︷︷ ︸
C̄

‖ρ0,1 − ρ0,2‖W−1,q ,

Notice that the choice of T̄ depends only on B, and recall that ‖ρi(t)‖L∞ = ‖ρ0,i‖L∞ for any
t ∈ R+. Therefore, one obtains by induction

∀T ∈ R+, ‖ρ1 − ρ2‖L∞(0,T ;W−1,q) ≤ C̄⌈T/T̄ ⌉‖ρ0,1 − ρ0,2‖W−1,q ,

which also writes (3.18).

3 Well-posedness of the system in the infinite strip

In this section, Ω stands for the infinite strip R × (0, 1). We denote by (ex, ez) the canonical
base of R2 in which u has coordinates (u1, u2).

Regarding our problem, the transport theory does not depend on the nature of the domain,
and the related results presented in the previous section are still valid in the strip. The main
difference lies in the tools and methods required to solve the Stokes equation in Ω. In particular,
we state that this equation is still well-posed for L∞ data, with W 1,∞ solution. To do so, we
consider Kato spaces, also known as uniformly local Sobolev spaces. This framework allows to
consider uniformly bounded densities ρ and non globally integrable velocity fields u, having
infinite energy ‖u‖H1 , but admitting locally a finite energy, uniformly bounded with respect to
any compact stallion subdomain of the strip. We first solve Stokes equation in a L2 framework,
then recover elliptic regularity and use Sobolev injection to prove its well-posedness for bounded
data. Even if it requires known methods, we did not find the precise proof of this latter result
in the uniformly local framework.

The Subsection 3.1 is dedicated to the statements and proofs related to the Stokes equation.
In particular we introduce Kato spaces in paragraph 3.1.1, then discuss the flux condition in
paragraph 3.1.2 and finally prove the related well-posedness theorems in paragraph 3.1.3. The
Subsection 3.2 concerns the stability estimate for the transport in the strip. Subsection 3.3
contains the proof of the well-posedness of the coupling, and we state its stability estimate in
Subsection 3.4.

3.1 The Stokes problem in the strip

3.1.1 The functional spaces

Let us set the following subdomains of Ω, for any k ∈ Z,

Uk = {(x, z) ∈ Ω : k < x < k + 1} U∗
k = {(x, z) ∈ Ω : k − 1 < x < k + 2}.
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Define a smooth map χ : Ω → [0, 1], depending on x only, equal to 1 on U0 and to 0 outside U∗
0 .

Set its translations χk := χ(· − kex) so that χk is equal to 1 on Uk and supported in U∗
k . For

convenience we choose χ so that
∑+∞

k=−∞ χk = 2 in Ω. Let us set for m ∈ Z and 1 ≤ q ≤ ∞ the
uniformly local norm

∀u ∈ Wm,q
loc (Ω), ‖u‖Wm,q

uloc
:= sup

k∈Z

‖χku‖Wm,q ,

and define the Kato space as the set of locally Sobolev maps having a finite uniformly local norm,

Wm,q
uloc(Ω) := {u ∈ Wm,q

loc (Ω) : ‖u‖Wm,q

uloc
< ∞}.

This is a Banach space, that does not depend on the choice of χ, see for instance [1, §2.2]. The
following result provides in particular some handy norms equivalences.

Lemma 3.1. For any m ∈ N and 1 < q ≤ ∞, the following quantities are equivalent,

u ∈ Wm,q
loc (Ω), sup

k∈Z

‖u‖Wm,q(Uk) ≃ sup
k∈Z

‖u‖Wm,q(U∗

k
) ≃ ‖u‖Wm,q

uloc
.

For any m ∈ N
∗ and 1 < q < ∞, the following quantities are comparable,

u ∈ W−m,q
loc (Ω), sup

k∈Z

‖u‖W−m,q(Uk) . sup
k∈Z

‖u‖W−m,q(U∗

k
) ≃ ‖u‖W−m,q

uloc
.

Although this result presents no difficulty, we provide a short proof and a comment, about
the missing inequality for the last comparison, in appendix A.1 for sake of completeness.

3.1.2 Flux condition

In general, the homogeneous Stokes system as formulated in (2.1) admits non-trivial solutions
in domains with unbounded boundaries, called Poiseuille solutions, see for instance [7, Section
IV]. In our case, these are described as follows

uφ(x, z) =

(
6φz(1− z)

0

)
, pφ(x, z) = 12φx, φ ∈ R.

Let us introduce the definition of the flux of u throw the section of abscissa x ∈ R of Ω,
∫

u1 dz :=

∫ 1

0

u1(x, z) dz =

∫ 1

0

u(x, z) · ex dz.

Notice that the divergence-free and the homogeneous Dirichlet condition ensure that any solution
of (2.1) on Ω has flux independent of x, which we will denote further by

∫
u1 dz. Indeed,

d

dx

[∫ 1

0

u1(x, z) dz

]
=

∫ 1

0

∂xu1(x, z) dz = −

∫ 1

0

∂zu2(x, z) dz = u2(x, 0)− u2(x, 1) = 0. (3.1)

For instance, the flux of the Poiseuille solution uφ is φ. We will see that a choice of flux value
prescribes a unique Poiseuille solution, and provides uniqueness of a solution in Kato spaces.
Since the Stokes equation is linear, we can choose one value without loss of generality. From now
on we consider the Stokes problem with the zero flux condition,






−∆u+∇p = f in Ω,
divu = 0 in Ω,

u = 0 on ∂Ω,∫
u1 dz = 0 in R.

(3.2)
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3.1.3 Well-posedness of the Stokes problem in the strip

We show that the system (3.2) is well-posed for H−1
uloc(Ω) and L2

uloc(Ω) data f , with some elliptic
regularity gain. We then deduce that this system is also well-posed for L∞(Ω) data with W 1,∞(Ω)
solutions, by adapting the steps of the proof of the bounded domain case. The general technique
presented here is originally due to Ladyzhenskaya and Solonnikov [11]. A proof in a framework
closer to ours can be found in [8, Theorem 3]. Although these are classical tools, we have not
found the proof of this result in the literature.

Theorem 3.2. Let f ∈ H−1
uloc(Ω). There exists a unique u in H1

uloc(Ω) satisfying (3.2), which
moreover obeys the inequality

‖u‖H1
uloc

≤ C‖f‖H−1
uloc

. (3.3)

Let us introduce a few more notations. Set for any k ∈ Z,

Ωk := {(x, z) ∈ Ω : −k < x < k}.

Let us define for any k ∈ N
∗ a smooth map ηk : Ω → [0, 1], depending on x only, equal to 1

in Ωk and supported in Ωk+1. Remark that its derivatives are supported in Ωk+1\Ωk. We can
choose ηk such that there exists a constant C > 0 independent of k and satisfying

‖η′k‖L∞ + ‖η′′k‖L∞ ≤ C.

Finally, let us observe the following estimate linking uniformly local and classical Sobolev norms
over Ωn. We report its proof in appendix A.2.

Lemma 3.3. Let n ∈ N
∗. There exists a constant C > 0 such that for any f in L2

uloc(Ω), resp.
in H−1

uloc(Ω), one has

‖f‖L2(Ωn) ≤ Cn1/2‖f‖L2
uloc

, resp. ‖f‖H−1(Ωn) ≤ Cn1/2‖f‖H−1
uloc

.

Proof of Theorem 3.2. Let us set for any n ∈ N
∗ the unique couple (un, pn) in H1(Ωn) ×(

L2(Ωn)/R
)

satisfying the system






−∆un +∇pn = f in Ωn,
divun = 0 in Ωn,

un = 0 on ∂Ωn,

existence and uniqueness of which is ensured by [3, Theorem IV.5.1]. Then define for any integers
1 ≤ k ≤ n the energy of un on the subdomain Ωk,

En,k := ‖un‖
2
H1(Ωk)

=

∫ k

−k

∫ 1

0

|∇un|
2 + |un|

2.

By evaluating (3.1.3) in the test function un we find

∫ n

−n

∫ 1

0

|∇un|
2 = 〈f ,un〉Ωn

≤ ‖f‖H−1(Ωn)‖un‖H1(Ωn).

Using Lemma 3.3 and Poincaré’s inequality, for which the constant involved can be chosen
independent of n, one finds

En,n ≤ Cn1/2‖f‖H−1
uloc

.
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Our goal is to show that there exists C > 0 independent of n and f , such that

En,1 = ‖un‖
2
H1(Ω1)

≤ C‖f‖2
H−1

uloc

. (3.4)

This allows to conclude to the existence of a solution u ∈ H1
uloc(Ω) obeying the estimate (3.3),

by translation invariance of the domain and compactness considerations. To prove (3.4) we will
fix n ∈ N

∗ and show by descending induction over k that there exists C > 0 independent of u,
f , n and k such that

∀ 1 ≤ k ≤ n, En,k ≤ Ck‖f‖2
H−1

uloc

.

Let us evaluate the variational formulation of (3.1.3) in the test function ηkun, which yields
∫

Ωn

ηk|∇un|
2 = 〈f , ηkun〉Ωk+1

−

∫

Ωn

η′kun · ∂xun +

∫

Ωn

η′kpnun,1. (3.5)

By Poincaré’s inequality we bound from below the left hand side by En,k, up to a multiplicative
constant. Let us bound from above all the right hand side terms. Lemma 3.3 provides

〈f , ηkun〉Ωk+1
≤ C‖f‖H−1(Ωk+1)‖un‖H1(Ωk+1) ≤ C(k + 1)1/2‖f‖H−1

uloc
E

1/2
n,k+1. (3.6)

Since η′k is supported in Ωk+1\Ωk and uniformly bounded independently of k, we have
∣∣∣∣
∫

Ωn

η′kun · ∂xun

∣∣∣∣ ≤ C

∫

Ωk+1\Ωk

|∇un|
2 + |un|

2 = C(En,k+1 − En,k). (3.7)

Let us split the remaining integral of 3.5 as follows,
∫

Ωn

η′kpnun,1 =

∫

Uk

η′kpnun,1 +

∫

−Uk

η′kpnun,1.

Remark that ∫

Uk

η′kun,1 =

∫ k+1

k

η′k

∫
un,1 dz = 0,

since the flux
∫
un,1 dz is independent of x for the same reason as in (3.1), and equal to 0 because

of the homogenous Dirichlet condition in {x = ±n}. Hence, let us denote by 〈pn〉Uk
the average

of pn over Uk, and find
∫

Uk

η′kpnun,1 =

∫

Uk

η′k(pn − 〈pn〉Uk
)un,1 ≤ C‖pn − 〈pn〉Uk

‖L2(Uk)‖un‖L2(Uk).

Let us apply Nečas inequality, see [3, Lemma IV.1.9], and get

‖pn − 〈pn〉Uk
‖L2(Uk) ≤ C‖∇pn‖H−1(Uk)

≤ C‖∆un + f‖H−1(Uk)

≤ C
(
‖∇un‖L2(Uk) + ‖f‖H−1(Uk)

)
.

Hence we deduce, using Lemma 3.3, that
∣∣∣∣
∫

Uk

η′kpnun,1

∣∣∣∣ ≤ C
(
(En,k+1 − En,k)

1/2 + ‖f‖H−1
uloc

)
E

1/2
n,k . (3.8)
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The very same considerations hold true for the integral over −Uk. Bounding (3.5) thanks to
(3.6), (3.7) and (3.8), plus applying Young’s inequality, we obtain that for any integers k, n such
that 1 ≤ k ≤ n,

En,k ≤ C
(
En,k+1 − En,k + (k + 1)‖f‖2

H−1
uloc

)
. (3.9)

This relation implies (3.4), as stated in the following lemma, proven apart in appendix A.3.

Lemma 3.4. Let (En,k)k,n be a non-negative family indexed by all couples (k, n) ∈ N
2 satisfying

1 ≤ k ≤ n, non-decreasing with respect to k, obeying (3.9) and such that

∀n ∈ N
∗, En,n ≤ Cn‖f‖2

H−1
uloc

.

There exists C0 > 0 and k0 ∈ N
∗ independent of f such that for any k, n ∈ N satisfying

k0 ≤ k ≤ n, we have
En,k ≤ C0k‖f‖

2
H−1

uloc

.

This result implies the expected inequality,

∀n ≥ k0, En,1 ≤ En,k0 ≤ C0k0‖f‖
2
H−1

uloc

.

By extending f |Ωn
and un to Ω by 0 outside Ωn, we can perform a similar analysis and find the

same energy estimates over each subdomain Uℓ, namely,

∀n ≥ k0, ∀ℓ ∈ Z, ‖un‖
2
H1(Uℓ)

≤ C‖f‖2
H−1

uloc

,

where C = C0k0 with C0 and k0 independent of n and ℓ. Therefore, for any n ≥ k0, un belongs
to H1

uloc(Ω) and satisfies
‖un‖H1

uloc
≤ C‖f‖H−1

uloc
.

Since bounded subsets of H1(Uℓ) are weakly relatively compact, there exists a subsequence of
(un)n converging weakly in H1

loc(Ω) toward some u ∈ H1
uloc(Ω), with u satisfying estimate (3.3).

The limit also verifies
∫
u1 dz = 0 since every un has zero flux. Hence, it is a solution of (3.2).

To prove uniqueness of such an element, let us consider some u ∈ H1
uloc(Ω) satisfying (3.2)

with f = 0. Define the energy Ek := ‖u‖2H1(Ωk)
and proceed to the same computations as

previously to find
Ek ≤ C(Ek+1 − Ek + 1).

Notice that the zero flux condition is necessary to bound the pressure term and obtain such an
estimate. Since Ek+1 − Ek is bounded by ‖u‖2

H1
uloc

, we have

∀k ∈ Z, Ek ≤ C(‖u‖2H1
uloc

+ 1) < ∞,

which means that u belongs to H1(Ω). Then we conclude by well-posedness of the Stokes system
over Ω in H1(Ω), see for instance [16].

Remark 3.5. The pressure does not belong to L2
uloc(Ω) in general; observe for instance the

following triplet, satisfying (3.2),

f = ex, u = 0, p(x, z) = x.

Nevertheless, we have thanks to Nečas inequality some similar estimate as (3.3) on the pressure,

sup
k∈Z

‖p− 〈p〉Uk
‖L2(Uk) ≤ C‖f‖L2

uloc
.
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Remark 3.6. This proof does not adapt straightforwardly to the case of the layer domain R
2 ×

(0, 1). The first issue one needs to deal with is to determine conditions on u ensuring uniqueness
of a solution. Also, the descending induction on the energy estimates no longer holds in this
form. Indeed, one needs to replace the slices [k, k + 1] × (0, 1) in R × (0, 1) by chunks [k, k +
1] × [ℓ, ℓ + 1] × (0, 1) in R

2 × (0, 1). To bound the energy on [−k, k]2 × (0, 1) by the energy on
[−(k + 1), k + 1]2 × (0, 1) makes appear some quadratic terms in k in (3.9 instead of the linear
ones present for the strip case, making the induction fail. Under different boundary assumptions,
it is however possible to adapt it in a non-trivial way and to conclude; see for instance [6, Section
3].

Since L∞(Ω) ⊂ L2
uloc(Ω) ⊂ H−1

uloc(Ω), we already have existence of a solution to (3.2) for L∞

data. Recall that we need to establish the W 1,∞ regularity of this solution. We first show that
the system satisfies some elliptic regularity property in the hilbertian framework.

Theorem 3.7. Let f ∈ L2
uloc(Ω). The associated solution u ∈ H1

uloc(Ω) of (3.2) belongs to
H2

uloc(Ω) and obeys the inequality

‖u‖H2
uloc

≤ C‖f‖L2
uloc

. (3.10)

Proof. The demonstration consists in truncating the global solution u within some bounded
subdomains, and to use the elliptic regularity in these bounded domains provided by Theorem
2.1. Let f ∈ L2

uloc(Ω) and set (u, p) ∈ H1
uloc(Ω)×

(
L2
loc(Ω)/R

)
, the associated solution to (3.2).

For any k ∈ Z, set uk := χku and qk := χk(p− 〈p〉U∗

k
), which satisfy the system






−∆uk +∇qk = F k in Ũk,

divuk = χ′
ku1 in Ũk,

uk = 0 on ∂Ũk,

(3.11)

where we set
F k := χkf − 2χ′

k∂xu− χ′′
ku+ χ′

k

(
p− 〈p〉U∗

k

)
ex

for any smooth bounded subdomain Ũk of Ω containing U∗
k . Let us set (Ũk)k a family of such

domains given by the choice of a smooth Ũ0 containing U∗
0 and its translations Ũk = Ũ0+kex. The

regularity of u and p implies that F k belongs to L2(Ũk) and that χ′
ku1 satisfies the compatibility

condition (2.2). Therefore, Theorem 2.1 ensures that uk is the only solution of (3.11) on Ũk,
with estimate

‖uk‖H2(Ũk)
≤ C‖F k‖L2(Ũk)

, (3.12)

where the constant C > 0 can be chosen independent of k since the subdomains Ũk are transla-
tions of each other. A few computations lead to

‖F k‖L2(Ũk)
≤ C(‖u‖H1

uloc
+ ‖f‖L2

uloc
+ ‖p− 〈p〉U∗

k
‖L2(U∗

k
)). (3.13)

Nečas inequality and Lemma 3.3 provide

‖p− 〈p〉U∗

k
‖L2(U∗

k
) ≤ C‖∇p‖H−1(U∗

k
)

≤ C‖∆u+ f‖H−1(U∗

k
)

≤ C(‖u‖H1
uloc

+ ‖f‖L2
uloc

).

The latter estimate combined with (3.3) and (3.13) in (3.12) leads to

‖u‖H2(Uk) ≤ ‖uk‖H2(Ũk)
≤ C‖f‖L2

uloc
,

which proves that u belongs to H2
uloc(Ω) and satisfies inequality (3.10).
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From the latter result and Sobolev embeddings we obtain existence of W 1,q
uloc solutions for Lq

data. Then elliptic regularity is once again recovered and we show that these solutions are in
W 2,q

uloc. Finally Sobolev embeddings once again yield a unique solution in W 1,∞ for L∞ data.

Theorem 3.8. Let f ∈ L∞(Ω). There exists a unique u ∈ W 1,∞(Ω) satisfying (3.2), which
obeys

‖u‖W 1,∞ ≤ C‖f‖L∞ . (3.14)

Proof. Let f ∈ L∞(Ω). We always have

‖f‖L2
uloc

≤ C‖f‖L∞ .

The Sobolev embeddings in bounded domains adapts into the continuous inclusion

H2
uloc(Ω) →֒ W 1,q

uloc(Ω), 2 ≤ q < ∞.

Since Theorem 3.7 ensures the existence of a solution to (3.2) in H2
uloc(Ω), we also have existence

of a solution in W 1,q
uloc(Ω). Besides, the inclusions of Lebesgue spaces imply

W 1,q
uloc(Ω) →֒ H1

uloc(Ω), 2 ≤ q < ∞.

Hence, the uniqueness of a solution in H1
uloc, ensured by Theorem 3.2, implies that there exists at

most one solution of (3.2) in W 1,q
uloc(Ω). In the end, (3.2) admits a unique solution u ∈ W 1,q

uloc(Ω)
for 2 ≤ q < ∞, with estimate

‖u‖W 1,q
uloc

≤ Cq‖f‖L∞ .

Now the method is exactly the same as in Theorem 3.7 to prove that u belongs to W 2,q
uloc(Ω). To

do so, the only extra result we require is Nečas inequality in the general Lq framework, see [7,
Ex. III.3.4, p. 175], which provides the very same pressure estimates as for q = 2. In the end
we obtain the well-posedness of the problem in W 2,q

uloc(Ω), with estimate

‖u‖W 2,q
uloc

≤ C‖f‖L∞ , 2 ≤ q < ∞.

Now use that
W 2,4

uloc(Ω) →֒ W 1,∞(Ω) →֒ W 1,4
uloc(Ω).

As previously, the first embedding provides existence of a solution u ∈ W 1,∞(Ω), together with
estimate (3.14), and the second one ensures uniqueness.

3.2 Stability estimate for the transport in the strip

The transport equation (2.6) is still well-posed on Ω = R × (0, 1) and Proposition 2.5 still
applies. The lemmas related to the properties of the characteristics are also valid still, up to
minor adaptations mentioned when required in the following. The only adaptation demanding
particular attention is the stability estimate from Proposition 2.6, stated as follows.

Proposition 3.9. Let ui ∈ L∞(R+;W
1,∞(Ω)) with ui|∂Ω ≡ 0 and divui ≡ 0, for i = 1, 2. Let

ρ0 ∈ L∞(Ω) and set ρi the solution of (2.6) associated to ui with initial datum ρ0. There exists
T̄ (‖∇ui‖L∞) > 0 such that for any T ∈ [0, T̄ ],

‖ρ1 − ρ2‖L∞(0,T ;H−1
uloc)

≤ BT (1 +MT )1/2eCT‖∇u1‖L∞(0,T ;L∞)‖u1 − u2‖L∞(0,T ;L2
uloc)

,

where B := C‖ρ0‖L∞ and M := maxi ‖ui‖L∞.

16



Proof. The goal is to bound the following quantity for any test function ϕ ∈ C∞
c (Ω) uniformly in

k ∈ Z and with respect to t ∈ [0, T̄ ] where T̄ is determined further. To apply Liouville theorem
gives

Iϕ,k :=

∫

Ω

(
ρ1(t, x)− ρ2(t, x)

)
(χkϕ)(x) dx

=

∫

Ω

ρ0(x)
(
(χkϕ)(X1(t, x)) − (χkϕ)(X2(t, x))

)
dx

=

∫

Ω

ρ0(x)(X1(t, x)−X2(t, x)) ·

∫ 1

0

∇(χkϕ)(X
θ(t, x)) dθ dx,

where Xθ(t, x) := θX1(t, x) + (1 − θ)X2(t, x). Since ρi are the push-forwards of ρ0 by Xi, the
respective transports occur at finite speed, bounded by M . Since χk is supported in U∗

k , the
support of (χkϕ) ◦Xi(t) is included in

UM,t
k := {k − 1−Mt < x < k + 2 +Mt}.

Hence Hölder’s inequality applies as follows

|Iϕ,k| ≤ ‖ρ0‖L∞‖X1(t)−X2(t)‖L2(UM,t

k
)

∫ 1

0

‖∇(χkϕ)(X
θ(t))‖L2 dθ.

We saw in Proposition 2.6 that there exists T̄ (‖∇ui‖L∞) > 0 such that Xθ(t) performs a change
of variable with jacobian determinant uniformly bounded with respect to t ∈ [0, T̄ ] and θ ∈ [0, 1],
meaning there exists a constant C > 0 such that

∀t ∈ [0, T̄ ], θ ∈ [0, 1], ‖∇(χkϕ)(X
θ(t))‖L2 ≤ C‖∇(χkϕ)‖L2 ≤ Cχ‖ϕ‖H1 .

Besides, Lemma 2.4 applies on the bounded domain UM,t
k , providing

‖X1(t)−X2(t)‖L2(UM,t

k
) ≤ teCt‖∇u1‖L∞(0,t;L∞)‖u1 − u2‖L∞(0,t;L2(UM,t

k
)).

From considerations similar to those of Lemma 3.3 we have

‖u1 − u2‖L∞(0,t;L2(UM,t

k
)) ≤ C(1 +Mt)1/2‖u1 − u2‖L∞(0,t;L2

uloc)
,

with finite right hand side, since ui ∈ L∞(R+;W
1,∞(Ω)). Combining these last equalities lead

to

∀t ∈ [0, T̄ ], |Iϕ,k| ≤ C‖ρ0‖L∞t(1 +Mt)1/2eCt‖∇u1‖L∞(R+;L∞)‖u1 − u2‖L∞(0,t;L2
uloc)

‖ϕ‖H1 .

Taking the supremum over the test functions, k ∈ Z and t ∈ [0, T ], we see that for any T ∈ [0, T̄ ]
we have

‖ρ1 − ρ2‖L∞(0,T ;H−1
uloc)

≤ BT (1 +MT )1/2eCT‖∇u1‖L∞(0,T ;L∞)‖u1 − u2‖L∞(0,T ;L2
uloc)

.

3.3 Proof of Theorem 1.2

The proof essentially follows the same path as in Theorem 1.1. For this reason we recall briefly
the similar steps and focus on the parts that differ from this former case.
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Local existence : Set ρ0 ≡ ρ0 in L∞(R+;L
∞(Ω)). Define, thanks to Proposition 2.5 and

Theorem 3.8, the following sequences

∀N ∈ N, ρN ∈ L∞(R+;L
∞(Ω)), uN ∈ L∞(R+,W

1,∞(Ω)),

satisfying the partial problems
{

∂tρ
N+1 + uN · ∇ρN+1 = 0 in R+ × Ω,

ρN+1(0, ·) = ρ0 in Ω,
(3.15)

and 



−∆uN +∇pN = −ρNez in R+ × Ω,
divuN = 0 in R+ × Ω,

uN = 0 in R+ × ∂Ω,∫
uN
1 = 0 in R+.

(3.16)

The uniforms bounds, with B := C‖ρ0‖L∞, remain true,

‖ρN‖L∞(R+,L∞) ≤ B, ‖uN‖L∞(R+;W 1,∞) ≤ B. (3.17)

Therefore we still have weak∗ convergence of ρN ,uN and ∇uN , up to the extraction of subse-
quences. Beside, Proposition 3.9 ensures the existence of a T̄ (‖ρ0‖L∞) > 0 such that for any
T ∈ [0, T̄ ],

‖ρN+1 − ρN‖L∞(0,T ;H−1
uloc)

≤ BT (1 +BT )1/2eBT ‖ρN − ρN+1‖L∞(0,T ;H−1
uloc)

,

where we have plugged (3.17). Therefore, up to the choice of a small enough T > 0, (ρN )N is
a Cauchy sequence in L∞(0, T ;H−1

uloc(Ω)), which implies that (uN )N is also a Cauchy sequence
in L∞(0, T ;H1

uloc(Ω)), with limit denoted u. The weak∗ convergence of (uN )N and (∇uN )N
ensures that u also belongs to L∞(0, T ;W 1,∞(Ω)). In particular, uN and its derivatives converge
in L1

loc([0, T ]× Ω), which, together with the weak∗ convergence of (ρN )N , is enough to pass to
the limit in the weak formulation of partial problems (3.15) and (3.16). We obtain a local in
time solution (ρ,u) of (3.2), with regularity

L∞(0, T ;L∞(Ω))× L∞(0, T ;W 1,∞(Ω)).

Local uniqueness : Let (ρi,ui) be two such solutions of (3.2). The contraction adapts thanks
to Proposition 3.9 in

‖ρ1 − ρ2‖L∞(0,T ;H−1
uloc)

≤ BT (1 +BT )1/2eBT ‖ρ1 − ρ2‖L∞(0,T ;H−1
uloc)

,

which implies uniqueness for T > 0 small enough.

Globality : The extension proves just as in the bounded case, see the proof of Theorem 1.1.

3.4 Stability estimate for the system in the strip

The result and the proof are identical to the ones of Proposition 2.7, replacing the stability
estimate (1.2) of the bounded case by the one in the strip from Proposition 3.9.

Proposition 3.10. Let ρ0,i ∈ L∞(Ω) and ρi be the solution of (1.1) with initial datum ρ0,i, for
i = 1, 2. There exists C = C(Ω, ‖ρ0,i‖L∞) > 0 such that

∀T ∈ R+, ‖ρ1 − ρ2‖L∞(0,T ;H−1
uloc)

≤ CeCT ‖ρ0,1 − ρ0,2‖H−1
uloc

. (3.18)
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A Appendix

A.1 Proof of Lemma 3.1

Let m ∈ N, k ∈ Z, 1 < q < ∞ and u ∈ Wm,q
uloc(Ω). Since χk = 1 on Uk,

‖u‖Wm,q(Uk) ≤ ‖χku‖Wm,q .

The support of χk being U∗
k , one has

‖χku‖Wm,q ≤ Cχ,m‖u‖Wm,q(U∗

k
).

One can split this last norm as follows

‖u‖Wm,q(U∗

k
) ≤

k+1∑

ℓ=k−1

‖u‖Wm,q(Uℓ).

These three inequalities prove the first assertion,

sup
k∈Z

‖u‖Wm,q(Uk) ≃ sup
k∈Z

‖u‖Wm,q(U∗

k
) ≃ ‖u‖Wm,q

uloc
.

Let m ∈ N
∗ and 1 < q < ∞. For readability we adopt the following notations in the rest of

this proof. For any u ∈ W−m,q(U) and ϕ ∈ Wm,q′

0 (U) where U is a subdomain of Ω, denote

‖u‖U := ‖u‖W−m,q(U), ‖u‖uloc := ‖u‖W−m,q

uloc
, ‖ϕ‖0,U = ‖ϕ‖

Wm,q′

0 (U)

and the duality brackets
〈u, ϕ〉U = 〈u, ϕ〉

W−m,q(U),Wm,q′

0 (U)
.

The inclusion {ϕ : ‖ϕ‖0,Uk
= 1} ⊂ {ϕ : ‖ϕ‖0,U∗

k
= 1} provides the first inequality

‖u‖W−m,q(Uk) ≤ ‖u‖W−m,q(U∗

k
).

Let us show the remaining direct inequality. We use the definition of the dual norm, and recall
that (χk)k is a partition of the unity, up to a factor 2. Also notice that a product χℓϕ with
ϕ ∈ Wm,q′

0 (U∗
k ) has possibly non-empty support only if |ℓ − k| ≤ 3. These remarks justify each

step of the following computations, for any k ∈ Z,

‖u‖U∗

k
= sup

‖ϕ‖0,U∗

k
=1

〈u, ϕ〉U∗

k

≃ sup
‖ϕ‖0,U∗

k
=1

∑
|ℓ−k|≤3〈u, χℓϕ〉U∗

k

≤ sup
‖ϕ‖0,U∗

k
=1

∑
|ℓ−k|≤3〈χℓu, ϕ〉U∗

k

≤ sup
‖ϕ‖0,Ω=1

∑
|ℓ−k|≤3〈χℓu, ϕ〉Ω;

. ‖u‖uloc.
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Finally, the reciprocal inequality is proved by noticing that χkϕ belongs to Wm,q′

0 (U∗
k ) for any

ϕ ∈ Wm,q′

0 (Ω);

‖χku‖Ω = sup
‖ϕ‖0,Ω=1

〈u, χkϕ〉Ω

≤ sup
‖ϕ‖0,Ω=1

‖u‖U∗

k
‖χkϕ‖0,U∗

k

≤ C(χ,m)‖u‖U∗

k
sup

‖ϕ‖0,Ω=1

‖ϕ‖U∗

k

≤ C‖u‖U∗

k
.

�

Remark A.1. For m ∈ N
∗, we do not have in general

sup
k∈Z

‖u‖W−m,q(Uk) & sup
k∈Z

‖u‖W−m,q(U∗

k
).

Indeed, consider the Dirac mass δ(0,1/2) belonging to H−2(Ω) and therefore to H−2
uloc(Ω), with

‖δ‖H−2
uloc

> 0. Nevertheless, for any k ∈ Z we have

∀ϕ ∈ H1
0 (Uk), 〈δ, ϕ〉Uk

= 0.

The reason is that the support of an element of the negative Sobolev spaces can be included in the
complementary of ∪kUk. This does not happen when the considered subdomains family covers
the whole domain, as does (U∗

k )k.

A.2 Proof of Lemma 3.3

The case f ∈ L2
uloc(Ωn) is straightforward,

‖f‖2L2(Ωn)
=

n−1∑

k=−n

‖f‖2L2(Uk)
≤ 2n‖f‖2L2

uloc
.

The case f ∈ H−1
uloc(Ωn) requires a little more care. We use notations from the proof of Lemma

3.1. Notice that
∑n

ℓ=−n−1 χℓ = 2 on Ωn, so for any ϕ ∈ H1
0 (Ωn) we have

〈f, ϕ〉Ωn
≃

n∑

ℓ=−n−1

〈f, χℓϕ〉U∗

ℓ

.

n∑

ℓ=−n−1

‖f‖H−1(U∗

ℓ
)‖χℓϕ‖H1

. ‖f‖H−1
uloc

n∑

ℓ=−n−1

‖χℓϕ‖H1

. ‖f‖H−1
uloc

n∑

ℓ=−n−1

‖ϕ‖H1(U∗

ℓ
)

. ‖f‖H−1
uloc

(2n+ 2)1/2

(
n∑

ℓ=−n−1

‖ϕ‖2H1(U∗

ℓ
)

)1/2

,

where we used Lemma 3.1. Now, bound 2n+ 2 by 4n and notice that the last sum is equivalent
to ‖ϕ‖H1 to complete the proof. �
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A.3 Proof of Lemma 3.4

Set (En,k)n,k a family of positive real numbers, indexed by the couples (n, k) ∈ N
2 such that

1 ≤ k ≤ n, non-decreasing according to k for a fixed n, obeying

∀1 ≤ k ≤ n, En,k ≤ C
(
En,k+1 − En,k + F (k + 1)

)
(A.1)

and satisfying
∀n, En,n ≤ CFn, (A.2)

where F is a constant playing the role of ‖f‖2
H−1

uloc

. Let us show that there exists α > 0 and

k0 ∈ N
∗ such that

∀k, n, k0 ≤ k ≤ n =⇒ Ek ≤ αFk. (A.3)

By (A.2) we already know that (A.3) is satisfied for any n ∈ N
∗ and k = n, with α = C. For a

fixed n, let k0 be the greatest index such that (A.3) is not satisfied, meaning

En,k0 > αFk0. (A.4)

Therefore, plugging (A.4) in (A.1) and using the definition of k0 provides

α(1 + C)Fk0 ≤ CF (α + 1)(k0 + 1),

which is equivalent to
k0

k0 + 1
≤

C

C + 1

(
1 +

1

α

)
=: Cα.

Up to the choice of a greater α, we can assume that Cα < 1. This implies that k0 ≤ Cα

1−Cα
,

independently of n and F . Therefore, we conclude that for any k, n such that k0 ≤ k ≤ n we
have

Ek ≤ αFk.

�
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